Direct synthesis of a geminal zwitterionic phosphonium/hydridoborate system – developing an alternative tool for generating frustrated *Lewis* pair hydrogen activation systems

Jiangang Yu, Gerald Kehr, Constantin G. Daniliuc, Christoph Bannwarth, Stefan Grimme, and

Gerhard Erker*

Supporting Information

Table of Contents

General Procedures	S2
Materials	S 3
Preparation and Characterization of compounds	S4
Synthesis of compound 5	S4
Synthesis of compound 6	S 8
Synthesis of compound 7	S12
Synthesis of compound 8	S15
Synthesis of compound 9	S19
Synthesis of compound 10	S25
Control reaction: reaction of compound 10 with water (NMR scale)	S31
Synthesis of compound 10-D	S33
Synthesis of compound 11	S34
Synthesis of compound 12	S38
Reaction of compound 12 with H_2	S43
Synthesis of compound 13	S44
Synthesis of compound 14	S48
Synthesis of compound 14-D	S53
Reaction of compound 14 with benzaldehyde	S54
Synthesis of compound 22	S59
Control reaction: In situ reaction of compound 14 with CO (NMR scale)	S64
Synthesis of compound 22-D	S67
Compound 10 catalyzed hydrogenation reaction	S68
Hydrogenation of 2-tolyl-(1-phenylethylidene)amine	S69
Hydrogenation of 1-(2-methyl-1-phenylprop-1-en-1-yl)piperidine	S71
Hydrogenation of trimethyl((1-phenylvinyl)oxy)silane	S73
Hydrogenation of Quinaldine	S75
Hydrogenation of 1-Methylindole	S77
Theoretical Methods and Technical Details of the Computations	S79

General Procedures

Standard Schlenk-type glassware (or glove box) was applied for the syntheses compounds involving air- and/or moisture-sensitive under an atmosphere of argon. Solvents were purified and stored under an argon atmosphere. NMR spectra were recorded on the following instruments: Agilent VNMRS 500 (¹H: 500 MHz, ¹³C: 126 MHz, ¹⁹F: 470 MHz, ¹¹B: 160 MHz, ³¹P: 202 MHz), Agilent DD2 600 (¹H: 600 MHz, ¹³C: 151 MHz, ¹⁹F: 564 MHz, ¹¹B: 192 MHz, ³¹P: 243 MHz). Bruker AV 400 (¹H: 400 MHz, ¹³C: 101 MHz). ¹H NMR and ¹³C NMR: chemical shift δ is given relative to TMS and referenced to the solvent signal. ¹⁹F NMR: chemical shift δ is given relative to CFCl₃ (external reference); ¹¹B NMR: chemical shift δ is given relative to BF₃·Et₂O (external reference). NMR assignments are supported by additional 2D NMR experiments. Elemental analyses were performed on a Elementar Vario El III, while IR spectra Varian 3100 FT-IR (Excalibur Series) and melting points DSC Q20 (TA Instruments). Mass spectra were recorded by a MicroTof (Bruker Daltonics) machine. The methods used were the electron impact time of flight or the electrospray ionization time of flight. X-Ray diffraction: Data sets were collected with a Nonius Kappa CCD diffractometer. Programs used: data collection, COLLECT (R. W. W. Hooft, Bruker AXS, 2008, Delft, The Netherlands); data reduction Denzo-SMN (Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276, 307-326); absorption correction, Denzo (Z. Otwinowski, D. Borek, W. Majewski, W. Minor, Acta Crystallogr. 2003, A59, 228-234); structure solution SHELXS-97 (G. M. Sheldrick, Acta Crystallogr. 1990, A46, 467-473); structure refinement SHELXL-97 (G. M. Sheldrick, Acta Crystallogr. 2008, A64, 112-122) and graphics, XP (BrukerAXS, 2000). Thermals ellipsoids are shown with 30% probability. R-values are given for observed reflections, and wR^2 values are given for all reflections. *Exceptions and special features*: For the compounds 8 and 9 a badly disordered half pentane molecule was found in the asymmetrical unit and could not be satisfactorily refined. The compounds 13 and 14 crystallized with a badly disordered dichloromethane molecule in the asymmetrical unit. The program SQUEEZE (A. L. Spek, J. Appl. Cryst., 2003, 36, 7-13) was

therefore used to remove mathematically the effect of the solvent. The quoted formula and derived parameters are not included the squeezed solvent molecule. Compound **12** crystallized with a disordered over two positions dichloromethane molecule. Several restraints (SADI, SAME, ISOR and SIMU) were used in order to improve refinement stability. CCDC deposition numbers are 1034881 to 1034888 and 1045775.

Materials

Bis(pentafluorophenyl)borane (*Piers*' borane) was prepared according to the procedure described in the literature [Parks, D. J.; Spence, R. E. von H.; Piers, W. E. *Angew. Chem. Int. Ed.* **1995**, *34*, 809-811; Parks, D. J.; Piers, W. E.; Yap, G. P. A. *Organometallics* **1998**, *17*, 5492-5503.]. Dimesitylethynylphosphane (**4**) was prepared according to the procedure described in the literature [Zhao, X.; Lough, A. J.; Stephan, D. W. *Chem. Eur. J.* **2011**, *17*, 6731-6743.].

Preparation and Characterization of compounds

Synthesis of compound 5.

PMes₂ The combination of a toluene (2.0 mL) solution of dimesitylethynylphosphane (4) (206 mg, 0.70 mmol) with a toluene (2.0 mL) solution of bis(pentafluorophenyl)borane (242 mg, 0.70 mmol) give instantaneously a yellow solution. After stirring the reaction mixture at r.t. for 30 min, it was stored at r.t. overnight to obtain some deep yellow crystalline material. The solid was collected and dried *in vacuo* to give compound 5 (340 mg, 0.53 mmol, 76%). Single crystals of compound 5 suitable for the X-ray crystal structure analysis were obtained by storing a saturated toluene solution of compound 5 at r.t. for several days.

IR (KBr): $\tilde{\nu} / \text{cm}^{-1} = 3012 \text{ (w)}, 2968 \text{ (w)}, 2924 \text{ (w)}, 2859 \text{ (w)}, 1645 \text{ (m)}, 1605 \text{ (m)}, 1518 \text{ (s)}, 1474 \text{ (s)}, 1381 \text{ (w)}, 1308 \text{ (w)}, 1216 \text{ (w)}, 1172 \text{ (w)}, 1137 \text{ (w)}, 1081 \text{ (w)}, 997 \text{ (w)}, 970 \text{ (m)}, 853 \text{ (w)}, 679 \text{ (w)}, 637 \text{ (w)}, 553 \text{ (w)}.$

Melting point: 193 °C.

Elemental analysis: calc. for C₃₂H₂₄BF₁₀P (640.30 g/mol): C, 60.03; H, 3.78. Found: C, 59.96; H, 3.70.

¹**H NMR** (600 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = 8.30$ (dd, ${}^2J_{PH} = 29.0$, ${}^3J_{HH} = 18.1$ Hz, 1H, PCH), 6.91 (d, ${}^4J_{PH} = 2.5$ Hz, 4H, *m*-Mes), 6.66 (dd, ${}^3J_{HH} = 18.1$ Hz, ${}^3J_{PH} = 9.9$ Hz, 1H, BCH), 2.29 (s, 12H, *o*-CH₃^{Mes}), 2.27 (s, 6H, *p*-CH₃^{Mes}).

¹³C{¹H} NMR (151 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = 172.1$ (d, ${}^{1}J_{PC} = 19.9$ Hz, PCH), 147.5 (dm, ${}^{1}J_{FC} \approx 250$ Hz, C₆F₅), 143.5 (d, ${}^{2}J_{PC} = 14.4$ Hz, *o*-Mes), 142.8 (dm, ${}^{1}J_{FC} \approx 250$ Hz, C₆F₅), 140.5 (d, ${}^{4}J_{PC} = 1.2$ Hz, *p*-Mes), 137.8 (dm, ${}^{1}J_{FC} \approx 250$ Hz, C₆F₅), 134.9 (br, BCH), 130.2 (d, ${}^{3}J_{PC} = 5.5$ Hz, *m*-Mes), 127.2 (d, ${}^{1}J_{PH} = 3.1$ Hz, *i*-Mes), 114.6 (br, *i*-C₆F₅), 23.1 (d, ${}^{3}J_{PC} = 12.9$ Hz, *o*-CH₃^{Mes}), 21.1 (*p*-CH₃^{Mes}).

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, 299 K, [d_2]-CH₂Cl₂): δ^1 H / δ^{13} C = 8.30 / 172.1 (PCH), 6.91 / 130.2 (*m*-Mes), 6.66 / 134.9 (BCH), 2.29 / 23.1 (*o*-CH₃^{Mes}), 2.27 / 21.1 (*p*-CH₃^{Mes}).

¹**H**,¹³**C GHMBC** (600 MHz / 151 MHz, 299 K, [*d*₂]-CH₂Cl₂): δ^{1} H / δ^{13} C = 8.30 /

127.2 (PCH / *i*-Mes), 6.91 / 130.2, 127.2, 23.1, 21.1 (*m*-Mes / *m*-Mes, *i*-Mes, *o*-CH₃^{Mes}, *p*-CH₃^{Mes}), 6.66 / 172.1, 114.6 (BCH / PCH, *i*-C₆F₅), 2.29 / 143.5, 130.2, 127.2 (*o*-CH₃^{Mes} / *o*-Mes, *m*-Mes, *i*-Mes), 2.27 / 140.5, 130.2 (*p*-CH₃^{Mes} / *p*-Mes, *m*-Mes).

¹¹B{¹H} NMR (192 MHz, 299K, [*d*₂]-CH₂Cl₂): $\delta = 53.2 (v_{1/2} \approx 1300 \text{ Hz})$. ³¹P NMR (243 MHz, 299K, [*d*₂]-CH₂Cl₂): $\delta = -7.7$ (br d, ²*J*_{PH} = 29.0 Hz). ³¹P{¹H} NMR (243 MHz, 299K, [*d*₂]-CH₂Cl₂): $\delta = -7.7$ (t, *J*_{PF} \approx 4 Hz). ³¹P{¹H, ¹⁹F} NMR (243 MHz, 299K, [*d*₂]-CH₂Cl₂): $\delta = -7.7$ (s). ¹⁹F NMR (564 MHz, 299K, [*d*₂]-CH₂Cl₂): $\delta = -130.3$ (m, 2F, *o*-C₆F₅), -150.1 (br, 1F, *p*-C6F₅), -162.6 (m, 2F, *m*-C₆F₅), [$\Delta\delta^{19}F_{mp} = 12.5$].

Figure S1 ¹H NMR (600 MHz, 299K, $[d_2]$ -CH₂Cl₂) spectrum of compound 5

.2 -5.4 -5.6 -5.8 -6.0 -6.2 -6.4 -6.6 -6.8 -7.0 -7.2 -7.4 -7.6 -7.8 -8.0 -8.2 -8.4 -8.6 -8.8 -9.0 -9.2 -9.4 -9.6 -9 **Figure S3** ¹¹B{¹H} NMR (192 MHz, 299K, $[d_2]$ -CH₂Cl₂), ³¹P and ³¹P{¹H}, ³¹P{¹H, ¹⁹F} NMR (243 MHz, 299K, $[d_2]$ -CH₂Cl₂) spectra of compound **5**

-127 -129 -131 -133 -135 -137 -139 -141 -143 -145 -147 -149 -151 -153 -155 -157 -159 -161 -163 -165 **Figure S4** ¹⁹F NMR (564 MHz, 299K, $[d_2]$ -CH₂Cl₂) spectrum of compound **5**

Figure S5 X-Ray crystal structure analysis of compound **5**: formula $C_{32}H_{24}BF_{10}P$, M = 640.29, yellow crystal, 0.30 x 0.17 x 0.10 mm, a = 7.7849(1), b = 22.0042(4), c = 17.4037(3) Å, $\beta = 93.534(1)$ °, V = 2975.6(1) Å³, $\rho_{calc} = 1.322$ gcm⁻³, $\mu = 1.405$ mm⁻¹, empirical absorption correction (0.694 $\leq T \leq 0.872$), Z = 4, monoclinic, space group $P2_1/c$ (No. 14), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 29825 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.67 Å⁻¹, 7331 independent ($R_{int} = 0.055$) and 5257 observed reflections [$I > 2\sigma(I)$], 403 refined parameters, R = 0.058, $wR^2 = 0.144$, max. (min.) residual electron density 0.26 (-0.24) e.Å⁻³, hydrogen atoms were calculated and refined as riding atoms.

Synthesis of compound 6.

Triflic acid (75 mg, 0.50 mmol) was added to a toluene solution (10 mL) of compound **5** (320 mg, 0.50 mmol). The reaction mixture was stirred at r.t. for 30 min to give a light yellow solution. Subsequently all volatiles were removed *in vacuo* and the residue was dissolved in CH_2Cl_2 (2 mL). Then pentane (10

mL) was added to form a suspension. Compound **6** (260 mg, 0.33 mmol, 66%) was obtained as white powder after filtration of the suspension and drying of the residue *in vacuo* overnight. Single crystals of compound **6** suitable for the X-ray crystal structure analysis were obtained by slow diffusion of pentane to a solution of compound **6** in CH_2Cl_2 at -30 °C.

IR (KBr): $\tilde{\nu} / \text{cm}^{-1} = 2977$ (w), 2928 (w), 1645 (w), 1605 (w), 1516 (m), 1468 (vs), 1350 (m), 1242 (m) 1216 (s), 1201 (s), 1100 (m), 1006 (w), 973 (m), 631 (s).

Melting point: 203 °C.

Elemental analysis: calc. for C₃₃H₂₅BF₁₃O₃PS (790.38): C, 50.15; H, 3.19. Found: C, 49.92; H, 3.00.

¹**H NMR** (600 MHz, 299 K, [*d*₂]-CH₂Cl₂): δ = 7.90 (d, ¹*J*_{PH} = 475.3 Hz, 1H, PH), 7.67 (dd, ³*J*_{PH} = 37.6, ³*J*_{HH} = 19.0 Hz, 1H, BCH), 7.09 (d, ⁴*J*_{PH} = 4.6 Hz, 4H, *m*-Mes), 6.43 (ddd, ²*J*_{PH} = 36.6, ³*J*_{HH} = 19.0, ³*J*_{HH} = 2.6 Hz, 1H, PCH), 2.37 (s, 6H, *p*-CH₃^{Mes}), 2.31 (s, 12H, *o*-CH₃^{Mes}).

¹³C{¹H} NMR (151 MHz, 299 K, $[d_2]$ -CH₂Cl₂): $\delta = 174.1$ (br, BCH), 148.0 (dm, ${}^{1}J_{FC} \approx 240$ Hz, C₆F₅), 146.7 (d, ${}^{4}J_{PC} = 2.8$ Hz, *p*-Mes), 144.1 (d, ${}^{2}J_{PC} = 10.0$ Hz, *o*-Mes), 140.2 (dm, ${}^{1}J_{FC} \approx 250$ Hz, C₆F₅), 137.3 (dm, ${}^{1}J_{FC} \approx 250$ Hz, C₆F₅), 132.1 (d, ${}^{3}J_{PC} = 11.2$ Hz, *m*-Mes), 119.0 (d, ${}^{1}J_{FC} = 318.0$ Hz, CF₃), 117.9 (br, *i*-C₆F₅), 111.2 (d, ${}^{1}J_{PC} = 86.0$ Hz, *i*-Mes), 107.9 (d, ${}^{1}J_{PC} = 68.8$ Hz, PCH), 21.9 (d, ${}^{3}J_{PC} = 8.2$ Hz, *o*-CH₃^{Mes}), 21.5 (d, ${}^{5}J_{PC} = 1.3$ Hz, *p*-CH₃^{Mes}).

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, 299 K, [*d*₂]-CH₂Cl₂): δ^{1} H / δ^{13} C = 7.67 / 174.1 (BCH), 7.09 / 132.1 (*m*-Mes), 6.43 / 107.9 (PCH), 2.37 / 21.5 (*p*-CH₃^{Mes}), 2.31 / 21.9 (*o*-CH₃^{Mes}).

¹**H**,¹³**C GHMBC** (600 MHz / 151 MHz, 299 K, $[d_2]$ -CH₂Cl₂) [selected traces]: δ^1 H / δ^{13} C = 7.90 / 144.1, 111.2 (PH / *o*-Mes, *i*-Mes), 2.37 / 146.7, 132.1 (*p*-CH₃^{Mes} / *p*-Mes, *m*-Mes), 2.31 / 144.1, 132.1, 111.2 (*o*-CH₃^{Mes} / *o*-Mes, *m*-Mes, *i*-Mes).

¹¹B{¹H} NMR (192 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = 0.7 (v_{1/2} \approx 450 \text{ Hz}).$

³¹**P** NMR (243 MHz, 299 K, $[d_2]$ -CH₂Cl₂): $\delta = -16.8$ (dt, ${}^1J_{PH} \approx 475$ Hz, ${}^2J_{PH} \approx {}^3J_{PH} \approx 37$ Hz).

³¹**P**{¹**H**} **NMR** (243 MHz, 299 K, $[d_2]$ -CH₂Cl₂): $\delta = -16.8$ (v_{1/2} ≈ 10 Hz).

¹⁹**F NMR** (564 MHz, 299 K, [*d*₂]-CH₂Cl₂): δ = -78.6 (s, 3F, CF₃), -133.6 (m, 4F, *o*-C₆F₅), -158.7 (t, ³*J*_{FF} = 20.2 Hz, 2F, *p*-C₆F₅), -165.1 (m, 4F, *m*-C₆F₅), [Δδ¹⁹F_{*mp*} = 6.4].

Figure S6 ¹H NMR (600 MHz, 299K, $[d_2]$ -CH₂Cl₂) spectrum of compound 6

-70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 **Figure S9** ¹⁹F NMR (564 MHz, 299K, [*d*₂]-CH₂Cl₂) spectrum of compound **6**

Figure S10 X-Ray crystal structure analysis of compound **6**: formula $C_{33}H_{25}BF_{13}O_3PS$, M = 790.37, colourless crystal, 0.24 x 0.18 x 0.14 mm, a = 10.8338(1), b = 16.5708(2), c = 19.0605(3) Å, $\beta = 91.147(1)$ °, V = 3421.1(1) Å³, $\rho_{calc} = 1.535$ gcm⁻³, $\mu = 0.247$ mm⁻¹, empirical absorption correction (0.943 $\leq T \leq 0.966$), Z = 4, monoclinic, space group $P2_1/n$ (No. 14), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 20225 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin \theta$)/ λ] = 0.62 Å⁻¹, 6883 independent ($R_{int} = 0.037$) and 5583 observed reflections [$I > 2\sigma(I)$], 479 refined parameters, R = 0.056, $wR^2 = 0.138$, max. (min.) residual electron density 0.35 (-0.35) e.Å⁻³, the hydrogen at P1 atom was refined freely; others were calculated and refined as riding atoms.

Synthesis of compound 7.

was added to give a suspension. The solution was removed by cannula to give compound **7** (200 mg, 0.31 mmol, 78%) as white powder which was dried *in vacuo* overnight.

IR (KBr): $\tilde{\nu} / \text{cm}^{-1} = 2963$ (m), 2926 (m), 2325 (m, $\nu_{\text{PH}} / \nu_{\text{BH}}$), 1639 (w), 1605 (w), 1509 (s), 1464 (vs), 1274 (m), 1191 (w), 1097 (s), 969 (s), 819 (w), 649 (w).

Melting point: 139 °C.

Elemental analysis: calc. for C₃₂H₂₆BF₁₀P (642.32): C, 59.84; H, 4.08. Found: C, 59.69; H, 3.96.

¹**H NMR** (500 MHz, 299 K, [*d*₂]-CH₂Cl₂): δ = 8.02 (dd, ${}^{3}J_{PH}$ = 37.9, ${}^{3}J_{HH}$ = 18.3 Hz, 1H, BCH), 7.82 (d, ${}^{1}J_{PH}$ = 469.3 Hz, 1H, PH), 7.05 (d, ${}^{4}J_{PH}$ = 4.6 Hz, 4H, *m*-Mes), 5.74 (dd, ${}^{2}J_{PC}$ = 41.1, ${}^{3}J_{HH}$ = 18.3 Hz, 1H, PCH), 3.24 (1:1:1:1 q partially relaxed, ${}^{1}J_{BH}$ \approx 90 Hz, 1H, BH), 2.35 (s, 6H, *p*-CH₃^{Mes}), 2.33 (s, 12H, *o*-CH₃^{Mes}).

