Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Gold-catalyzed cascade C–H/C–H crosscoupling/cyclization/alkynylation: An efficient access to 3-alkynylpyrroles

Shuai Zhang, Yuanhong Ma, Jingbo Lan, Feijie Song* and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China Fax: 86-28-85412203; E-mail: jsyou@scu.edu.cn; fsong@scu.edu.cn

Table of contents

I. General remarks	S3
II. Optimization of the reaction of β -enamino esters with terminal alkynes	S3
III. General procedure for the synthesis of fully substituted 3-alkynylpyrroles	S5
IV. General procedure for the synthesis of C5-unsubstituted 3-alkynylpyrroles	S5
V. ORTEP diagrams of compounds 3a and 11a	S6
VI. Characterization of new β -enamino esters	S6
VII. Characterization of products 3-5.	S9
VIII. Mechanism study	S23
IX. The derivation of 3-alkynylpyrroles	.S25
X. References	.S28
XI. Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectra	.S29

I. General remarks

NMR spectra were obtained on a Bruker AV II-400 MHz (¹H NMR at 400 MHz, ¹³C NMR at 100 MHz, and ¹⁹F NMR at 376 MHz). The ¹H NMR chemical shifts were measured relative to CDCl₃ ($\delta = 7.26$ ppm) or DMSO- d_6 ($\delta = 2.50$ ppm) as the internal reference. The ¹³C NMR chemical shifts were given using CDCl₃ ($\delta = 77.16$ ppm) or DMSO- d_6 ($\delta = 39.52$ ppm) as the internal standard. High-resolution mass spectra (HRMS) were obtained with a Waters-Q-TOF-Premier (ESI). X-Ray single-crystal diffraction data were collected on an Oxford Xcalibur E or Agilent Technologies Gemini single crystal diffractometers. Melting points were determined with XRC-1 and are uncorrected.

Unless otherwise noted, all reactions were carried out under N₂. All reagents were obtained from commercial suppliers and used without further purification. HAuCl₄·xH₂O (\geq 50% Au) were purchased from Shanxi Kaida Chemical Engineering (China) Co., Ltd. AuCl₃ and AuBr₃ were purchased from Acros and Alfa Aesar, respectively. [(bpy)AuCl₂]Cl,¹ 1-ethynyl-2-(methoxymethoxy)benzene,² 4-ethynylbenzonitrile,³ 1-ethynylnaphthalene,⁴ 2-ethynylthiophene,⁵ β -aryl enamines **1h-11**,^{6a} β -alkyl enamines **1a-1g** and **1m-1p**,^{6b} and α , β -disubstituted enamines **1q-1r**^{6c} were prepared according to the literature procedure. Solvents were dried by refluxing over CaH₂ (for CH₂Cl₂, DMF, CH₃CN, and PhCl) or sodium (for toluene, THF, and MeOH) and freshly distilled prior to use.

II. Optimization of the reaction of β -enamino esters with terminal alkynes

A flame-dried sealable tube with a magnetic stir bar was charged with gold species, base, oxidant, (*Z*)-ethyl 3-(phenylamino)but-2-enoate **1a** (232.4 μ L, 1.2 mmol), phenylacetylene **2a** (65.9 μ L, 0.6 mmol), and solvent (3.0 mL) under an N₂ atmosphere. The tube was sealed and the reaction mixture was stirred at 50 °C for 4 h. After being cooled to ambient temperature, the reaction solution was diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 30 mL of CH₂Cl₂. The filtrate was concentrated and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) to provide the desired product **3a**. **Table S1.** Optimization of the gold-catalyzed reaction of (*Z*)-ethyl 3-(phenylamino)but-2-enoate **1a** with phenylacetylene **2a**^{*a*}

	Dh		E	Ph	
		Ph— Cataly	st, Oxidant, Base		
	10	solv 2≎	rent, 50 °C, 4 h	∕_N∕_Ph ∣ Ph	
	la	2a		3a	
entry	catalyst (mol%)	oxidant	base (equiv)	solvent	yield (%)
1	none	PhI(OAc) ₂	KOAc (2.0)	toluene	0
2	Ph ₃ PAuCl (4)	PhI(OAc) ₂	KOAc (2.0)	toluene	45
3	$\operatorname{AuCl}_{3}(4)$	PhI(OAc) ₂	KOAc (2.0)	toluene	42
4	$\operatorname{AuBr}_{3}(4)$	PhI(OAc) ₂	KOAc (2.0)	toluene	34
5	$HAuCl_4 \cdot xH_2O(4)$	PhI(OAc) ₂	KOAc (2.0)	toluene	30
6	$AuCl_{3}(4) + bpy(4)$	PhI(OAc) ₂	KOAc (2.0)	toluene	42
7	$AuCl_{3}(4) + phen(4)$	PhI(OAc) ₂	KOAc (2.0)	toluene	26
8	[(bpy)AuCl ₂]Cl (4)	PhI(OAc) ₂	KOAc (2.0)	toluene	57
9	[(bpy)AuCl ₂]Cl (5)	PhI(OAc) ₂	KOAc (2.0)	toluene	61
10	[(bpy)AuCl ₂]Cl (10)	PhI(OAc) ₂	KOAc (2.0)	toluene	54
11	[(bpy)AuCl ₂]Cl (5)	PhI(OPiv) ₂	KOAc (2.0)	toluene	38
12	[(bpy)AuCl ₂]Cl (5)	PIFA	KOAc (2.0)	toluene	0
13	[(bpy)AuCl ₂]Cl (5)	$K_2S_2O_8$	KOAc (2.0)	toluene	0
14	[(bpy)AuCl ₂]Cl (5)	NFSI	KOAc (2.0)	toluene	0
15	[(bpy)AuCl ₂]Cl (5)	Selectfluor	KOAc (2.0)	toluene	0
16	[(bpy)AuCl ₂]Cl (5)	PhI(OAc) ₂	KOAc (2.0)	DCM	43
17	[(bpy)AuCl ₂]Cl (5)	PhI(OAc) ₂	KOAc (2.0)	PhCl	44
18	[(bpy)AuCl ₂]Cl (5)	PhI(OAc) ₂	KOAc (2.0)	THF	21
19	[(bpy)AuCl ₂]Cl (5)	PhI(OAc) ₂	KOAc (2.0)	CH ₃ CN	trace
20	[(bpy)AuCl ₂]Cl (5)	PhI(OAc) ₂	KOAc (2.0)	DMF	0
21	[(bpy)AuCl ₂]Cl (5)	PhI(OAc) ₂	KOAc (2.0)	MeOH	0
22	[(bpy)AuCl ₂]Cl (5)	PhI(OAc) ₂	none	toluene	39
23	[(bpy)AuCl ₂]Cl (5)	PhI(OAc) ₂	NaOAc (2.0)	toluene	40
24	[(bpy)AuCl ₂]Cl (5)	PhI(OAc) ₂	CsOAc (2.0)	toluene	52
25	[(bpy)AuCl ₂]Cl (5)	PhI(OAc) ₂	K ₃ PO ₄ (2.0)	toluene	44
26	[(bpy)AuCl ₂]Cl (5)	PhI(OAc) ₂	Cs_2CO_3 (2.0)	toluene	50
27	[(bpy)AuCl ₂]Cl (5)	PhI(OAc) ₂	KOAc (3.0)	toluene	66
28	$[(bpy)AuCl_2]Cl(4)$	PhI(OAc) ₂	KOAc (3.0)	toluene	60

