SUPPLEMENTARY INFORMATION

Fluorine containing amino acids: Synthesis and peptide coupling of aminoacids containing the all-cis tetrafluorocyclohexyl motif
Mohammed Salah Ayoup, ${ }^{\dagger, \mp}$ David B. Cordes, ${ }^{\dagger}$ Alexandra M. Z. Slawin, ${ }^{\dagger}$ and David O’Hagan ${ }^{\dagger *}$
${ }^{\dagger}$ School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK. \#Department of Chemistry, Faculty of Science, P.B 426 Ibrahimia, Alexandria University, Egypt.
Corresponding author e.mail do1@st-andrews.ac.uk
EaSTChem School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST.
Email: do1@st-andrews.ac.uk
Table of Content
1- General Experimental Notes. S1
2- Procedure and analytical data S2-S21
3- NMR Spectra and Mass Spectra S23-S54

1. General Experimental

All reactions were carried out in oven-dried glassware under an argon atmosphere using a double vacuum manifold with the inert gas passing through a bed of silica gel and molecular sieves. Petrol refers to the petroleum ether fraction with a boiling point between $40-60{ }^{\circ} \mathrm{C}$. All chemicals were used as supplied. All NMR spectra were recorded using a Bruker Avance III 500, Bruker Avance II 400, Bruker Avance 300 or 500 spectrometers. The deuterated solvent was used for an internal deuterium lock. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at either 300,400 or $500 \mathrm{MHz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded using UDEFT pulse sequence and broadband proton decoupling at either 75,100 or $126 \mathrm{MHz} .{ }^{19} \mathrm{~F}$ NMR spectra were recorded at 282,376 or 470 MHz . All chemical shifts, δ, are stated in units of parts per million (ppm), relative to a standard, for ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR the reference point is TMS (δ_{H} and $\delta_{\mathrm{C}}: 0.00 \mathrm{ppm}$). For ${ }^{19} \mathrm{~F}$ NMR the reference point is $\mathrm{CCl}_{3} \mathrm{~F}\left(\delta_{\mathrm{F}}: 0.00\right.$ ppm). Melting points were determined using a Griffin MPA350 or a Electrothermal 9100 melting point apparatus and are uncorrected. High and low resolution mass spectra were obtained by atmospheric pressure chemical ionisation (APCI), electospray ionization (ESI) and electron ionization (EI). ESI-MS spectra were recorded on a Waters Micromass LCT spectrometer in positive mode or negative mode. EI-MS spectra were recorded on a Waters Micromass GCT spectrometer. Values are reported as a ratio of mass to charge (m / z).

2. Experimental Details and Analytical Data

1- Iodination of cis-1,2,4,5-tetrafluoro-3-phenylcyclohexane 3

Iodine ($600 \mathrm{mg}, 2.36 \mathrm{mmol}$) was added to a solution of all cis-1,2,4,5-tetrafluoro-3phenylcyclohexane 3 ($500 \mathrm{mg}, 2.15 \mathrm{mmol}$) in acetic acid (50 ml), periodic acid $50 \%(\mathrm{w} / \mathrm{w})$ ($0.123 \mathrm{~mL}, 0.43 \mathrm{mmol}$), conc. $\mathrm{H}_{2} \mathrm{SO}_{4} 95 \%(0.28 \mathrm{~mL}, 5.4 \mathrm{mmol})$, and water (10 mL). The solution was heated for 16 h at $70{ }^{\circ} \mathrm{C}$ and then the mixture was left to cool to room temperature. The reaction was quenched by a adding of solution of saturated sodium bisulfite (30 mL), then the mixture was washed with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The organic layers were combined and dried over sodium sulfate, filtered and the solvent evaporated
under reduced pressure ($710 \mathrm{mg} 92 \%$ overall yield). The product was purified by flash column chromatography using diethyl ether / petrol (1:2), as an eluent. This gave 4:5:6:7 in a ratio of 1:5:15:4 respectively.

All cis -1,2,4,5-tetrafluoro-3-(2-iodophenyl)-cyclohexane (4)

Colorless solid (28 mg, 3.6 \%) . mp 169-170 ${ }^{\circ} \mathrm{C}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.96(1 \mathrm{H}$, dd, J 7.9, 1.6 Hz, CH-6'), 7.90 (1H, dd, J 8.0, 1.3 Hz, CH-3'), 7.41 (1H, td, J 7.6, 1.3 Hz CH-5'), 7.05 (1H, td, J 7.6, 1.6 Hz, CH-4'), $5.11-4.91$ (2H, m, CHF-3), $4.82-4.57$ (2H, m, CHF-2), $3.13(1 \mathrm{H}, \mathrm{tt}, J 36.8,1.6 \mathrm{~Hz}, \mathrm{CH}-4), 2.84-2.69\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-1\right), 2.55-2.46\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}^{-}}\right.$ 1); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 139.7,137.9,131.1(\mathrm{t}, J 6.6 \mathrm{~Hz}), 130.1,129.2,101.3$ (C-2'), 89.6 - 87.7 (m, CHF-3), 88.7 - 85.9 (m, CHF-2), 47.4 (m, CH-4), 27.3 (tt, J 22.1, 2.4 Hz, CH21); ${ }^{19}{ }^{\mathbf{F}}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}}-189.9$ ($2 \mathrm{~F}, \mathrm{dd}, J 7.7,5.6 \mathrm{~Hz}, \mathrm{CHF}-2$), -210.9 ($2 \mathrm{~F}, \mathrm{dd}, J$ 7.7, $5.5 \mathrm{~Hz}, \mathrm{CHF}-3$); $\left(\right.$ ESI $\left.^{+}\right)[2 \mathrm{M}+6 \mathrm{H}]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{IF}_{4}{ }^{+}$: 721.9684 found: 722.2411

All cis -1,2,4,5-tetrafluoro-3-(2, 4-diiodophenyl)-cyclohexane (7)

Colorless solid ($122 \mathrm{mg}, 15.8 \%$). mp $203-204{ }^{\circ} \mathrm{C} ;{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 8.24(1 \mathrm{H}$, d, J $2.2 \mathrm{~Hz}, \mathrm{CH}-3$ '), 7.59 (1H, d, J 8.4, CH-6'), 7.38 (1H, dd, J 8.4, 2.2 Hz CH-5'), $5.10-4.84$ (2H, m, CHF-3), 4.87 - 4.55 (2H, m, CHF-2), 3.04 (1H, tt, J 36.2, 1.6 Hz, CH-4), 2.82 - 2.68 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-1\right), 2.54-2.46\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathbf{H}_{\mathrm{B}}-1\right)$; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 140.9,139.8$, 139.8, 139.2, 100.5, 99.9, 89.3 - 87.6 (m, CHF-3), 87.6 - 85.7 (m, CHF-2), 47.1 (m, CH-4),

All cis -1,2,4,5-tetrafluoro-3-(3'-iodophenyl)-cyclohexane 5, all cis -1,2,4,5-tetrafluoro-3-(4'-iodophenyl)-cyclohexane 6 (560 mg 72%) were isolated as an inseparable mixture, and were not fully characterized at this stage, in ratio (1:3) respectively.

General Procedure for the preparation of 9 and 10.

A flame dried, three-necked, round bottomed flask (25 mL) equipped with an argon inlet adapter, reflux condenser, rubber septum, and magnetic stir bar was charged with zinc dust ($190 \mathrm{mg}, 3.0 \mathrm{mmol}$) and iodine ($38 \mathrm{mg}, 0.15 \mathrm{mmol}$). The flask is evacuated and flushed with argon three times and then DMF (1 mL) a solution of iodoalanine (330 mg , 1.00 mmol) in DMF (1 mL) was added dropwise via syringe at $0^{\circ} \mathrm{C}$. The reaction was kept stirred at $0^{\circ} \mathrm{C}$ for 30 min to generate a solution of the zinc reagent. The ice bath is removed and the aryl iodide ($300 \mathrm{mg}, 0.84 \mathrm{mmol}$), tris(dibenzylideneacetone)dipalladium (11 mg , 0.0125 mmol), and Sphos ($11 \mathrm{mg}, 0.025 \mathrm{mmol}$) were added and the reaction mixture stirred at $60^{\circ} \mathrm{C}$ for 16 h . The resulting mixture was poured into a conical flask containing water (10 mL). Citric acid solution (5 ml of 10%) was added in order to break up the black emulsion. The aqueous mixture was extracted into DCM ($2 \times 60 \mathrm{~mL}$), and the combined organic layers are washed with of water (30 mL) and of brine (30 mL). The organic fractions were dried and filtered. Concentration under vacuum gave the product which was purified over silica gel using petrol /ethyl acetate/DCM, (7:2:1) as an eluent

Methyl-2S-2-(tert-Butoxycarbonylamino)-3-(4-(all-cis-2,3,5,6-tetrafluoro cyclohex-1-yl) phenyl)propanoate (9)

Colorless solid (216 mg , 59 \%). mp $186-187^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+22.0\left(\mathrm{c}=1 \times 10^{-3}, \mathrm{CHCl}_{3}\right.$); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.39(2 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, \mathrm{CH}-2 '), 7.13(2 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{CH}-3 '), 5.02-4.82(3 \mathrm{H}$, m, CHF-3, NHBoc), $4.780-4.46$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{CHF}-2$, CHNHBoc), 3.71 (3H, s, COOCH ${ }_{3}$), 3.17-2.97 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right), 2.79-2.38\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathbf{4}, \mathrm{CH}_{\mathrm{A}} \mathbf{H}_{\mathrm{B}} \mathbf{- 1}\right), 1.39\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 172.3,155.1,136.0,134.3,129.7,129.4,90.1$ - 88.0 (m, CHF-3), 88.0 - 86.1 ($\mathrm{m}, \mathbf{C H F}-2$), 80.0, 54.3, 52.3, 43.7, 38.0, 28.2, 27.1 (tt, $J 22.3,2.2 \mathrm{~Hz}, \mathbf{C H}_{2}-1$); ${ }^{19}{ }^{\mathbf{F}}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}}-190.7$ (2F, dd, J 7.7, $5.5 \mathrm{~Hz}, \mathrm{CHF}-2$), -210.3 ($2 \mathrm{~F}, \mathrm{dd}, J 8.0,5.1 \mathrm{~Hz}$, CHF3); (ESI+) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~F}_{4} \mathrm{NO}_{4}{ }^{+}: 456.1774$ found: 456.1762

Methyl-2S-(tert-Butoxycarbonylamino)-3-(3-(all-cis-2,3,5,6-tetrafluorocyclohex-1yl) phenyl) propanoate. (10)