¹³C{¹H} NMR (126 MHz, 299 K, $[d_2]$ -CH₂Cl₂): $\delta = 189.1$ (br, BCH), 148.0 (dm, ${}^{1}J_{\text{FC}} \approx 230$ Hz, C₆F₅), 145.9 (d, ${}^{4}J_{\text{PC}} = 2.8$ Hz, *p*-Mes), 143.9 (d, ${}^{2}J_{\text{PC}} = 9.8$ Hz, *o*-Mes), 138.5 (dm, ${}^{1}J_{\text{FC}} \approx 250$ Hz, C₆F₅), 137.1 (dm, ${}^{1}J_{\text{FC}} \approx 240$ Hz, C₆F₅), 131.9 (d, ${}^{3}J_{\text{PC}} = 11.0$ Hz, *m*-Mes), 123.9 (br, *i*-C₆F₅), 112.8 (d, ${}^{1}J_{\text{PC}} = 84.9$ Hz, *i*-Mes), 101.5 (d, ${}^{1}J_{\text{PC}} = 68.1$ Hz, PCH), 21.9 (d, ${}^{3}J_{\text{PC}} = 8.0$ Hz, *o*-CH₃^{Mes}), 21.5 (d, ${}^{5}J_{\text{PC}} = 1.4$ Hz, *p*-CH₃^{Mes}).

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, 299 K, [*d*₂]-CH₂Cl₂): δ^{1} H / δ^{13} C = 8.02 / 189.1 (BCH), 7.05 / 131.9 (*m*-Mes), 5.74 / 101.5 (PCH), 2.35 / 21.5 (*p*-CH₃^{Mes}), 2.33 / 21.9 (*o*-CH₃^{Mes}).

¹H,¹³C GHMBC (500 MHz / 126 MHz, 299 K, $[d_2]$ -CH₂Cl₂) [selected traces]: δ^1 H / δ^{13} C = 7.82 / 143.9 (PH / *o*-Mes), 2.35 / 145.9, 131.9 (*p*-CH₃^{Mes} / *p*-Mes, *m*-Mes), 2.33 / 143.9, 131.9, 112.8 (*o*-CH₃^{Mes} / *o*-Mes, *m*-Mes, *i*-Mes).

¹¹**B** NMR (160 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = -21.6$ (d, ${}^1J_{BH} = 89.0$ Hz). ¹¹B{¹H} NMR (160 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = -21.6$ (v_{1/2} ≈ 60 Hz). ³¹P NMR (202 MHz, 299 K, $[d_2]$ -CH₂Cl₂): $\delta = -18.3$ (br dm, ${}^1J_{PH} \approx 469$ Hz). ³¹P{¹H} NMR (202 MHz, 299 K, $[d_2]$ -CH₂Cl₂): $\delta = -18.3$ (1:1:1:1 q partially relaxed, ³¹J_{PB} ≈ 25 Hz).

¹⁹**F NMR** (470 MHz, 299 K, [*d*₂]-CH₂Cl₂): δ = -134.0 (m, 2F, *o*-C₆F₅), -164.1 (t, 1F, ³*J*_{FF} = 20.0 Hz, *p*-C₆F₅), -167.5 (m, 2F, *m*-C₆F₅), [Δδ¹⁹F_{*mp*} = 3.4].

Figure S11 ¹H NMR (500 MHz, 299K, $[d_2]$ -CH₂Cl₂) spectrum of compound 7

Figure S12 ${}^{13}C{}^{1}H$ NMR (126 MHz, 299K, $[d_2]$ -CH₂Cl₂) spectrum of compound 7

Figure S14 ¹⁹F NMR (470 MHz, 299K, $[d_2]$ -CH₂Cl₂) spectrum of compound 7

Synthesis of compound 8.

8

Heating a solution of compound 7 (200 mg, 0.31 mmol) in toluene [⊕], PMes₂ (10 mL) at 110 °C for 30 min gave a deep yellow solution. Then all volatiles were removed in vacuo and the residue was dissolved in pentane (5 mL). Subsequently the solution was stored at -30 °C Scheme S4 overnight to give yellow crystalline material. The solid was collected

and dried *in vacuo* overnight to give compound 8 (150 mg, 0.23 mmol, 75%). Single crystals of compound 8 suitable for the X-ray crystal structure analysis were obtained by storing solution of compound 8 in pentane at -30 °C for several days.

IR (KBr): $\tilde{\nu}$ / cm⁻¹ = 2959 (w), 2927 (w), 2872 (w), 1643 (w), 1603 (w), 1512 (s), 1471 (vs), 1382 (w), 1250 (m), 1285 (w), 1250 (w), 1170 (w), 1116 (m), 1084 (w), 971 (s), 911 (w), 851 (w), 755 (w), 685 (w), 650 (w), 557 (w).

Melting point: 108 °C.

Elemental analysis: calc. for C₃₂H₂₆BF₁₀P (642.32): C, 59.84; H, 4.08. Found: C, 59.51; H, 4.44.

¹**H NMR** (500 MHz, 299 K, $[d_2]$ -CH₂Cl₂): $\delta = 6.97$ (d, ⁴J_{PH} = 4.1 Hz, 2H, *m*-Mes^a), 6.94 (dd, ${}^{1}J_{PH} = 464.4$ Hz, ${}^{3}J_{HH} = 11.6$ Hz, 1H, PH), 6.92 (d, ${}^{3}J_{PH} = 4.0$ Hz, 2H, *m*-Mes^b), 2.41 (s, 6H, o-CH₃^{Mes,b}), 2.36 (s, 6H, o-CH₃^{Mes,a}), 2.32 (s, 3H, p-CH₃^{Mes,a}), 2.29 (s, 3H, *p*-CH₃^{Mes,b}), 1.17 (m, 1H, CH), 1.00 (dm, ${}^{3}J_{PH} = 30.8$ Hz, 1H, CH₂), 0.85 (m, 1H, CH₂).

¹³C{¹H} NMR (126 MHz, 299 K, $[d_2]$ -CH₂Cl₂): $\delta = 144.2$ (d, ${}^{4}J_{PC} = 2.7$ Hz), 144.1 (d, ${}^{4}J_{PC} = 2.7 \text{ Hz}$ (p-Mes^{a,b}), 143.0 (d, ${}^{2}J_{PC} = 10.0 \text{ Hz}$, o-Mes^a), 142.7 (d, ${}^{2}J_{PC} = 9.5 \text{ Hz}$, *o*-Mes^b), 131.5 (d, ${}^{3}J_{PC} = 7.8$ Hz, *m*-Mes^a), 131.4 (d, ${}^{3}J_{PC} = 7.6$ Hz, *m*-Mes^b), 118.1 (d, ${}^{1}J_{PC} = 79.0$ Hz, *i*-Mes^b), 117.8 (d, ${}^{2}J_{PC} = 78.3$ Hz, *i*-Mes^a), 22.1 (d, ${}^{3}J_{PC} = 6.9$ Hz, o-CH₃^{Mes,b}), 22.0 (d, ${}^{3}J_{PC} = 7.0$ Hz, o-CH₃^{Mes,a}), 21.23 (d, ${}^{5}J_{PC} = 1.3$ Hz, p-CH₃^{Mes,a}), 21.18 (d, ${}^{5}J_{PC} = 1.3$ Hz, p-CH₃^{Mes,b}), 12.4 (br, CH₂), 4.2 (br d, ${}^{1}J_{PC} = 62.3$ Hz, CH), $[C_6F_5 \text{ not listed}].$

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, 299 K, $[d_2]$ -CH₂Cl₂): δ^1 H / δ^{13} C =6.97, 6.92 / 131.5, 131.4 (*m*-Mes^{a,b}), 2.41 / 22.1 (*o*-CH₃^{Mes,b}), 2.36 / 22.0 (*o*-CH₃^{Mes,a}), 2.32 / 21.23 (*p*-CH₃^{Mes,a}), 2.29 / 21.18 (*p*-CH₃^{Mes,b}), 1.17 / 4.2 (CH), 1.00, 0.85 / 12.4 (CH₂).

¹**H**,¹³**C GHMBC** (500 MHz / 126 MHz, 299 K, $[d_2]$ -CH₂Cl₂) [selected traces]: δ^1 H / δ^{13} C = 6.94 / 143.0, 142.7, 118.1, 117.8, 4.2 (PH / *o*-Mes^a, *o*-Mes^b, *i*-Mes^b, *i*-Mes^a, CH), 2.41 / 142.7, 131.4, 118.1 (*o*-CH₃^{Mes,b} / *o*-Mes^b, *m*-Mes^b, *i*-Mes^b), 2.36 / 143.0, 131.5, 117.8 (*o*-CH₃^{Mes,a} / *o*-Mes^a, *m*-Mes^a, *i*-Mes^a).

¹¹B{¹H} NMR (160 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = -23.8 (v_{1/2} \approx 60 \text{ Hz}).$

³¹**P** NMR (202 MHz, 299 K, $[d_2]$ -CH₂Cl₂) $\delta = -1.1$ (br dd, ${}^1J_{PH} \approx 465$ Hz, ${}^2J_{PH} \approx 31$ Hz).

³¹P{¹H} NMR (202 MHz, 299 K, $[d_2]$ -CH₂Cl₂) $\delta = -1.1 (v_{1/2} \approx 10 \text{ Hz}).$

¹⁹**F NMR** (470 MHz, 299 K, [*d*₂]-CH₂Cl₂) δ = -130.9 (m, 2F, *o*), -160.5 (t, ${}^{3}J_{FF} = 20.1$ Hz, 1F, *p*), -165.6 (m, 2F, *m*) (C₆F₅) [Δδ¹⁹F_{*mp*} = 5.1]; -133.3 (m, *o*), -162.1 (t, ${}^{3}J_{FF} = 20.1$ Hz, 1F, *p*), -166.4 (m, 2F, *m*) (C₆F₅) [Δδ¹⁹F_{*mp*} = 4.3].

¹⁹**F**,¹⁹**F GCOSY** (470 MHz / 470 MHz, 299 K, $[d_2]$ -CH₂Cl₂) δ^{19} F / δ^{19} F = -130.9 / -165.6 (*o* / *m*), -160.5 / -165.6 (*p* / *m*) (C₆F₅); -133.3 / -166.4 (*o* / *m*), -162.1 / -166.4 (*p* / *m*) (C₆F₅).

Figure S16 ¹³C{¹H} NMR (126 MHz, 299K, $[d_2]$ -CH₂Cl₂) spectrum of compound 8

-128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168 **Figure S18** ¹⁹F NMR (470 MHz, 299K, [*d*₂]-CH₂Cl₂) spectrum of compound **8**

Figure S19 X-Ray crystal structure analysis of compound **8**: formula $C_{32}H_{26}BF_{10}P$, M = 642.31, colourless crystal, 0.22 x 0.12 x 0.06 mm, a = 9.8988(1), b = 12.2385(1), c = 13.9479(1) Å, $\alpha = 90.586(1)$, $\beta = 107.262(1)$, $\gamma = 99.498(1)^{\circ}$, V = 1588.4(1) Å³, $\rho_{calc} = 1.343$ gcm⁻³, $\mu = 1.485$ mm⁻¹, empirical absorption correction (0.735 $\leq T \leq 0.916$), Z = 2, triclinic, space group $P\bar{1}$ (No. 2), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 21483 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin \theta$)/ λ] = 0.60 Å⁻¹, 5515 independent ($R_{int} = 0.038$) and 4932 observed reflections [$I > 2\sigma(I)$], 407 refined parameters, R = 0.050, $wR^2 = 0.155$, max. (min.) residual electron density 0.36 (-0.33) e.Å⁻³, the hydrogen at P1 atom was refined freely; others were calculated and refined as riding atoms.

Synthesis of compound 9.

Triflic acid (30 mg, 0.20 mmol) was added to the CH₂Cl₂ (5 mL) solution of compound **8** (128 mg, 0.20 mmol). The color of the yellow solution disappeared immediately. After stirring the reaction mixture at r.t. for another 10 min, all volatiles were removed *in vacuo* and the residue was dissolved in CH₂Cl₂ (1 mL) and then pentane (5 mL) was added. After storing this solution at -30 °C overnight, some colorless solid was obtained. The solid was collected and dried *in vacuo* overnight to give compound **9** (120 mg, 0.15 mmol, 75%). Single crystals of **9** suitable for the X-ray crystal structure analysis were obtained by slow diffusion of pentane to a solution of compound **9** in CH₂Cl₂ at -30 °C.

IR (KBr): $\tilde{\nu} / \text{cm}^{-1} = 2963$ (w), 2921 (w), 1648 (w), 1607 (w), 1520 (m), 1470 (s), 1357 (m), 1241 (s), 1241 (m), 1212 (s), 1156 (m), 1096 (s), 1004 (m), 980 (s), 838 (w), 781 (w), 630 (m).

Melting point: 191 °C.

Elemental analysis: calc. for C₃₃H₂₇BF₁₃O₃PS (792.39): C, 50.02; H, 3.43. Found: C, 49.91; H, 3.43.

¹**H** NMR (600 MHz, 273 K, $[d_2]$ -CH₂Cl₂): 7.45 (dd, ¹*J*_{PH} = 469.0, ³*J*_{HH} = 12.8 Hz, 1H, PH), 7.10 (d, ⁴*J*_{PH} = 3.9 Hz, 1H, *m*-Mes^a), 7.02 (d, ⁴*J*_{PH} = 2.6 Hz, 1H, *m*'-Mes^a), 6.99 (d, ⁴*J*_{PH} = 4.7 Hz, 1H, *m*-Mes^b), 6.66 (s, 1H, *m*'-Mes^b), 3.72 (m, 1H, CH), 2.78 (s, 3H, *o*-CH₃^{Mes,a}), 2.65 (s, 3H, *o*-CH₃^{Mes,b}), 2.31 (s, 3H, *p*-CH₃^{Mes,a}), 2.29 (s, 3H, *o*'-CH₃^{Mes,a}), 2.24 (s, 3H, *o*'-CH₃^{Mes,b}), 2.23 (s, 3H, *p*-CH₃^{Mes,b}), 1.67 (dd, ³*J*_{PH} = 24.2, ³*J*_{HH} = 6.9 Hz, 3H, CH₃).

¹³C{¹H} NMR (151 MHz, 273 K, $[d_2]$ -CH₂Cl₂): $\delta = 145.3$ (d, ${}^4J_{PC} = 2.8$ Hz, *p*-Mes^b), 145.1 (d, ${}^4J_{PC} = 2.8$ Hz, *p*-Mes^a), 144.3 (d, ${}^2J_{PC} = 8.6$ Hz, *o*'-Mes^a), 143.9 (d, ${}^2J_{PC} = 10.4$ Hz, *o*-Mes^a), 143.8 (d, ${}^2J_{PC} = 7.8$ Hz, *o*-Mes^b), 142.7 (d, ${}^2J_{PC} = 10.5$ Hz, *o*'-Mes^b), 133.3 (d, ${}^3J_{PC} = 12.0$ Hz, *m*-Mes^a), 132.1 (d, ${}^3J_{PC} = 9.7$ Hz, *m*'-Mes^a), 131.0 (d, ${}^3J_{PC} = 11.0$ Hz, *m*'-Mes^b), 130.9 (d, ${}^3J_{PC} = 10.3$ Hz, *m*-Mes^b), 114.8 (d, ${}^1J_{PC} = 76.0$ Hz, *i*-Mes^b), 111.6 (d, ${}^1J_{PC} = 76.5$ Hz, *i*-Mes^a), 22.5 (d, ${}^3J_{PC} = 6.4$ Hz, *o*, *o*'-CH₃^{Mes,a}), 22.3 (br d, ${}^{3}J_{PC} = 6.3$ Hz, o'-CH₃^{Mes,b}), 21.7 (br d, ${}^{3}J_{PC} = 10.0$ Hz, o-CH₃^{Mes,b}), 21.1 (d, ${}^{5}J_{PC} = 1.4$ Hz, p-CH₃^{Mes,a}), 20.9 (d, ${}^{5}J_{PC} = 1.3$ Hz, p-CH₃^{Mes,b}), 19.5 (br, CH), 14.9 (m, CH₃), [C₆F₅ not listed].

¹**H**,¹**H GCOSY** (600 MHz / 600 MHz, 273 K, [*d*₂]-CH₂Cl₂) [selected traces]: δ^{1} H / δ^{1} H = 7.10, 7.02 / 2.78, 2.31, 2.29 (*m*,*m*'-Mes^a / *o*-CH₃^{Mes,a}, *p*-CH₃^{Mes,a}, *o*'-CH₃^{Mes,a}), 6.99, 6.66 / 2.65, 2.29, 2.23 (*m*,*m*'-Mes^b / *o*-CH₃^{Mes,b}, *o*'-CH₃^{Mes,b}, *p*-CH₃^{Mes,b}).

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, 273 K, $[d_2]$ -CH₂Cl₂): δ^1 H / δ^{13} C = 7.10 / 133.3 (*m*-Mes^a), 7.02 / 132.1 (*m*'-Mes^a), 6.99 / 130.9 (*m*-Mes^b), 6.66 / 131.0 (*m*'-Mes^b), 3.72 / 19.5 (CH), 2.78, 2.29 / 22.4 (*o*, *o*'-CH₃^{Mes,a}), 2.65 / 21.7 (*o*-CH₃^{Mes,b}), 2.31 / 21.1 (*p*-CH₃^{Mes,a}), 2.24 / 22.3 (*o*'-CH₃^{Mes,b}), 2.23 / 20.9 (*p*-CH₃^{Mes,b}), 1.67 / 14.9 (CH₃).

¹H,¹³C GHMBC (600 MHz / 151 MHz, 273 K, $[d_2]$ -CH₂Cl₂) [selected traces]: δ^1 H / δ^{13} C = 7.45 / 144.3, 143.9, 143.8, 142.7, 114.8, 111.6 (PH / *o*,*o*'-Mes^a, *o*,*o*'-Mes^a, *i*-Mes^a, *i*-Mes^a), 7.10 / 132.1, 111.6, 22.5 (*m*-Mes^a / *m*'-Mes^a, *i*-Mes^a, *o*,*o*'-CH₃^{Mes,a}), 6.99 / 131.0, 114.8, 22.3, 21.7 (*m*-Mes^b / *m*-Mes^b, *i*-Mes^b, *o*'-CH₃^{Mes,b}, *o*-CH₃^{Mes,b}).

¹¹B{¹H} NMR (192 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = 3.6$ (the peak is too broad for detection at low temperature).

³¹**P** NMR (243 MHz, 273 K, $[d_2]$ -CH₂Cl₂): δ = -1.2 (br d, ¹*J*_{PH} \approx 470 Hz).

³¹P{¹H} NMR (243 MHz, 273 K, $[d_2]$ -CH₂Cl₂): $\delta = -1.2$ ($v_{1/2} \approx 15$ Hz).

¹⁹**F NMR** (564 MHz, 233 K, $[d_2]$ -CH₂Cl₂): $\delta = -76.8$ (s, 3F, CF₃), -131.5, -133.7, -134.0, -136.7 (each br, each 1F, *o*-C₆F₅), -157.6, -159.3 (each br, each 1F, *p*-C₆F₅), -163.3, -164.4, -164.7, -165.3 (each br, each 1F, *m*-C₆F₅).

Figure S24 ¹⁹F NMR (564 MHz, top: 299K; mid: 273K, bottom: 233K, $[d_2]$ -CH₂Cl₂) spectra of compound **9**

Figure S25 X-Ray crystal structure analysis of compound 9: formula $C_{33}H_{27}BF_{13}O_3PS$, M = 792.39, colourless crystal, 0.16 x 0.09 x 0.03 mm, a = 13.0550(5), b = 18.7048(8), c = 15.4615(6) Å, $\beta = 103.848(3)$ °, V = 3665.8(3) Å³, $\rho_{calc} = 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption correction (0.729 $\leq T \leq 1.436$ gcm⁻³, $\mu = 2.102$ mm⁻¹, empirical absorption corr

0.939), Z = 4, monoclinic, space group $P2_1/n$ (No. 14), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 26571 reflections collected ($\pm h$, $\pm k$, $\pm l$), $[(\sin\theta)/\lambda] = 0.60$ Å⁻¹, 6159 independent ($R_{int} = 0.092$) and 3853 observed reflections [$I > 2\sigma(I)$], 508 refined parameters, R = 0.053, $wR^2 = 0.153$, max. (min.) residual electron density 0.32 (-0.32) e.Å⁻³, the hydrogen at P1 atom was refined freely; others were calculated and refined as riding atoms.

Synthesis of compound 10 - starting from compound 9 and Me₂Si(H)Cl.

 $\begin{array}{c|c} & & & \\ &$

residue was dissolved in CH_2Cl_2 (1 mL). Then pentane (5 mL) was added. The obtained solution was stored at -30 °C overnight to give crystalline material. The solid was collected and dried *in vacuo* overnight to give compound **10** (91 mg, 0.14 mmol, 88%). This compound was characterized by ¹H, ¹¹B, ¹¹B{¹H}, ³¹P, ³¹P{¹H} and ¹⁹F NMR which are consistent with the NMR data given for the compound **10** prepared according to the following procedure.

Alternative way to synthesize compound 10 - starting from compound 8 and H₂.