29^{b}	[(bpy)AuCl ₂]Cl (4)	PhI(OAc) ₂	KOAc (3.0)	toluene	35
30 ^c	[(bpy)AuCl ₂]Cl (4)	PhI(OAc) ₂	KOAc (3.0)	toluene	66

^{*a*} Reaction conditions: **1a** (1.2 mmol), **2a** (0.6 mmol), gold species, base (2.0-3.0 equiv), oxidant (2.0 equiv), and solvent (3.0 mL) at 50 °C for 4 h. Isolated yields based on **2a** are given. ^{*b*} The ratio of **1a/2a** was 1/1. ^{*c*} The ratio of **1a/2a** was 2.5/1. bpy = 1,2-bipyridine; PIFA = phenyliodine bis(trifluoroacetate); NFSI = *N*-fluorobenzenesulfonimide; Selectfluor = 1-chloromethyl-4-fluoro-1,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate).

III. General procedure for the synthesis of fully substituted 3-alykynlpyrroles

A flame-dried sealable tube with a magnetic stir bar was charged with [(bpy)AuCl₂]Cl (11.1 mg, 0.024 mmol), KOAc (176.7 mg, 1.8 mmol), PhI(OAc)₂ (386.5 mg, 1.2 mmol), β -enamino ester **1** (1.5 mmol), terminal alkyne **2** (0.6 mmol), and toluene (3.0 mL) under an N₂ atmosphere. The tube was sealed and the reaction mixture was stirred at 50 °C for 4 h. After being cooled to ambient temperature, the reaction solution was diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 30 mL of CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel to provide the desired product **3** and **4**.

IV. General procedure for the synthesis of C5-unsubstituted 3-alkynylpyrroles

A flame-dried sealable tube with a magnetic stir bar was charged with [(bpy)AuCl₂]Cl (9.2 mg, 0.02 mmol), KOAc (117.8 mg, 1.2 mmol), PhI(OAc)₂ (257.7 mg, 0.8 mmol), 2,3-disubstituted β -enamino ester **1** (1.2 mmol), terminal alkyne **2** (0.4 mmol), and chlorobenzene (2.0 mL) under an N₂ atmosphere. The tube was sealed and the reaction mixture was stirred at 50 °C for 4 h. After being cooled to ambient temperature, chlorobenzene was evaporated and the residue was diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 30 mL of CH₂Cl₂. The filtrate was concentrated and the residue was purified by column chromatography on silica gel to provide the desired product **5**.

V. ORTEP diagrams of compounds 3a and 11a

Figure S1. ORTEP diagram of 3a (CCDC 1031864). Thermal ellipsoids are set at 50% probability.

Figure S2. ORTEP diagram of **11a** (CCDC 1031865). Thermal ellipsoids are set at 50% probability.

VI. Characterization of new β -enamino esters

(Z)-Ethyl 3-(phenylamino)-3-(o-tolyl)acrylate (1i)^{6a}

Purification by column chromatography on basic Al₂O₃ (petroleum ether/ethyl acetate = 20/1, v/v) afforded **1i** as a pale yellow solid in 49% yield. M.p.: 84-86 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 1.32 (t, *J* = 7.2 Hz, 3H), 2.12 (s, 3H), 4.22 (q, *J* = 7.2 Hz, 2H), 4.76 (s, 1H), 6.58 (d, *J* = 7.6 Hz, 2H), 6.88 (t, *J* = 7.6 Hz, 1H), 7.03 (t, *J* = 7.6 Hz, 2H), 7.08 (d, *J* = 7.6 Hz, 1H), 7.21 (t, *J* = 7.6 Hz, 1H), 7.27 (td, *J* = 7.6 Hz, 1.6 Hz, 1H), 7.32 (dd, *J* = 7.6 Hz, 1.6 Hz, 1H), 10.62 (s, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ

= 14.7, 19.6, 59.3, 89.6, 120.8, 123.1, 126.1, 128.8, 129.0, 129.3, 130.4, 135.7, 136.0, 140.0, 159.5, 170.4 ppm. HRMS (ESI⁺): calcd for $C_{18}H_{19}NNaO_2 [M+Na]^+$ 304.1313, found 304.1318.

(Z)-Ethyl 3-(naphthalen-1-yl)-3-(phenylamino)acrylate (1j)^{6a}

Purification by column chromatography on basic Al₂O₃ (petroleum ether/ethyl acetate = 20/1, v/v) afforded **1j** as a white solid in 30% yield. M.p.: 108-110 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 1.34 (t, *J* = 7.2 Hz, 3H), 4.25 (q, *J* = 6.8 Hz, 2H), 4.95 (s, 1H), 6.55 (d, *J* = 8.0 Hz, 2H), 6.76 (t, *J* = 7.6 Hz, 1H), 6.89 (t, *J* = 8.0 Hz, 2H), 7.41-7.47 (m, 4H), 7.80-7.86 (m, 2H), 8.09-8.12 (m, 1H), 10.81 (s, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 14.7, 59.4, 91.2, 121.2, 123.2, 125.2, 125.4, 126.3, 126.9, 127.0, 128.4, 128.7, 129.6, 130.7, 133.5, 133.9, 140.0, 158.3, 170.4 ppm. HRMS (ESI⁺): calcd for C₂₁H₁₉NNaO₂ [M+Na]⁺ 340.1313, found 340.1315.

(Z)-Methyl 3-(4-bromophenyl)-3-(phenylamino)acrylate (11)^{6a}

Purification by column chromatography on basic Al₂O₃ (petroleum ether/ethyl acetate = 20/1, v/v) afforded **11** as a white solid in 48% yield. M.p.: 88-90 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 3.74 (s, 3H), 4.98 (s, 1H), 6.67 (d, *J* = 7.6 Hz, 2H), 6.94 (t, *J* = 7.2 Hz, 1H), 7.11 (t, *J* = 8.0 Hz, 2H), 7.21 (dt, *J* = 8.8 Hz, 2.0 Hz, 2H), 7.42 (dt, *J* = 8.8 Hz, 2.0 Hz, 2H), 10.22 (s, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 50.9, 91.1, 122.6, 123.5, 123.9, 128.9, 129.9, 131.8, 135.0, 140.2, 158.0, 170.4 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₄BrNNaO₂ [M+Na]⁺ 354.0106, found 354.0109.

(Z)-Benzyl 3-(o-tolylamino)but-2-enoate (1m)^{6b}

Purification by column chromatography on basic Al₂O₃ (petroleum ether/ethyl acetate = 20/1, v/v) afforded **1m** as colorless oil in 89% yield. ¹H NMR (CDCl₃, 400 MHz): δ = 1.86 (s, 3H), 2.30 (s, 3H), 4.78 (s, 1H), 5.17 (s, 2H), 7.08 (dd, *J* = 7.2 Hz, 1.2 Hz, 1H), 7.12-7.20 (m, 2H), 7.22-7.24 (m, 1H), 7.29-7.33 (m, 1H), 7.35-7.42 (m, 4H), 10.12 (s, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 18.2, 20.3, 64.8, 85.0, 126.3, 126.6, 126.7, 128.0, 128.1, 128.6, 130.9, 134.1, 137.4, 138.0, 160.5, 170.4 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₉NNaO₂ [M+Na]⁺ 304.1313, found 304.1316.