Colorless solid ($88 \mathrm{mg}, 24 \%$). mp $164-165{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+35.0\left(\mathrm{c}=1 \times 10^{-3}, \mathrm{CHCl}_{3}\right.$); $\mathbf{}^{\mathbf{1}} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.33-7.27$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{CH}-2^{\prime}, \mathrm{CH}-4{ }^{\prime}, \mathrm{CH}-6 '$), $7.16-7.09\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-5^{\prime}\right.$ '), $5.10-4.87$ (3H, m, CHF-3, NHBoc), 4.78 - 4.47 (3H, m, CHF-2, CHNHBoc), 3.72 (3H, s, COOCH_{3}), $3.19-3.02\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right), 2.83-2.40\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}-4, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-1\right), 1.41(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 172.1,155.0,136.7,135.8,130.2,129.2,128.9$, 127.8, 89.8 - 88.2 (m, 2C, CHF-3), 87.8 - 86.3 (m, 2C, CHF-2), 79.9, 54.3, 52.3, 43.8 (tt, 1 C J $17.5,5.8 \mathrm{~Hz} \mathbf{C H}-4), 38.3$), $28.2,27.1\left(\mathrm{tt}, J 22.3,2.2 \mathrm{~Hz}, \mathbf{C H}_{2}-1\right) ;{ }^{\mathbf{1 9}} \mathbf{F}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(282 \mathrm{MHz}$,
CDCl_{3}) $\delta_{\mathrm{F}}-190.7$ (2F, dd, J 7.1, $5.1 \mathrm{~Hz}, \mathrm{CHF}-2$), -210.0 (2F, dd, J 7.2, 5.0 Hz, CHF-3); (ESI+) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~F}_{4} \mathrm{NO}_{4}{ }^{+}$: 456.1774 found: 456.1759
(2S)-2-(aminohydrochloride)-3-(4-(all- cis -2,3,4,5-tetrafluorocyclohex-1-yl) phenyl)propanoic (11)

A solution of 9 ($70 \mathrm{mg}, 0.161 \mathrm{mmol}$) in $\mathrm{HCl} 6 \mathrm{M}: 1,4$-dioxane ($1: 1$) (4 mL) and anisole (26 $\mathrm{mg}, 0.24 \mathrm{mmol}$) was stirred at $70^{\circ} \mathrm{C}$ for 48 h , until TLC showed that the substrate had been consumed. The reaction mixture was diluted with water (10 mL) and the aqueous washed with ethyl acetate ($2 \times 15 \mathrm{ml}$). The aqueous was the evaporated under reduced pressure, to afford the hydrochloride salt $\mathbf{1 1}(52 \mathrm{mg}, 91 \%)$ as colorless needles. mp $273-274{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}+60.0\left(\mathrm{c}=2 \times 10^{-4}, \mathrm{DMSO}\right) ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta_{\mathrm{H}} 8.36\left(3 \mathrm{H}, \mathrm{bs}, \mathrm{NH}_{3} \mathrm{Cl}\right)$, 7.45 (2H, d, J $7.8 \mathrm{~Hz}, \mathrm{CH}-2$ ',), 7.29 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.9 \mathrm{~Hz}, \mathrm{CH}-3^{\prime}$), 5.19 - 4.83 ($4 \mathrm{H}, \mathrm{m}, \mathrm{C} \underline{\mathrm{HF}}-3, \mathrm{CHF}-2$), $4.17\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.0 \mathrm{~Hz}, \mathrm{CHNH}_{3} \mathrm{Cl}\right), 3.25-3.5\left(3 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}, \mathrm{CH}-4\right), 2.46-2.29\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathbf{H}_{\mathrm{B}^{-}}\right.$ 1); ${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta_{\mathrm{C}} 170.8,136.1,134.5,130.0,129.4,90.8-89.1$ (m, CHF3), 88.7 - 88.3 (m, CHF-2), 53.7, 35.8, $42.0,27.4\left(\mathrm{tt}, J 22.1,3.0 \mathrm{~Hz}, \mathrm{CH}_{2}-1\right.$); ${ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (376 MHz, d ${ }_{6}$-DMSO) $\delta_{\mathrm{F}}-189.4$ (2F, dd, J 8.1, $4.6 \mathrm{~Hz}, \mathrm{CHF}-2$), -209.7 (2F, dd, J 8.1, 5.8 Hz , CHF-3); (ESI+) $m / z[\mathrm{M}-\mathrm{HCl}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClF}_{4} \mathrm{NO}_{2}{ }^{+}: 320.1273$ found 320.1263;
(2S)-2-(Aminohydrochloride)-3-(3-(all-cis-2,3,5,6-tetrafluorocyclohex-1-yl) phenyl)propanoic (12)

A solution of 10 ($50 \mathrm{mg}, 0.115 \mathrm{mmol}$) $\mathrm{HCl} 6 \mathrm{M}: 1,4$-dioxane (1:1) (4 mL) and anisole (21 $\mathrm{mg}, 0.20 \mathrm{mmol}$) was stirred at $70^{\circ} \mathrm{C}$ for 48 hr , until TLC showed that the substrate was consumed. The reaction mixture was diluted with water (10 mL) and washed with ethyl acetate ($2 \times 15 \mathrm{ml}$). The aqueous was collected and evaporated under vacuum, to afford the hydrochloride salt 12 ($38 \mathrm{mg}, 92 \%$) as colorless solid. mp $223-224^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+42.0$ (c=2 $\times 10^{-4}$, DMSO); ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta_{\mathrm{H}} 8.41$ ($3 \mathrm{H}, \mathrm{bs}, \mathrm{NH}_{3} \mathrm{Cl}$), $7.24-7.17$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}-$ 2', CH-4', CH-5', CH-6'), 5.19 - 4.87 (4H, m, CHF-3, CHF-2), 4.13 (1H, bs, $\mathrm{CHNH}_{3} \mathrm{Cl}$), 3.14 $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right), 2.44-2.36\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathbf{4}, \mathrm{CH}_{\mathrm{A}} \mathbf{H}_{\mathrm{B}} \mathbf{- 1}\right),{ }^{\mathbf{1 3}}{ }^{\mathbf{C}} \mathbf{~ N M R}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 170.8$, 137.5, 135.6, 130.5, 129.1, 128.8, 128.1, 90.9 - 89.2 (m, 2C, CHF-3), 88.1 - 86.7 (m, 2 C, CHF-2), 67.7, 53.7, 36.3.0, 27.5 (bt, $\mathbf{C H}_{2}-1$); ${ }^{\mathbf{1 9}}{ }^{\mathbf{F}}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($470 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta_{\mathrm{F}}-189.4$ (2F, bs, CHF-2), -209.4 (2F, m, CHF-3); (ESI+) m/z [M-HCl + H] ${ }^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClF}_{4} \mathrm{NO}_{2}{ }^{+}$: 320.1273 found 320.1266; (ESI-) $m / z \quad[\mathrm{M}-\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClF}_{4} \mathrm{NO}_{2}{ }^{+}: 354.0962$ found 354.0890;
(2S)-2-(tert-Butoxycarbonylamino)-3-(4-(all cis-2,3,5,6-tetrafluorocyclohex-1-yl) phenyl)propanoic. (13)

Di-tert-butyl dicarbonate ($45 \mathrm{mg}, 0.2 \mathrm{mmol}$), and sodium bicarbonate ($46 \mathrm{mg}, 0.54 \mathrm{mmol}$) was added to a solution of $\mathbf{1 1}(60 \mathrm{mg} .0 .17 \mathrm{mmol})$ in mixture of water and THF 1:1 (3 mL). The reaction was stirred at $0^{\circ} \mathrm{C}$ for 1 h then left to come to ambient over 16 h . The reaction
mixture was then extracted into diethyl ether ($2 \times 20 \mathrm{~mL}$) and the aqueous layer was acidified to pH 2 with HCl 1 M , and then extracted into ethyl acetate (2×30). The organic layers was dried over sodium sulfate, filtered and evaporated under vaccum to afford N boc amino acid 13 ($66 \mathrm{mg}, 93 \%$). mp $189-190^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+50\left(\mathrm{c}=2 \times 10^{-4}, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.45(2 \mathrm{H}, \mathrm{d}, J 7.7 \mathrm{~Hz}, \mathrm{CH}-2 '), 7.20(2 \mathrm{H}, \mathrm{d}, J 8.0, \mathrm{CH}-3$ '), $5.09-4.88$ (3H, m, CHF-3, NHBoc), $4.74-4.48$ (3H, m, CHF-2, CHNHBoc), 3.23-3.05 (2H, m, PhCH $)_{2}$, 2.78 $2.49\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}-\mathbf{4}, \mathrm{CH}_{\mathrm{A}} \mathbf{H}_{\mathbf{B}} \mathbf{- 1}\right), 1.42\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}} 175.8$, 155.3, 135.7, 134.5, 129.9, 129.4, 90.2 - 88.1 (m, CHF-3), 88.1 - 86.1 (m, CHF-2), 85.3, 54.3, 43.6, 37.2, 28.3, 27.1 ($\mathrm{tt}, \mathrm{J} 22.3,2.2 \mathrm{~Hz}, \mathrm{CH}_{2}-1$); ${ }^{\mathbf{1 9}}{ }^{\mathbf{F}}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta_{\mathrm{F}}-190.1$ (2F, bt, CHF-2), -209.4 (2F, bt, CHF-3); (ESI+) m/z [M+Na] calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~F}_{4} \mathrm{NO}_{4}{ }^{+}$: 442.1618 found 442.1605;

Methyl-(2S)-2 [N-((2S)-2-(tert-Butoxycarbonylamino)-3-(4-(all cis-2,3,5,6-tetrafluorocyclohex-1-yl)phenyl)propanoyl]-2-amino-3-phenylpropanoate. (14)