Compound **8** (200 mg, 0.31 mmol) was dissolved in toluene (4.0 mL). Then the solution was degassed and purged with H₂ gas (2.5 bar). After heating it at 90 °C overnight, the color of the reaction mixture turned from deep yellow to light yellow. Subsequently all volatiles were removed *in vacuo* and the residue was dissolved in CH_2Cl_2 (2 mL). Pentane (10 mL) was added to form a suspension. The solid was filtrated off to give a clear solution which was then stored at -30 °C overnight to give colorless crystalline material. The solid was collected and dried *in vacuo* overnight to give a compound **10** (130 mg, 0.20 mmol, 65%).

Single crystals of compound **10** suitable for the X-ray crystal structure analysis were obtained by slow diffusion of pentane to a CH₂Cl₂ solution of compound **10** at -30 °C. **IR** (KBr): $\tilde{\nu}$ / cm⁻¹ =2965 (m), 2934 (w), 2875 (w), 2364 (w, ν_{BH}/ν_{PH}), 1647 (m), 1606 (m), 1519 (s), 1467 (vs), 1356 (m), 1285 (m), 1211 (s), 1096 (s), 966 (s), 630 (w).

Melting point: 138 °C.

Elemental analysis: calc. for C₃₂H₂₈BF₁₀P (644.33): C, 59.65; H, 4.38. Found: C, 59.40; H, 4.07.

¹**H NMR** (600 MHz, 233 K, [*d*₂]-CH₂Cl₂): δ = 7.06 (dd, ¹*J*_{PH} = 463.9, ³*J*_{HH} = 13.7 Hz, 1H, PH), 7.02 (s, 1H, *m*-Mes^a), 6.96 (s, 1H, *m*'-Mes^a), 6.75 (d, ⁴*J*_{PH} = 4.0 Hz, 2H, *m*,*m*'-Mes^b), 3.26 (m, 1H, CH), 2.89 (br, 1H, BH), 2.65 (s, 3H, *o*-CH₃^{Mes,a}), 2.60 (s, 3H, *o*-CH₃^{Mes,b}), 2.27 (s, 6H, *p*-CH₃^{Mes,a}, *o*'-CH₃^{Mes,b}), 2.23 (s, 3H, *o*'-CH₃^{Mes,a}), 2.16 (s, 3H, *p*-CH₃^{Mes,b}), 1.13 (dd, ³*J*_{PH} = 25.7, ³*J*_{HH} = 6.7 Hz, 3H, CH₃).

¹³C{¹H} NMR (151 MHz, 233 K, $[d_2]$ -CH₂Cl₂): $\delta = 144.1$ (d, ${}^4J_{PC} = 2.6$ Hz, *p*-Mes^b), 143.9 (d, ${}^4J_{PC} = 2.5$ Hz, *p*-Mes^a), 143.5 (br d, ${}^2J_{PC} = 10.6$ Hz, *o*-Mes^a), 143.3 (br d, ${}^2J_{PC} = 7.9$ Hz, *o*-Mes^b), 143.1 (br d, ${}^2J_{PC} = 7.1$ Hz, *o* '-Mes^a), 142.9 (br d, ${}^2J_{PC} = 10.7$ Hz, *o* '-Mes^b), 132.0 (br d, ${}^3J_{PC} = 10.9$ Hz, *m*-Mes^a), 131.2 (br d, ${}^3J_{PC} = 8.9$ Hz, *m*'-Mes^a), 130.6 (br d, ${}^3J_{PC} = 11.4$ Hz, *m*'-Mes^b), 130.0 (br d, ${}^3J_{PC} = 10.2$ Hz, *m*-Mes^b), 115.3 (d, ${}^1J_{PC} = 77.5$ Hz, *i*-Mes^b), 113.9 (d, ${}^1J_{PC} = 68.1$ Hz, *i*-Mes^a), 22.6 (br d, ${}^3J_{PC} = 7.6$ Hz, *o*-CH₃^{Mes,b}), 22.1 (br d, ${}^3J_{PC} = 5.9$ Hz, *o*'-CH₃^{Mes,b}), 22.0 (m, *o*,*o*'-CH₃^{Mes,a}), 20.9 (*p*-CH₃^{Mes,a}), 20.6 (*p*-CH₃^{Mes,b}), 17.3 (br, CH), 15.8 (br, CH₃), [C₆F₅ not listed].

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, 233 K, [*d*₂]-CH₂Cl₂): δ^{1} H / δ^{13} C = 7.02 / 132.0 (*m*-Mes^a), 6.96 / 131.2 (*m*'-Mes^a), 6.75 / 130.6, 130.0 (*m*,*m*'-Mes^b), 3.26 / 17.3 (CH), 2.65, 2.23 / 22.0 (*o*,*o*'-CH₃^{Mes,a}), 2.60 / 22.6 (*o*-CH₃^{Mes,b}), 2.27 / 22.1, 20.9 (*o*'-CH₃^{Mes,a}), 2.16 / 20.6 (*p*-CH₃^{Mes,b}), 1.13 / 15.8 (CH₃).

¹**H**,¹³**C GHMBC** (600 MHz / 151 MHz, 233 K, $[d_2]$ -CH₂Cl₂) [selected traces]: δ^1 H / δ^{13} C = 7.06 / 143.5, 143.3, 143.1, 142.9, 115.3, 113.9, 17.3 (PH / *o*-Mes^a, *o*-Mes^b, *o*'-Mes^a, *o*'-Mes^b, *i*-Mes^b, *i*-Mes^a, CH), 7.02 / 131.2, 113.9, 20.9, 22.0 (*m*-Mes^a / *m*'-Mes^a, *i*-Mes^a, *p*-CH₃^{Mes,a}, *o*,*o*'-CH₃^{Mes,a}), 6.75 / 130.6, 130.0, 22.6, 22.1, 20.6 (*m*,*m*'-Mes^b / *m*,*m*'-Mes^b, *i*-Mes^b, *o*,*o*'-CH₃^{Mes,b}, *p*-CH₃^{Mes,b}).

¹¹**B** NMR (192 MHz, 233K, $[d_2]$ -CH₂Cl₂) δ = -20.1 (br d, ¹J_{BH} \approx 85 Hz).

¹¹B{¹H} NMR (192 MHz, 233K, $[d_2]$ -CH₂Cl₂): $\delta = -20.1 (v_{1/2} \approx 150 \text{ Hz}).$

¹¹**B** NMR (192 MHz, 299K, $[d_2]$ -CH₂Cl₂) δ = -20.0 (d, ¹J_{BH} = 90.5 Hz).

¹¹B{¹H} NMR (192 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = -20.0 (v_{1/2} \approx 50 \text{ Hz}).$

³¹**P** NMR (243 MHz, 233 K, $[d_2]$ -CH₂Cl₂): $\delta = 6.3$ (br d, ${}^1J_{\text{PH}} \approx 466$ Hz).

³¹**P**{¹**H**} **NMR** (243 MHz, 233 K, $[d_2]$ -CH₂Cl₂): $\delta = 6.3 (v_{1/2} \approx 80 \text{ Hz}).$

³¹**P** NMR (243 MHz, 299 K, [*d*₂]-CH₂Cl₂): $\delta = 6.8$ (br d, ¹*J*_{PH} ≈ 467 Hz). ³¹**P**{¹**H**} NMR (243 MHz, 299 K, [*d*₂]-CH₂Cl₂): $\delta = 6.8$ (v_{1/2} ≈ 10 Hz). ¹⁹**F** NMR (564 MHz, 233 K, [*d*₂]-CH₂Cl₂): $\delta = -131.4$ (br, 2F, *o*), -163.2 (br t, ³*J*_{FF} = 21.0 Hz, 1F, *p*), -166.3 (br m, 2F, *m*) (C₆F₅) [$\Delta\delta^{19}F_{mp} = 3.1$]; -132.2 (br, 2F, *o*), -161.6 (br t, ³*J*_{FF} = 20.6 Hz, 1F, *p*), -165.3 (br, 2F, *m*) (C₆F₅) [$\Delta\delta^{19}F_{mp} = 3.7$]. ¹⁹**F** NMR (564 MHz, 299 K, [*d*₂]-CH₂Cl₂): $\delta = -131.4$ (m, 2F, *o*), -163.5 (t, ³*J*_{FF} = 20.0 Hz, 1F, *p*), -166.6 (m, 2F, *m*) (C₆F₅) [$\Delta\delta^{19}F_{mp} = 3.1$]; -132.4 (m, 2F, *o*), -162.2 (t,

 ${}^{3}J_{\text{FF}} = 20.1 \text{ Hz}, 1\text{F}, p), -165.9 \text{ (m, 2F, m)} (\text{C}_{6}\text{F}_{5}) [\Delta \delta^{19}\text{F}_{mp} = 3.7].$

¹⁹**F**,¹⁹**F GCOSY** (564 MHz / 564 MHz, 299 K, $[d_2]$ -CH₂Cl₂) δ^{19} **F** / δ^{19} **F** = -131.4 / -166.6 (*o* / *m*), -163.5 / -166.6 (*p* / *m*) (C₆F₅); -132.4 / -165.9 (*o* / *m*), -162.2 / -165.9 (*p* / *m*) (C₆F₅).

Figure S26 ¹H NMR (600 MHz, top: 299 K; bottom: 233 K, $[d_2]$ -CH₂Cl₂) spectra of

compound 10

Figure S27 $^{13}C{^1H}$ NMR (151 MHz, 233K, $[d_2]$ -CH₂Cl₂) spectrum of compound 10

Figure S28 ¹¹B, ¹¹B{¹H} NMR (192 MHz, top 2 line: 299K; bottom 2 line: 233K, $[d_2]$ -CH₂Cl₂) spectra of compound **10**

Figure S31 X-Ray crystal structure analysis of compound **10**: formula $C_{32}H_{28}BF_{10}P$, M = 644.32, colourless crystal, 0.25 x 0.20 x 0.14 mm, a = 8.8140(3), b = 24.0603(8), c = 14.3592(4) Å, $\beta = 104.377(2)$ °, V = 2949.7(2) Å³, $\rho_{calc} = 1.451$ gcm⁻³, $\mu = 1.600$ mm⁻¹, empirical absorption correction (0.690 $\leq T \leq 0.807$), Z = 4, monoclinic, space group $P2_1/n$ (No. 14), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 18372 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin \theta$)/ λ] = 0.60 Å⁻¹, 5076 independent ($R_{int} = 0.034$) and 4770 observed reflections [$I > 2\sigma(I)$], 656 refined parameters, R = 0.057, $wR^2 = 0.135$, max. (min.) residual electron density 0.26 (-0.20) e.Å⁻³, the hydrogen at P1, P1A, B1 and B1A atoms were refined freely, but with distance restraints (DFIX); others were calculated and refined as riding atoms.

Control reaction: reaction of compound 10 with water (NMR scale).

A small amount of H_2O was added to the CD_2Cl_2 solution (1 mL) of compound **10** (15 mg). The mixture was stored at r.t. for one day and then characterized by NMR experiments.

Figure S32 ¹H NMR (600 MHz, 299 K, [*d*₂]-CH₂Cl₂) spectra of top: compound **10**;

bottom: compound $10 + H_2O$

5 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 **Figure S33** ¹¹B, ¹¹B{¹H} NMR (192 MHz, 299K, $[d_2]$ -CH₂Cl₂ spectra of top 2:

compound 10; bottom 2: compound $10 + H_2O$

compound **10**; bottom 2: compound $10 + H_2O$

Synthesis of compound 10-D.

Compound 8 (100 mg, 0.15 mmol) was dissolved in toluene (2 D Ŧ E mL). Subsequently the solution was degassed and then purged Mes₂P $B(C_6F_5)_2$ (D)H Ή(D) with D₂ gas (1.0 bar). After heating at 90 °C overnight the color 10-D Scheme S7 of the solution turned from deep yellow to light yellow. Then all volatiles were removed in vacuo and the obtained residue was dissolved in CH₂Cl₂ (1 mL) and pentane (5 mL) was added to form a suspension. The solid was then filtrated off and the solution was stored in fridge (-30 °C) overnight to give colorless crystalline material. The solid was collected and dried in vacuo overnight to give compound **10**-D (60 mg, $\approx 60\%$).

(1): ²H NMR (77 MHz, 299K, CH₂Cl₂) of compound **10**-D

Synthesis of compound 11

 $\stackrel{\odot}{\underset{\substack{\mathsf{B}(\mathsf{C}_6\mathsf{F}_5)_2\\ \\ \mathsf{PMes}_2\\ 11}}} \kappa^{\oplus} \quad \mathsf{KH} \ (16 \text{ mg}, \ 0.40 \text{ mmol}) \text{ was added to the THF solution } (4 \text{ mL}) \text{ of } \\ \mathsf{compound} \ \mathbf{8} \ (200 \text{ mg}, \ 0.31 \text{ mmol}). \text{ The reaction mixture was stirred} \\ \mathsf{at r.t. for } 0.5 \text{ h (some gas bubbles were observed during the reacion).}$

Scheme S8 Then all volatiles were removed *in vacuo* and the residue was dissolved in CH₂Cl₂/pentane (1 mL/5 mL). Subsequently the solution was stored at -30 °C overnight to give a colorless crystalline material. The solid was collected and dried *in vacuo* for 1 h to give compound **11** with coordinating ¹/₄ THF (140 mg, ≈ 0.2 mmol, ≈ 50 %).

IR (KBr): $\tilde{\nu} / \text{cm}^{-1} = 2958(\text{m}), 1642(\text{w}), 1603(\text{m}), 1513(\text{s}), 1458(\text{vs}), 1376(\text{w}), 1279(\text{w}), 1165(\text{w}), 1112(\text{w}), 1053(\text{w}), 963(\text{m}), 791(\text{w}), 612(\text{w}), 570(\text{w}).$

Decomposition point: 99 °C.

¹**H NMR** (500 MHz, 299 K, [*d*₈]-THF): δ = 6.56 (m, 4H, *m*-Mes^{a,b}), 3.62 (m, 1H, THF), 2.35 (s, 6H, *o*-CH₃^{Mes,a}), 2.21 (s, 6H, *o*-CH₃^{Mes,b}), 2.13 (s, 3H, *p*-CH₃^{Mes,b}), 2.12 (s, 3H, *p*-CH₃^{Mes,a}), 1.78 (m, 1H, THF), 1.62 (m, 1H, CH), 0.61 (dt, ${}^{3}J_{PH} = 25.4$, ${}^{3}J_{HH} \approx {}^{2}J_{HH} = 7.0$ Hz, 1H, CH₂), 0.18 (td, ${}^{3}J_{PH} = 10.1$ Hz, ${}^{3}J_{HH} = 10.1$ Hz, ${}^{2}J_{HH} = 7.0$ Hz, 1H, CH₂).

¹³C{¹H} NMR (126 MHz, 299 K, $[d_8]$ -THF): $\delta = 143.0$ (d, ${}^2J_{PC} = 13.4$ Hz, *o*-Mes^b), 142.3 (d, ${}^2J_{PC} = 12.5$ Hz, *o*-Mes^a), 141.3 (d, ${}^1J_{PC} = 33.6$ Hz, *i*-Mes^a), 138.9 (d, ${}^1J_{PC} =$ 20.7 Hz, *i*-Mes^b), 135.5 (*p*-Mes^b), 134.8 (*p*-Mes^a), 129.8 (d, ${}^3J_{PC} = 1.8$ Hz, *m*-Mes^a), 129.3 (d, ${}^3J_{PC} = 2.8$ Hz, *m*-Mes^b), 68.2 (THF), 26.4 (THF), 23.6 (d, ${}^3J_{PC} = 11.8$ Hz, *o*-CH₃^{Mes,a}), 22.8 (d, ${}^3J_{PC} = 14.4$ Hz, *o*-CH₃^{Mes,b}), 21.1 (*p*-CH₃^{Mes,b}), 20.9 (*p*-CH₃^{Mes,a}), 14.5 (br, CH₂), 12.3 (br, CH), [C₆F₅ not listed].

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, 299 K, [*d*₈]-THF): δ^{1} H / δ^{13} C = 6.56 / 129.8, 129.3 (*m*-Mes^{a,b}), 2.35 / 23.6 (*o*-CH₃^{Mes,a}), 2.21 / 22.8 (*o*-CH₃^{Mes,b}), 2.13 / 21.1 (*p*-CH₃^{Mes,b}), 2.12 / 20.9 (*p*-CH₃^{Mes,a}), 1.62 / 14.5 (CH), 0.61, 0.18 / 12.3 (CH₂).

¹**H**,¹³**C GHMBC** (500 MHz / 126 MHz, 299 K, [*d*₈]-THF) [selected traces]: δ^{1} H / δ^{13} C = 2.35 / 142.3, 141.3, 129.8 (*o*-CH₃^{Mes,a} / *o*-Mes^a, *i*-Mes^a, *m*-Mes^a), 2.21 / 143.0, 138.9, 129.3 (*o*-CH₃^{Mes,b} / *o*-Mes^b, *i*-Mes^b, *m*-Mes^b).

¹¹B{¹H} NMR (160 MHz, 299K, [*d*₈]-THF): $\delta = -26.8 (v_{1/2} \approx 70 \text{ Hz})$ ³¹P{¹H} NMR (202 MHz, 299 K, [*d*₈]-THF) $\delta = -4.4 \text{ (m)}.$ ¹⁹F NMR (470 MHz, 299 K, [*d*₈]-THF) $\delta = -130.2 \text{ (m, 2F, }o), -167.7 \text{ (t, }^{3}J_{FF} = 20.3 \text{ Hz}, 1F, <math>p$), -169.7 (m, 2F, m) (C₆F₅) [$\Delta \delta$ ¹⁹F_{mp} = 2.0]; -132.0 (m, 2F, o), -167.8 (t, $^{3}J_{FF} = 20.2 \text{ Hz}, 1F, <math>p$), -169.3 (m, 2F, m) (C₆F₅) [$\Delta \delta$ ¹⁹F_{mp} = 1.5]. ¹⁹F ¹⁹F CCOSY (470 MHz / 470 MHz - 200 K [*d* 1 THF) δ ¹⁹F / δ ¹⁹F = -130.2 / 160.7

¹⁹**F**,¹⁹**F GCOSY** (470 MHz / 470 MHz, 299 K, $[d_8]$ -THF) δ^{19} F / δ^{19} F = -130.2 / -169.7 (*o* / *m*), -167.7 / -169.7 (*p* / *m*) (C₆F₅); -132.0 / -169.3 (*o* / *m*), -167.8 / -169.3 (*p* / *m*) (C₆F₅).

Figure S37 ¹H NMR (500 MHz, 299K, $[d_8]$ -THF) spectrum of compound 11 [p:

pentane; t: THF]

Figure S38 $^{13}C{^{1}H}$ NMR (126 MHz, 299K, [d_8]-THF) spectrum of compound 11

Figure S39 ${}^{11}B{}^{1}H{}$ NMR (160 MHz, 299K, [*d*₈]-THF), ${}^{31}P$ and ${}^{31}P{}^{1}H{}$ NMR (202

MHz, 299K, $[d_8]$ -thf) spectra of compound 11

Figure S40 19 F NMR (470 MHz, 299K, [d_8]-THF) spectrum of compound 11

Synthesis of compound 12

Benzyl bromide (50 mg, 0.29 mmol) was added to a THF solution (5 mL) of compound **11** (200 mg, \approx 0.28 mmol) to give a suspension immediately. The suspension was stirred at r.t. for 10 min. Then the solid was filtrated off. All volatiles of the solution

were removed *in vacuo* and the resulting residue was dissolved in CH_2Cl_2 /pentane (1 mL/5 mL). Subsequently the solution was stored at -30 °C overnight to give a colorless crystalline material. The solid was collected and dried *in vacuo* overnight to give compound **12** (160 mg, 0.23 mmol, 82%). Single crystals of compound **12** suitable for the X-ray crystal structure analysis were obtained by slow diffusion of pentane to a CH_2Cl_2 solution of compound **12** at -30 °C.

IR (KBr): $\tilde{\nu} / \text{cm}^{-1} = 2977(\text{w}), 2925(\text{w}), 1643(\text{w}), 1605(\text{w}), 1512(\text{m}), 1467(\text{vs}), 1284(\text{s}), 1172(\text{w}), 1116(\text{m}), 969(\text{s}), 865(\text{m}), 773(\text{w}), 702(\text{w}), 557(\text{w}), 485(\text{w}).$

Decomposition point: 105 °C.

Elemental analysis: calc. for C₃₉H₃₂BF₁₀P (732.44 g/mol): C, 63.95; H, 4.40. Found: C, 63.45; H, 4.50.