(Z)-Benzyl 3-(*m*-tolylamino)but-2-enoate (1n)^{6b}

Purification by column chromatography on basic Al₂O₃ (petroleum ether/ethyl acetate = 20/1, v/v) afforded **1n** as a pale brown solid in 58% yield. M.p.: 50-52 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.01 (s, 3H), 2.35 (s, 3H), 4.77 (s, 1H), 5.17 (s, 2H), 6.90-6.92 (m, 2H), 6.99 (d, *J* = 6.8 Hz, 1H), 7.20-7.23 (m, 1H), 7.29-7.40 (m, 5H), 10.35 (s, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 20.5, 21.5, 64.7, 85.5, 121.7, 125.4, 126.0, 127.9, 128.0, 128.6, 128.9, 137.3, 139.1, 139.2, 159.7, 170.2 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₉NNaO₂ [M+Na]⁺ 304.1313, found 304.1311.

(Z)-Benzyl 3-((4-bromophenyl)amino)but-2-enoate (10)^{6b}

Purification by column chromatography on basic Al₂O₃ (petroleum ether/ethyl acetate = 20/1, v/v) afforded **10** as a white solid in 55% yield. M.p.: 58-60 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 1.99 (s, 3H), 4.80 (s, 1H), 5.16 (s, 2H), 6.96 (d, *J* = 8.8 Hz,

2H), 7.31-7.40 (m, 5H), 7.43-7.45 (m, 2H), 10.33 (s, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 20.4$, 64.9, 86.8, 118.3, 126.0, 128.0, 128.6, 132.3, 137.1, 138.5, 158.9, 170.1 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₆BrNNaO₂ [M+Na]⁺ 368.0262, found 368.0261.

VII. Characterization of products 3-5

Ethyl 2-methyl-1,5-diphenyl-4-(phenylethynyl)-1*H*-pyrrole-3-carboxylate (3a) Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3a** as a pale yellow solid (80.2 mg, 66% yield). M.p.: 140-142 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.45$ (t, J = 7.2 Hz, 3H), 2.41 (s, 3H), 4.41 (q, J = 7.2 Hz, 2H), 7.10-7.12 (m, 2H), 7.18-7.22 (m, 3H), 7.26-7.30 (m, 5H), 7.36-7.40 (m, 5H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 12.9$, 14.7, 60.0, 85.2, 91.5, 104.4, 113.5, 124.7, 127.41, 127.44, 127.8, 128.2, 128.55, 128.63, 129.3, 130.1, 130.8, 131.2, 137.6, 137.9, 138.1, 165.2 ppm. HRMS (ESI⁺): calcd for C₂₈H₂₃NNaO₂ [M+Na]⁺ 428.1626, found 428.1627.

Methyl 2-methyl-1,5-diphenyl-4-(phenylethynyl)-1*H*-pyrrole-3-carboxylate (3b)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3b** as a pale yellow solid (80.8 mg, 69% yield). M.p.: 158-160 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.40 (s, 3H), 3.94 (s, 3H), 7.09-7.11 (m, 2H), 7.16-7.22 (m, 3H), 7.23-7.30 (m, 5H), 7.33-7.37 (m, 3H), 7.39 (dd, *J* = 7.6 Hz, 1.2 Hz , 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 12.9, 51.2, 85.1, 91.7, 104.5, 113.5, 124.6, 127.4, 127.5, 127.8, 128.2, 128.59, 128.63, 129.3, 130.1, 130.8, 131.3, 137.6, 138.01,

138.05, 165.6 ppm. HRMS (ESI⁺): calcd for $C_{27}H_{21}NNaO_2[M+Na]^+$ 414.1470, found 414.1478.

tert-Butyl 2-methyl-1,5-diphenyl-4-(phenylethynyl)-1*H*-pyrrole-3-carboxylate (3c) Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded 3c as a pale yellow solid (85.3 mg, 66% yield). M.p.: 182-184 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.64$ (s, 9H), 2.39 (s, 3H), 7.08-7.11 (m, 2H), 7.16-7.21 (m, 3H), 7.23-7.30 (m, 5H), 7.34-7.39 (m, 5H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 12.8$, 28.8, 80.4, 85.6, 91.2, 104.3, 114.7, 124.8, 127.3, 127.4, 127.7, 128.2, 128.5, 128.6, 129.3, 130.1, 130.9, 131.3, 137.4, 137.7, 138.1, 164.5 ppm. HRMS (ESI⁺): calcd for C₃₀H₂₇NNaO₂ [M+Na]⁺ 456.1939, found 456.1937.

Allyl 2-methyl-1,5-diphenyl-4-(phenylethynyl)-1*H*-pyrrole-3-carboxylate (3d) Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded 3d as a pale yellow solid (74.0 mg, 59% yield). M.p.: 108-110 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 2.42$ (s, 3H), 4.88 (dt, J = 5.6 Hz, 1.2 Hz, 2H), 5.26 (dq, J = 10.4 Hz, 1.6 Hz, 1H), 5.52 (dq, J = 17.2 Hz, 1.6 Hz, 1H), 6.06-6.14 (m, 1H), 7.10-7.13 (m, 2H), 7.18-7.23 (m, 3H), 7.25-7.31 (m, 5H), 7.36-7.39 (m, 5H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 13.0$, 64.8, 85.3, 91.6, 104.5, 113.3, 117.8, 124.6, 127.5, 127.8, 128.2, 128.6, 129.4, 130.1, 130.8, 131.3, 133.1, 137.6, 138.2, 138.3, 164.8 ppm. HRMS (ESI⁺): calcd for C₂₉H₂₃NNaO₂ [M+Na]⁺ 440.1626, found 440.1630.

Benzyl 2-methyl-1,5-diphenyl-4-(phenylethynyl)-1*H*-pyrrole-3-carboxylate (3e) Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded 3e as a pale yellow solid (103.4 mg, 74% yield). M.p.: 149-151 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 2.45$ (s, 3H), 5.44 (s, 2H), 7.11-7.16 (m, 4H), 7.18-7.24 (m, 6H), 7.31-7.32 (m, 5H), 7.35-7.39 (m, 3H), 7.55-7.57 (m, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 13.0$, 65.9, 85.2, 91.6, 104.4, 113.0, 124.4, 127.37, 127.45, 127.8, 127.9, 128.1, 128.3, 128.6, 129.3, 130.1, 130.7, 131.3, 136.8, 137.6, 138.2, 138.5, 165.0 ppm. HRMS (ESI⁺): calcd for C₃₃H₂₅NNaO₂ [M+Na]⁺ 490.1783, found 490.1788.