EDCI hydrochloride ($30 \mathrm{mg}, 0.15 \mathrm{mmol}$) and NMM ($\mathrm{mg}, 0.48 \mathrm{mmol}$) were added to a solution of N -Boc amino acid $13(50 \mathrm{mg}, 0.119 \mathrm{mmol})(1 \mathrm{~mL})$ and HOBt ($20 \mathrm{mg}, 0.148$ mmol) in dry DMF and the solution was stirred for 5 min at $0^{\circ} \mathrm{C}$. L-Phenylalanine OMe hydrochloride 14 ($31 \mathrm{mg}, 0.144 \mathrm{mmol}$) was the added and the solution was stirred at room temperature for 16 h . The reaction was diluted by sat ammonium chloride solution (10 mL), stirred for 1 h and then extracted into ethyl acetate ($2 \times 30 \mathrm{~mL}$). The organic layer was washed with $\mathrm{NaHCO}_{3} 10 \%(20 \mathrm{~mL})$, and brine (10 mL), dried and then the organic
solvent was evaporated under reduced pressure. The product was purified over silica gel using by ethyl acetate / petrol (1:1) as an eluent, to afford peptide 14 as a white solid (60 $\mathrm{mg}, 87 \%$). mp 136-137 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+20\left(\mathrm{c}=2 \times 10^{-4}, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}$ 7.39 ($2 \mathrm{H}, \mathrm{d}, J 7.7 \mathrm{~Hz}, \mathrm{CH}-2$ '), , 7.26-7.18 (5H, m, CH`,CH`), 6.98 ($2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}, \mathrm{CH}^{\prime}, \mathrm{CH}^{`}$), 6.26 (1H, bd, C-1"-NH), 5.02 - 4.89 (3H, m, CHF-3, NHBoc), 4.78 (1H, bs, H-1`), \(4.70-4.52\) (2H, m, CHF-2), 4.34 (1H, bs, H-6"), 3.68 (3H, s, COOMe), \(3.11-3.00\) (4H, m, CH2-5`, CH2$\left.2^{\prime \prime}\right), 2.80-2.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathbf{1}\right), 2.56(1 \mathrm{H}, \mathrm{t}, J 37.1 \mathrm{~Hz}, \mathbf{H}-4), 2.48-2.43\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathbf{1}\right)$, $1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 171.3,170.5,155.2,136.5,135.5$, 134.3, 129.7, 129.5, 129.2, 128.5, 127.1, 89.7 - 88.2 (m, CHF-3), 87.8 - 86.2 (m, CHF-2), 55.7, $53.2,52.3,43.8,37.9,29.7,28.2,27.1\left(\mathrm{t}, J 22.0 \mathrm{~Hz}, \mathrm{CH}_{2}-1\right) ;{ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (470 MHz , CDCl_{3}) $\delta_{\mathrm{F}}-190.2$ (2F, m, CHF-2), -209.7 (2F, m, CHF-3); (ESI+) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}$: 603.2458 found 603.2440 .

Methyl-2S-2 [N-((S)-2-(aminotrifluoroacetic)-3-(4-(all cis-2,3,5,6-tetrafluorocyclohex-1-yl)phenyl)propanoyl]-2-amino-3-phenylpropanoate (15)

A solution of 14 ($20 \mathrm{mg}, 0.0 .034 \mathrm{mmol}$) in a mixture of DCM and TFA ($4: 1$) (2 mL) was stirred at RT for 4 h , until TLC showed the consumption of starting. The reaction mixture was then diluted with water (10 mL) and extracted into diethyl ether ($2 \times 15 \mathrm{ml}$), and the organic layer was washed with water (20 mL). The aqueous layers were collected and evaporated under vacuum and the product was purified using a C-18 coated silica cartridge
with water/methanol (1:1) as the eluent to afford trifluoroacetate salt 15 ($18 \mathrm{mg}, 94 \%$) as colorless solid. mp $240^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+45$ ($\mathrm{c}=2 \times 10^{-4}, \mathrm{DMSO}$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$ $\delta_{\mathrm{H}} 7.46$ - 7.15 (9H, m, CH-2', CH-3', H-5`, H-6", H-7`), 5.21 - 4.79 ($6 \mathrm{H}, \mathrm{m}, \mathrm{CHF}-2$, CHF-3, H$\mathbf{6}^{`}$, NH), 4.68 ($1 \mathrm{H}, \mathrm{m}, \mathbf{H}-1^{`}$), 3.69 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}$), $3.40-3.15$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-5^{\prime}, \mathrm{CH}_{2}-2^{`}$), 3.12 - $2.99\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathbf{- 1}\right), 2.59-2.41$ ($2 \mathrm{H}, \mathrm{m}, \mathbf{H}-4, \mathrm{CH}_{\mathrm{A}} \mathbf{H}_{\mathbf{B}} \mathbf{- 1}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta_{\mathrm{C}} 170.2,167.0,159.9,138.5,137.3,134.6,129.8,129.6,129.4,129.3,129.1$, 128.3, 126.7, 126.7, 126.6, 115.7, 91.0 - 88.6 (m, 2C, CHF-3), 88.2 - 86.0 (m, 2C, CHF-2), 65.3, 57.1, 51.6, 42.6, 36.3, 36.1, 27.3 - $26.8\left(\mathrm{~m}, \mathrm{CH}_{2}-1\right) ;{ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\} \quad$ NMR $(470 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{COCD}_{3}$) $\delta_{\mathrm{F}}-76.3\left(3 \mathrm{~F}, \mathrm{~s}, \mathrm{CF}_{3} \mathrm{COO}\right),-191.3(2 \mathrm{~F}, \mathrm{CHF}-2),-210.8(2 \mathrm{~F}, \mathrm{~m}, \mathrm{CHF}-3)$; (ESI+) $m / z[\mathrm{M}-\mathrm{TFA}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}: 481.2036$ found 481.2094

Methyl-2S-2- (aminohydrochloride)-3-(4-(all cis-2,3,5,6-tetrafluorocyclohex-1yl))phenylpropanoate. (16)

A solution of protected amino acid $9(90 \mathrm{mg}, 0.208 \mathrm{mmol})$ in mixture of HCl 4 M and ethyl acetate (1:1) (3mL) was stirred for 24 hr at room temperature, until the startingmaterial was consumed. The reaction mixture was the extracted into ethyl acetate ($2 \times 30 \mathrm{ml}$), and the organic layers washed with water (20 mL). The aqueous layers were collected and evaporated at reduced pressure, to afford hydrochloride salt 16 without further purification ($74 \mathrm{mg}, 96 \%$) as colorless solid mp $240-241{ }^{\circ} \mathrm{C}[\alpha]_{\mathrm{D}}{ }^{20}+70.0$ (c= 2×10^{-4}, DMSO); ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} 0$) $\delta_{\mathrm{H}} 7.45\left(2 \mathrm{H}, \mathrm{d}, J 8.1 \mathrm{~Hz}, \mathrm{CH}-2^{\prime}\right.$,), 7.21 ($2 \mathrm{H}, \mathrm{d}, J$ 8.2, CH-3'), $5.25-5.03(2 \mathrm{H}, \mathrm{m}, \mathrm{CHF}-3), 4.97-4.77(2 \mathrm{H}, \mathrm{m}, \mathrm{CHF}-2), 4.33\left(1 \mathrm{H}, \mathrm{dd}, J 7.2,6.0 \mathrm{~Hz} \mathrm{CHNH}_{3} \mathrm{Cl}\right)$, $3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 3.28-3.04\left(3 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathbf{1}\right.$), 2.49-2.35 (2H, m, CH-4,
$\mathrm{CH}_{\mathrm{A}} \mathbf{H}_{\mathrm{B}} \mathbf{- 1}$); ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta_{\mathrm{C}} 169.8,136.2,134.2,129.9,129.5,90.9-89.1$ (m, CHF-3), 88.5 - 86.3 (m, CHF-2), 53.5, $53.041 .9,35.8,27.3\left(\mathrm{t}, J 21.3, \mathrm{~Hz}^{2}, \mathbf{C H}_{2}-1\right.$); ${ }^{\mathbf{1 9}}{ }^{\mathbf{F}}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR (282 MHz, D_{2} O) $\delta_{\mathrm{F}}-190.9(2 \mathrm{~F}, \mathrm{dd}, J 7.7,5.5 \mathrm{~Hz}, \mathrm{CHF}-2),-210.4(2 \mathrm{~F}, \mathrm{dd}, J 8.3,4.4 \mathrm{~Hz}$, CHF-3); (ESI+) m/z [M-HCl+Na] ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{ClF}_{4} \mathrm{NO}_{2}{ }^{+}$: 356.1250 found 356.1237

Methyl-2S-2N [(S-2-(tert-Butoxycarbonylamino)-3-phenylpropanoyl]-3-(4-(all cis-2,3,5,6-tetrafluorocyclohex-1-yl)phenyl)-2-amino-propanoate (17)

HOBt ($19 \mathrm{mg}, 0.14 \mathrm{mmol}$), EDCI hydrochloride ($34 \mathrm{mg}, 0.14 \mathrm{mmol}$) and DIPEA ($63 \mathrm{mg}, 0.48$ mmol) were added to a solution of N-Boc-L-phenylalanine acid ($34 \mathrm{mg}, 0.128 \mathrm{mmol}$) in dry DMF (1 mL) and the solution was stirred for 5 min at $0^{\circ} \mathrm{C}$. Amino acid hydrochloride 16 (40 $\mathrm{mg}, 0.108 \mathrm{mmol}$) was then added and the solution was stirred at room temperature for 12 h. The reaction was then quenched by the addition of sat. ammonium chloride (10 mL), stirred for a further 1 h and was then extracted into ethyl acetate $(2 \times 30 \mathrm{~mL})$. The organic layer was washed with $\mathrm{NaHCO}_{3} 10 \%(20 \mathrm{~mL})$ and brine (20 mL), dried and the solvent evaporated under reduced pressure. The product was purified over silica gel using ethyl acetate / petrol (1:2) as an eluent to afford the target peptide as a white solid ($58 \mathrm{mg}, 92$ \%). mp 194-195 ${ }^{\circ} \mathrm{C}[\alpha]_{\mathrm{D}}{ }^{20}+25.0\left(\mathrm{c}=2 \times 10^{-4}, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}} 7.35$ ($2 \mathrm{H}, \mathrm{d}, J 7.7 \mathrm{~Hz}, \mathrm{CH}-2$ '), 7.27 (2H, d, J 7.0, CH-3'), $7.26-7.18\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}{ }^{`}\right), 7.0(2 \mathrm{H}, \mathrm{d}, J 8.0 \mathrm{~Hz}$, CH`), 6.38 (1H, d, J 7.7 Hz, C1`-NH), 5.02 - 4.90 (3H, m, CHF-3, NHBoc), 4.77 (1H, bs, H-6`), 4.71 - 4.53 (\(2 \mathrm{H}, \mathrm{m}, \mathrm{CHF}-2\)), 4.34 (\(1 \mathrm{H}, \mathrm{bs}, \mathbf{H - 2 `)}\)), 3.67 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}$), $3.11-2.99$ ($4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2}-5^{`}, \mathrm{CH}_{2}-3^{\prime \prime}\right), 2.78-2.68\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathbf{1}\right), 2.56(1 \mathrm{H}, \mathrm{t}, J 37.1 \mathrm{~Hz}, \mathrm{H}-4), 2.48-2.42(1 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{\mathrm{A}} \mathbf{H}_{\mathrm{B}} \mathbf{- 1}$), $1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; ${ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 171.2,170.9,155.4,136.4$, 135.6, 134.4, 129.7, 129.4, 128.7, 127.0, 89.8 - 88.1 (m, CHF-3), 87.7 - 86.3 (m, CHF-2), 55.8, 53.2, $52.343 .6,38.2,37.5,37.0,28.2,27.1\left(\mathrm{tt}, J 22.0,2.3 \mathrm{~Hz}, \mathbf{C H}_{2}-1\right.$), $\left.{ }^{\mathbf{1 9}}{ }^{\mathbf{F}\{ }{ }^{1} \mathbf{H}\right\} \mathbf{N M R}$ ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}}-190.2$ (2F, m, CHF-2), -209.7 (2F, m, CHF-3); (ESI+) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}$: 603.2458 found 603.2444 .