¹**H NMR** (600 MHz, 299 K, $[d_2]$ -CH₂Cl₂): δ = 7.18 (m, 1H, *p*-Ph), 7.07 (m, 2H, *m*-Ph), 6.95 (m, 2H, *o*-Ph), 6.83 (s, 1H, *m*-Mes^a), 6.79 (s, 1H, *m*-Mes^b), 6.64 (s, 1H, *m*'-Mes^a), 6.44 (s, 1H, *m*'-Mes^b), 4.45, 4.22 (each t, ${}^{2}J_{PH} \approx {}^{2}J_{HH} = 13.4$ Hz, each 1H, PCH₂), 2.46 (s, 3H, *o*'-CH₃^{Mes,b}), 2.23 (s, 3H, *p*-CH₃^{Mes,a}), 2.20 (s, 3H, *p*-CH₃^{Mes,b}), 2.14 (s, 3H, *o*'-CH₃^{Mes,a}), 1.88 (s, 6H, *o*-CH₃^{Mes,a,b}), 1.32, 0.69 (each m, each 1H, CH₂), 1.01 (t, ${}^{2}J_{PH} \approx {}^{3}J_{HH} = 9.7$ Hz, 1H, CH).

¹³C{¹H} NMR (151 MHz, 299 K, $[d_2]$ -CH₂Cl₂): $\delta = 144.1$ (d, ${}^2J_{PC} = 9.0$ Hz, o '-Mes^a), 143.0 (d, ${}^4J_{PC} = 2.9$ Hz, p-Mes^b), 142.7 (m, o-Mes^b), 142.6 (m, p-Mes^a), 140.6 (d, ${}^2J_{PC} = 8.9$ Hz, o '-Mes^b), 139.8 (d, ${}^2J_{PC} = 8.6$ Hz, o-Mes^a), 132.0 (d, ${}^3J_{PC} = 10.9$ Hz, m '-Mes^a), 131.8 (d, ${}^3J_{PC} = 11.3$ Hz, m-Mes^b), 131.6 (d, ${}^3J_{PC} = 10.3$ Hz, m-Mes^a), 131.3 (m, m '-Mes^b), 131.2 (m, o-Ph), 131.0 (d, ${}^2J_{PC} = 6.9$ Hz, i-Ph)^t, 128.5 (d, ${}^4J_{PC} = 3.6$ Hz, m-Ph), 128.0 (d, ${}^5J_{PC} = 4.0$ Hz, p-Ph), 124.2 (d, ${}^1J_{PC} = 69.2$ Hz, i-Mes^a), 119.4 (d, ${}^1J_{PC} = 81.5$ Hz, i-Mes^b), 39.3 (d, ${}^1J_{PC} = 49.5$ Hz, PCH₂), 24.9 (o '-CH₃^{Mes,b}), 24.8 (d, ${}^{3}J_{PC} = 3.8 \text{ Hz}$, $o - \text{CH}_{3}^{\text{Mes,b}}$), 23.2 (d, ${}^{3}J_{PC} = 5.3 \text{ Hz}$, $o - \text{CH}_{3}^{\text{Mes,a}}$), 22.4 (d, ${}^{3}J_{PC} = 2.9 \text{ Hz}$, $o' - \text{CH}_{3}^{\text{Mes,a}}$), 21.0 (p-CH₃^{Mes,a}), 20.6 (p-CH₃^{Mes,b}), 12.1 (br, CH₂), 10.4 (br d, ${}^{1}J_{PC} = 59.8 \text{ Hz}$, CH), [C₆F₅ not listed; ^t tentative assignment].

¹H,¹³C GHSQC (600 MHz / 151 MHz, 299 K, $[d_2]$ -CH₂Cl₂): δ^1 H / δ^{13} C = 7.18 / 128.0 (*p*-Ph), 7.07 / 128.5 (*m*-Ph), 6.95 / 131.2 (*o*-Ph), 6.83 / 131.6 (*m*-Mes^a), 6.79 / 131.8 (*m*-Mes^b), 6.64 / 132.0 (*m*'-Mes^a), 6.44 / 131.3 (*m*'-Mes^b), 4.45, 4.22 / 39.3 (PCH₂), 2.46 / 24.9 (*o*'-CH₃^{Mes,b}), 2.23 / 21.0 (*p*-CH₃^{Mes,a}), 2.20 / 20.6 (*p*-CH₃^{Mes,b}), 2.14 / 22.4 (*o*'-CH₃^{Mes,a}), 1.88 / 23.2 (*o*-CH₃^{Mes,a}), 1.88 / 24.8 (*o*-CH₃^{Mes,b}), 1.32, 0.69 / 12.1 (CH₂), 1.01 / 10.4 (CH).

¹**H**,¹³**C GHMBC** (600 MHz / 151 MHz, 299 K, $[d_2]$ -CH₂Cl₂) [selected traces]: δ^1 H / δ^{13} C = 7.18 / 131.2 (*p*-Ph / *o*-Ph), 4.45, 4.22 / 131.2, 10.4 (PCH₂ / *o*-Ph, CH), 2.46 / 140.6, 131.3, 119.4 (*o*'-CH₃^{Mes,b} / *o*'-Mes^b, *m*'-Mes^b, *i*-Mes^b), 2.14 / 144.1, 132.0, 124.2 (*o*'-CH₃^{Mes,a} / *o*'-Mes^a, *m*'-Mes^a, *i*-Mes^a).

¹¹B{¹H} NMR (192 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = -23.1 (v_{1/2} \approx 100 \text{ Hz}).$

³¹**P**{¹**H**} **NMR** (243 MHz, 299 K, $[d_2]$ -CH₂Cl₂) $\delta = 33.7 (v_{1/2} \approx 10 \text{ Hz}).$

¹⁹**F NMR** (564 MHz, 299 K, [*d*₂]-CH₂Cl₂) δ = -132.0 (br m, 2F, *o*), -162.2 (t, ${}^{3}J_{FF}$ = 19.7 Hz, 1F, *p*-C₆F₅), -166.1 (m, 2F, *m*) (C₆F₅) [Δδ¹⁹F_{*mp*} = 3.9], -128.4, -130.9 (each br, each 1F, *o*), -162.6 (t, ${}^{3}J_{FF}$ = 20.3 Hz, 1F, *p*), -166.0, -167.5 (each br, each 1F, *m*) (C₆F₅) [Δδ¹⁹F_{*mp*} = 3.4, 3.9].

¹⁹**F NMR** (564 MHz, 233 K, [*d*₂]-CH₂Cl₂) δ = -128.4, -131.0 (each m, each 1F, *o*), -162.2 (t, ${}^{3}J_{FF}$ = 20.8 Hz, 1F, *p*), -165.5, -167.1 (each m, each 1F, *m*) (C₆F₅) [Δδ¹⁹F_{*mp*} = 3.3, 4.9], -131.9 (br, 2F, *o*), -161.5 (t, ${}^{3}J_{FF}$ = 20.8 Hz, 1F, *p*), -165.4 (m, 2F, *m*) (C₆F₅) [Δδ¹⁹F_{*mp*} = 3.9].

Figure S43 ¹¹B{¹H} NMR (192 MHz, 299K, $[d_2]$ -CH₂Cl₂), ³¹P{¹H} NMR (243 MHz, 299K, $[d_2]$ -CH₂Cl₂) spectra of compound **12** (?: the compound not yet identified)

-128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 -168

Figure S44 ¹⁹F NMR (564 MHz, top: 299K; bottom: 233K, [d₂]-CH₂Cl₂) spectra of compound 12 (?: the compound not yet identified)

Figure S45 X-Ray crystal structure analysis of compound **12**: formula $C_{39}H_{32}BF_{10}P$ · CH₂Cl₂, M = 817.35, pale yellow crystal, 0.35 x 0.20 x 0.20 mm, a = 11.2185(2), b = 11.8258(2), c = 15.1455(3) Å, $\alpha = 90.266(1)$, $\beta = 108.687(1)$, $\gamma = 103.129(1)^{\circ}$, V = 1847.1(1) Å³, $\rho_{calc} = 1.470$ gcm⁻³, $\mu = 0.300$ mm⁻¹, empirical absorption correction (0.902 $\leq T \leq 0.942$), Z = 2, triclinic, space group $P\bar{1}$ (No. 2), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 18017 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.67 Å⁻¹, 8925 independent ($R_{int} = 0.050$) and 7139 observed reflections [$I > 2\sigma(I)$], 521 refined parameters, R = 0.060, $wR^2 = 0.158$, max. (min.) residual electron density 0.33 (-0.34) e.Å⁻³, hydrogen atoms were calculated and refined as riding atoms.

Reaction of compound 12 with H₂:

Compound **12** (20 mg, 0.27 mmol) was dissolved in d_8 -toluene (1.0 mL). Then the solution was degassed and purged with H₂ gas (2.5 bar). After heating it at 90 °C overnight, the solution was measured by NMR in situ. The analysis (NMR: ¹H, ¹¹B, ¹⁹F and ³¹P) showed that compound **12** doesn't react with H₂ under this applied condition.

Synthesis of compound 13

Triflic acid (30 mg, 0.20 mmol) was added to the CH_2Cl_2 (4 mL) solution of compound **12** (150 mg, 0.20 mmol) to give a colorless solution. The solution was stirred at r.t. for 10 min. Then all volatiles were removed *in vacuo* and pentane (5 mL) was added

to the residue to give a suspension. Subsequently the solid was collected and dried overnight in *vacuo* to give compound **13** (130 mg, 0.15 mmol, 75%). Crystals of compound **13** suitable for the X-ray single crystal structure analysis were obtained by slow diffusion of pentane to a CH_2Cl_2 solution of compound **13** at -30 °C.

IR (KBr): $\tilde{\nu} / \text{cm}^{-1} = 2973(\text{w}), 1646(\text{w}), 1606(\text{w}), 1519(\text{s}), 1464(\text{vs}), 1355(\text{s}), 1192(\text{s}), 1093(\text{m}), 998(\text{m}), 973(\text{m}), 831(\text{m}), 776(\text{m}), 698(\text{m}), 628(\text{m}), 420(\text{w}).$

Decomposition point: 105 °C.

Melting point: 166 °C.

Elemental analysis: calc. for C₄₀H₃₃BF₁₃PS (882.52 g/mol): C, 54.44; H, 3.77. Found: C, 54.69; H, 3.56.

¹**H NMR** (600 MHz, 299 K, $[d_2]$ -CH₂Cl₂): $\delta = 7.16$ (m, 1H, *p*-Ph), 7.08 (m, 2H, *m*-Ph), 7.02 (s, 2H, *m*-Mes), 6.91 (m, 2H, *o*-Ph), 6.91, 6.38 (each br, each 1H, *m*-Mes), 4.94 (dd, ²J_{HH} = 15.1 Hz, ²J_{PH} = 11.1 Hz, 1H, CH₂), 4.40 (dd, ²J_{HH} \approx ²J_{PH} = 15.1 Hz, 1H, CH₂), 3.95 (dq, ²J_{PH} = 19.9 Hz, ³J_{HH} = 6.8 Hz, 1H, CH), 2.84, 2.72, 1.85, 1.57 (each br, each 3H, *o*-CH₃^{Mes}), 2.32, 2.21 (each s, each 3H, *p*-CH₃^{Mes}), 1.84 (dd, ³J_{PH} = 19.8 Hz, ³J_{HH} = 6.8 Hz, 3H, CH₃).

¹³C{¹H} NMR (151 MHz, 299 K, $[d_2]$ -CH₂Cl₂): $\delta = 144.1$ (d, ${}^4J_{PC} = 3.0$ Hz), 143.8 (d, ${}^4J_{PC} = 3.1$ Hz) (*p*-Mes), 143.9 (br d, ${}^2J_{PC} = 8.9$ Hz), 142.9 (br d, ${}^2J_{PC} = 9.2$ Hz), 142.6 (d, ${}^2J_{PC} = 9.1$ Hz), 142.3 (d, ${}^2J_{PC} = 10.3$ Hz) (*o*-Mes), 134.1 (br d, ${}^3J_{PC} = 11.8$ Hz), 133.8 (br d, ${}^3J_{PC} = 11.0$ Hz), 132.7 (br d, ${}^3J_{PC} = 11.7$ Hz), 131.7 (br d, ${}^3J_{PC} = 11.1$ Hz) (*m*-Mes), 132.3 (d, ${}^2J_{PC} = 8.0$ Hz, *i*-Ph), 131.3 (d, ${}^3J_{PC} = 6.6$ Hz, *o*-Ph), 128.8 (*m*-Ph), 127.9 (d, ${}^5J_{PC} = 2.3$ Hz, *p*-Ph), 122.1 (d, ${}^1J_{PC} = 71.4$ Hz), 121.2 (d, ${}^1J_{PC} = 71.4$ Hz) (*i*-Mes), 119.4 (q, ${}^1J_{FC} = 318.6$ Hz, CF₃), 32.0 (d, ${}^1J_{PC} = 43.3$ Hz, CH₂), 26.2, 24.8, 23.8, 23.1 (*o*-CH₃^{Mes}), 25.1 (br, CH), 20.9, 20.6 (*p*-CH₃^{Mes}), 17.2 (CH₃), [C₆F₅ not listed].

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, 299 K, $[d_2]$ -CH₂Cl₂): δ^1 H / δ^{13} C = 7.16 / 127.9 (*p*-Ph), 7.08 / 128.8 (*m*-Ph), 7.02 / 132.7, 134.1 , 6.91 / 133.8 , 6.38 / 131.7 (*m*-Mes), 691 / 131.3 (*o*-Ph), 4.94, 4.40 / 32.0 (CH₂), 3.95 / 25.1 (CH), 2.84 / 26.2, 2.72 / 23.1, 1.85 / 23.8, 1.57 / 24.8 (*o*-CH₃^{Mes}), 2.32 / 20.9 , 2.21 / 20.6 (*p*-CH₃^{Mes}), 1.84 / 17.2 (CH₃).

¹**H**,¹³**C GHMBC** (600 MHz / 151 MHz, 299 K, $[d_2]$ -CH₂Cl₂) [selected traces]: δ^1 H / δ^{13} C = 2.72 / 143.9, 134.1, 122.1 (*o*-CH₃^{Mes} / *o*-Mes, *m*-Mes, *i*-Mes), 1.57 / 142.3, 131.7, 121.2 (*o*-CH₃^{Mes} / *o*-Mes, *m*-Mes, *i*-Mes).

¹¹B{¹H} NMR (192 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = 5.1 (v_{1/2} \approx 400 \text{ Hz}).$

³¹**P**{¹**H**} **NMR** (243 MHz, 299 K, $[d_2]$ -CH₂Cl₂) $\delta = 38.6 (v_{1/2} \approx 10 \text{ Hz}).$

¹⁹**F NMR** (564 MHz, 233 K, [*d*₂]-CH₂Cl₂) δ = -75.9 (m, 3F, CF₃), -129.7, -136.0 (each br, each 1F, *o*), -158.7 (t, ${}^{3}J_{FF} = 20.4$ Hz, *p*), -165.5 (m, 2F, *m*) (C₆F₅) [Δδ¹⁹F_{*mp*} = 6.8], -131.5, -132.5 (each br m, each 1F, *o*), -160.9 (t, ${}^{3}J_{FF} = 20.1$ Hz, *p*), -163.9, -166.1 (each m, each 1F, *m*) (C₆F₅) [Δδ¹⁹F_{*mp*} = 3.0, 5.2].

Figure S46 ¹H NMR (600 MHz, 299K, $[d_2]$ -CH₂Cl₂) spectrum of compound 13

Figure S47 ¹³C{¹H} NMR (151 MHz, 299K, [*d*₂]-CH₂Cl₂) spectrum of compound **13**

Figure S48 ¹¹B{¹H} NMR (192 MHz, 299K, $[d_2]$ -CH₂Cl₂), ³¹P{¹H} NMR (243 MHz,

299K, [d₂]-CH₂Cl₂) spectra of compound 13

-75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165

Figure S49 ¹⁹F NMR (564 MHz, 299K, $[d_2]$ -CH₂Cl₂) spectrum of compound 13

Figure S50 X-Ray crystal structure analysis of compound **13**: formula $C_{40}H_{33}BF_{13}O_3PS$, M = 882.50, colourless crystal, 0.18 x 0.14 x 0.04 mm, a = 18.0651(3), b = 10.2032(1), c = 23.1974(4) Å, $\beta = 107.174(1)$ °, V = 4085.14(11) Å³, $\rho_{calc} = 1.435$ gcm⁻³, $\mu = 0.215$ mm⁻¹, empirical absorption correction (0.962 $\leq T \leq 0.991$), Z = 4, monoclinic, space group $P2_1/n$ (No. 14), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 25089 reflections collected ($\pm h$, $\pm k$, $\pm l$), [($\sin\theta$)/ λ] = 0.67 Å⁻¹, 9948 independent ($R_{int} = 0.044$) and 6930 observed reflections [$I > 2\sigma(I)$], 539 refined parameters, R = 0.072, $wR^2 = 0.194$, max. (min.) residual electron density 0.35 (-0.28) e.Å⁻³, hydrogen atoms were calculated and refined as riding atoms.

Synthesis of compound 14

Mixing of compound 8 (200 mg, 0.31 mmol) and $HB(C_6F_5)_2$ (107 mg, 0.31 mmol) in CH₂Cl₂ (10 mL) gave a suspension. The reaction mixture was stirred at r.t. for another 1h. Then the solid was collected and dried in vacuo overnight to give compound 14 (200 mg, 0.20 mmol, 65%). Single crystals of compound 14 suitable for the X-ray single crystal structure analysis were obtained by storing a saturated CH₂Cl₂

solution of compound 14 at r.t. for several days.

IR (KBr): $\tilde{\nu}$ / cm⁻¹ = 2982(w), 2933(w), 1645(w), 1607(w), 1517(m), 1463(vs), 1379(w), 1291(m), 1136(m), 1089(s), 971(s), 856(w), 740(w), 672(w), 481(w).

Melting point: 165 °C.

Elemental analysis: calc. for C₄₄H₂₇B₂F₂₀P (988.25 g/mol): C, 53.48; H, 2.75. Found: C, 53.83; H, 2.38.

¹**H NMR** (600 MHz, 299 K, $[d_2]$ -CH₂Cl₂): $\delta = 7.07$ (d, ³J_{PH} = 4.3 Hz, 1H, *m*-Mes^a), 7.01 (dd, ${}^{1}J_{PH} = 460.8$, ${}^{3}J_{HH} = 12.9$ Hz, 1H, PH), 6.88 (d, ${}^{3}J_{PH} = 4.3$ Hz, 1H, *m*-Mes^b), 4.09 (br, 1H, CH), 2.50 (s, 6H, o-CH₃^{Mes,a}), 2.34 (s, 3H, p-CH₃^{Mes,a}), 2.29 (s, 6H, o-CH₃^{Mes,b}), 2.25 (s, 3H, p-CH₃^{Mes,b}), 2.09 (br, 2H, BH, CH₂), 1.87 (dt, ${}^{3}J_{PH} = 27.5$, ${}^{3}J_{\rm HH} \approx {}^{2}J_{\rm HH} = 13.0$ Hz, 1H, CH₂).

¹³C{¹H} NMR (151 MHz, 299 K, $[d_2]$ -CH₂Cl₂): $\delta = 145.4$ (*p*-Mes^{a,b}), 143.4 (br d, ²J_{PC}) = 8.0 Hz), 143.3 (br d, ${}^{2}J_{PC}$ = 8.1 Hz) (o-Mes^{a,b}), 132.1 (d, ${}^{3}J_{PC}$ = 10.5 Hz, m-Mes^a), 131.6 (d, ${}^{3}J_{PC} = 10.6$ Hz, *m*-Mes^b), 114.5 (d, ${}^{1}J_{PC} = 69.3$ Hz, *i*-Mes^b), 114.0 (d, ${}^{1}J_{PC} =$ 78.5 Hz, *i*-Mes^a), 22.7 (d, ${}^{3}J_{PC} = 7.2$ Hz, *o*-CH₃^{Mes,a}), 22.6 (d, ${}^{3}J_{PC} = 7.3$ Hz, o-CH3^{Mes,b}), 22.2 (br, CH2), 21.3 (p-CH3^{Mes,a}), 21.1 (p-CH3^{Mes,b}), 20.7 (br, CH), [C6F5 not listed].

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, 299 K, [d₂]-CH₂Cl₂): δ^{1} H / δ^{13} C = 7.07 / 132.1 (*m*-Mes^a), 6.88 / 131.6 (*m*-Mes^b), 4.09 / 20.7 (CH), 2.50 / 22.7 (*o*-CH₃^{Mes,a}), 2.34 / 21.3 (p-CH₃^{Mes,a}), 2.29 / 22.6 (o-CH₃^{Mes,b}), 2.25 / 21.1 (p-CH₃^{Mes,b}), 2.09, 1.87 / 22.2 (CH₂).

¹H,¹³C GHMBC (600 MHz / 151 MHz, 299 K, $[d_2]$ -CH₂Cl₂) [selected traces]: δ^1 H /

 δ^{13} C = 7.01 / 143.4, 143.3, 114.5, 114.0 (PH / *o*-Mes^a, *o*-Mes^b, *i*-Mes^b, *i*-Mes^a), 2.50 / 143.4, 132.1, 114.0 (*o*-CH₃^{Mes,a} / *o*-Mes^a, *m*-Mes^a, *i*-Mes^a), 2.29 / 143.3, 131.6, 114.5 (*o*-CH₃^{Mes,b} / *o*-Mes^b, *m*-Mes^b, *i*-Mes^b).