N,*N*,2-Trimethyl-1,5-diphenyl-4-(phenylethynyl)-1*H*-pyrrole-3-carboxamide (3f) Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1-2/1, v/v) afforded 3f as a pale yellow solid (42.3 mg, 35% yield). M.p.: 206-208 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 2.17$ (s, 3H), 3.19 (s, 3H), 3.25 (s, 3H), 7.13-7.22 (m, 5H), 7.24-7.30 (m, 5H), 7.33-7.37 (m, 5H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 12.1$, 35.2, 39.3, 84.9, 91.3, 103.0, 119.4, 124.4, 127.1, 127.5, 127.9, 128.2, 128.4, 128.6, 129.3, 129.7, 131.06, 131.13, 136.6, 138.2, 167.8 ppm. HRMS (ESI⁺): calcd for C₂₈H₂₄N₂NaO [M+Na]⁺ 427.1786, found 427.1789.

Ethyl 2-isopropyl-1,5-diphenyl-4-(phenylethynyl)-1*H*-pyrrole-3-carboxylate (3g)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3g** as a pale yellow solid (50.7 mg, 39% yield). M.p.: 202-204 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.32$ (d, J = 7.2 Hz, 6H), 1.45 (t, J = 7.2 Hz, 3H), 3.05-3.16 (m, 1H), 4.42 (q, J = 7.2 Hz, 2H), 7.12-7.18 (m, 5H), 7.23-7.28 (m, 5H), 7.35-7.36 (m, 5H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.7$, 20.8, 27.0, 60.3, 85.1, 91.4, 105.0, 113.2, 124.7, 127.41, 127.43, 127.7, 128.3, 128.8, 129.15, 129.19, 130.4, 131.0, 131.2, 138.0, 138.1, 146.0, 165.1 ppm. HRMS (ESI⁺): calcd for C₃₀H₂₇NNaO₂ [M+Na]⁺ 456.1939, found 456.1945.

Ethyl 1,2,5-triphenyl-4-(phenylethynyl)-1*H*-pyrrole-3-carboxylate (3h)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3h** as a pale yellow solid (66.3 mg, 47% yield). M.p.: 187-189 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 1.20 (t, *J* = 7.2 Hz, 3H), 4.23 (q, *J* = 7.2 Hz, 2H), 6.88-6.90 (m, 2H), 7.09-7.15 (m, 3H), 7.19-7.31 (m, 11H), 7.32-7.34 (m, 2H), 7.42 (dd, *J* = 7.2 Hz, 1.2 Hz, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 14.3, 60.1, 84.6, 92.0, 105.2, 115.3, 124.6, 127.5, 127.6, 127.7, 127.8, 127.9, 128.1, 128.3, 128.7, 129.0, 130.4, 130.7, 131.4, 131.5, 137.6, 138.7, 139.6, 164.3 ppm. HRMS (ESI⁺): calcd for C₃₃H₂₆NO₂ [M+H]⁺ 468.1964, found 468.1960.

Ethyl 1,5-diphenyl-4-(phenylethynyl)-2-(*o*-tolyl)-1*H*-pyrrole-3-carboxylate (3i) Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded 3i as a pale yellow solid (80.3 mg, 56% yield). M.p.: 162-164 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.12$ (t, J = 7.2 Hz, 3H), 2.11 (s, 3H), 4.14-4.22 (m, 2H), 6.88 (d, J = 6.0 Hz, 2H), 7.03-7.10 (m, 6H), 7.16 (td, J = 7.2 Hz, 1.6 Hz, 1H), 7.21-7.32 (m, 6H), 7.35-7.37 (m, 2H), 7.44 (dd, J = 8.0 Hz, 1.6 Hz, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.2$, 20.3, 59.9, 84.7, 92.1, 105.0, 115.3, 124.5, 125.0, 127.6, 127.8, 127.9, 128.3, 128.4, 128.6, 128.7, 129.4, 130.2, 130.7, 131.4, 131.5, 131.7, 137.6, 138.4, 138.5, 139.6, 164.0 ppm. HRMS (ESI⁺): calcd for C₃₄H₂₇NNaO₂ [M+Na]⁺ 504.1939, found 504.1945.

Ethyl 2-(naphthalen-1-yl)-1,5-diphenyl-4-(phenylethynyl)-1*H*-pyrrole-3carboxylate (3j)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3j** as a pale yellow solid (103.0 mg, 66% yield). M.p.: 192-194 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 0.74$ (t, J = 6.8 Hz, 3H), 3.97 (q, J = 6.8 Hz, 2H), 6.85-7.03 (m, 5H), 7.21-7.33 (m, 8H), 7.40-7.49 (m, 6H), 7.75-7.80 (m, 3H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 13.7$, 59.7, 84.5, 92.3, 105.2, 116.7, 124.5, 124.7, 125.8, 126.0, 126.4, 127.6, 127.7, 127.86, 127.89, 128.2, 128.3, 128.5, 128.9, 129.5, 129.9, 130.3, 130.6, 131.4, 133.1, 133.8, 137.6, 137.8, 138.9, 163.8 ppm. HRMS (ESI⁺): calcd for C₃₇H₂₇NNaO₂ [M+Na]⁺ 540.1939, found 540.1935.

Ethyl 1,5-diphenyl-4-(phenylethynyl)-2-(thiophen-2-yl)-1*H*-pyrrole-3carboxylate (3k)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3k** as a pale yellow solid (72.7 mg, 51% yield). M.p.: 166-168 °C.

¹H NMR (CDCl₃, 400 MHz): $\delta = 1.27$ (t, J = 7.2 Hz, 3H), 4.29 (q, J = 7.2 Hz, 2H), 6.88-6.90 (m, 1H), 6.92 (dd, J = 3.6 Hz, 1.2 Hz, 1H), 6.98-7.00 (m, 2H), 7.16-7.306 (m, 10H), 7.314-7.35 (m, 2H), 7.41 (dd, J = 7.6 Hz, 1.6 Hz, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 14.4$, 60.3, 84.2, 92.1, 105.4, 117.3, 124.4, 126.3, 127.7, 127.9, 128.3, 128.8, 128.9, 130.36, 130.40, 131.0, 131.2, 131.4, 131.5, 137.5, 139.5, 164.0 ppm. HRMS (ESI⁺): calcd for C₃₁H₂₃NNaO₂S [M+Na]⁺ 496.1347, found 496.1342.

Methyl 2-(4-bromophenyl)-1,5-diphenyl-4-(phenylethynyl)-1*H*-pyrrole-3carboxylate (3l)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3I** as a pale yellow solid (69.0 mg, 43% yield). M.p.: 189-191 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 3.80 (s, 3H), 6.88 (d, *J* = 7.2 Hz, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 7.13-7.20 (m, 3H), 7.23-7.25 (m, 3H), 7.28-7.32 (m, 5H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.41-7.43 (m, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 51.4, 84.3, 92.3, 105.3, 115.2, 122.7, 124.3, 127.7, 127.9, 128.2, 128.3, 128.8, 129.0, 130.2, 130.4, 130.8, 131.4, 133.0, 137.2, 138.2, 138.9, 164.6 ppm. HRMS (ESI⁺): calcd for C₃₂H₂₃BrNO₂ [M+H]⁺ 532.0912, found 532.0917.