Methyl-2S-2N [(S-2-(ammoniumtrifluoracetate)-3-phenylpropanoyl]-3-(4-(all cis-2,3,5,6-tetrafluorocyclohex-1-yl)phenyl)-2-amino-propanoate (19a)

A solution of 17 ($15 \mathrm{mg}, 0.025 \mathrm{mmol}$) in a mixture of DCM and TFA ($4: 1$) (2 mL) was stirred at room temperature and then the reaction mixture was diluted by water (10 mL) and extracted into diethyl ether ($2 \times 15 \mathrm{ml}$). The organic layer was then washed with water (20 mL) the aqueous layer collected and evaporated under vacuum, to afford the trifluoroacetate salt 19a ($13 \mathrm{mg}, 89 \%$) as a colorless solid. $\mathbf{~ m p}$ decompose at $230^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{20}$ +40.0 ($c=2 \times 10^{-4}$, DMSO); ${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$) $\delta_{\mathrm{H}} 7.50\left(2 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, \mathrm{CH}-2^{\prime}\right)$, 7.35 (2H, d, J 8.6, CH-3'), 7.30-7.10 (5H, m, H-5`, H-6", H-7`), 5.22 - 4.77 (6H, m, CHF-2, CHF-3, H-2", C1"-NH), 4.68 (1H, dd, J 9.8, $4.7 \mathrm{~Hz}, \mathrm{H}^{\prime} \mathbf{6}^{`}$), 3.70 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}$), $3.37-3.14$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathbf{2}}-5^{\prime}, \mathrm{CH}_{\mathbf{2}}-\mathbf{3}^{\prime \prime}$), $3.09-3.01\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathbf{- 1}\right.$), $2.55-2.40\left(2 \mathrm{H}, \mathrm{m}, \mathbf{H}-4, \mathrm{CH}_{\mathrm{A}} \mathbf{H}_{\mathrm{B}} \mathbf{- 1}\right.$),
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$) $\delta_{\mathrm{C}} 171.2,166.6,159.4$ (1C, q. J 36.0, Hz, CF $\mathrm{CO}_{3} \mathrm{COO}$), 136.4, 135.6, 135.1, 129.4, 129.4, 129.2, 128.6, 127.3, 116.2 (q, 1C, J $288.9 \mathrm{~Hz}_{2} \mathrm{CF}_{3} \mathrm{COO}$), (90.6 89.0 (m, 2C, CHF-3), 87.8 - 86.3 (m, 2C, CHF-2), 63.9, 54.0, 51.7, 42.7, 37.0, 36.1, 27.0 (tt, J 21.7, $3.5 \mathrm{~Hz}, \mathrm{CH}_{2}-1$); ${ }^{19} \mathbf{F}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$) $\delta_{\mathrm{F}}-76.3$ (3F, s, $\mathrm{CF}_{3} \mathrm{COO}$), -191.3 (2F, dd, J 6.9, 1.8 Hz ,CHF-2), -210.7 (2F, dd, J 8.7, $2.6 \mathrm{~Hz}, \mathrm{CHF}-3$); (ESI+) m/z [M-TFA+H] ${ }^{+}$ calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~F}_{7} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}: 481.2036$ found 481.2095.

Methyl-2S-2N[((2S)-2-(9-Fluorenylmethoxycarbonylamino)-3-phenylpropanoyl]-3-(4-(all cis-2,3,5,6-tetrafluorocyclohex-1-yl)phenyl propanoate (18).

HBTU ($27 \mathrm{mg}, 0.071 \mathrm{mmol}$), NMM ($11 \mathrm{mg}, 0.10 \mathrm{mmol}$) and HOBt ($10 \mathrm{mg}, 0.074 \mathrm{mmol}$) were added to a solution of N-Fmoc-phenylalanine ($25 \mathrm{mg}, 0.064 \mathrm{mmol}$) \mathbf{X} in dry DMF $(1 \mathrm{~mL})$ and the solution was stirred for 5 min at $0^{\circ} \mathrm{C}$. Amino acid hydrochloride $\mathbf{1 6}(20 \mathrm{mg}$, 0.054 mmol) was the added and the solution was stirred at room temperature for 6 h when a saturated solution of ammonium chloride (10 mL) was added and the reaction mixture was stirred for a further 10 min . The product was extracted into ethyl acetate ($2 \times 30 \mathrm{~mL}$) and the organic layer was washed with $\mathrm{NaHCO}_{3} 10 \%(20 \mathrm{~mL})$ and brine (10 mL) and dried over MgSO_{4}. The product was purified by over silica gel using ethyl acetate / petrol (2:1) as an eluent to afford dipeptide 18 as white solid ($31 \mathrm{mg}, 81 \%$). mp 210-212 ${ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+$ $40.0\left(\mathrm{c}=2 \times 10^{-4}, \mathrm{DMSO}\right) ;{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta_{\mathrm{H}} 7.84(2 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H})$,
7.61 (3H, bd, Ar-H, NHFmoc), 7.43-7.17 (13H, m, Ar-H), 6.67 (1H, d, J 8.6 Hz, NHCO), 5.17 4.70 ($5 \mathrm{H}, \mathrm{m}, \mathrm{CHF}-3, \mathrm{CHF}-2$, CH-2`), $4.54-4.46(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6$)), $4.32-4.24$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}-$ 9Fmoc), $4.20-4.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$-Fmoc), 3.67 ($3 \mathrm{H}, \mathrm{s}, \mathrm{COOMe}$), $3.20-3.00\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}-5\right.$), $\left.\mathrm{CH}_{\mathbf{2}}-\mathbf{3}^{\prime \prime}\right), 2.95-2.88\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathbf{- 1}\right), 2.57-2.38\left(2 \mathrm{H}, \mathrm{m}, \mathbf{H}-4, \mathrm{CH}_{\mathrm{A}} \mathbf{H}_{\mathbf{B}} \mathbf{- 1}\right) ;{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) \delta_{\mathrm{C}} 171.4,171.2,155.9,144.1,141.1,137.7,136.1,135.4,129.4,129.3$, 129.2, 128.2, 127.6, 127.0, 126.3, 125.3, 125.2, 119.9, 90.5 - 89.0 (2C, m, CHF-3), 87.8 86.4, 66.3, $56.1,53.6,51.5,47.0,42.6,37.7,36.8,27.0\left(\mathrm{tt}, J 22.2,2.7 \mathrm{~Hz}, \mathbf{C H}_{2}-1\right.$), ${ }^{19} \mathbf{F}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR (282 MHz, $\mathrm{CD}_{3} \mathrm{COCD}_{3}$) $\delta_{\mathrm{F}}-191.3$ (2F, dd, J 6.3, $4.8 \mathrm{~Hz} \mathrm{CHF}-2$), -210.7 (2F, dd, J 7.7, 5.3 $\mathrm{Hz}, \mathbf{C H F}-3$); (ESI +) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{5}{ }^{+}$: 725.2615 found 725.2603.

Methyl-2S-2N [((2S)-2-(amino)-3-phenylpropanoyl]-3-(4-(all-syn-2,3,5,6-tetrafluorocyclohex-1-yl)phenyl-2-aminopropanoate (19b)

Diethylamine was added via syringe ($0.012 \mathrm{~mL}, 0.11 \mathrm{mmol}$) to a solution of Fmocdipeptide 18 ($28 \mathrm{mg}, 0.039 \mathrm{mmol}$) in DMF (0.5 mL). The reaction was stirred for 2 hr at room temperature and then the solvent was evaporated under reduced pressure. The residue was washed with diethyl ether ($3 \times 10 \mathrm{ml}$) and the insoluble product was collected and dried under vaccum, to afford free amine 19b without further purification ($18 \mathrm{mg}, 94$ $\%$) as colorless solid. $\mathbf{m p}$ decompose $270{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+55.0\left(\mathrm{c}=2 \times 10^{-4}\right.$, DMSO)

Alternative method:

A solution of piperidine in DMF ($20 \%, 0.5 \mathrm{~mL}$) was added to Fmoc-dipeptide 18 (15 mg , 0.021 mmol) at $0^{\circ} \mathrm{C}$ and the reaction was stirred for 2 h at room temperature. The reaction mixture was the diluted with water and evaporated underreduced pressure. The insoluble residue was washed with diethyl ether ($3 \times 10 \mathrm{ml}$) and the product dried under vacuum, to afford the free amine $\mathbf{1 9 b}$ without further purification ($10 \mathrm{mg}, 97 \%$) as colorless solid. $\mathbf{m p}$ decompose $270^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+55.0$ ($\mathrm{c}=2 \times 10^{-4}$, DMSO); ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta_{\mathrm{H}} 7.95$ ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.6 \mathrm{~Hz}, \mathrm{NH}_{2}$), 7.39 - 7.01 ($9 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}$), 5.76 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}$), $5.07-4.80$ ($4 \mathrm{H}, \mathrm{m}$, CHF-3, CHF-2,), $4.05-3.95$ (2H, m, H-6`, H-2"), 3.40 (3H, s, COOMe), \(3.10-2.88\) (\(4 \mathrm{H}, \mathrm{m}\), \(\left.\mathrm{CH}_{\mathbf{2}}-\mathrm{S}^{`}, \mathrm{CH}_{2}-3^{\prime \prime}\right), 2.67-2.62\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathbf{1}\right), 2.39-2.34(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4), 2.18-2.12(1 \mathrm{H}, \mathrm{m}\), $\mathrm{CH}_{\mathrm{A}} \mathbf{H}_{\mathrm{B}} \mathbf{- 1}$); ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta_{\mathrm{C}} 166.8,137.0,136.1,135.4,130.4,130.2,129.2$, 128.6, 127.0, 90.7 - 89.2 (2C, m, CHF-3), 88.0 - 86.6 (2C, m, CHF-2), 66.3, 60.2, 55.9, 55.7, 55.3, 42.0, $27.3\left(\mathrm{~m}, \mathbf{C H}_{2}-1\right) ;{ }^{19} \mathbf{F}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR ($470 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO) $\delta_{\mathrm{F}}-189.4(2 \mathrm{~F}, \mathrm{~m}, \mathrm{CHF}-2$), -
209.7 (2F, m, CHF-3); (ESI +) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$: 503.1934 found 503.1916.