¹¹B{¹H} NMR (192 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = 4.1 (v_{1/2} \approx 400 \text{ Hz}).$

³¹**P NMR** (243 MHz, 299 K, $[d_2]$ -CH₂Cl₂) $\delta = -2.2$ (br d, ${}^1J_{PH} \approx 460$ Hz).

³¹**P**{¹**H**} **NMR** (243 MHz, 299 K, $[d_2]$ -CH₂Cl₂) $\delta = -2.2$ ($v_{1/2} \approx 10$ Hz).

¹⁹**F NMR** (564 MHz, 233 K, $[d_2]$ -CH₂Cl₂) δ = -127.7 (br m, 2F), -131.2 (br, 2F), -133.6 (br, 4F) (*o*-C₆F₅), -156.0 (t, ${}^{3}J_{FF}$ = 20.2 Hz, 1F), -156.7 (t, ${}^{3}J_{FF}$ = 20.1 Hz, 1F), -158.2 (br, 2F) (*p*-C₆F₅), -163.0 (m, 2F), -165.0 (m, 6F) (*m*-C₆F₅).

pentane)

Figure S52 ¹³C{¹H} NMR (151 MHz, 299K, [*d*₂]-CH₂Cl₂) spectrum of compound **14**

.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 -4.0 -4.5 -5.0 -5.5 **Figure S53** ${}^{11}B{}^{1}H{}$ NMR (192 MHz, 299K, [d_2]-CH₂Cl₂), ${}^{31}P$ and ${}^{31}P{}^{1}H{}$ NMR

Figure S54 ¹⁹F NMR (564 MHz, 299K, $[d_2]$ -CH₂Cl₂) spectrum of compound 14

Figure S55 X-Ray crystal structure analysis of compound 14: formula $C_{44}H_{27}B_2F_{20}P$, M = 988.25, colourless crystal, 0.15 x 0.08 x 0.05 mm, a = 14.7699(5), b = 16.8329(5), c = 17.5277(7) Å, $\beta = 99.020(2)$ °, V = 4303.9(3) Å³, $\rho_{calc} = 1.525$ gcm⁻³, $\mu = 1.663$ mm⁻¹, empirical absorption correction (0.788 $\leq T \leq 0.921$), Z = 4,

monoclinic, space group $P2_1/n$ (No. 14), $\lambda = 1.54178$ Å, T = 223(2) K, ω and φ scans, 37324 reflections collected $(\pm h, \pm k, \pm l)$, $[(\sin\theta)/\lambda] = 0.60$ Å⁻¹, 7449 independent ($R_{int} = 0.052$) and 5736 observed reflections [$I > 2\sigma(I)$], 618 refined parameters, R = 0.044, $wR^2 = 0.124$, max. (min.) residual electron density 0.28 (-0.27) e.Å⁻³, the hydrogen at P1 atom and the hydrogen between B1 and B2 atoms were refined freely; others were calculated and refined as riding atoms.

Synthesis of compound 14-D.

Mixing of compound **8** (146 mg, 0.20 mmol) and $DB(C_6F_5)_2$ (69 mg, 0.20 mmol) in CH_2Cl_2 (10 mL) gave a suspension, which was stirred at r.t. for 2h. Then the solid was collected and dried *in vacuo* overnight to give compound **14-D** (130 mg,

0.12 mmol, 60%) as a colorless solid.

(2): ¹H NMR (500 MHz, 299K, [*d*₂]-CH₂Cl₂) of compound **14-**D

(1): ²H NMR (77 MHz, 299K, CH₂Cl₂) of compound **14-D**

Reaction of compound 14 with benzaldehyde – generation of compound 8

Benzaldehyde (22 mg, 0.20 mmol) was added slowly to a solution of compound 14 (198 mg, 0.20 mmol) in CD_2Cl_2 (4 mL). Then the reaction mixture was stirred at r.t. overnight and then characterized by NMR experiments.

 $PhCH_2OB(C_6F_5)_2$:

¹**H** NMR (600 MHz, 299 K, $[d_2]$ -CH₂Cl₂): $\delta = 7.39$ (m, 2H, *m*-Ph), 7.35 (m, 2H, *o*-Ph), 7.34 (m, 1H, *p*-Ph), 5.28 (s, 2H, PhCH₂).

¹³C{¹H} NMR (151 MHz, 299 K, [*d*₂]-CH₂Cl₂): δ = 137.1 (*i*-Ph), 129.0 (*m*-Ph), 128.7 (*p*-Ph), 127.2 (*o*-Ph), 72.5 (PhCH₂).

¹**H**,¹³**C GHSQC** (600 MHz / 151 MHz, 299 K, [*d*₂]-CH₂Cl₂): δ^{1} H / δ^{13} C = 7.39 / 129.0 (*m*-Ph), 7.35 / 127.2 (*o*-Ph), 7.34/ 128.7 (*p*-Ph), 5.28 / 72.5 (PhCH₂).

¹¹B{¹H} NMR (192 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = 40.8 (v_{1/2} \approx 300 \text{ Hz}).$

¹⁹**F NMR** (564 MHz, 233 K, [*d*₂]-CH₂Cl₂) δ = -132.0 (m, 4F, *o*), -149.8 (br, 2F, *p*), -161.7 (br, 4F, *m*)[Δδ¹⁹F_{*mp*} = 11.9].

Compound 8:

¹**H NMR** (600 MHz, 299 K, [*d*₂]-CH₂Cl₂): $\delta = 6.97$ (d, ⁴*J*_{PH} = 4.1 Hz, 2H, *m*-Mes^a), 6.93 (dd, ¹*J*_{PH} = 464.1 Hz, ³*J*_{HH} = 11.6 Hz, 1H, PH), 6.92 (d, ⁴*J*_{PH} = 3.8 Hz, 2H, *m*-Mes^b), 2.41 (s, 6H, *o*-CH₃^{Mes,b}), 2.36 (s, 6H, *o*-CH₃^{Mes,a}), 2.32 (s, 3H, *p*-CH₃^{Mes,a}), 2.29 (s, 3H, *p*-CH₃^{Mes,b}), 1.16 (m, 1H, CH), 1.00 (dt, ³*J*_{PH} = 30.8 Hz, ²*J*_{HH} \approx ³*J*_{HH} = 8.4 Hz), 0.85 (m)(each 1H, CH₂).

¹³C{¹H} NMR (151 MHz, 299 K, [*d*₂]-CH₂Cl₂): $\delta = 144.2$ (d, ⁴*J*_{PC} = 2.8 Hz, *p*-Mes^a), 144.1 (d, ⁴*J*_{PC} = 2.7 Hz, *p*-Mes^b), 143.0 (d, ²*J*_{PC} = 9.9 Hz, *o*-Mes^a), 142.7 (d, ²*J*_{PC} = 9.5

Hz, *o*-Mes^b), 131.5 (d, ${}^{3}J_{PC} = 9.6$ Hz, *m*-Mes^a), 131.4 (d, ${}^{3}J_{PC} = 9.9$ Hz, *m*-Mes^b), 118.1 (d, ${}^{1}J_{PC} = 79.0$ Hz, *i*-Mes^b), 117.8 (d, ${}^{1}J_{PC} = 78.3$ Hz, *i*-Mes^a), 22.1 (d, ${}^{3}J_{PC} = 7.0$ Hz, *o*-CH₃^{Mes,b}), 22.0 (br d, ${}^{3}J_{PC} = 6.9$ Hz, *o*-CH₃^{Mes,a}), 21.23 (d, ${}^{5}J_{PH} = 1.3$ Hz, *p*-CH₃^{Mes,a}), 21.18 (d, ${}^{5}J_{PH} = 1.2$ Hz, *p*-CH₃^{Mes,b}), 12.4 (br, CH₂), 4.2 (br d, ${}^{2}J_{PC} = 60.1$ Hz, CH), [C₆F₅ not listed].

¹¹B{¹H} NMR (192 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = -23.8 (v_{1/2} \approx 60 \text{ Hz}).$

³¹**P** NMR (243 MHz, 299 K, $[d_2]$ -CH₂Cl₂) δ = -1.2 (br dd, ¹*J*_{PH} \approx 465 Hz, ³*J*_{HH} \approx 31 Hz).

³¹**P**{¹**H**} **NMR** (243 MHz, 299 K, $[d_2]$ -CH₂Cl₂) $\delta = -1.2$ ($v_{1/2} \approx 10$ Hz).

¹⁹**F NMR** (564 MHz, 233 K, [*d*₂]-CH₂Cl₂) δ = -130.9 (m, 2F, *o*), -160.5 (t, ${}^{3}J_{FF}$ = 20.2 Hz, 1F, *p*), -165.6 (m, 2F, *m*)[Δδ¹⁹F_{*mp*} = 5.1]; -133.3 (m, 2F, *o*), -162.1 (t, ${}^{3}J_{FF}$ = 20.2 Hz, 1F, *p*), -166.4 (m, 2F, *m*)[Δδ¹⁹F_{*mp*} = 4.3].

Figure S57 ¹H NMR (600 MHz, 299K, $[d_2]$ -CH₂Cl₂) spectrum of the mixture of compound **8** and PhCH₂OB(C₆F₅)₂ (b)

Figure S58 ¹H NMR spectra of compound **8** (top, 500 MHz, 299K, $[d_2]$ -CH₂Cl₂) and the mixture of compound **8** and PhCH₂OB(C₆F₅)₂ (b) (bottom: 600 MHz, 299K,

 $[d_2]$ -CH₂Cl₂)

compound **8** and $PhCH_2OB(C_6F_5)_2$

Figure S60 ¹¹B{¹H} NMR (192 MHz, 299K, $[d_2]$ -CH₂Cl₂), ³¹P and ³¹P{¹H} NMR (243 MHz, 299K, $[d_2]$ -CH₂Cl₂) spectra of the mixture of compound **8** and PhCH₂OB(C₆F₅)₂

Figure S61 ³¹P and ³¹P{¹H} NMR spectra of compound **8** (top two lines, 202 MHz, 299K, [*d*₂]-CH₂Cl₂) and the mixture of compound **8** and PhCH₂OB(C₆F₅)₂ (bottom two lines: 243 MHz, 299K, [*d*₂]-CH₂Cl₂)

and the mixture of compound 8 and $PhCH_2OB(C_6F_5)_2$ (b) (bottom: 192MHz, 299K,

 $[d_2]$ -CH₂Cl₂)

Figure S63 ¹⁹F NMR spectra of compound 8 (top, 470 MHz, 299K, $[d_2]$ -CH₂Cl₂) and the mixture of compound 8 and PhCH₂OB(C₆F₅)₂ (b) (bottom: 564 MHz, 299K, $[d_2]$ -CH₂Cl₂)

Synthesis of compound 22

Scheme S14 80 °C overnight, all volatiles were removed *in vacuo* at rt and the remaining residue was purified by column chromatography [silica gel, CH_2Cl_2] to give compound **22** (183 mg, 0.18 mmol, 60%). Single crystals of compound **22** suitable for the X-ray single crystal structure analysis were obtained by storing a saturated CH_2Cl_2 solution of compound **22** at r.t. for several days.

IR (KBr): $\tilde{\nu}$ / cm⁻¹ = 2976(w), 2928(w), 1650(w), 1606(w), 1516(m), 1460(vs), 1397(w), 1321(w), 1275(m), 1088(s), 977(s), 853(w), 772(w), 684(w), 419(w).

Melting point: 213 °C.

Elemental analysis: calc. for $C_{45}H_{27}B_2F_{20}OP$ (1016.26 g/mol): C, 53.18; H, 2.68. Found: C, 53.06; H, 2.77.

¹**H** NMR (600 MHz, 203 K, $[d_2]$ -CH₂Cl₂): $\delta = 7.26$ (s, 1H, *m*-Mes^a), 7.05 (s, 1H, *m*-Mes^b), 6.99 (s, 2H, *m*'-Mes^{a,b}), 6.97 (dd, ¹*J*_{PH} = 456.8, ³*J*_{HH} = 13.1 Hz, 1H, PH), 6.09 (d, ³*J*_{PH} = 30.3 Hz, 1H, BCH), 3.90 (m, 1H, PCH), 2.74 (s, 3H, *o*-CH₃^{Mes,a}), 2.58 (s, 3H, *o*-CH₃^{Mes,b}), 2.37 (s, 3H, *p*-CH₃^{Mes,a}), 2.25 (s, 3H, *p*-CH₃^{Mes,b}), 2.14 (s, 3H, *o*'-CH₃^{Mes,b}), 1.96 (s, 3H, *o*'-CH₃^{Mes,a}), 1.47 (dd, ³*J*_{PH} = 33.2, ²*J*_{HH} = 19.2 Hz,), 1.21 (dm, ³*J*_{PH} = 34.8 Hz)(each 1H, CH₂).

¹³C{¹H} NMR (151 MHz, 203 K, $[d_2]$ -CH₂Cl₂): $\delta = 146.5$ (*p*-Mes^a), 145.6 (*p*-Mes^b), 144.3 (br m, *o* '-Mes^b), 144.2 (br m, *o*-Mes^a), 143.6 (d, ²J_{PC} = 11.1 Hz, *o*-Mes^b), 142.1 (d, ²J_{PC} = 11.4 Hz, *o* '-Mes^a), 132.6 (d, ³J_{PC} = 12.5 Hz, *m*-Mes^b), 131.5 (d, ³J_{PC} = 10.1 Hz, *m*'-Mes^b), 131.4 (d, ³J_{PC} = 10.8 Hz, *m*'-Mes^a), 130.7 (d, ³J_{PC} = 10.2 Hz, *m*-Mes^a), 111.2 (d, ¹J_{PC} = 80.1 Hz, *i*-Mes^a), 107.7 (br d, ¹J_{PC} = 73.9 Hz, *i*-Mes^b), 84.2 (br, BCH), 32.3 (br d, ¹J_{PC} = 33.9 Hz, PCH), 25.7 (br, CH₂), 22.4 (d, ³J_{PC} = 6.4 Hz, *o*-CH₃^{Mes,b}), 21.1 (*p*-CH₃^{Mes,a}), 20.9 (m, *o*'-CH₃^{Mes,a}), 20.8 (*p*-CH₃^{Mes,b}), [C₆F₅ not listed].

¹H,¹³C GHSQC (600 MHz / 151 MHz, 203 K, [d_2]-CH₂Cl₂): δ^1 H / δ^{13} C = 7.26 /

130.7 (*m*-Mes^a), 7.05 / 132.6 (*m*-Mes^b), 6.99 / 131.5, 131.4 (*m*'-Mes^{b,a}), 6.09 / 84.2 (BCH), 3.90 / 32.3 (PCH), 2.74 / 22.1 (*o*-CH₃^{Mes,a}), 2.58 / 22.4 (*o*-CH₃^{Mes,b}), 2.37 / 21.1 (*p*-CH₃^{Mes,a}), 2.25 / 20.8 (*p*-CH₃^{Mes,b}), 2.14 / 21.5 (*o*'-CH₃^{Mes,b}), 1.96 / 20.9 (*o*'-CH₃^{Mes,a}), 1.47, 1.21 / 25.7 (CH₂).

¹**H**,¹³**C GHMBC** (600 MHz / 151 MHz, 203 K, $[d_2]$ -CH₂Cl₂)[selected traces]: δ¹H / δ¹³C =2.74 / 144.2, 130.7, 111.2 (*o*-CH₃^{Mes,a} / *o*-Mes^a, *m*-Mes^a, *i*-Mes^a), 2.58 / 143.6, 132.6, 107.7 (*o*-CH₃^{Mes,b} / *o*-Mes^b, *m*-Mes^b, *i*-Mes^b), 2.37 / 146.5, 131.4, 130.7 (*p*-CH₃^{Mes,a} / *p*-Mes^a, *m*'-Mes^a, *m*-Mes^a), 2.25 / 145.6, 132.6, 131.5 (*p*-CH₃^{Mes,b} / *p*-Mes^b, *m*-Mes^b).

¹¹**B**{¹**H**} **NMR** (192 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = 45.1 \text{ (v}_{1/2} \approx 1300 \text{ Hz}), -12.7 \text{ (d, } J \approx 12 \text{ Hz}).$

¹¹B{¹H} NMR (192 MHz, 203K, $[d_2]$ -CH₂Cl₂): $\delta = 42.7 (v_{1/2} \approx 2500 \text{ Hz}), -12.9 (v_{1/2} \approx 100 \text{ Hz}).$

³¹**P NMR** (243 MHz, 203 K, $[d_2]$ -CH₂Cl₂) $\delta = -5.6$ (br d, ${}^{1}J_{\text{PH}} \approx 460$ Hz).

³¹P{¹H} NMR (243 MHz, 203 K, $[d_2]$ -CH₂Cl₂) $\delta = -5.6 (v_{1/2} \approx 60 \text{ Hz}).$

¹⁹**F NMR** (564 MHz, 203 K, $[d_2]$ -CH₂Cl₂) $\delta = -128.3$ (m, 2F, o), -158.9 (br t, ${}^{3}J_{FF} =$ 19.1 Hz, 1F, p), -164.4, -164.9 (each m, each 1F, m)[$\Delta\delta^{19}F_{mp} = 5.5$, 6.0], -128.1 (m, 1F, o), -131.6 (br, 1F, o '), -160.3 (br t, ${}^{3}J_{FF} =$ 19.4 Hz, 1F, p), -164.2 (m, 1F, m), -164.8 (m, 1F, m ')[$\Delta\delta^{19}F_{mp} =$ 3.9, 4.5], -129.9 (m, 1F, o), -136.0 (br, 1F, o '), -161.8 (br t, ${}^{3}J_{FF} =$ 18.6 Hz, 1F, p), -165.2 (m, 1F, m '), -166.1 (m, 1F, m)[$\Delta\delta^{19}F_{mp} =$ 3.4, 4.3](B(C₆F₅)₃); -129.4 (br m, 2F, o), -147.4 (br t, ${}^{3}J_{FF} =$ 19.2 Hz, 1F, p), -161.6 (m, 2F, m)(BC₆F₅)[$\Delta\delta^{19}F_{mp} =$ 14.2].

¹⁹**F**,¹⁹**F GCOSY** (564 MHz / 564 MHz, 203 K, $[d_2]$ -CH₂Cl₂) δ^{19} **F** / δ^{19} **F** = -128.3 / -164.4, -164.9 (*o* / *m*), -158.9 / -164.4, -164.9 (*p* / *m*) (B(C₆F₅)₃); -128.1 / 164.2 (*o* / *m*), -131.6 / -164.8 (*o* ' / *m* '), -160.3 / -164.2, -164.8 (*p* / *m*, *m* ') (B(C₆F₅)₃); -129.9 / 166.1 (*o* / *m*), -136.0 / -165.2 (*o* ' / *m* '), 161.8 / 166.1, 165.2 (*p* / *m*, *m* ') (B(C₆F₅)₃); -129.4 / -161.6 (*o* / *m*), -147.4 / -161.6 (*p* / *m*) [B(C₆F₅)].

22

Figure S66 ¹¹B{¹H} NMR (192 MHz, top: 299 K; bottom: 203 K, [*d*₂]-CH₂Cl₂)

spectra of compound 22

compound 22

-126 -128 -130 -132 -134 -136 -138 -140 -142 -144 -146 -148 -150 -152 -154 -156 -158 -160 -162 -164 -166 **Figure S68** ¹⁹F NMR (564 MHz, 203K, [*d*₂]-CH₂Cl₂) spectrum of compound **22**

Figure S69 X-Ray crystal structure analysis of compound **22**: formula $C_{45}H_{27}B_2F_{20}OP$, M = 1016.26, colourless crystal, 0.13 x 0.13 x 0.08 mm, a = 11.7085(2), b = 20.9557(4), c = 17.8664(3) Å, $\beta = 107.975(1)$ °, V = 4169.7(1) Å³, $\rho_{calc} = 1.619$ gcm⁻³, $\mu = 0.194$ mm⁻¹, empirical absorption correction (0.975 $\leq T \leq 0.984$), Z = 4, monoclinic, space group $P2_1/n$ (No. 14), $\lambda = 0.71073$ Å, T = 223(2) K, ω and φ scans, 21611 reflections collected ($\pm h, \pm k, \pm l$), [($\sin\theta$)/ λ] = 0.59 Å⁻¹, 7293 independent ($R_{int} = 0.080$) and 4897 observed reflections [$I > 2\sigma(I)$], 632 refined parameters, R = 0.066, $wR^2 = 0.156$, max. (min.) residual electron density 0.36 (-0.31) e.Å⁻³, the hydrogen at P1 atom was refined freely; others were calculated and refined as riding atoms.

Control reaction: In situ reaction of compound 14 with carbon monoxide (NMR scale).

Compound 14 (22 mg, 0.030 mmol) was dissolved in CD_2Cl_2 (2 mL). Then the solution was degassed and purged with CO gas (2.5 bar). After heating the reaction mixture at 80 °C overnight, the CO gas was released at r.t. and the obtained solution was transferred to a NMR tube. The sample was then characterized by NMR experiments.