2-methyl-5-phenyl-4-(phenylethynyl)-1-(o-tolyl)-1H-pyrrole-3-

carboxylate (3m)

Benzyl

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate =

20/1, v/v) afforded **3m** as pale yellow oil (98.2 mg, 68% yield). M.p.: 153-155 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 1.88$ (s, 3H), 2.32 (s, 3H), 5.39-5.46 (m, 2H), 7.11-7.14 (m, 2H), 7.18-7.23 (m, 8H), 7.25-7.27 (m, 1H), 7.28-7.34 (m, 6H), 7.54-7.56 (m, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 12.6$, 17.5, 66.0, 85.3, 91.6, 104.1, 112.9, 124.4, 126.9, 127.4, 127.6, 127.8, 127.9, 128.1, 128.4, 128.6, 129.3, 129.4, 129.8, 130.7, 131.2, 131.3, 136.4, 136.6, 136.8, 138.2, 138.3, 165.1 ppm. HRMS (ESI⁺): calcd for C₃₄H₂₈NO₂ [M+H]⁺ 482.2120, found 482.2114.

Benzyl2-methyl-5-phenyl-4-(phenylethynyl)-1-(m-tolyl)-1H-pyrrole-3-carboxylate (3n)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3n** as a pale yellow solid (107.6 mg, 74% yield). M.p.: 131-133 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.32 (s, 3H), 2.42 (s, 3H), 5.41 (s, 2H), 6.89 (d, *J* = 8.0 Hz, 1H), 6.93 (s, 1H), 7.10-7.12 (m, 2H), 7.15-7.24 (m, 8H), 7.29-7.31 (m, 5H), 7.53-7.55 (m, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 13.1, 21.4, 65.9, 85.3, 91.6, 104.3, 112.9, 124.5, 125.7, 127.37, 127.44, 127.8, 127.9, 128.1, 128.3, 128.6, 129.1, 129.4, 130.1, 130.8, 131.3, 136.8, 137.5, 138.3, 138.6, 139.4, 165.1 ppm. HRMS (ESI⁺): calcd for C₃₄H₂₈NO₂ [M+H]⁺ 482.2120, found 482.2120.

Benzyl 1-(4-bromophenyl)-2-methyl-5-phenyl-4-(phenylethynyl)-1*H*-pyrrole-3carboxylate (30) Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **30** as a pale yellow solid (117.1 mg, 71% yield). M.p.: 159-161 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.43 (s, 3H), 5.42 (s, 2H), 6.97-7.01 (m, 2H), 7.10-7.12 (m, 2H), 7.17-7.31 (m, 11H), 7.50 (d, *J* = 8.8 Hz, 2H), 7.53-7.54 (m, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 13.0, 66.0, 84.9, 91.8, 104.8, 113.4, 122.6, 124.3, 127.5, 127.7, 127.96, 128.01, 128.1, 128.3, 128.6, 130.1, 130.2, 130.4, 131.3, 132.6, 136.6, 136.7, 138.1, 138.3, 164.9 ppm. HRMS (ESI⁺): calcd for C₃₃H₂₄BrNNaO₂ [M+Na]⁺ 568.0888, found 568.0890.

Benzyl 1-benzyl-2-methyl-5-phenyl-4-(phenylethynyl)-1*H*-pyrrole-3-carboxylate (3p)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **3p** as a pale yellow solid (72.1 mg, 50% yield). M.p.: 128-130 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.49 (s, 3H), 5.14 (s, 2H), 5.40 (s, 2H), 6.92 (d, *J* = 6.8 Hz, 2H), 7.05-7.06 (m, 2H), 7.15-7.19 (m, 3H), 7.24-7.33 (m, 6H), 7.35-7.39 (m, 3H), 7.43-7.45 (m, 2H), 7.52-7.55 (m, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 12.0, 48.4, 65.9, 85.2, 91.2, 104.3, 112.8, 124.4, 125.7, 127.3, 127.6, 127.9, 128.1, 128.36, 128.39, 128.44, 128.6, 129.1, 130.4, 130.8, 131.3, 136.8, 137.1, 137.7, 139.0, 165.0 ppm. HRMS (ESI⁺): calcd for C₃₄H₂₇NNaO₂ [M+Na]⁺ 504.1939, found 504.1935.

Benzyl 5-(2-(methoxymethoxy)phenyl)-4-((2-(methoxymethoxy)phenyl)ethynyl)-

2-methyl-1-phenyl-1*H*-pyrrole-3-carboxylate (4a)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1, v/v) afforded **4a** as a pale yellow solid (86.3 mg, 49% yield). M.p.: 119-121 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 2.45$ (s, 3H), 3.26 (s, 3H), 3.28 (s, 3H), 4.77 (d, J = 6.8 Hz, 1H), 4.86 (d, J = 1.6 Hz, 2H), 4.89 (d, J = 6.8 Hz, 1H), 5.41 (s, 2H), 6.80 (td, J = 7.6 Hz, 1.2 Hz, 1H), 6.92-6.97 (m, 3H), 6.99-7.04 (m, 2H), 7.10-7.15 (m, 1H), 7.18-7.22 (m, 2H), 7.35 (dd, J = 7.6 Hz, 2.0 Hz, 1H), 7.52-7.54 (m, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 13.2$, 56.0, 56.1, 65.8, 87.8, 88.7, 95.1, 95.4, 105.5, 112.7, 115.1, 115.5, 116.0, 121.4, 121.5, 122.0, 127.8, 128.16, 128.19, 128.5, 128.7, 130.0, 133.3, 133.4, 135.5, 137.0, 137.6, 137.7, 156.0, 157.4, 165.1 ppm. HRMS (ESI⁺): calcd for C₃₇H₃₃NNaO₆ [M+Na]⁺ 610.2206, found 610.2207.

Benzyl 5-(2-fluorophenyl)-4-((2-fluorophenyl)ethynyl)-2-methyl-1-phenyl-1*H*pyrrole-3-carboxylate (4b)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **4b** as a pale yellow solid (110.1mg, 73% yield). M.p.: 128-130 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 2.44$ (s, 3H), 5.42 (s, 2H), 6.89 (t, J = 9.2 Hz, 1H), 6.92-7.01 (m, 3H), 7.08 (t, J = 7.6 Hz, 2H), 7.15-7.24 (m, 3H), 7.27-7.32 (m, 6H), 7.44 (t, J = 7.6 Hz, 1H), 7.52-7.54 (m, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): 13.0, 65.9, 85.4, 89.3 (d, J = 3.0 Hz), 105.8, 112.9 (d, J = 16.0 Hz), 113.0, 115.3 (d, J = 20.0 Hz), 115.5 (d, J = 22.0 Hz), 118.9 (d, J = 15.0 Hz), 123.7 (d, J = 4.0 Hz), 123.8 (d, J = 4.0 Hz), 127.8, 128.2, 128.3, 128.5, 128.6, 129.0, 129.1, 130.4, 130.5, 133.12 (d, J = 3.0 Hz), 133.3 (d, J = 1.0 Hz), 136.8, 137.1, 138.8, 160.0 (d, J = 247.0 Hz), 162.5 (d, J = 250.0 Hz), 164.8 ppm. ¹⁹F NMR (CDCl₃, 376 MHz): $\delta = -110.6$, -109.9 ppm. HRMS (ESI⁺): calcd for C₃₃H₂₃F₂NNaO₂ [M+Na]⁺ 526.1595, found 526.1594.

