Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

## **Supporting Information**

## Discrimination of the prochiral hydrogens at the C-2 position of *n*alkanes by methane/ammonia monooxygenase family proteins

Akimitsu Miyaji, Teppei Miyoshi, Ken Motokura, and Toshihide Baba\*

Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology

4259 G-1-14 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan

\* Corresponding author; FAX: +81-45-924-5441; TEL: +81-45-924-5480

E-mail: tbaba@chemenv.titech.ac.jp

## Contents

| 1. Alcohol productions in $C_5$ - $C_8$ <i>n</i> -alkane oxiditons by AMO-Ne                                                         | S2-S5<br>S6 |
|--------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Chromatograms of Chiraldex G-TA column analyzing<br>the 2-alcohol enantiomers in $C_4$ - $C_8$ <i>n</i> -alkane oxidations by AMO-Ne |             |



1 15. STATE I CHANNEL PRODUCTION IN *n*-pentane oxidation by AMO-Ne.

 $(\mathfrak{A}, \mathfrak{D})$ : 2-pentanol;  $\mathbf{O}$ ,  $\mathbf{O}$ : 1-pentanol. Arrows indicate axis of data. The reaction was carried out at 30 °C in 50 mM phosphate buffer (pH 7.0) containing 1.2 mM duroquinol, and 4.5 g-wet cells L<sup>-1</sup> whole cells. The initial concentration of *n*-pentane (dissolved) was 92  $\mu$ M.



1 15. STUD ITCAMO PIOLACION IN *n*-hexane oxidation by AMO-Ne.

 $(\mathfrak{A}, \mathfrak{D})$ : 2-hexanol;  $\mathbf{O}$ ,  $\mathbf{O}$ : 1-hexanol. Arrows indicate axis of data. The reaction was carried out at 30 °C in 50 mM phosphate buffer (pH 7.0) containing 1.2 mM duroquinol, and 4.5 g-wet cells L<sup>-1</sup> whole cells. The initial concentration of *n*-hexane (dissolved) was 60  $\mu$ M.



rig. 51(C) repranor production in *n*-heptane oxidation by AMO-Ne.

 $\mathfrak{SR}, \mathfrak{SD}: 2$ -heptanol;  $\mathbf{O}, \mathbf{O}: 1$ -heptanol. Arrows indicate axis of data. The reaction was carried out at 30 °C in 50 mM phosphate buffer (pH 7.0) containing 1.2 mM duroquinol, and 4.5 g-wet cells L<sup>-1</sup> whole cells. The initial concentration of *n*-heptane (dissolved) was 38  $\mu$ M.



гид. этци останог риоцисион ин *n*-octane oxidation by AMO-Ne.

 $\mathfrak{SR}$ ,  $\mathfrak{SD}$ : 2-heptanol;  $\mathbf{O}$ ,  $\mathbf{O}$ : 1-heptanol. Arrows indicate axis of data. The reaction was carried out at 30 °C in 50 mM phosphate buffer (pH 7.0) containing 1.2 mM duroquinol, and 4.5 g-wet cells L<sup>-1</sup> whole cells. The initial concentration of *n*-heptane (dissolved) was 31  $\mu$ M.



**Fig. S2** Chromatograms of Chiraldex G-TA column analyzing the 2-alcohol enantiomers in C4-C8 *n*-alkane oxidations by AMO-Ne. (A) 2-Butanol (B) 2-Pentanol (C) 2-Hexanol (D) 2-Heptanol (E) 2-Octanol.