Comment: A mixture of compound 22 and a second compound which was tentatively assigned as the isomer i-22 was observed (conversion $\approx 81\%$; 22 : i-22 ≈ 80 : 20). The NMR data of compound 22 are consistent with those listed above. Compound i-22 was characterized by selected resonances:

¹**H NMR** (500 MHz, 299 K, $[d_2]$ -CH₂Cl₂)[selected resonances]: $\delta = 6.39$ (dd, ¹ $J_{PH} = 463.6$, ³ $J_{HH} = 12.7$ Hz, PH), 6.39 (br t, ³ $J_{HH} = 7.7$ Hz, BCH), 2.82 (br, PCH)¹, 2.52 (CH₂)¹, [¹ assigned from gcosy and ghsqc experiment]

¹³C{¹H} NMR (126 MHz, 299 K, $[d_2]$ -CH₂Cl₂)[selected resonances]: $\delta = 89.0$ (BCH), 31.0 (CH₂), 27.5 (PCH), [assigned from ghsqc experiment]

¹**H**,¹³**C GCOSY** (500 MHz / 500 MHz, 299 K, $[d_2]$ -CH₂Cl₂)[selected traces]: δ^1 H / δ^1 H = 7.46 / 2.82 (PH / PCH), 2.52 / 6.39, 2.82 (CH₂ / BCH, PCH).

¹**H**,¹³**C GHSQC** (500 MHz / 126 MHz, 299 K, [*d*₂]-CH₂Cl₂)[selected traces]: δ^{1} H / δ^{13} C = 6.39 / 89.4 (BCH), 2.82 / 27.5 (PCH), 2.52 / 31.0 (CH₂).

¹¹**B** NMR (160 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = -12.7$ (B(C₆F₅)₃).

³¹**P** NMR (202 MHz, 299 K, $[d_2]$ -CH₂Cl₂): δ = -9.8 (br dm, ¹*J*_{PH} \approx 464 Hz).

³¹**P**{¹**H**} **NMR** (202 MHz, 299 K, $[d_2]$ -CH₂Cl₂): $\delta = -9.8 (v_{1/2} \approx 10 \text{ Hz}).$

Figure S70 ¹H NMR (500 MHz, 299 K, $[d_2]$ -CH₂Cl₂) of the *in situ* reaction of compound **14** with carbon monoxide

Figure S71 ¹¹B NMR (160 MHz, 299K, $[d_2]$ -CH₂Cl₂) of the *in situ* reaction of compound **14** with carbon monoxide

9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14

Figure S72 ³¹P{¹H} NMR (202 MHz, 299 K, $[d_2]$ -CH₂Cl₂) of the *in situ* reaction of compound **14** with carbon monoxide (?: compounds not yet identified)

Synthesis of compound 22-D.

Figure S73 (3): ¹H NMR (500 MHz, 299K, [*d*₂]-CH₂Cl₂) of compound **22**

Compound 10 catalyzed hydrogenation reaction

General procedure: compound **10** (X mmol) and the respective substrate were mixed in CD_2Cl_2 (2 mL) using a special ampule (10 mL) (Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Fröhlich, R.; Erker, G. *Angew. Chem. Int. Ed.* **2008**, *47*, 7543-7546.) with magnetic stirrer. Subsequently the ampule was put into an autoclave and H₂ gas (50 bar) was applied. Then the reaction mixture was stirred at 90 °C for Y h. The obtained reaction mixture was directly characterized by ¹H NMR spectroscopy. The conversion was estimated by integration of suitable ¹H NMR signals.

Table S1 $[P]H^+/[B]H^-$ system **10** catalyzed hydrogenation of an imine, an enamine, a silylenol ether, 2-methylquinoline, and N-methylindole.^a

4			substrate	X mol %	reaction time	conversion
entry	substrate	product	mg (mmol)	10	Y	(isolated)
1	Z Z Z	NH 	21 (0.1)	20	20h	>99%
2	₩ N N	NH	209 (1.0)	10	36h	>99% (86%)
3		NH	21 (0.1)	5	48h	50%
4			215 (1.0)	10	36h	>99% (60%)
5	Me ₃ SiO	Me ₃ SiO	192 (1.0)	10	36h	>99% (62%)
6			143 (1.0)	10	36h	>99% (70%)
7			143 (1.0)	10	72h	>99% (65%)

^a 90 °C, 50 bar H₂, in $[d_2]$ -CH₂Cl₂ solution.

Hydrogenation of 2-tolyl-(1-phenylethylidene)amine

Following the general procedure compound **10** (64 mg, 0.10 mmol) reacted with 2-tolyl-(1-phenylethylidene)amine (210 mg, 1.0 mmol) at 90 °C for 36 h. *Purification*. All volatiles of the reaction mixture were removed in vacuo and the remaining

residue was purified by column chromatography [Silica gel,

V(pentane):V(CH₂Cl₂) = 5:1] to give the respective amine (180 mg, 86%) as a colorless oil.

¹**H NMR** (400 MHz, 299K, [*d*₂]-CH₂Cl₂): δ = 7.37 (m, 2H, *o*-Ph), 7.33 (m, 2H, *m*-Ph), 7.23 (m, 1H, *p*-Ph), 7.03 (dm, ³*J*_{HH} = 7.4 Hz, 1H, 3-H), 6.91 (tm, ³*J*_{HH} = 7.2 Hz, 1H, 5-H), 6.56 (tm, ³*J*_{HH} = 7.4 Hz, 1H, 4-H), 6.34 (d, ³*J*_{HH} = 8.1 Hz, 1H, 6-H), 4.56 (q, ³*J*_{HH} = 6.7 Hz, 1H, CH), 3.94 (s, 1H, NH), 2.23 (s, 3H, CH₃^{tol}), 1.56 (d, ³*J*_{HH} = 6.7 Hz, 3H, CH₃).

¹³C{¹H} NMR (101 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = 146.0$ (*i*-Ph), 145.5 (C1), 130.2 (C3), 128.9 (*m*-Ph), 127.13 (*p*-Ph), 127.07 (C5), 126.1 (*o*-Ph), 122.1 (C2), 117.0 (C4), 111.2 (C6), 53.5 (CH)¹, 25.5 (CH₃), 17.7 (CH₃^{tol}), [¹ from the ghsqc experiment].

¹**H**,¹**H GCOSY** (400 MHz / 400 MHz, 299 K, $[d_2]$ -CH₂Cl₂) [selected traces]: 7.03 / 6.56, 2.23 (3-H / 4-H, CH₃^{tol}), 6.56 / 7.03, 6.91 (4-H / 3-H, 5-H), 4.56 / 1.56 (CH / CH₃).

¹**H**,¹³**C GHSQC** (400 MHz / 101 MHz, 299 K, [d_2]-CH₂Cl₂): δ^1 H / δ^{13} C = 7.37 / 126.1 (*o*-Ph), 7.33 / 128.9 (*m*-Ph), 7.23 / 127.13 (*p*-Ph), 7.03 / 130.2 (C3), 6.91 / 127.07 (C5), 6.56 / 117.0 (C4), 6.34 / 111.2 (C6), 4.56 / 53.5 (CH), 2.23 / 17.7 (CH₃^{tol}), 1.56 / 25.5 (CH₃).

¹**H**,¹³**C GHMBC** (400 MHz / 101 MHz, 299 K, [*d*₂]-CH₂Cl₂)[selected traces]: δ¹H / δ^{13} C = 7.32 / 126.1, 146.0 (*m*-Ph / *m*-Ph, *i*-Ph), 6.56 / 122.1, 111.2 (4-H / C2, C6), 7.03 / 145.5, 127.0 (3-H / C1, C5), 2.23 / 145.5, 130.2, 122.1, 17.7 (CH₃^{tol} / C1, C3, C2, CH₃^{tol}), 1.56 / 146.0, 53.5 (CH₃ / *i*-Ph, CH).

Exact MS: calc. for [C₁₅H₁₇NH]: 212.1434. Found [C₁₅H₁₇NH]: 212.1443.

Hydrogenation of 1-(2-methyl-1-phenylprop-1-en-1-yl)piperidine

Following the general procedure compound **10** (64 mg, 0.10 mmol) reacted with 1-(2-methyl-1-phenylprop-1-en-1-yl)-piperidine (215 mg, 1.0 mmol) at 90 °C for 36 h. *Purification*. HCl solution (10 mL, 1M in water) was added to the reaction mixture. After 10 min stirring the aqueous phase was separated and treated with NaOH (1M in water).

The suspension was exacted with pentane (10 mL \times 2). The organic phases were combined and dried with Mg₂SO₄. Then all volatiles were removed by rotary evaporators (40 °C, 700 mbar) to give the respective amine (130 mg, 60%) as a colorless oil.

¹**H NMR** (400 MHz, 299K, [*d*₂]-CH₂Cl₂): δ = 7.30 (m, 2H, *m*-Ph), 7.24 (m, 1H, *p*-Ph), 7.13 (m, 2H, *o*-Ph), 2.97 (d, ³*J*_{HH} = 9.6 Hz, 1H, NCH), 2.27 (m, 1H, CH), 2.30, 2.19 (each br, each 2H, NCH₂), 1.51 (m, 4H, CH₂), 1.30 (m, 2H, CH₂), 1.01, 0.68 (each d, ³*J*_{HH} = 6.6 Hz, each 3H, CH₃).

¹³C{¹H} NMR (101 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = 138.5$ (*i*-Ph), 129.6 (*o*-Ph), 127.7 (*m*-Ph), 126.8 (*p*-Ph), 77.3 (NCH), 51.1 (NCH₂), 28.2 (CH), 27.0 (CH₂), 25.3 (CH₂), 20.8, 19.9 (CH₃).

¹H,¹H GCOSY (400 MHz / 400 MHz, 299 K, [*d*₂]-CH₂Cl₂) [selected traces]: 2.27 / 1.01, 0.68 (CH / CH₃, CH₃), 2.30 / 1.51 (NCH₂ / CH₂).

¹**H**,¹³**C GHSQC** (400 MHz / 101 MHz, 299 K, $[d_2]$ -CH₂Cl₂): δ^1 H / δ^{13} C = 7.30 / 127.7 (*m*-Ph), 7.24 / 126.8 (*p*-Ph), 7.13 / 129.6 (*o*-Ph), 2.97 / 77.3 (NCH), 2.27 / 28.2 (CH), 2.30, 2.19 / 51.1 (NCH₂), 1.51 / 27.0 (CH₂), 1.30 / 25.3 (CH₂), 1.01 / 20.8 (CH₃), 0.68 / 19.9 (CH₃).

¹H,¹³C GHMBC (400 MHz / 101 MHz, 299 K, $[d_2]$ -CH₂Cl₂) [selected traces]: δ^1 H / δ^{13} C = 7.30 / 138.5, 127.7 (*m*-Ph / *m*-Ph, *i*-Ph).

Exact MS: calc. for [C₁₅H₂₃NH]: 218.1903. Found [C₁₅H₂₃NH]: 218.1907.

Hydrogenation of trimethyl((1-phenylvinyl)oxy)silane

Following the general procedure compound **10** (64 mg, 0.10 mmol) reacted with trimethyl((1-phenylvinyl)oxy)silane (192 mg, 1.0 mmol) at 90 °C for 36 h. *Purification*. Pentane (50 mL) was added to the reaction mixture and the obtained suspension was filtered through Celite. Then all volatiles of the filtrate were removed by rotary evaporator (40 °C, 700

[Comment: The used CD₂Cl₂ solution was admixed with ca. 18% of the corresponding alcohol: selected resonances: ¹H NMR (400 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = 4.87$ (q, ³*J*_{HH} = 6.4 Hz, 1H, CH), 1.86 (d, 1H, OH), 1.46 (d, ³*J*_{HH} = 3.6 Hz, 3H, CH₃). ¹³C{¹H} NMR (101 MHz, 299K, $[d_2]$ -CH₂Cl₂): 146.6 (*i*-Ph), 69.9 (CH), 25.5 (CH₃),

mbar) to give the respective product (120 mg, 62%) as a colorless oil.

¹**H** NMR (400 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = 7.32$ (m, 4H, *o*,*m*-Ph), 7.22 (m, 1H, *p*-Ph), 4.86 (q, ${}^{3}J_{\text{HH}} = 6.4$ Hz, 1H, CH), 1.40 (d, ${}^{3}J_{\text{HH}} = 6.4$ Hz, 3H, CH₃), 0.07 (s, ${}^{2}J_{\text{SiH}} = 6.5$ Hz, 9H, SiMe₃).

¹³C{¹H} NMR (101 MHz, 299K, [*d*₂]-CH₂Cl₂): 147.0 (*i*-Ph), 128.4 (*m*-Ph), 127.1 (*p*-Ph), 125.7 (*o*-Ph), 70.9 (CH), 27.0 (CH₃), 0.1 (SiMe₃).

¹**H**,¹³**C GHSQC** (400 MHz / 101 MHz, 299 K, [d_2]-CH₂Cl₂): δ^1 H / δ^{13} C = 7.32 / 125.7 (*o*-Ph), 7.32 / 128.4 (*m*-Ph), 7.22 / 127.1 (*p*-Ph), 4.86 / 70.9 (CH), 1.40 / 27.0 (CH₃), 0.07 / 0.1 (SiMe₃).

¹**H**,¹³**C GHMBC** (400 MHz / 101 MHz, 299 K, $[d_2]$ -CH₂Cl₂) [selected traces]: δ^1 H / δ^{13} C = 7.32 / 125.7, 147.0 (*o*-Ph / *o*-Ph, *i*-Ph), 4.86 / 147.0, 125.7, 27.0 (CH / *i*-Ph, *o*-Ph, CH₃), 1.40 / 147.0, 70.9 (CH₃ / *i*-Ph, CH).

Figure S79¹³C{¹H} NMR (101 MHz, 299K, [*d*₂]-CH₂Cl₂) [A: alcohol]

Hydrogenation of Quinaldine

Following the general procedure compound **10** (64 mg, 0.10 mmol) reacted with quinaldine (143 mg, 1.0 mmol) at 90 °C for 36 h. *Purification*. The reaction mixture was quickly filtered through a short column filled with silica (eluent CH_2Cl_2). Then all volatiles

were removed by rotary evaporator (40 °C, 700 mbar) to give the respective product (100 mg, 70%) as a colorless oil.

¹**H NMR** (400 MHz, 299K, [*d*₂]-CH₂Cl₂): $\delta = 6.92$ (m, 1H, 5-H), 6.91 (m, 1H, 7-H), 6.55 (tm, ³*J*_{HH} = 7.4 Hz, 1H, 6-H), 6.44 (d, *J* = 7.8 Hz, 1H, 8-H), 3.67 (br, 1H, NH), 3.38 (m, 1H, 2-H), 2.82, 2.70 (each m, each 1H, 4-H), 1.92, 1.55 (each m, each 1H, C3H), 1.20 (d, ³*J*_{HH} = 6.3 Hz, 3H, CH₃).

¹³C{¹H} NMR (101 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = 145.3$ (C8a), 129.5 (C5), 126.9 (C7), 121.4 (C4a), 117.0 (C6), 114.1 (C8), 47.5 (C2), 30.5 (C3), 26.9 (C4), 22.7 (CH₃).

¹H,¹H GCOSY (400 MHz / 400 MHz, 299 K, $[d_2]$ -CH₂Cl₂) [selected trace]: δ^1 H / δ^1 H = . 3.38 / 1.92, 1.55, 1.20 (2-H / 3-H, 3-H, CH₃).

¹**H**,¹³**C GHSQC** (400 MHz / 101 MHz, 299 K, [*d*₂]-CH₂Cl₂): δ^{1} H / δ^{13} C = 6.92 / 129.5 (C5), 6.91 / 126.9 (C7), 6.55 / 117.0 (C6), 6.44 / 114.1 (C8), 3.38 / 47.5 (C2), 2.82, 2.70 / 26.9 (C4) 1.92, 1.55 / 30.5 (C3), 1.20 / 22.7 (CH₃).

¹**H**,¹³**C GHMBC** (400 MHz / 101 MHz, 299 K, [*d*₂]-CH₂Cl₂) [selected trace]: δ^{1} H / δ^{13} C = 1.92 / 121.4, 47.5, 26.9 (3-H / C4a, C2, C4).

Exact Mass: calc. for [C₁₀H₁₃NH]: 148.1121. Found [C₁₀H₁₃NH]: 148.1121.

Hydrogenation of 1-Methylindole

 $\begin{array}{c}
4 \quad 3a \\
5 \\
6 \quad 7 \\
\end{array} \xrightarrow{7a} N^{1} \\$ Scheme S21

Following the general procedure compound **10** (64 mg, 0.10 mmol) reacted with 1-methylindole (231 mg, 1.0 mmol) at 90 °C for 72 h. *Purification*. HCl solution (10 mL, 1M in water) was added to the reaction mixture. After 10 min stirring the aqueous phase was

separated and treated with NaOH (1M in water). The suspension was exacted with pentane (10 mL \times 2). The organic phases were combined and dried with Mg₂SO₄. Then all volatiles were removed by rotary evaporator (40 °C, 700 mbar) to give the respective product (86 mg,, 0.65 mmol, 65%) as a colorless oil.

¹**H NMR** (400 MHz, 299K, $[d_2]$ -CH₂Cl₂): δ = 7.06 (m, 1H, C4H), 7.05 (m, 1H, 6-H), 6.63 (m, 1H, 5-H), 6.46 (d, ³*J*_{HH} = 7.7 Hz, 1H, 7-H), 3.27 (m, 2H, NCH₂), 2.92 (m, 2H, CH₂), 2.74 (s, 3H, CH₃).

¹³C{¹H} NMR (101 MHz, 299K, $[d_2]$ -CH₂Cl₂): $\delta = 153.9$ (C7a), 130.7 (C3a), 127.5 (C6), 124.5 (124.5), 117.8 (C5), 107.3 (C7), 56.5 (NCH₂), 36.4 (CH₃), 29.0 (CH₂).

¹H,¹H GCOSY (400 MHz / 400 MHz, 299 K, [*d*₂]-CH₂Cl₂) [selected traces]: 6.46 / 7.05, 2.74 (7-H / 6-H, CH₃), 7.06 / 2.92 (4-H / CH₂).

¹**H**,¹³**C GHSQC** (400 MHz / 101 MHz, 299 K, [*d*₂]-CH₂Cl₂): δ^{1} H / δ^{13} C = 7.06 / 124.5 (C4), 7.05 / 127.5 (C6), 6.63 / 117.8 (C5), 6.46 / 107.3 (C7), 3.27 / 56.5 (NCH₂), 2.92 / 29.0 (CH₂), 2.74 / 36.4 (CH₃).

¹H,¹³C GHMBC (400 MHz / 101 MHz, 299 K, $[d_2]$ -CH₂Cl₂) [selected traces]: δ^1 H / δ^{13} C = 2.74 / 153.9, 56.5 (CH₃ / NCH₂, C7a), 2.92 / 130.7, 56.5 (CH₂ / C3a, NCH₂). **Exact MS:** calc. for [C₉H₁₁NH]: 134.0964. Found [C₁₅H₂₃NH]: 134.0964.

Theoretical Methods and Technical Details of the Computations

The quantum chemical calculations were carried out with the TURBOMOLE suite of programs.^[1] All minimum structures were fully optimized at the dispersion-corrected DFT level using the TPSS density functional^[2] along with the polarized triple-zeta (def2-TZVP) sets by Ahlrichs *et al.*^[3].

We included the atom pairwise D3 correction with BJ-damping to account for intraand intermolecular London dispersion interactions.^[4] The combined level of theory used for geometry optimization is dubbed TPSS-D3/TZ in the following. For the compounds **8** and **10**, the obtained X-ray structures were used as starting points.

Transition state structures were pre-optimized and verified as such at the HF-3c level.^[5] In this method, Hartree-Fock is combined with a small basis set and London dispersion interactions are described within the above mentioned D3 correction (BJ-damping). Shortcomings of the small basis are empirically corrected for by the geometrical counterpoise correction^[6] and by a short-range basis set correction.^[5] We exploit the efficiency of this method to optimize transition state structures. These transition state geometries were then re-optimized at the TPSS-D3/TZ level making use of the HF-3c Hessian. For TS **8/10** (see Figure S84), we simply used the HF-3c geometry.

The electronic energies used in this work were obtained by applying the B2PLYP double-hybrid DFT functional^[7] along with the D3(BJ) correction^[4] and the large polarized quadruple-zeta (def2-QZVP) sets by Ahlrichs *et al.*^[3] to the geometries obtained by TPSS-D3/TZ (HF-3c for TS **8/10**), respectively. The level of these single-point calculations will be dubbed as B2PLYP-D3/QZ in the following.

The harmonic frequency calculations to identify the transition state and minimum structures were all carried out by HF-3c.