Benzyl 2-methyl-1-phenyl-5-(4-propylphenyl)-4-((4-propylphenyl)ethynyl)-1*H*pyrrole-3-carboxylate (4c)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **4c** as a pale yellow solid (102.1 mg, 62% yield). M.p.: 121-123 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 0.90 (t, *J* = 7.6 Hz, 3H), 0.93 (t, *J* = 7.6 Hz, 3H), 1.57-1.65 (m, 4H), 2.42 (s, 3H), 2.51 (t, *J* = 8.0 Hz, 2H), 2.55 (t, *J* = 8.0 Hz, 2H), 5.42 (s, 2H), 6.99-7.02 (m, 4H), 7.06 (d, *J* = 8.4 Hz, 2H), 7.10-7.12 (m, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.29-7.32 (m, 3H), 7.34-7.38 (m, 3H), 7.54-7.56 (m, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 13.1, 13.91, 13.93, 24.4, 24.6, 37.9, 38.1, 65.9, 84.7, 91.8, 104.3, 112.9, 121.8, 127.8, 128.1, 128.27, 128.29, 128.5, 128.6, 128.7, 129.3, 129.9, 131.2, 136.9, 137.8, 138.2, 141.9, 142.1, 165.1 ppm. HRMS (ESI⁺): calcd for C₃₉H₃₇NNaO₂ [M+Na]⁺ 574.2722, found 574.2725.

Benzyl 5-(4-methoxyphenyl)-4-((4-methoxyphenyl)ethynyl)-2-methyl-1-phenyl-1*H*-pyrrole-3-carboxylate (4d)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1, v/v) afforded **4d** as a pale yellow solid (84.0 mg, 53% yield). M.p.: 141-143 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.40 (s, 3H), 3.75 (s, 3H), 3.79 (s, 3H), 5.40 (s, 2H), 6.73 (dd, *J* = 8.8 Hz, 2.0 Hz, 4H), 7.06 (d, *J* = 8.8 Hz, 2H), 7.09-7.11 (m, 2H), 7.20 (d, *J* = 8.8 Hz, 2H), 7.28-7.31 (m, 3H), 7.36-7.38 (m, 3H), 7.53-7.54 (m, 2H) ppm. ¹³C

NMR (CDCl₃, 100 MHz): δ = 13.1, 55.3, 55.4, 65.9, 83.8, 91.4, 104.1, 112.8, 113.3, 113.8, 116.8, 123.3, 127.9, 128.3, 128.55, 128.63, 128.7, 129.4, 131.4, 132.7, 136.9, 137.75, 137.82, 138.1, 158.8, 159.0, 165.2 ppm. HRMS (ESI⁺): calcd for C₃₅H₂₉NNaO₄ [M+Na]⁺ 550.1994, found 550.1994.

Benzyl 5-(4-chlorophenyl)-4-((4-chlorophenyl)ethynyl)-2-methyl-1-phenyl-1*H*pyrrole-3-carboxylate (4e)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **4e** as a pale yellow solid (91.4 mg, 57% yield). M.p.: 190-192 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 2.42$ (s, 3H), 5.40 (s, 2H), 6.96 (dt, J = 8.8 Hz, 2.0 Hz, 2H), 7.08-7.11 (m, 2H), 7.14-7.21 (m, 6H), 7.31-7.32 (m, 3H), 7.38-7.40 (m, 3H), 7.50-7.52 (m, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 13.0$, 66.1, 85.8, 90.9, 104.5, 113.2, 122.7, 128.1, 128.2, 128.4, 128.5, 128.6, 128.7, 128.9, 129.2, 129.6, 131.3, 132.5, 133.4, 133.5, 136.6, 137.0, 137.3, 138.9, 164.8 ppm. HRMS (ESI⁺): calcd for C₃₃H₂₃Cl₂NNaO₂ [M+Na]⁺ 558.1004, found 558.1001.

Benzyl 5-(4-cyanophenyl)-4-((4-cyanophenyl)ethynyl)-2-methyl-1-phenyl-1*H*pyrrole-3-carboxylate (4f)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **4f** as a pale yellow solid (63.1 mg, 41% yield). M.p.: 204-206 °C.

¹H NMR (CDCl₃, 400 MHz): $\delta = 2.44$ (s, 3H), 5.39 (s, 2H), 7.01 (d, J = 8.4 Hz, 2H), 7.10-7.12 (m, 2H), 7.32-7.37 (m, 5H), 7.42-7.44 (m, 9H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 13.0$, 66.3, 89.1, 91.1, 105.3, 110.8, 111.1, 113.9, 118.7, 118.8, 128.2, 128.4, 128.6, 128.7, 128.8, 129.4, 129.8, 130.3, 131.6, 131.7, 131.9, 135.0, 136.4, 136.5, 136.8, 140.2, 164.4 ppm. HRMS (ESI⁺): calcd for C₃₅H₂₃N₃NaO₂ [M+Na]⁺ 540.1688, found 540.1690.

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **4g** as a pale yellow solid (108.8 mg, 73% yield). M.p.: 117-119 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 2.23$ (s, 3H), 2.25 (s, 3H), 2.42 (s, 3H), 5.42 (s, 2H), 6.93-7.13 (m, 9H), 7.21 (s, 1H), 7.29-7.31 (m, 3H), 7.36-7.39 (m, 3H), 7.54 (dd, J = 7.2 Hz, 1.6 Hz, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 13.1$, 21.4, 21.5, 65.9, 85.0, 92.0, 104.4, 113.0, 124.4, 127.1, 127.6, 127.9, 128.0, 128.2, 128.3, 128.5, 128.57, 128.60, 128.7, 129.3, 130.6, 131.0, 131.9, 136.9, 137.2, 137.67, 137.73, 138.4, 165.1 ppm. HRMS (ESI⁺): calcd for C₃₅H₂₉NNaO₂ [M+Na]⁺ 518.2096, found 518.2098.

Benzyl 5-(3-bromophenyl)-4-((3-bromophenyl)ethynyl)-2-methyl-1-phenyl-1*H*-

pyrrole-3-carboxylate (4h)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **4h** as a pale yellow solid (104.0 mg, 55% yield). M.p.: 122-124 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 2.43$ (s, 3H), 5.41 (s, 2H), 6.99-7.08 (m, 4H), 7.11-7.13 (m, 2H), 7.31-7.36 (m, 6H), 7.39-7.43 (m, 3H), 7.51-7.54 (m, 2H), 7.64-7.65 (m, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 13.0$, 66.1, 86.2, 90.9, 104.8, 113.3, 121.9, 122.0, 126.1, 128.19, 128.24, 128.3, 128.5, 128.7, 129.0, 129.3, 129.6, 130.0, 130.6, 130.7, 132.5, 133.0, 133.9, 136.5, 136.7, 137.2, 139.1, 164.7 ppm. HRMS (ESI⁺): calcd for C₃₃H₂₃Br₂NNaO₂ [M+Na]⁺ 647.9973, found 647.9980.