Benzyl (2S, 5R, 6R)-6- [(N-((2S)-2-(tert-Butoxycarbonylamino)-3-(4-(all cis-2,3,5,6-tetrafluorocyclohex-1-yl)phenyl)propanoyl)amino)]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate (21).

HOBt ($40 \mathrm{mg}, 0.3 \mathrm{mmol}$), EDCI hydrochloride ($73 \mathrm{mg}, 0.38 \mathrm{mmol}$) and N -methylmorpholine ($58 \mathrm{mg}, 0.57 \mathrm{mmol}$) were added to a solution of N -Boc amino acid 13 ($80 \mathrm{mg}, 0.191 \mathrm{mmol}$) in dry DMF (1 mL). The solution was stirred for 5 min at $0^{\circ} \mathrm{C}$, and then 6 -APA ptoluenesulfonate ($100 \mathrm{mg}, 0.21 \mathrm{mmol}$) was added and the solution stirred at room temperature 12 h . The reaction was diluted with sat. ammonium chloride solution (10 mL) and the stirred for 1 h . The product was extracted into ethyl acetate ($2 \times 30 \mathrm{~mL}$) and the organic layer washed with $\mathrm{NaHCO}_{3} 10 \%(20 \mathrm{~mL})$ and brine (20 mL) and then dried over MgSO_{4}. Solvent removal gave the product which was purified over silica gel using ethyl acetate / petrol (1:1) as an eluent. This gave peptide 18 as a white solid ($81 \mathrm{mg}, 60 \%$). mp $153-154{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{20}+140.0\left(\mathrm{c}=2 \times 10^{-4}, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}} 7.41(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $7.8 \mathrm{~Hz}, \mathrm{CH}-2$ '), 7.38 - 7.34 (5H, m, CH2 Ph), 7.21 ($2 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}$ CH-3`), 6.74 (\(1 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}\), C-6"-NH), 5.59 (1H, dd, J \(6.6,3.9 \mathrm{~Hz}, \mathbf{H}-6\) "), 5.49 (1H, d, J \(4.3 \mathrm{~Hz}, \mathbf{H}-5 \times\)), 5.20 - 5.14 (2H, m, PhCH 2), 5.08 - 4.90 (\(3 \mathrm{H}, \mathrm{m}, \mathrm{CHF}-3\), NHBoc), 4.78 (1H, bs, H-1`), $4.71-4.53$ (2H, m, CHF-2),

$\mathrm{t}, \mathrm{J} 37.3 \mathrm{~Hz}, \mathrm{H}-4), 2.49-2.42\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\mathbf{1}\right), 1.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3\right.$ " $\left.-\mathrm{CH}_{3 \mathrm{~A}}\right), 1.40\left(9 \mathrm{H}, \mathrm{s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{C} 3 `-\mathrm{CH}_{3 \mathrm{~B}}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{C}} 173.1,170.9,167.5,155.4,136.2$, 134.6, 134.3, 129.7, 129.6, 128.79, 128.74, 128.71, 89.9 - 88.1 (m, CHF-3), 87.9 - 86.1 (m, CHF-2), 70.4, 67.7, 67.5, 64.8, 58.5, 55.7, 43.6, 37.6, 31.5, 29.7, 28.8, 28.4, 27.1 (tt, J 22.0, $2.8 \mathrm{~Hz}, \mathbf{C H}_{2}-1$), 26.8 ; ${ }^{\mathbf{1 9}}{ }^{\mathbf{F}}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{F}}-190.2(2 \mathrm{~F}, \mathrm{~m}, \mathrm{CHF}-2),-209.7(2 \mathrm{~F}$, m, CHF-3); (ESI+) $m / z[M+N a]^{+}$calcd for $\mathrm{C}_{35} \mathrm{H}_{41} \mathrm{~F}_{4} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}^{+}: 730.2550$ found 730.2531.

Benzyl (2S, 5R, 6R)-6- [(N-((S)-2-(ammonium hydrochloride)-3-(4-(all cis-2,3,5,6 tetrafluorocyclohex-1-yl)phenyl)propanoyl)amino)]-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylate. (22).

Boc-dipeptide 18 ($20 \mathrm{mg}, 0.028 \mathrm{mmol}$) was added to mixture of HCl 4 M and 1,4-dioxane $(1: 1)(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and then and the mixture was stirred at room temperature for 1 h . The reaction was diluted with water (10 mL) and extracted into diethyl ether ($2 \times 15 \mathrm{ml}$). The organic layer was washed with water (20 mL) and the aqueous collected and evaporated under vacuum. The product was purified using a C-18 coated silica cartridge using methanol-water as the eluent (1:1) to afford hydrochloride salt 19 ($15 \mathrm{mg}, 83 \%$) as a colourless solid. mp decompose at $130^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+95.0$ ($\mathrm{c}=2 \times 10^{-4}$, DMSO); ${ }^{\mathbf{1}} \mathbf{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$) $\delta_{\mathrm{H}} 7.47-7.28$ ($8 \mathrm{H}, \mathrm{m}$ Ar-H), 7.15 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.1,1.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}$), 5.27 - 5.16 (3H, m, PhCH2, NH), 5.27 - 4.82 (4H, m, CHF-2, CHF-3), 4.75 - 4.70 (1H, m, H-6'), 4.14 $4.03\left(1 \mathrm{H}, \mathrm{m}, \mathbf{H}-6^{\prime}\right), 3.83-3.64\left(3 \mathrm{H}, \mathrm{m}, \mathrm{NH}_{3}\right), 3.43-3.34(1 \mathrm{H}, \mathrm{m}, \mathbf{H}-5 `), 3.30(2 \mathrm{H}, \mathrm{bs}$,
$\mathrm{PhCH}_{2}-5^{`}$), $3.14\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-3^{\prime \prime}\right)$ 2.68-2.33 (3H, m, $\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathbf{- 1}, \mathrm{CH}_{\mathrm{A}} \mathbf{H}_{\mathrm{B}} \mathbf{- 1}, \mathbf{H}-4$), 1.57 (3H, s, C3"$\mathrm{CH}_{3} \mathrm{~A}$), 1.18-1.14 (3H, m, C3"-CH3B); ${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}$) $\delta_{\mathrm{C}} 172.2,169.0$, 168.7, 137.6, 136.8, 135.1, 129.9, 128.9, 128.7, 128.4, 128.3, 90.7 - 89.0 (m, CHF-3), 88.1 86.3 (m, CHF-2), 74.1, 67.0, 66.5, 65.6, 44.8, 42.6, 41.5, 40.1, $29.4-28.4\left(3 \mathrm{C}, \mathrm{CH}_{2}-1, \mathrm{CH}_{3 A}\right.$, $\mathbf{C H}_{3 \mathrm{~B}}$ under the solvent peak) ; ${ }^{\mathbf{1 9}} \mathbf{F}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}$ (282 MHz , d6-Acetone) $\delta_{\mathrm{F}}-191.3$ (2F, m, CHF2), -210.9 (2F, m, CHF-3); HRMS (ESI+) m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{ClF}_{4} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}$: 644.1895 found 644.2524 .

Crystallographic Details for single X-ray structure of 11

Data Collection

A colorless needle crystal of $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClF}_{4} \mathrm{NO}_{2}$ having approximate dimensions of $0.300 \times 0.030 \times 0.010 \mathrm{~mm}$ was mounted in a loop. All measurements were made on a Rigaku XtaLAB P100 diffractometer using multi-layer mirror monochromated $\mathrm{Cu}-\mathrm{K} \alpha$ radiation.

The crystal-to-detector distance was 30.10 mm .
Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

$$
\begin{aligned}
& a=5.3827(19) \AA \\
& b=7.108(2) \AA \quad \beta=97.301(6)^{0} \\
& c=20.990(7) \AA \\
& V=796.6(4) \AA^{3}
\end{aligned}
$$

For $Z=2$ and F.W. $=355.76$, the calculated density is $1.483 \mathrm{~g} / \mathrm{cm}^{3}$. Based on the reflection conditions of:

OkO: $\mathrm{k}=2 \mathrm{n}$
packing considerations, a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