In all DFT treatments, the resolution-of-the-identity approximation has been used^[8] for the Coulomb integrals to speed up the computations. The numerical quadrature grid m5 has been employed for the integration of the exchange-correlation

contribution. In the following, we discuss Gibbs free energies at 363.15 K and 1 atm (termed ΔG). The ro-vibrational corrections to the free energy are obtained from a modified rigid rotor, harmonic oscillator statistical treatment^[9] based on the harmonic frequencies obtained at the HF-3c level (see above). For the entropy, all frequencies with wavenumbers below 100 cm⁻¹ were treated as mixed rigid rotors and harmonic oscillators.

Solvent effects on the thermochemical properties have been obtained by the COSMO-RS method^[10] (COSMOtherm software package^[11]) based on BP86/TZVP^[12] calculations (parametrization from 2012). Solvation contributions to free energies at 363.15 K in toluene solution are computed from the gas phase structures obtained at the above mentioned levels of theory.

The computed free energies are then obtained by

 $\Delta G = \Delta E + \Delta G_{\rm RRHO} + \Delta \delta G_{\rm COSMO-RS,}$

where ΔE is the difference in the electronic energies at the B2PLYP-D3/QZ level and the last two terms refer to the above mentioned ro-vibrational and solvation contributions, respectively, to the free energy.

Discussion of the Computational Results

From our results (see below), it is clear that the reaction of compound **8** with H₂ to form compound **10** is exergonic which is in agreement with the experimental observation. The geminal FLP **15'** is at least as stable as compound **8** as indicated by the lower energy (see Thermodynamic data below) and the similar free energy. A direct hydrogenation of the B-C1 bond seems to be unlikely as the barrier for this reaction is too high ($\Delta G^{t} = +59.2$ kcal/mol, see Figure S84).

Figure S84:Non-feasible, direct route to zwitterion **10** by hydrogenation of **8**. The shown numbers are ΔG (kcal/mol) at the B2-PLYP-D3/QZ level (the TS **8/10** geometry was obtained by HF-3c).

An internal conversion from compound **8** to compound **15'** by an intramolecular proton transfer from the P atom to C1 can also be ruled out as it has a barrier of about 55 kcal/mol (see Figure S84). Yet in principle, obtaining compound **10** via FLP **15'** is feasible with a barrier of about 17 kcal/mol.

Thus, if the geminal FLP 15' could be obtained in a way from compound 8, the formation of the zwitterion 10 upon exposure to H_2 could be explained in this way. Instead of an intramolecular proton transfer, a bimolecular one from [P]-H of one compound 8 species to the C1 atom of another molecule 8 is possible (see Figure S86). The formation of the respective, ionic intermediate **15** is endergonic but still achievable with a Δ G of +20.1 kcal/mol. As a proton transfer reaction is expected to proceed without a significant barrier, we consider the formation of these intermediates as the rate-determining, but feasible step.

From these observations, we can reason that starting from compound **8**, the intramolecular formation of FLP **15'** is kinetically hindered. On the other hand, the intermolecular proton transfer reaction opens up a path to obtain FLP **15'**. This species may then react with molecular hydrogen to form compound **10** according to the right-hand side of Figure S85.

Figure S85: Unfeasible formation of **10** from **8** via the intramolecular proton transfer. The shown numbers are ΔG (kcal/mol) at the B2-PLYP-D3/QZ level of theory. The hydrogenation of the geminal FLP **15'** (right hand side) on the other hand is feasible.

Figure S86: Pathway to form the geminal FLP 15' from 8 via an intermolecular proton transfer. The shown numbers are ΔG (kcal/mol) at the B2-PLYP-D3/QZ level of theory. The subsequent hydrogenation of FLP 15' leads to compound 10 as shown in Figure S85.

References

- [1.] Ahlrichs, R. ;Bär, M.; Häser, M.; Horn, H.; Kölmel, C. *Chem. Phys. Lett.* **1989**, *162*, 165; TURBOMOLE, version 6.5: TURBOMOLE GmbH, Karlsruhe **2013**. See http://www.turbomole.com.
- [2.] Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E. *Phys. Rev. Lett.* 2003, 91, 146401.
- [3.] Weigend, F. ; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297 3305.

- [4.] Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104; Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem, 2011, 32, 1456 1465.
- [5.] Sure, R.; Grimme, S. J. Comput. Chem. 2013, 34, 1672 1685.
- [6.] Kruse, H.; Grimme, S. J. Chem. Phys. 2012, 136, 154101.
- [7.] Grimme, S. J. Chem. Phys. 2006, 124, 034108.
- [8.] Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. *Chem. Phys. Lett.* 1995, 240, 283; Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. *Theor. Chem. Acc.* 1997, 97, 119.
- [9.] Grimme, S. Chem. Eur. J. 2012, 18, 9955 9964.
- [10.] Eckert, F.; Klamt, A. AIChE J. 2002, 48, 369 385; Klamt, A. J. Phys. Chem.
 1995, 99, 2224 2235.
- [11.] Eckert, F.; Klamt, A. COSMOtherm, Version C3.0, Release 12.01;COSMOlogic GmbH & Co. KG, Leverkusen, Germany, 2012.
- [12.] Becke, A. D. Phys. Rev. A 1988, 38, 3098 3100; Perdew, J. P. Phys. Rev. B 1986, 33, 8822 8824.

Thermodynamic data

(B2PLYP-D3/QZ, COSMO-RS(toluene), T=363.15 K, HF-3c frequencies, total energies in Hartree, relative energies in kcal/mol):

-2599.52852 -1.17113 -2600.74384 -27.73 E_gas	
-0.02933 0.00966 -0.02917 -5.96 G_s	olv
0.40518 -0.00380 0.42662 15.84	
G_rovib	
-2599.15268 -1.16527 -2600.34640 -17.86 G_tot	

compound 8	+ H ₂ ->	TS 8/10 ;dif	ference
-2599.52852	-1.17113	-2600.61177 55.14	E_gas
-0.02933	0.00966 -0.	02441 -2.97	G_solv
0.40518	-0.00380	0.41254 7.00	G_rovib
-2599.15268	-1.16527	-2600.22364 59.17	G_tot

compound 8	-> compound 15'	; difference	
-2599.52852	-2599.53720	-5.44 E_	gas
-0.02933	-0.02479	2.85	G_solv
0.40518	0.40917	2.51	G_rovib
-2599.15268	-2599.15281	-0.08	G_tot

compound 8	-> TS 8 /15' ;	difference	
-2599.52852	-2599.44104	54.89	E_gas
-0.02933	-0.02553	2.39	G_solv
0.40518	0.40031	-3.06	G_rovib
-2599.15268	-2599.06626	54.23 G_t	ot

compound 15'	+ H ₂ ->	TS 10/15'	; di	fference
-2599.53720	-1.17113 -20	600.68960	11.75	E_gas
-0.02479	0.0096	6 -0.0014	49	6.74
G_solv				
0.40917	-0.003	80 0.4221	9	10.55
G_rovib				
-2599.15281	-1.16527	-2600.29150	16.68	G_tot
2 * compound 8	> 15 (9	ец +) .	difference	

$2 \text{ * compound } \delta \rightarrow$	15 (ð _{deprotona}	$ted \delta H$)	; differ	rence
-2599.52852	-2599.0126	1 -2599.9354	8 68.37	E_gas
-0.02933	-0.06981	-0.06799	-49.66	G_solv

0.40518	0.39829 0.41432 1.41	G_rovib
-2599.15268	-2598.68413 -2599.58915 20.13	G_tot

15 (8 _{deprotonated}	8 H ⁺)	->	2 * compoun	nd 15'	;	differen	ce
-2599.01261 -25	99.93548	8-25	99.53720	-7	9.26	E_g	as
-0.06981	-0.0679	9	-0.02479		55.	36	G_solv
0.39829	0.41432	2 0.4	0917	3.60		G_rovib	
-2598.68413 -25	99.5891	5 -25	99.15281	-2	0.30	G_t	ot

Cartesian coordinates of minimum structures

In Ångström (TPSS-D3/TZ):

Compound 8

Р	-0.5293564	-0.4480629	0.8536251
Η	-0.3195612	-1.8124621	1.0821291
В	2.2813318	0.6196008	0.4000056
С	0.9432490	0.3349996	1.3590810
Η	1.2010887	-0.0171190	2.3572243
С	1.3838661	1.7585347	1.0249070
Η	1.7187756	2.3270625	1.8896196
Η	0.7312888	2.3287876	0.3740003
С	-2.0912224	-0.1706369	1.7564709
С	-2.2641688	0.8614201	2.7063114
С	-3.5077155	0.9892084	3.3345239
Η	-3.6368460	1.7884182	4.0612242
С	-4.5763135	0.1351934	3.0678779
С	-4.3749768	-0.8920456	2.1427521
Η	-5.1868748	-1.5829019	1.9238668
С	-3.1586074	-1.0670216	1.4840876
С	-1.1852215	1.8401871	3.0989130

Η	-1.5890515	2.5647189	3.8104510
Η	-0.7848954	2.3878109	2.2416454
Η	-0.3364931	1.3356891	3.5700513
С	-5.9044424	0.3033270	3.7600453
Η	-5.8887183	1.1552663	4.4446995
Η	-6.1617374	-0.5937110	4.3348886
Η	-6.7075551	0.4630324	3.0315131
С	-3.0398086	-2.2146888	0.5105810
Η	-3.9526003	-2.8147837	0.5276251
Η	-2.2033309	-2.8766595	0.7646517
Η	-2.8774744	-1.8648361	-0.5138537
С	-0.8364905	-0.3497463	-0.9208484
С	-1.4917640	0.7707028	-1.4713041
С	-1.6852606	0.8197225	-2.8533735
Η	-2.1684125	1.6953858	-3.2809053
С	-1.2565701	-0.2054851	-3.6969736
С	-0.6262216	-1.3136996	-3.1225775
Η	-0.2802772	-2.1207168	-3.7646713
С	-0.4001689	-1.4120197	-1.7509647
С	-1.9981463	1.9139414	-0.6283725
Η	-2.0764936	2.8211153	-1.2327258
Η	-1.3323049	2.1310563	0.2109538
Η	-2.9875616	1.6901179	-0.2131702
С	-1.4193750	-0.1029414	-5.1905452
Η	-0.5112454	0.3153861	-5.6412410
Η	-2.2535571	0.5527950	-5.4553467
Η	-1.5874366	-1.0863661	-5.6396443
С	0.2822836	-2.6485906	-1.2191834
Η	-0.4329463	-3.3041508	-0.7055057

Н	1.0854602	-2.4148821	-0.5163476
Н	0.7173736	-3.2177319	-2.0439039
С	3.6577259	0.2812981	1.1631834
F	2.9210004	-1.7874669	2.1053745
С	3.8904101	-0.8446724	1.9518226
С	5.0949185	-1.0889991	2.6072099
F	5.2648690	-2.1951547	3.3596924
F	7.3117040	-0.3960460	3.0965510
С	6.1398200	-0.1790194	2.4731989
F	6.9704126	1.8415503	1.5550918
С	5.9620489	0.9575672	1.6877446
F	4.6125426	2.2780066	0.3009999
С	4.7377959	1.1599293	1.0564415
С	2.3154541	0.3623563	-1.1894374
F	3.3792709	-1.7511370	-0.8847503
С	2.8965011	-0.7957860	-1.7196738
F	3.5295258	-2.2336121	-3.5137129
С	2.9938319	-1.0746988	-3.0792374
F	2.5555896	-0.4090006	-5.3185176
С	2.5025191	-0.1538363	-3.9980555
F	1.4502551	1.9248629	-4.4125999
С	1.9350907	1.0254747	-3.5309407
F	1.2964167	2.4446875	-1.8120254
С	1.8587834	1.2614758	-2.1606267

Compound 8 (twisted)

С	1.3600865	2.0831804	-1.7737201
С	2.0075298	1.0752238	-1.0537188
С	2.4063498	-0.0136721	-1.8398924

С	2.1490189	-0.1329949	-3.2008956
С	1.4591731	0.8820801	-3.8560188
С	1.0681974	2.0037927	-3.1346032
В	2.2166284	1.0305014	0.5505249
С	3.6778165	0.5687166	1.0361945
С	3.9954029	-0.4473797	1.9369243
С	5.2963363	-0.7642096	2.3231004
С	6.3621075	-0.0422977	1.7968355
С	6.1031751	0.9881796	0.8967591
С	4.7864286	1.2683810	0.5457938
F	3.0160519	-1.2136037	2.4969573
F	5.5323237	-1.7649386	3.1958778
F	7.6253035	-0.3329121	2.1555095
F	7.1253664	1.7024709	0.3870849
F	4.5959675	2.2930611	-0.3224305
F	3.0523656	-1.0576646	-1.2653894
F	2.5298800	-1.2296161	-3.8860524
F	1.1688235	0.7752058	-5.1647778
F	0.3972614	2.9972110	-3.7546445
F	0.9330342	3.2177807	-1.1536186
С	0.8900003	0.5485649	1.4096776
С	1.4142319	1.9956928	1.5214525
Р	-0.6025903	0.3938565	0.5034153
С	-2.1444440	0.5044772	1.4578034
С	-2.6846079	-0.6430828	2.0775231
С	-3.8826889	-0.5323685	2.7841934
С	-4.5621661	0.6814037	2.8993228
С	-4.0011023	1.8076972	2.2924659
С	-2.8015205	1.7544205	1.5798259

С	-1.9970622	-1.9808204	2.0074039
С	-5.8420244	0.7844394	3.6883189
С	-2.2679439	3.0382353	0.9883669
С	-0.7010331	-0.8643642	-0.7999564
С	0.0607441	-2.0549633	-0.8167426
С	0.0327453	-2.8457969	-1.9694403
С	-0.7172520	-2.5090608	-3.0944139
С	-1.4961888	-1.3508230	-3.0377649
С	-1.5051967	-0.5199304	-1.9191867
С	0.8985851	-2.5443412	0.3352384
С	-0.6557966	-3.3404617	-4.3483857
С	-2.3543814	0.7277722	-1.9682518
Η	-0.6450631	1.5663840	-0.2452749
Η	0.9798036	-0.0901294	2.2812090
Η	1.8300902	2.2223196	2.4999493
Η	0.7816246	2.7906767	1.1417106
Η	0.6413232	-3.7471482	-1.9863378
Η	-2.1025520	-1.0713905	-3.8967617
Η	1.7523567	-3.1115657	-0.0415492
Η	0.3134211	-3.2160284	0.9746789
Η	1.2847413	-1.7326688	0.9481157
Η	-0.4046532	-4.3809987	-4.1242801
Η	0.1191002	-2.9485039	-5.0189498
Η	-1.6060967	-3.3161182	-4.8900825
Η	-3.0298140	0.6848062	-2.8258939
Η	-1.7372093	1.6276390	-2.0853872
Η	-2.9603346	0.8500994	-1.0643575
Η	-4.2909653	-1.4214976	3.2602405
Η	-4.5087786	2.7660820	2.3797360

Η	-2.4615552	-2.6873098	2.6996968
Η	-0.9384135	-1.8969449	2.2750312
Η	-2.0489538	-2.4039601	0.9983159
Η	-5.6322121	1.0829414	4.7231932
Η	-6.3663819	-0.1748343	3.7205293
Η	-6.5124750	1.5354011	3.2597546
Η	-2.2406491	3.0085805	-0.1071663
Η	-1.2536799	3.2526967	1.3369748
Η	-2.9076099	3.8744296	1.2802399

Compound 10

С	0.2299443	-1.7165938	-2.0109996
С	-0.7574310	0.8509266	-0.8444204
Р	-0.3493272	-0.8761376	-0.4972191
Η	-1.5976260	-1.4593647	-0.2670479
С	0.5275188	-1.2043998	1.0421052
Η	1.5926037	-1.0265140	0.9118195
С	0.2631320	-2.6863838	1.3896787
Η	0.8568858	-2.9502668	2.2690271
Η	0.5205466	-3.3832428	0.5820137
Η	-0.7910534	-2.8361238	1.6454048
В	-0.1610910	-0.1461854	2.1383079
Η	-1.3323104	-0.0784283	1.8511577
С	-0.1008770	-0.7544833	3.6521110
F	2.1577481	-0.1086486	4.0458018
С	1.0125804	-0.6845391	4.4903498
F	2.1487870	-1.0855497	6.5508010
С	1.0405460	-1.1864363	5.7895959
F	-0.0910117	-2.3046128	7.5529792

С	-0.0942323	-1.8073917	6.3032069
F	-2.3305408	-2.5246436	5.9926189
С	-1.2299975	-1.9153613	5.5060733
F	-2.3484169	-1.5570770	3.4913233
С	-1.2078990	-1.3956222	4.2138917
С	0.4322071	1.3748374	2.0311490
F	-1.7262996	2.2328322	2.5764753
С	-0.4363978	2.4544414	2.2236935
F	-0.9742044	4.7795572	2.2165373
С	-0.0736737	3.7868563	2.0523261
F	1.5959251	5.3789632	1.4831807
С	1.2297519	4.0981137	1.6798860
F	3.4092633	3.3506905	1.1269477
С	2.1432043	3.0661576	1.4998050
F	2.6950024	0.8055422	1.4749739
С	1.7314670	1.7487965	1.6874434
С	1.5385357	-2.2381171	-2.1796170
С	1.8608384	-2.8476908	-3.3961880
Η	2.8658095	-3.2461298	-3.5174135
С	0.9539969	-2.9651005	-4.4491947
С	-0.3304912	-2.4572401	-4.2575382
Η	-1.0655357	-2.5445133	-5.0548302
С	-0.7114784	-1.8385412	-3.0665671
С	2.6336313	-2.1986665	-1.1396517
Η	2.3707972	-2.7736913	-0.2480616
Η	2.8702233	-1.1817076	-0.8171442
Η	3.5448948	-2.6317817	-1.5587656
С	1.3563874	-3.5995627	-5.7551188
Η	1.8239533	-2.8571073	-6.4140549

Η	0.4892783	-4.0091577	-6.2809450
Η	2.0824108	-4.4028137	-5.5983771
С	-2.1296872	-1.3382671	-2.9562599
Η	-2.6575868	-1.4924447	-3.9000739
Η	-2.1663249	-0.2712272	-2.7143605
Η	-2.6832140	-1.8755009	-2.1763394
С	0.2501354	1.7103320	-1.3387337
С	-0.0438673	3.0584405	-1.5288737
Η	0.7442259	3.7181409	-1.8850201
С	-1.3083177	3.5829712	-1.2536315
С	-2.2976059	2.7079377	-0.8029743
Η	-3.2895734	3.0971070	-0.5864491
С	-2.0600068	1.3489125	-0.5836837
С	1.6361840	1.2176458	-1.6577111
Η	2.3160570	2.0595304	-1.8073881
Η	1.6423607	0.6028775	-2.5646140
Η	2.0431347	0.6155570	-0.8404038
С	-1.5820437	5.0566554	-1.3960993
Η	-0.9683121	5.5006927	-2.1853212
Η	-1.3443437	5.5747596	-0.4589919
Η	-2.6358297	5.2456715	-1.6200275
С	-3.2063252	0.5140784	-0.0662059
Η	-4.0939590	1.1410091	0.0440767
Η	-2.9723102	0.0812514	0.9107285
Н	-3.4607659	-0.3040178	-0.7491728

Compound 15'

С	1.1075443	1.6081733	-2.3401826
С	0.2717565	1.6012653	-1.1941824

С	-0.5118408	2.7345277	-0.8919275
С	-0.4556478	3.8422648	-1.7465085
С	0.3498145	3.8667938	-2.8824273
С	1.1256723	2.7365096	-3.1583439
Р	0.2696616	0.1051515	-0.1451734
С	-0.2718237	-1.2988621	-1.1828781
С	0.4714896	-2.4710906	-1.4356357
С	-0.0738286	-3.4567693	-2.2642713
С	-1.3319480	-3.3308181	-2.8496802
С	-2.0682737	-2.1818443	-2.5563973
С	-1.5773198	-1.1732184	-1.7282318
С	1.8203432	-2.7353852	-0.8307873
С	-1.8841246	-4.3977659	-3.7595760
С	-2.4848270	-0.0143272	-1.4095322
С	-1.4018765	2.8283737	0.3195114
С	0.4058449	5.0802487	-3.7752727
С	1.9876604	0.4399983	-2.7022395
С	1.7576690	0.2283962	0.9437621
С	3.0723020	-0.5199480	1.0484457
В	0.4422460	0.0255747	1.8535402
С	-0.0602490	1.1823717	2.8321282
С	-1.3937505	1.2795153	3.2394236
С	-1.8684751	2.2556287	4.1079641
С	-0.9772916	3.1939476	4.6247520
С	0.3657620	3.1333604	4.2636164
С	0.7958106	2.1378337	3.3878711
F	-2.3038292	0.4085835	2.7431795
F	-3.1697489	2.3127698	4.4455317
F	-1.4097607	4.1458906	5.4661304