Benzyl 2-methyl-5-(naphthalen-1-yl)-4-(naphthalen-1-ylethynyl)-1-phenyl-1*H*pyrrole-3-carboxylate (4i)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **4i** as a pale yellow solid (89.3 mg, 52% yield). M.p.: 137-139 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 2.54$ (s, 3H), 5.46 (d, J = 12.4 Hz, 1H), 5.56 (d, J = 12.4 Hz, 1H), 6.87-6.98 (m, 4H), 7.14 (t, J = 8.0 Hz, 2H), 7.19 (t, J = 6.8 Hz, 2H), 7.28-7.37 (m, 7H), 7.45-7.48 (m, 2H), 7.57-7.60 (m, 3H), 7.64 (d, J = 8.4 Hz, 1H), 7.83 (d, J = 7.6 Hz, 1H), 7.86-7.89 (m, 1H), 8.00-8.02 (m, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 13.2$, 66.0, 89.4, 90.7, 106.8, 112.6, 121.8, 125.1, 125.9, 126.06, 126.13, 126.3, 126.5, 126.7, 127.5, 127.8, 127.9, 128.2, 128.4, 128.5, 128.7, 128.98, 129.01, 129.1, 129.5, 130.1, 132.9, 133.0, 133.1, 133.6, 136.87, 136.93, 137.2, 138.3, 165.1 ppm. HRMS (ESI⁺): calcd for C₄₁H₂₉NNaO₂ [M+Na]⁺ 590.2096, found 590.2095.

Benzyl 2-methyl-1-phenyl-5-(thiophen-2-yl)-4-(thiophen-2-ylethynyl)-1*H*pyrrole-3-carboxylate (4j)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **4j** as a pale yellow solid (55.7 mg, 39% yield). M.p.: 148-149 °C. ¹H NMR (CDCl₃, 400 MHz): $\delta = 2.36$ (s, 3H), 5.41 (s, 2H), 6.86 (t, J = 4.4 Hz, 1H), 6.94-6.97 (m, 2H), 7.00-7.01 (m, 1H), 7.15 (d, J = 5.2 Hz, 1H), 7.20-7.23 (m, 3H), 7.27-7.32 (m, 3H), 7.44-7.48 (m, 3H), 7.53 (d, J = 7.2 Hz, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): $\delta = 12.9$, 65.9, 87.1, 89.1, 104.2, 113.1, 124.6, 125.9, 126.5, 126.7, 127.0, 127.6, 127.9, 128.2, 128.6, 129.1, 129.5, 129.7, 131.1, 132.0, 132.1, 136.7, 137.3, 139.0, 164.6 ppm. HRMS (ESI⁺): calcd for C₂₉H₂₂NO₂S₂ [M+H]⁺ 480.1092, found 480.1095.

Methyl 1,5-diphenyl-4-(phenylethynyl)-1*H*-pyrrole-3-carboxylate (5a)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **5a** as a pale yellow solid (42.8 mg, 57% yield). M.p.: 184-186 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 3.92 (s, 3H), 7.13-7.16 (m, 2H), 7.26-7.31 (m, 6H), 7.32-7.36 (m, 5H), 7.45 (dd, *J* = 7.2 Hz, 1.2 Hz, 2H), 7.55 (s, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 51.5, 84.0, 92.4, 105.8, 117.3, 124.3, 125.8, 127.7, 127.9, 128.0, 128.1, 128.3, 128.8, 129.4, 130.1, 130.3, 131.5, 138.2, 139.2, 164.4 ppm. HRMS (ESI⁺): calcd for C₂₆H₁₉NNaO₂ [M+Na]⁺ 400.1313, found 400.1317.

Benzyl 1,5-diphenyl-4-(phenylethynyl)-1*H*-pyrrole-3-carboxylate (5b)

Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded **5b** as a pale yellow solid (41.2 mg, 45% yield). M.p.: 136-138 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 5.40 (s, 2H), 7.13-7.15 (m, 2H), 7.24-7.30 (m, 8H), 7.32-7.35 (m, 8H), 7.49-7.51 (m, 2H), 7.60 (s, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 66.1, 84.1, 92.4, 105.8, 117.2, 124.2, 125.8, 127.7, 127.9, 127.98, 128.05, 128.1, 128.2, 128.3, 128.7, 129.1, 129.4, 130.1, 130.3, 131.5, 136.6, 138.4, 139.2, 163.9 ppm. HRMS (ESI⁺): calcd for C₃₂H₂₃NNaO₂ [M+Na]⁺ 476.1626, found 476.1632.

Methyl 1-phenyl-5-(*m*-tolyl)-4-(*m*-tolylethynyl)-1*H*-pyrrole-3-carboxylate (5c) Purification by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) afforded 5c as a pale yellow solid (37.8 mg, 47% yield). M.p.: 116-118 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.29 (s, 3H), 2.32 (s, 3H), 3.92 (s, 3H), 7.03 (d, *J* = 7.6 Hz, 1H), 7.08 (d, *J* = 7.6 Hz, 2H), 7.12-7.16 (m, 3H), 7.19 (d, *J* = 7.2 Hz, 1H), 7.24 (s, 1H), 7.28 (s, 2H), 7.31-7.37 (m, 3H), 7.54 (s, 1H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 21.4, 21.6, 51.5, 83.8, 92.7, 105.7, 117.2, 124.1, 125.7, 127.1, 127.86, 127.90, 128.2, 128.5, 128.6, 128.7, 129.4, 130.1, 130.8, 132.0, 137.6, 137.9, 138.3, 139.3, 164.4 ppm. HRMS (ESI⁺): calcd for C₂₈H₂₄NO₂ [M+H]⁺ 406.1807, found 406.1807.

VIII. Mechanism study

1. The reaction of enamino ester 1a with gold(I)-acetylide 6

A flame-dried sealable tube with a magnetic stir bar was charged with (*Z*)-ethyl 3-(phenylamino)but-2-enoate **1a** (97.7 μ L, 0.5 mmol), gold(I)-acetylide **6**⁷ (59.6 mg, 0.2 mmol), bpy (156.2 mg, 1.0 mmol), PhI(OAc)₂ (128.8 mg, 0.4 mmol), KOAc (58.9 mg, 0.6 mmol), and toluene (1.0 mL) under an N₂ atmosphere. The tube was sealed and the resulting mixture was stirred at 50 °C for 4 h. After being cooled to ambient temperature, the reaction solution was diluted with 20 mL of CH₂Cl₂, filtered through a celite pad and washed with 10 mL of CH₂Cl₂. The filtrate was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/ether = 20/1, v/v) to afford 12.1 mg of **3a** (30% yield).

When the reaction was carried out in the absence of $PhI(OAc)_2$, no desired **3a** was observed.

2. The reaction of enamino ester 1a with internal alkynes

A flame-dried sealable tube with a magnetic stir bar was charged with (*Z*)-ethyl 3-(phenylamino)but-2-enoate **1a** (1.5 mmol), 1,4-diphenylbuta-1,3-diyne **7** (121.4 mg, 0.6 mmol) or 1,2-diphenylacetylene **8** (121.4 mg, 0.6 mmol)), [(bpy)AuCl₂]Cl (11.1 mg, 0.024 mmol), KOAc (176.7 mg, 1.8 mmol), PhI(OAc)₂ (386.5 mg, 1.2 mmol), and toluene (3.0 mL) under an N₂ atmosphere. The tube was sealed and the reaction mixture was stirred at 50 °C for 4 h. No **3a** or **9** was formed.