$$
\text { P2 } 1 \text { (\#4) }
$$

The data were collected at a temperature of $-100 \pm 1^{\circ} \mathrm{C}$ to a maximum 2θ value of 136.4°. A total of 3983 oscillation images were collected. A sweep of data was done using ϕ scans from 0.0 to 200.0° in 0.50° step, at $\omega=0.0^{\circ}$ and $\chi=0.0^{\circ}$. The exposure rate was 40.0 [sec./O]. The detector swing angle was -30.73°. A second sweep was performed using ω scans from -72.0 to 1.0° in 0.50° step, at $\chi=0.0^{\circ}$ and $\phi=-90.0^{\circ}$. The exposure rate was 40.0 [sec. $/ 0$]. The detector swing angle was -30.730 . Another sweep was performed using ω scans from -113.0 to -71.0° in 0.500 step, at $\chi=0.00$ and $\phi=-45.0^{\circ}$. The exposure rate was 40.0 [sec./ O]. The detector swing angle was -30.73 O . Another sweep was performed using ϕ scans from 0.0 to 200.0° in 0.50° step, at $\omega=0.0^{\circ}$ and $\chi=0.0^{\circ}$. The exposure rate was 40.0 [sec./ 0]. The detector swing angle
was -67.73°. Another sweep was performed using ω scans from -85.0 to -13.0^{0} in 0.50° step, at $\chi=0.0^{\circ}$ and $\phi=90.0^{\circ}$. The exposure rate was 40.0 [sec./O]. The detector swing angle was -67.730 . Another sweep was performed using ω scans from -133.0 to -93.00 in 0.50° step, at $\chi=0.00$ and $\phi=0.00$. The exposure rate was 40.0 [sec./0]. The detector swing angle was -67.73^{0}. Another sweep was performed using ω scans from 85.0 to -12.0° in 0.50° step, at $\chi=0.0^{\circ}$ and $\phi=-90.0^{\circ}$. The exposure rate was 40.0 [sec./O]. The detector swing angle was -67.73°. Another sweep was performed using ω scans from -126.0 to -86.0° in 0.50° step, at $\chi=0.0^{\circ}$ and $\phi=-180.0^{\circ}$. The exposure rate was 40.0 [sec. $/ 0$]. The detector swing angle was -67.730 . Another sweep was performed using ϕ scans from 0.0 to 200.0° in 0.50° step, at $\omega=-25.0^{\circ}$ and $\chi=0.0^{\circ}$. The exposure rate was 40.0 [sec./ 0]. The detector swing angle was -110.730 . Another sweep was performed using ω scans from -128.0 to -20.0° in 0.50° step, at $\chi=0.0^{\circ}$ and $\phi=-135.0^{\circ}$. The exposure rate was 40.0 [sec./ ${ }^{\circ}$]. The detector swing angle was 110.730. Another sweep was performed using ω scans from -128.0 to -20.0° in 0.50° step, at $\chi=0.0^{\circ}$ and $\phi=45.0^{\circ}$. The exposure rate was 40.0 [$\mathrm{sec} . /{ }^{\circ} \mathrm{O}$. The detector swing angle was -110.73^{0}. Another sweep was performed using ω scans from -115.0 to 20.0° in 0.50° step, at $\chi=0.0^{\circ}$ and $\phi=-45.0^{\circ}$. The exposure rate was 40.0 [sec. $/^{\circ}$]. The detector swing angle was -110.73°. Another sweep was performed using ω scans from -113.0 to -23.0° in 0.50° step, at $\chi=0.0^{\circ}$ and $\phi=135.0^{\circ}$. The exposure rate was 40.0 [sec. $/ 0$]. The detector swing angle was -110.730 . Another sweep was performed using ω scans from -141.0 to -46.0° in 0.50° step, at $\chi=0.0^{\circ}$ and $\phi=-90.0^{\circ}$. The exposure rate was 40.0 [$\mathrm{sec} . /{ }^{\circ} \mathrm{O}$. The detector swing angle was -110.73°. Another sweep was performed using ω scans from -141.0 to -46.0° in 0.50° step, at $\chi=0.0^{\circ}$ and $\phi=-$ 180.0^{0}. The exposure rate was 40.0 [sec./ 0]. The detector swing angle was -110.730 . Another sweep was performed using ω scans from -141.0 to -59.00 in 0.500 step, at $\chi=0.0^{\circ}$ and $\phi=90.0^{\circ}$. The exposure rate was 40.0 [sec. $/^{\circ}$]. The detector swing angle was -110.730 . Another sweep was performed using ω scans from -141.0 to -55.0^{0} in 0.50° step, at $\chi=0.0^{\circ}$ and $\phi=0.0^{\circ}$. The exposure rate was 40.0 [$\mathrm{sec} . / \mathrm{O}$]. The detector swing angle was -110.73°. Another sweep was performed using ω scans from -141.0 to -59.0° in 0.50° step, at $\chi=0.0^{\circ}$ and $\phi=45.0^{\circ}$. The exposure rate was 40.0 [sec./ 0]. The detector swing angle was -110.730 . Another sweep was performed using ω scans from -141.0 to -78.0° in 0.50° step, at $\chi=0.0^{\circ}$ and $\phi=-45.0^{\circ}$. The exposure rate was 40.0 [sec./O]. The detector swing angle was -110.730 . Another sweep was performed using ω scans from -140.0 to -77.0° in 0.50° step, at $\chi=0.0^{\circ}$ and $\phi=-135.0^{\circ}$. The exposure rate was 40.0 [sec. $/ 0$]. The detector swing angle was -110.730 . Another sweep was performed using ω scans from -140.0 to -56.0° in 0.50° step, at $\chi=0.0^{\circ}$ and $\phi=135.0^{0}$. The exposure rate was 40.0 [sec./O]. The detector swing angle was 110.730. Readout was performed in the 0.172 mm pixel mode.

Data Reduction

Of the 7844 reflections were collected, where 2667 were unique ($R_{i n t}=0.1436$); equivalent reflections were merged. Data were collected and processed using CrystalClear (Rigaku). 1

The linear absorption coefficient, μ, for $\mathrm{Cu}-\mathrm{K} \alpha$ radiation is $26.058 \mathrm{~cm}^{-1}$. An empirical absorption correction was applied which resulted in transmission factors ranging from 0.214 to 0.974 . The data were corrected for Lorentz and polarization effects. A correction for secondary extinction ${ }^{2}$ was applied (coefficient $=0.038050$).

Structure Solution and Refinement

The structure was solved by direct methods ${ }^{3}$ and expanded using Fourier techniques.

The crystal is a non-merohedral twin with twin law:

$$
\begin{array}{rrr}
-1.00000 & 0.00000 & 0.00000 \\
0.00000 & -1.00000 & 0.00000 \\
0.99100 & 0.00000 & 1.00000
\end{array}
$$

Twin component \#1 comprises 28.50% of the crystal.
The non-hydrogen atoms were refined anisotropically. Some hydrogen atoms were refined isotropically, and the rest were refined using the riding model. The final cycle of full-matrix least-squares refinement ${ }^{4}$ on F^{2} was based on 2667 observed reflections and 222 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$
\begin{gathered}
\mathrm{R} 1=\Sigma| | \mathrm{Fo}|-|\mathrm{Fc}|| / \Sigma|\mathrm{Fo}|=0.0966 \\
\mathrm{wR} 2=\left[\Sigma\left(\mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}\right) / \Sigma \mathrm{w}\left(\mathrm{Fo}^{2}\right)^{2}\right]^{1 / 2}=0.2711
\end{gathered}
$$

The goodness of fit 5 was 0.98 . Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.59 and -0.33 e^{-} / \AA^{3}, respectively. The final Flack parameter 6 was $-0.03(6)$, indicating that the present absolute structure is correct. 7

Neutral atom scattering factors were taken from International Tables for Crystallography (IT), Vol. C, Table 6.1.1.4 8. Anomalous dispersion effects were
included in Fcalc ${ }^{9}$; the values for Δf^{\prime} and $\Delta f^{\prime \prime}$ were those of Creagh and McAuley ${ }^{10}$. The values for the mass attenuation coefficients are those of Creagh and Hubbell ${ }^{11}$. All calculations were performed using the CrystalStructure ${ }^{12}$ crystallographic software package except for refinement, which was performed using SHELXL201313.

References for the above paragraph

(1) CrystalClear: Data Collection and Processing Software, Rigaku Corporation (1998-2014). Tokyo 196-8666, Japan.
(2) Larson, A.C. (1970), Crystallographic Computing, 291-294. F.R. Ahmed, ed. Munksgaard, Copenhagen (equation 22, with V replaced by the cell volume).
(3) SIR2011: Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. and Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.
(4) Least Squares function minimized: (SHELXL2013)
$\Sigma w\left(F_{0}{ }^{2}-F_{c}{ }^{2}\right)^{2} \quad$ where $w=$ Least Squares weights.
(5) Goodness of fit is defined as:

$$
\left[\Sigma w\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2} /\left(\mathrm{N}_{\mathrm{o}}-\mathrm{N}_{\mathrm{v}}\right)\right]^{1 / 2}
$$

where: $\quad N_{0}=$ number of observations
$N_{V}=$ number of variables
(6) Parsons, S. and Flack, H. (2004), Acta Cryst. A60, s61.
(7) Flack, H.D. and Bernardinelli (2000), J. Appl. Cryst. 33, 114-1148.
(8) International Tables for Crystallography, Vol.C (1992). Ed. A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht, Netherlands, Table 6.1.1.4, pp. 572.
(9) Ibers, J. A. \& Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).
(10) Creagh, D. C. \& McAuley, W.J .; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992).
(11) Creagh, D. C. \& Hubbell, J.H..; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages

200-206 (1992).
(12) CrystalStructure 4.1: Crystal Structure Analysis Package, Rigaku Corporation (2000-2014). Tokyo 196-8666, Japan.
(13) SHELXL2013: Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClF}_{4} \mathrm{NO}_{2}$
Formula Weight	355.76
Crystal Color, Habit	colorless, needle
Crystal Dimensions	$0.300 \times 0.030 \times 0.010 \mathrm{~mm}$
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	$\begin{aligned} & a=5.3827(19) \AA \\ & b=7.108(2) \AA \\ & c=20.990(7) \AA \\ & \beta=97.301(6) \mathrm{O} \\ & V=796.6(4) \AA^{3} \end{aligned}$
Space Group	P21 (\#4)
Z value	2
$\mathrm{D}_{\text {calc }}$	$1.483 \mathrm{~g} / \mathrm{cm}^{3}$
F_{000}	368.00
$\mu(\mathrm{CuK} \alpha)$	$26.058 \mathrm{~cm}^{-1}$

Diffractometer	XtaLAB P100
Radiation	$\operatorname{CuK} \alpha(\lambda=1.54187 \AA)$ multi-layer mirror monochromated
Voltage, Current	40kV, 30mA
Temperature	$-100.0^{\circ} \mathrm{C}$
Detector Aperture	$83.8 \times 33.5 \mathrm{~mm}$
Data Images	3983 exposures
ϕ oscillation Range ($\omega=0.0, \chi=0.0$)	0.0-200.00
Exposure Rate	$40.0 \mathrm{sec} . / \mathrm{O}$
Detector Swing Angle	-30.730
ω oscillation Range ($\chi=0.0, \phi=-90.0$)	-72.0-1.00
Exposure Rate	40.0 sec./o
Detector Swing Angle	-30.730
ω oscillation Range ($\chi=0.0, \phi=-45.0$)	-113.0--71.00
Exposure Rate	$40.0 \mathrm{sec} . / \mathrm{O}$
Detector Swing Angle	-30.730
ϕ oscillation Range ($\omega=0.0, \chi=0.0$)	0.0-200.00
Exposure Rate	$40.0 \mathrm{sec} . /{ }^{\text {a }}$
Detector Swing Angle	-67.730
ω oscillation Range ($\chi=0.0, \phi=90.0$)	-85.0--13.00
Exposure Rate	40.0 sec./o

Detector Swing Angle	-67.730
ω oscillation Range ($\chi=0.0, \phi=0.0$)	-133.0--93.00
Exposure Rate	40.0 sec./o
Detector Swing Angle	-67.730
ω oscillation Range ($\chi=0.0, \phi=-90.0$)	-85.0--12.00
Exposure Rate	40.0 sec./o
Detector Swing Angle	-67.730
ω oscillation Range ($\chi=0.0, \phi=-180.0$)	-126.0--86.00
Exposure Rate	40.0 sec./o
Detector Swing Angle	-67.730
ϕ oscillation Range ($\omega=-25.0, \chi=0.0$)	0.0-200.00
Exposure Rate	40.0 sec./0
Detector Swing Angle	-110.730
ω oscillation Range ($\chi=0.0, \phi=-135.0$)	-128.0--20.00
Exposure Rate	40.0 sec./O
Detector Swing Angle	-110.730
ω oscillation Range ($\chi=0.0, \phi=45.0$)	-128.0--20.00
Exposure Rate	40.0 sec./o
Detector Swing Angle	-110.730
ω oscillation Range ($\chi=0.0, \phi=-45.0$)	-115.0--20.00
Exposure Rate	40.0 sec./O