F	1.2334498	4.0273838	4.7719902
F	2.1195293	2.1280489	3.1005618
С	0.1668825	-1.4794000	2.3662526
С	-0.8926898	-2.3201947	2.0163631
С	-1.0247490	-3.6218235	2.4987090
С	-0.0877563	-4.1214585	3.3976647
С	0.9630154	-3.3065167	3.8131619
С	1.0600294	-2.0171285	3.3001320
F	-1.8694039	-1.8984545	1.1854168
F	2.0740828	-1.2484348	3.7667023
F	1.8590735	-3.7699190	4.7035515
F	-0.2039823	-5.3711684	3.8736810
F	-2.0554170	-4.3956475	2.1119567
Η	1.9594602	1.2964537	0.8090806
Η	3.6500658	-0.0504987	1.8514819
Η	3.6666933	-0.4598714	0.1294103
Η	2.9424787	-1.5696504	1.3111025
Η	0.5118892	-4.3550459	-2.4485845
Η	-3.0716653	-2.0710719	-2.9628634
Η	1.7404004	-2.8661226	0.2531270
Η	2.5141481	-1.9120536	-1.0126504
Η	2.2526437	-3.6476359	-1.2494707
Η	-1.8441936	-4.0738138	-4.8070692
Η	-2.9318450	-4.6128563	-3.5249804
Η	-1.3125304	-5.3259993	-3.6735040
Η	-3.5051867	-0.2389180	-1.7305800
Η	-2.1647480	0.9069694	-1.9069509
Η	-2.5024670	0.1760773	-0.3311645
Η	1.7693849	2.7315202	-4.0360182

Η	-1.0703232	4.7089009	-1.5106334
Η	2.6877142	0.7219765	-3.4928577
Η	1.3978347	-0.4139815	-3.0520722
Η	2.5660136	0.1017393	-1.8360451
Η	0.4005837	4.7948961	-4.8323293
Η	1.3257855	5.6504997	-3.5956160
Η	-0.4413884	5.7466241	-3.5910935
Η	-2.2832385	3.4376080	0.0989480
Η	-0.8686908	3.3045553	1.1502436
Η	-1.7298455	1.8472625	0.6623372

Deprotonated compound 8 (anion of 15)

С	2.9190927	-0.9083510	-1.6041227
С	2.3197218	0.2581424	-1.1162244
С	1.9186337	1.1494322	-2.1181893
С	2.0555795	0.8924173	-3.4801335
С	2.6317030	-0.2974712	-3.9053808
С	3.0746973	-1.2078883	-2.9532161
В	2.2129735	0.5244841	0.4714603
С	3.6464743	0.3586656	1.2071485
С	4.0026472	-0.6696331	2.0820028
С	5.2448415	-0.7507588	2.7108521
С	6.2049591	0.2235060	2.4614246
С	5.9066114	1.2630202	1.5855205
С	4.6512645	1.3047555	0.9853934
F	3.1356553	-1.6750179	2.3564965
F	5.5379399	-1.7715233	3.5522431
F	7.4157288	0.1615339	3.0618760
F	6.8385499	2.2156716	1.3393417

F	4.4213820	2.3418209	0.1404860
F	1.3735885	2.3518324	-1.8126266
F	1.6343219	1.7913877	-4.4022757
F	2.7491950	-0.5703806	-5.2254726
F	3.6301069	-2.3773224	-3.3536187
F	3.3734644	-1.8470919	-0.7317272
С	0.9035276	0.1865127	1.3944421
С	1.2362096	1.6329356	1.0538231
Р	-0.5125874	-0.8536726	0.9577098
С	-0.8154765	-0.4974840	-0.8332836
С	-1.4648908	0.6495372	-1.3378339
С	-1.6429932	0.7863168	-2.7213967
С	-1.2063780	-0.1772811	-3.6270778
С	-0.5847066	-1.3186210	-3.1139283
С	-0.3869939	-1.4959639	-1.7446895
С	-2.0117433	1.7468578	-0.4574852
С	-1.3584774	0.0185948	-5.1152196
С	0.2584800	-2.7786635	-1.2761313
С	-2.1161144	-0.3189860	1.7339748
С	-3.2721303	-1.0229912	1.3005149
С	-4.5170470	-0.7652300	1.8831270
С	-4.6766451	0.1571739	2.9149829
С	-3.5279456	0.8028647	3.3744648
С	-2.2637477	0.5834776	2.8181776
С	-3.2111132	-2.0803699	0.2252329
С	-1.1089283	1.3436940	3.4238494
С	-6.0334705	0.4514801	3.5071524
Η	1.2223617	-0.1096514	2.3932661
Η	1.5395077	2.2584864	1.8943155

Η	0.5742617	2.1451010	0.3654410
Η	-3.6104149	1.5103923	4.1997171
Η	-5.3838219	-1.3181869	1.5204226
Η	-1.4736753	1.9946434	4.2254706
Η	-0.5893398	1.9549746	2.6819257
Η	-0.3589816	0.6672549	3.8471831
Η	-5.9697674	0.6168945	4.5887097
Η	-6.7302983	-0.3742650	3.3272318
Η	-6.4732833	1.3560763	3.0650036
Η	-4.1073007	-2.7089985	0.2634029
Η	-2.3245453	-2.7131672	0.3585550
Η	-3.1373507	-1.6444714	-0.7769360
Η	-2.1247228	1.6883697	-3.0972552
Η	-0.2334185	-2.0893413	-3.7988373
Η	-2.0234181	2.6948527	-1.0058189
Η	-1.4207530	1.8735453	0.4491960
Η	-3.0379664	1.5199949	-0.1430380
Η	-0.4216752	0.3809641	-5.5562644
Η	-2.1378024	0.7541990	-5.3395827
Η	-1.6147612	-0.9221788	-5.6153878
Η	-0.4809680	-3.4300283	-0.7931462
Η	1.0422271	-2.6009224	-0.5378509
Η	0.6899467	-3.3159511	-2.1273870

Protonated compound 8 (also dubbed $8H^+$, cation of 15)

С	-1.8977753	1.3255168	-0.1645610
С	-0.6605677	0.8573056	-0.6855559
С	0.2077622	1.7418179	-1.3681987
С	-0.1705033	3.0776153	-1.5033620

С	-1.3744489	3.5679158	-0.9937418
С	-2.2216495	2.6699265	-0.3365543
Р	-0.2210653	-0.8744493	-0.4497727
С	0.8279740	-1.2237191	1.0064086
В	0.5078037	-0.2343225	2.2228564
С	0.9445093	1.2607568	2.0675722
С	0.0605233	2.2970962	2.4077628
С	0.3285777	3.6373337	2.1590904
С	1.5485349	3.9934640	1.5861656
С	2.4813970	3.0044831	1.2703977
С	2.1606353	1.6747325	1.5057331
F	-1.1422184	2.0059263	2.9450335
F	-0.5756054	4.5820831	2.4429879
F	1.8172256	5.2718553	1.3274736
F	3.6571527	3.3438334	0.7296477
F	3.1116260	0.7572890	1.1951852
С	1.5283145	1.3089354	-1.9452772
С	-1.7445538	5.0199380	-1.1262666
С	-2.8748243	0.4520286	0.5821907
С	0.2760750	-1.7267609	-1.9591243
С	1.5933269	-2.1503540	-2.2787571
С	1.7913007	-2.8027816	-3.4974532
С	0.7607267	-3.0462044	-4.4081322
С	-0.5223728	-2.6109783	-4.0717003
С	-0.7915585	-1.9565922	-2.8713165
С	2.8177979	-1.9570012	-1.4141476
С	1.0322473	-3.7276681	-5.7216320
С	-2.2141127	-1.5295057	-2.5976424
С	0.8307942	-2.7457407	1.2779172

С	-0.1630552	-0.7066511	3.5455130
С	0.3241040	-0.2510500	4.7865984
С	-0.2040863	-0.6568401	6.0066240
С	-1.2913853	-1.5326922	6.0214177
С	-1.8269680	-1.9976402	4.8178233
С	-1.2510519	-1.5893953	3.6236246
F	1.3809260	0.5808104	4.8281718
F	0.3125799	-0.2201716	7.1571133
F	-1.8201064	-1.9197674	7.1770069
F	-2.8856725	-2.8131943	4.8278743
F	-1.8452983	-2.0284240	2.4847826
Η	-1.4284559	-1.4817266	-0.1032307
Η	1.8292161	-0.9146522	0.6854844
Η	1.5506469	-2.9642518	2.0713713
Η	1.1210600	-3.3143978	0.3905771
Η	-0.1478069	-3.1042911	1.5941957
Η	2.7986874	-3.1301361	-3.7428597
Η	-1.3441025	-2.7842632	-4.7622676
Η	2.7946524	-2.5842212	-0.5180533
Η	2.9550767	-0.9210084	-1.0959470
Η	3.7070040	-2.2398056	-1.9808928
Η	1.3245597	-2.9882352	-6.4777160
Η	0.1435222	-4.2452354	-6.0917950
Η	1.8497785	-4.4481784	-5.6331052
Η	-2.8255701	-1.6759900	-3.4900426
Η	-2.2812754	-0.4724241	-2.3171459
Η	-2.6654105	-2.1237396	-1.7925555
Η	0.5037473	3.7561933	-2.0202923
Η	-3.1632673	3.0289564	0.0714084

Η	2.0767499	2.1718196	-2.3284059
Η	1.3970343	0.5954132	-2.7648630
Η	2.1596279	0.8344872	-1.1878611
Η	-1.0168029	5.5631320	-1.7332040
Η	-1.7911652	5.4939188	-0.1389813
Η	-2.7328712	5.1305605	-1.5847546
Η	-3.7162122	1.0533632	0.9311494
Η	-2.4220342	-0.0165902	1.4598231
Η	-3.2794237	-0.3474573	-0.0498125

Cartesian coordinates of transition state structures

In Ångström (HF-3c):

TS 8/10

С	-0.4775953	2.0153888	3.0448533
С	-0.3654954	2.2349026	1.6675256
С	-0.1191332	3.5348690	1.2076497
С	0.0297354	4.5717769	2.1196275
С	-0.0649941	4.3551224	3.4860735
С	-0.3257862	3.0702596	3.9346958
Р	-0.5602455	0.7890244	0.5373959
С	0.9031993	0.9372558	-0.5707717
С	2.1827453	0.9588749	-0.0090647
С	3.2975398	1.0719581	-0.8283702
С	3.1747099	1.1450911	-2.2068419
С	1.9039982	1.0811737	-2.7588599
С	0.7719480	0.9731719	-1.9633442
С	2.4018985	0.8597151	1.4967567
С	4.4078538	1.2490084	-3.0978093
С	-0.5854760	0.9023950	-2.6575809

С	-0.0047402	3.8759758	-0.2746446
С	0.1263310	5.5048285	4.4701410
С	-0.7790848	0.6317155	3.6164963
С	-2.0978692	-1.9494969	1.0874816
С	-2.0539748	-2.4168892	2.3799099
В	-1.4012657	-2.9744702	-0.0148466
С	-2.5044348	-3.4304595	-1.1113453
С	-3.3699646	-2.5239283	-1.7292237
С	-4.3237263	-2.9242622	-2.6902538
С	-4.4149444	-4.2830206	-3.0526518
С	-3.5482408	-5.2163688	-2.4481090
С	-2.6103261	-4.7714829	-1.4919038
F	-3.3177864	-1.2307843	-1.4311751
F	-5.1310464	-2.0311246	-3.2458986
F	-5.3066490	-4.6789903	-3.9481402
F	-3.6211694	-6.4993438	-2.7736956
F	-1.8159510	-5.6814708	-0.9420203
С	0.0814963	-2.6645686	-0.5662320
С	0.4029518	-2.4941726	-1.9141559
С	1.7300283	-2.2690149	-2.3512291
С	2.7750068	-2.2218963	-1.4119284
С	2.4764942	-2.3922855	-0.0431081
С	1.1418637	-2.6065924	0.3471721
F	-0.5293314	-2.5396781	-2.8554774
F	0.9024012	-2.7810901	1.6419165
F	3.4482623	-2.3586390	0.8589088
F	4.0252943	-2.0328756	-1.8038041
F	1.9871754	-2.1145643	-3.6425943
Η	-1.5295822	1.3698927	-0.3279361

Η	-0.4147077	2.8853826	4.9918506
Η	0.2185656	5.5673975	1.7545612
Η	-0.3617296	5.2874849	5.4133404
Η	-0.2800474	6.4259870	4.0662297
Η	1.1853031	5.6618646	4.6642866
Η	-0.0430115	4.9497182	-0.4088502
Η	-0.8093154	3.4266836	-0.8432346
Η	0.9323693	3.5098984	-0.6836153
Η	4.2773783	1.0953611	-0.3806265
Η	1.7908154	1.1139363	-3.8298598
Η	3.4213642	0.5567713	1.7035720
Η	1.7318065	0.1333671	1.9416675
Η	2.2225796	1.8162353	1.9795018
Η	4.7563169	0.2556526	-3.3743934
Η	5.2134001	1.7558560	-2.5784534
Η	4.1775768	1.7909438	-4.0083423
Η	-1.1475532	1.8194163	-2.5071148
Η	-1.1837693	0.0791419	-2.2819572
Η	-0.4465542	0.7631090	-3.7227157
Η	-0.7899282	0.6723626	4.6986777
Η	-0.0355520	-0.0951647	3.3065406
Η	-1.7465040	0.2780727	3.2763412
Η	-2.8302456	-1.1925350	0.8094859
Η	-2.7219366	-2.0539792	3.1486402
Η	-1.1254166	-2.8398142	2.7614781
Η	-1.9568252	-3.6881649	1.6016623
Η	-1.3464996	-4.0199152	0.7677392

In Ångström (TPSS-D3/TZ):

TS 8/15'

С	-0.9649734	3.1553259	-1.1214863
С	0.2276501	2.4188484	-1.0973432
С	1.1041448	2.7972473	-0.0759504
С	0.8102308	3.7574327	0.8882794
С	-0.4092205	4.4216540	0.8430827
С	-1.2996710	4.1266391	-0.1842611
В	0.3288938	1.1461564	-2.0745004
С	1.8005773	0.0151226	-1.9122550
С	0.3390232	-0.2793377	-1.4666612
Р	0.6885648	-0.5978034	0.3060277
С	0.7979657	-2.4042533	0.5706849
С	-0.3578912	-3.2141664	0.6628460
С	-0.2183732	-4.5819873	0.8967420
С	1.0342132	-5.1818751	1.0449666
С	2.1633398	-4.3692099	0.9451740
С	2.0795297	-2.9937437	0.7054758
С	-1.7415953	-2.6436216	0.5098074
С	1.1605850	-6.6658741	1.2765883
С	3.3754686	-2.2247418	0.5906452
F	2.3340220	2.2225065	0.0353436
F	1.6925980	4.0415001	1.8639831
F	-0.7246195	5.3328657	1.7778195
F	-2.4898025	4.7533497	-0.2375791
F	-1.9026185	2.8919827	-2.0647835
С	-0.3990389	0.1887626	1.5477518
С	0.2295401	0.4109697	2.8029908
С	-0.3978536	1.2091841	3.7546074
С	-1.6291319	1.8237611	3.5046846

С	-2.2418903	1.5745792	2.2790958
С	-1.6657104	0.7657135	1.2914287
С	1.5877267	-0.1671825	3.1140059
С	-2.4841800	0.5373716	0.0443206
С	-2.2513658	2.7532707	4.5142398
С	-0.0542461	1.3375300	-3.6028368
С	-1.0567972	0.6221820	-4.2616442
С	-1.3794738	0.8174134	-5.6016746
С	-0.6834918	1.7716060	-6.3399373
С	0.3222661	2.5158760	-5.7261509
С	0.6107768	2.2864243	-4.3851823
F	-1.7949065	-0.2978151	-3.5891201
F	-2.3612589	0.1064829	-6.1875776
F	-0.9795680	1.9730173	-7.6340908
F	1.0009897	3.4353630	-6.4362120
F	1.6046010	3.0220846	-3.8313049
Η	-0.1145957	-1.0944150	-2.0229913
Η	2.2582799	0.9728913	-1.6516497
Η	2.1635011	-0.4244297	-2.8363412
Η	-3.2080035	2.0297603	2.0682712
Η	0.1018093	1.3755604	4.7069887
Η	-3.2159986	-0.2607961	0.2180250
Η	-1.8850508	0.2611153	-0.8217209
Η	-3.0485176	1.4386231	-0.2065011
Η	-3.3037217	2.9408297	4.2840444
Η	-1.7316347	3.7194656	4.5157107
Η	-2.1833113	2.3433126	5.5273606
Η	1.8713129	0.0564050	4.1457167
Η	2.3507526	0.2615920	2.4519984

Η	1.6075299	-1.2552449	2.9823489
Η	-1.1163356	-5.1932572	0.9645608
Η	3.1492746	-4.8161479	1.0552815
Η	-2.4846166	-3.4441686	0.4689538
Η	-1.8302596	-2.0538394	-0.4075372
Η	-1.9901049	-1.9844023	1.3481398
Η	1.0586520	-7.2134777	0.3311968
Η	0.3785434	-7.0297389	1.9504912
Η	2.1348037	-6.9188711	1.7042268
Η	3.3999888	-1.3571327	1.2563307
Η	3.5291975	-1.8548994	-0.4288564
Η	4.2157742	-2.8757822	0.8455999
Н	2.0877013	-0.2335637	-0.3896883

TS 10/15'

Η	-1.4450523	-1.2179401	0.4607796
Η	-1.4350293	-1.4706877	1.3014299
С	0.1342093	-0.4311828	-2.6311384
С	-0.4286149	1.3455852	-0.3283898
Р	-0.3565650	-0.4120631	-0.8560518
С	0.7427607	-1.3828092	0.2814445
Η	1.7524777	-0.9780159	0.3749721
С	0.7522431	-2.8251483	-0.2717018
Η	1.3871748	-3.4608433	0.3529328
Η	1.1126944	-2.8845329	-1.3012024
Η	-0.2609130	-3.2434823	-0.2525736
В	0.0055403	-1.3479267	1.7239160
С	0.1024304	-2.6789759	2.6249033
F	2.1756095	-1.8918252	3.4727685

С	1.2097088	-2.8434805	3.4592990
F	2.4855513	-4.0620607	5.0604878
С	1.3957583	-3.9511937	4.2805104
F	0.5893637	-6.0381715	5.0667391
С	0.4340236	-4.9592336	4.2842128
F	-1.6154274	-5.8146610	3.4632851
С	-0.6864077	-4.8423044	3.4656350
F	-1.9354989	-3.6662318	1.8766703
С	-0.8269783	-3.7179327	2.6555039
С	-0.0596081	0.0029038	2.5840134
F	-2.1437723	-0.6580690	3.5170525
С	-1.1454623	0.2577480	3.4248340
F	-2.3861502	1.6379931	4.9188486
С	-1.2949869	1.4281508	4.1605434
F	-0.4212483	3.5436966	4.7830039
С	-0.2978037	2.3972059	4.0950594
F	1.8013331	3.0986217	3.2577088
С	0.8281208	2.1707931	3.3089012
F	2.0581851	0.8242718	1.8555465
С	0.9275106	0.9905131	2.5799835
С	1.3758197	-0.8049953	-3.1952408
С	1.5160575	-0.8106903	-4.5909623
Η	2.4804223	-1.1005929	-5.0056612
С	0.4902834	-0.4489802	-5.4561139
С	-0.7285062	-0.0702524	-4.8855184
Η	-1.5555669	0.2202056	-5.5307742
С	-0.9280937	-0.0639520	-3.5080771
С	2.6237062	-1.1785759	-2.4276241
Η	2.9263172	-2.2042301	-2.6676052

Η	2.5096796	-1.1043030	-1.3513454
Η	3.4485536	-0.5214703	-2.7250049
С	0.6786599	-0.4608204	-6.9516484
Η	1.6889114	-0.7816339	-7.2200743
Η	0.5119429	0.5359423	-7.3764079
Η	-0.0347272	-1.1409440	-7.4315020
С	-2.2871587	0.3385694	-2.9921383
Η	-2.9656984	0.5356322	-3.8264683
Η	-2.2340386	1.2430227	-2.3756902
Η	-2.7226304	-0.4543777	-2.3729442
С	0.6617482	2.2379727	-0.4911167
С	0.5702290	3.5332092	0.0170477
Η	1.4260058	4.1959437	-0.0943432
С	-0.5712948	3.9946353	0.6768541
С	-1.6549182	3.1260241	0.7800698
Η	-2.5674509	3.4705337	1.2628346
С	-1.6155027	1.8155548	0.2905020
С	1.9376833	1.8426292	-1.1838701
Η	2.6880810	2.6290627	-1.0705173
Η	1.7719545	1.6727498	-2.2525046
Η	2.3494240	0.9227982	-0.7636455
С	-0.6151726	5.3753714	1.2779047
Η	-0.1629429	6.1148124	0.6090859
Η	-0.0525708	5.3992307	2.2194745
Η	-1.6423425	5.6816882	1.4944114
С	-2.8690800	0.9905015	0.4737147
Η	-3.7383160	1.6525314	0.5238170
Η	-2.8441965	0.4213673	1.4085194
Η	-3.0204494	0.2771189	-0.3373649