3. The reaction of C3-unsubstituted pyrrole 10 with phenylacetylene 2a

A flame-dried sealable tube with a magnetic stir bar was charged with pyrrole 10^8 (182.3 mg, 0.6 mmol), phenylacetylene **2a** (65.9 µL, 0.6 mmol), [(bpy)AuCl₂]Cl (11.1 mg, 0.024 mmol), KOAc (176.7 mg, 1.8 mmol), PhI(OAc)₂ (386.5 mg, 1.2 mmol), and toluene (3.0 mL) under an N₂ atmosphere. The tube was sealed and the reaction mixture was stirred at 50 °C for 4 h. No desired **3a** was formed.

IX. The derivation of 3-alkynylpyrroles

7-Iodo-3-methyl-1,2,6-triphenylpyrano[3,4-*c*]pyrrol-4(2*H*)-one (11a)⁹

A solution of I₂ (76.2 mg, 0.3 mmol) in DCM (1.5 mL) was added to a solution of **3b** (39.1 mg, 0.1 mmol) in DCM (1.5 mL) and the resulting mixture was stirred at room temperature for 12 h. The reaction mixture was diluted with DCM (10 mL), washed with NaHSO₃, and dried over anhydrous Na₂SO₄. The solvent was evaporated and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1, v/v) to afford **11a** as a pale yellow solid (36.3 mg, 72% yield). M.p.: >250 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.54 (s, 3H), 7.06-7.07 (m, 2H), 7.17-7.25 (m, 5H), 7.31-7.32 (m, 3H), 7.39-7.42 (m, 3H), 7.61 (d, *J* = 7.2 Hz, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 12.2, 64.9, 105.6, 120.7, 127.3, 128.0, 128.5, 128.6, 129.0, 129.2, 129.4, 129.9, 130.3, 133.8, 135.4, 136.1, 136.7, 151.7, 160.6 ppm. HRMS (ESI⁺): calcd for C₂₆H₁₈INNaO₂ [M+Na]⁺ 526.0280, found 526.0277.

3-Methyl-1,2,6-triphenylpyrano[**3,4-***c*]**pyrrol-4**(2*H*)-one (**11b**)¹⁰

A flame-dried sealable tube with a magnetic stir bar was charged with **11a** (50.3 mg, 0.1 mmol), Pd(OAc)₂ (0.5 mg, 0.002 mmol), PPh₃ (1.1 mg, 0.004 mmol), formic acid (7.5 µL, 0.2 mmol), Et₃N (41.7 µL, 0.3 mmol), and DMF (1.5 mL) under an N₂ atmosphere. The tube was sealed and the reaction mixture was stirred at 60 °C for 4 h. After being cooled to ambient temperature, the reaction solution was diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 30 mL of CH₂Cl₂. The filtrate was evaporated, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1, v/v) to afford **11b** as a pale yellow solid (36.0 mg, 95% yield). M.p.: 227-229 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.59 (s, 3H), 6.89 (s, 1H), 7.10-7.12 (m, 2H), 7.16-7.18 (m, 2H), 7.21-7.28 (m, 3H), 7.31-7.35 (m, 1H), 7.38-7.42 (m, 5H), 7.81-7.83 (m, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 12.4, 96.5, 106.4, 120.6, 124.9, 126.9, 127.2, 128.3, 128.5, 128.6, 128.7, 128.8, 129.5, 129.6, 130.8, 133.5, 136.3, 137.3, 151.4, 160.9 ppm. HRMS (ESI⁺): calcd for C₂₆H₁₉NNaO₂[M+Na]⁺ 400.1313, found 400.1315.

7-((4-Methoxyphenyl)ethynyl)-3-methyl-1,2,6-triphenylpyrano[3,4-*c*]pyrrol-4(2*H*)-one (11c)⁹

A flame-dried sealable tube with a magnetic stir bar was charged with **11a** (25.2 mg, 0.05 mmol), (PPh₃)₂PdCl₂ (2.0 mg, 5 mol%), CuI (0.5 mg, 5 mol%), 1-ethynyl-4methoxybenzene (25.9 μ L, 0.2 mmol), ^{*i*}Pr₂NH (0.5 mL), and DMF (1.0 mL) under an N₂ atmosphere. The tube was sealed and the reaction mixture was stirred at 85 °C for 2 h. After being cooled to ambient temperature, the reaction solution was diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 30 mL of CH₂Cl₂. The filtrate was collected and evaporated, and the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 8/1, v/v) to provide **11c** as a pale yellow solid (19.2 mg, 76% yield). M.p.: 223-225 °C. ¹H NMR (CDCl₃, 400 MHz): δ = 2.56 (s, 3H), 3.75 (s, 3H), 6.61-6.67 (m, 4H), 7.06-7.09 (m, 2H), 7.13-7.20 (m, 3H), 7.22-7.24 (m, 2H), 7.32-7.34 (m, 3H), 7.38-7.45 (m, 3H), 8.12-8.14 (m, 2H) ppm. ¹³C NMR (CDCl₃, 100 MHz): δ = 12.4, 55.3, 83.3, 96.2, 96.4, 105.2, 113.6, 115.4, 118.5, 127.4, 127.75, 127.85, 128.5, 128.6, 128.8, 128.9, 129.2, 130.7, 132.4, 132.6, 133.6, 135.8, 137.0, 154.5, 159.4, 160.0 ppm. HRMS (ESI⁺): calcd for C₃₅H₂₆NO₃ [M+H]⁺ 508.1913, found 508.1909.

X. References

- 1 J. Xie, H. Li, J. Zhou, Y. Cheng and C. Zhu, *Angew. Chem., Int. Ed.*, 2012, **51**, 1252.
- 2 J. Liu and Y. Liu, Org. Lett., 2012, 14, 4742.
- 3 C. Richardson and C. A. Reed, J. Org. Chem., 2007, 72, 4750.
- 4 W. Wu, W. Wu, S. Ji, H. Guo, P. Song, K. Han, L. Chi, J. Shao and J. Zhao, J. Mater. Chem., 2010, 20, 9775.
- 5 I. V. Overmeire, S. A. Boldin, K. Venkataraman, R. Zisling, S. D. Jonghe, S. V. Calenbergh, D. D. Keukeleire, A. H. Futerman and P. Herdewijn, *J. Med. Chem.*, 2000, 43, 4189.
- 6 (a) Q. Dai, W. Yang and X. Zhang, Org. Lett., 2005, 7, 5343. (b) Z.-H. Zhang, L. Yin and Y.-M. Wang, Adv. Synth. Catal., 2006, 348, 184. (c) X. Ji, H. Huang, W. Wu, X. Li and H. Jiang, J. Org. Chem., 2013, 78, 11155.
- 7 K. J. Kilpin, R. Horvath, G. B. Jameson, S. G. Telfer, K. C. Gordon and J. D. Crowley, *Organometallics*, 2010, 29, 6186.
- 8 J. Ke, C. He, H. Liu, M. Li and A. Lei, Chem. Commun., 2013, 49, 7549.
- 9 S. Mehta and R. C. Larock, J. Org. Chem., 2010, 75, 1652.
- R. Rossi, A. Carpita, F. Bellina, P. Stabile and L. Mannina, *Tetrahedron*, 2003, 59, 2067.

XI. Copies of ¹H, ¹³C and ¹⁹F NMR spectra

210 190 170 150 130 110 90 80 70 60 50 40 30 20 10 0 fl (ppm)

S54

fl (ppm)