Detector Swing Angle	-110.730
ω oscillation Range ($\chi=0.0, \phi=135.0$)	-113.0--23.00
Exposure Rate	40.0 sec./O
Detector Swing Angle	-110.730
ω oscillation Range ($\chi=0.0, \phi=-90.0$)	-141.0--46.00
Exposure Rate	40.0 sec./0
Detector Swing Angle	-110.730
ω oscillation Range ($\chi=0.0, \phi=-180.0$)	-141.0--46.00
Exposure Rate	40.0 sec./o
Detector Swing Angle	-110.730
ω oscillation Range ($\chi=0.0, \phi=90.0$)	-141.0--59.00
Exposure Rate	$40.0 \mathrm{sec} . / \mathrm{O}$
Detector Swing Angle	-110.730
ω oscillation Range ($\chi=0.0, \phi=0.0$)	-141.0--55.00
Exposure Rate	40.0 sec./o
Detector Swing Angle	-110.730
ω oscillation Range ($\chi=0.0, \phi=45.0$)	$-141.0-59.00$
Exposure Rate	40.0 sec./0
Detector Swing Angle	-110.730
ω oscillation Range ($\chi=0.0, \phi=-45.0$)	-141.0--78.00
Exposure Rate	40.0 sec./o
Detector Swing Angle	-110.730

ω oscillation Range ($\chi=0.0, \phi=-135.0$)
Exposure Rate

Detector Swing Angle
ω oscillation Range ($\chi=0.0, \phi=135.0$)
Exposure Rate

Detector Swing Angle
ω oscillation Range ($\chi=0.0, \phi=0.0$)
Exposure Rate

Detector Swing Angle
Detector Position
Pixel Size
$2 \theta_{\text {max }}$
No. of Reflections Measured
Parsons quotients (Flack x parameter): 359
Corrections
$-140.0-77.0^{0}$
40.0 sec./o
-110.730
$-140.0--56.0^{0}$
40.0 sec./o
-110.730
$-91.0--90.50$
$4.0 \mathrm{sec} . /{ }^{\circ}$
-30.73^{0}
90.10 mm
0.172 mm
136.4°
Total: 7844
Unique: $2667\left(\mathrm{R}_{\mathrm{int}}=0.1436\right)$

Lorentz-polarization
Absorption
(trans. factors: 0.214-0.974)
Secondary Extinction
(coefficient: 3.80500e-002)

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SIR2011)
Refinement	Full-matrix least-squares on F2
Function Minimized	$\Sigma \mathrm{w}\left(\mathrm{Fo}^{2}-\mathrm{Fc}^{2}\right)^{2}$
Least Squares Weights	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{Fo}{ }^{2}\right)+(0.1611 \cdot \mathrm{P})^{2}\right. \\ & +0.0000 \cdot \mathrm{P}] \\ & \text { where } \mathrm{P}=\left(\operatorname{Max}\left(\mathrm{Fo}^{2}, 0\right)+2 \mathrm{Fc}^{2}\right) / 3 \end{aligned}$
$2 \theta_{\text {max }}$ cutoff	136.40
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	2667
No. Variables	222
Reflection/Parameter Ratio	12.01
Residuals: R1 (I>2.00б(I))	0.0966
Residuals: R (All reflections)	0.1193
Residuals: wR2 (All reflections)	0.2711
Goodness of Fit Indicator	0.978
Flack parameter (Parsons' quotients $=359$)	-0.03(6)
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	$0.59 \mathrm{e}^{-/} / \AA^{3}$
Minimum peak in Final Diff. Map	$-0.33 e^{-/ /} \AA^{3}$

Table 1. Atomic coordinates and $\mathrm{B}_{\text {iso }} / \mathrm{B}_{\text {eq }}$

atom	x	y	z	$\mathrm{B}_{\text {eq }}$
Cl1	$0.7416(7)$	$0.4443(6)$	$0.9258(2)$	$6.55(9)$
F8	$0.5256(17)$	$0.6947(12)$	$0.6644(5)$	$6.09(18)$
F9	$0.9512(19)$	$0.8566(13)$	$0.6395(6)$	$7.4(2)$
F11	$0.6905(19)$	$0.3659(16)$	$0.4920(5)$	$7.2(2)$
F12	$0.3734(15)$	$0.4077(15)$	$0.5814(4)$	$6.3(2)$
O15	$0.5873(19)$	$-0.0674(18)$	$0.9385(6)$	$6.9(2)$
O16	$0.336(2)$	$-0.2767(19)$	$0.8827(7)$	$7.2(3)$
N17	$0.228(2)$	$0.1933(18)$	$0.9441(7)$	$5.9(2)$
C1	$0.522(2)$	$0.303(2)$	$0.7156(9)$	$5.5(3)$
C2	$0.398(3)$	$0.415(2)$	$0.7561(8)$	$6.1(3)$
C3	$0.228(3)$	$0.332(2)$	$0.7949(7)$	$5.6(3)$
C4	$0.203(3)$	$0.138(2)$	$0.7964(8)$	$5.6(3)$
C5	$0.333(3)$	$0.029(2)$	$0.7567(10)$	$6.9(4)$
C6	$0.488(3)$	$0.110(2)$	$0.7161(10)$	$6.2(3)$
C7	$0.697(3)$	$0.3812(19)$	$0.6689(8)$	$5.3(3)$
C8	$0.743(3)$	$0.593(2)$	$0.6780(8)$	$5.5(3)$
C9	$0.921(3)$	$0.660(2)$	$0.6314(9)$	$6.0(3)$
C10	$0.830(3)$	$0.614(3)$	$0.5623(10)$	$6.9(4)$
C11	$0.788(3)$	$0.404(2)$	$0.5560(8)$	$5.5(3)$
C12	$0.611(3)$	$0.331(2)$	$0.6011(8)$	$6.0(3)$
C13	$0.028(3)$	$0.052(2)$	$0.8403(7)$	$5.5(3)$
C14	$0.154(3)$	$0.010(2)$	$0.9093(8)$	$5.7(3)$
C15	$0.389(3)$	$-0.1135(19)$	$0.9114(9)$	$6.2(3)$

$B_{e q}=8 / 3 \pi^{2}\left(U_{11}\left(a^{*}\right)^{2}+U_{22}\left(b b^{*}\right)^{2}+U_{33}\left(\mathrm{cc}^{*}\right)^{2}+2 \mathrm{U}_{12}\left(a a^{*} b b^{*}\right) \cos \gamma+2 U_{13}\left(a a^{*} c c^{*}\right) \cos \beta+2 U_{23}\left(b b^{*} c c^{*}\right) \cos \alpha\right)$

Table 2. Atomic coordinates and $\mathrm{B}_{\text {iso }}$ involving hydrogen atoms

atom	x	y	z	$B_{\text {iso }}$
H16	$0.46(4)$	$-0.38(3)$	$0.888(12)$	10.8258
H17A	$0.27(5)$	$0.15(3)$	$0.988(4)$	8.8163
H17B	$0.11(3)$	$0.30(2)$	$0.933(10)$	8.8163
H17C	$0.38(2)$	$0.24(3)$	$0.930(10)$	8.8163
H2	0.42637	0.54665	0.75783	7.368
H3	0.13214	0.40909	0.81956	6.691
H5	0.31536	-0.10441	0.75724	8.291
H6	0.57142	0.03250	0.68854	7.398
H7	0.86264	0.31831	0.68033	6.404
H8	0.81885	0.61802	0.72320	6.588
H9	1.08745	0.59851	0.64333	7.177
H10A	0.95597	0.65384	0.53453	8.330
H10B	0.67170	0.68107	0.54833	8.330
H11	0.95327	0.33873	0.56586	6.642
H12	0.60066	0.19090	0.59731	7.220
H13A	-0.04170	-0.06680	0.82080	6.658
H13B	-0.11395	0.13911	0.84285	6.658
H14	0.03015	-0.05643	0.93298	6.786

Table 3. Anisotropic displacement parameters

atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Cl1	$0.071(2)$	$0.0630(18)$	$0.115(3)$	$0.0164(17)$	$0.0100(18)$	$-0.000(2)$
F8	$0.060(5)$	$0.056(5)$	$0.117(6)$	$0.004(4)$	$0.021(4)$	$0.001(4)$
F9	$0.076(6)$	$0.070(6)$	$0.135(8)$	$-0.020(5)$	$0.021(5)$	$-0.010(5)$
F11	$0.073(6)$	$0.109(8)$	$0.095(6)$	$-0.011(5)$	$0.017(5)$	$-0.008(5)$
F12	$0.054(4)$	$0.087(6)$	$0.100(6)$	$-0.004(4)$	$0.011(4)$	$-0.013(5)$
O15	$0.057(6)$	$0.060(5)$	$0.148(9)$	$-0.005(6)$	$0.023(6)$	$0.002(7)$
O16	$0.072(7)$	$0.069(7)$	$0.130(9)$	$0.009(6)$	$0.002(6)$	$-0.001(6)$
N17	$0.067(7)$	$0.058(6)$	$0.096(8)$	$0.007(6)$	$0.004(7)$	$-0.010(6)$
C1	$0.046(7)$	$0.050(7)$	$0.114(11)$	$0.001(5)$	$0.010(7)$	$0.000(7)$
C2	$0.072(9)$	$0.049(8)$	$0.112(11)$	$0.009(7)$	$0.011(8)$	$0.002(7)$
C3	$0.063(8)$	$0.058(8)$	$0.092(9)$	$-0.005(6)$	$0.013(7)$	$0.002(7)$
C4	$0.057(8)$	$0.055(7)$	$0.103(10)$	$0.011(7)$	$0.015(7)$	$0.004(7)$
C5	$0.062(9)$	$0.049(8)$	$0.153(16)$	$-0.011(7)$	$0.019(9)$	$-0.001(9)$
C6	$0.062(8)$	$0.058(8)$	$0.116(12)$	$0.001(7)$	$0.017(8)$	$-0.014(8)$
C7	$0.054(8)$	$0.049(7)$	$0.101(10)$	$0.004(6)$	$0.010(6)$	$-0.003(6)$
C8	$0.060(8)$	$0.066(9)$	$0.083(9)$	$-0.006(7)$	$0.010(6)$	$-0.012(6)$
C9	$0.059(8)$	$0.058(8)$	$0.112(11)$	$-0.008(6)$	$0.019(8)$	$-0.010(7)$
C10	$0.040(8)$	$0.086(12)$	$0.138(15)$	$0.004(7)$	$0.017(8)$	$0.007(10)$
C11	$0.064(8)$	$0.058(9)$	$0.091(8)$	$-0.002(7)$	$0.020(6)$	$-0.005(6)$
C12	$0.057(8)$	$0.075(10)$	$0.099(10)$	$0.008(7)$	$0.019(7)$	$-0.007(8)$
C13	$0.061(8)$	$0.066(9)$	$0.082(9)$	$-0.003(6)$	$0.003(7)$	$0.001(7)$
C14	$0.064(8)$	$0.063(7)$	$0.089(8)$	$-0.002(7)$	$0.011(7)$	$-0.003(7)$
C15	$0.051(8)$	$0.047(7)$	$0.141(13)$	$-0.010(6)$	$0.018(8)$	$0.005(7)$

The general temperature factor expression: $\exp \left(-2 \pi^{2}\left(a^{*} U_{11} h^{2}+b^{*} U_{22} k^{2}+c^{*} U_{33} 1^{2}\right.\right.$ $\left.\left.+2 a^{*} b^{*} U_{12} h k+2 a^{*} c^{*} U_{13} h l+2 b^{*} c^{*} U_{23} k l\right)\right)$

Table 4. Fragment Analysis
fragment: 1 $\mathrm{Cl}(1)$
fragment: 2

$\mathrm{F}(8)$	$\mathrm{F}(9)$	$\mathrm{F}(11)$	$\mathrm{F}(12)$	$\mathrm{O}(15)$
$\mathrm{O}(16)$	$\mathrm{N}(17)$	$\mathrm{C}(1)$	$\mathrm{C}(2)$	$\mathrm{C}(3)$
$\mathrm{C}(4)$	$\mathrm{C}(5)$	$\mathrm{C}(6)$	$\mathrm{C}(7)$	$\mathrm{C}(8)$
$\mathrm{C}(9)$	$\mathrm{C}(10)$	$\mathrm{C}(11)$	$\mathrm{C}(12)$	$\mathrm{C}(13)$
$\mathrm{C}(14)$	$\mathrm{C}(15)$			

Table 5. Bond lengths (\AA)

atom	atom	distance	atom	atom	distance
F8	C8	$1.376(18)$	F9	C9	$1.415(18)$
F11	C11	$1.406(18)$	F12	C12	$1.404(17)$
O15	C15	$1.191(19)$	O16	C15	$1.32(2)$
N17	C14	$1.52(2)$	C1	C2	$1.39(2)$
C1	C6	$1.38(2)$	C1	C7	$1.55(2)$
C2	C3	$1.43(2)$	C3	C4	$1.39(2)$
C4	C5	$1.39(3)$	C4	C13	$1.53(2)$
C5	C6	$1.39(3)$	C7	C8	$1.53(2)$
C7	C12	$1.48(2)$	C8	C9	$1.53(2)$
C9	C10	$1.51(3)$	C10	C11	$1.51(3)$
C11	C12	$1.52(2)$	C13	C14	$1.55(2)$
C14	C15	$1.53(2)$			

Table 6. Bond lengths involving hydrogens (\AA)

atom	atom	distance	atom	atom	distance
016	H16	1.0(2)	N17	H17A	0.99(11)
N17	H17B	0.98(16)	N17	H17C	0.98(17)
C2	H2	0.950	C3	H3	0.950
C5	H5	0.950	C6	H6	0.950
C7	H7	1.000	C8	H8	1.000
C9	H9	1.000	C10	H10A	0.990
C10	H10B	0.990	C11	H11	1.000
C12	H12	1.000	C13	H13A	0.990
C13	H13B	0.990	C14	H14	1.000

Table 7. Bond angles (${ }^{(}$)

atom	atom	atom	angle	atom	atom	atom	angle
C2	C1	C6	$119.1(16)$	C2	C1	C7	124.0(13)
C6	C1	C7	$116.9(15)$	C1	C2	C3	$120.3(14)$
C2	C3	C4	$119.7(15)$	C3	C4	C5	$118.9(15)$
C3	C4	C13	$118.7(14)$	C5	C4	C13	$122.3(14)$
C4	C5	C6	$121.5(15)$	C1	C6	C5	$120.4(17)$
C1	C7	C8	$112.1(13)$	C1	C7	C12	$112.5(12)$
C8	C7	C12	$112.5(13)$	F8	C8	C7	$111.8(12)$
F8	C8	C9	$106.6(12)$	C7	C8	C9	$109.4(13)$
F9	C9	C8	$107.7(13)$	F9	C9	C10	$110.6(14)$
C8	C9	C10	$113.2(13)$	C9	C10	C11	$109.1(16)$
F11	C11	C10	$107.9(13)$	F11	C11	C12	$109.9(12)$
C10	C11	C12	$112.4(14)$	F12	C12	C7	$110.5(13)$
F12	C12	C11	$107.8(12)$	C7	C12	C11	$111.8(13)$
C4	C13	C14	$114.2(13)$	N17	C14	C13	$110.0(12)$
N17	C14	C15	$108.1(12)$	C13	C14	C15	$113.6(14)$
O15	C15	O16	$126.1(15)$	O15	C15	C14	$122.8(14)$
O16	C15	C14	$111.0(13)$				

Table 8. Bond angles involving hydrogens (${ }^{(}$)

atom	atom	atom	angle	atom	atom	atom	angle
H16	O16	C15	$118(13)$	H17A	N17	H17B	123(18)
H17A	N17	H17C	$109(18)$	H17A	N17	C14	100(12)
H17B	N17	H17C	$99(17)$	H17B	N17	C14	$115(10)$
H17C	N17	C14	$110(13)$	C1	C2	H2	119.9
C3	C2	H2	119.9	C2	C3	H3	120.2
C4	C3	H3	120.2	C4	C5	H5	119.3
C6	C5	H5	119.3	C1	C6	H6	119.8
C5	C6	H6	119.8	C1	C7	H7	106.4
C8	C7	H7	106.4	C12	C7	H7	106.4
F8	C8	H8	109.7	C7	C8	H8	109.7
C9	C8	H8	109.7	F9	C9	H9	108.4
C8	C9	H9	108.4	C10	C9	H9	108.4
C9	C10	H10A	109.9	C9	C10	H10B	109.9
C11	C10	H10A	109.9	C11	C10	H10B	109.9
H10A	C10	H10B	108.3	F11	C11	H11	108.8
C10	C11	H11	108.8	C12	C11	H11	108.8
F12	C12	H12	108.9	C7	C12	H12	108.9
C11	C12	H12	108.9	C4	C13	H13A	108.7
C4	C13	H13B	108.7	C14	C13	H13A	108.7
C14	C13	H13B	108.7	H13A	C13	H13B	107.6
N17	C14	H14	108.4	C13	C14	H14	108.4
C15	C14	H14	108.4				

Table 9. Torsion Angles $\left({ }^{(}\right)$
(Those having bond angles > 160 or <20 degrees are excluded.)

atom1	atom2	atom3	atom4						
C2	C1	C6	C5	$-0(2)$	atom1		atom2	atom3	atom4

Table 10. Possible hydrogen bonds

Donor	H	Acceptor	D...A	D-H	H...A	D-H...A	
O16	H16	$\mathrm{Cl} 1{ }^{1}$	3.004(13)	1.0(2)	2.1(2)	163(21)	
N17	H17A	$\mathrm{Cl}_{1}{ }^{2}$	3.240(15)	0.99(11)	2.31(15)		158(17)
N17	H17A	015	2.690(18)	0.99(11)	2.6(2)	84(12)	intramo
N17	H17B	$\mathrm{Cl}_{1}{ }^{3}$	3.153(14)	0.98(16)	2.25(18)		154(15)
N17	H17C	O 15	2.690(18)	0.98(17)	2.5(2)	92(15)	intramol

Symmetry Operators:
(1) $X, Y-1, Z$
(2) $-X+1, Y+1 / 2-1,-Z+2$
(3) $X-1, Y, Z$

Table 11. Intramolecular contacts less than $3.60 \AA$

atom	atom	distance	atom	atom	distance F8
F9	$2.673(14)$	F8	F12	$2.739(13)$	
F8	C1	$2.986(17)$	F8	C2	$2.912(19)$
F8	C10	$2.92(2)$	F8	C11	$3.501(19)$
F8	C12	$2.969(19)$	F11	F12	$2.710(14)$
F12	C1	$2.925(19)$	F12	C6	$3.52(2)$
F12	C8	$2.962(17)$	F12	C9	$3.495(18)$
F12	C10	$2.932(19)$	O15	N17	$2.690(18)$
O15	C13	$3.530(18)$	O16	C4	$3.49(2)$
O16	C5	$3.42(2)$	O16	C13	$2.94(2)$
N17	C3	$3.28(2)$	C2	C5	$3.11(2)$
C1	C4	$2.82(2)$	C3	C6	$2.77(2)$
C2	C8	$2.92(2)$	C4	C15	$3.79(2)$
C3	C14	$3.38(2)$	C5	C15	$3.38(3)$
C5	C14	$3.46(3)$	C7	C10	$2.94(3)$
C6	C12	$3.02(3)$	C9	C12	$2.90(2)$
C8	C11	$2.93(2)$			

Table 12. Intramolecular contacts less than $3.60 \AA$ involving hydrogens

atom	atom	distance	atom	atom	distance
F8	H2	2.347	H7	3.226	
F8	H9	3.186	F8	H10B	2.654
F9	H8	2.605	F9	H10A	2.636
F9	H10B	2.598	F11	H10A	2.589
F11	H10B	2.541	F11	H12	2.635
F12	H6	3.563	F12	H7	3.203
F12	H10B	2.668	F12	H11	3.217
O15	H16	$2.5(2)$	O15	H17A	$2.6(2)$
O15	H17C	$2.5(2)$	O15	H14	2.987
O16	H5	2.894	O16	H13A	2.714
O16	H14	2.590	H16	C14	$3.3(2)$
H16	H5	3.368	H16	H14	3.471
N17	H3	3.019	N17	H13A	3.358
N17	H13B	2.658	H17A	C13	$3.28(11)$
H17A	C15	$2.58(18)$	H17A	H13B	3.460
H17A	H14	2.163	H17	H17B	C3

H17C	H13B	3.121	H17C	H14	2.861
C1	H3	3.302	C1	H5	3.261
C1	H8	2.743	C1	H12	2.692
C2	H6	3.256	C2	H7	3.204
C2	H8	2.846	C3	H5	3.248
C3	H13A	3.259	C3	H13B	2.596
C4	H2	3.286	C4	H6	3.281
C4	H14	3.415	C5	H3	3.254
C5	H13A	2.651	C5	H13B	3.283
C6	H2	3.254	C6	H7	2.683
C6	H12	2.701	C7	H2	2.771
C7	H6	2.615	C7	H9	2.717
C7	H10B	3.298	C7	H11	2.726
C8	H2	2.558	C8	H10A	3.384
C8	H10B	2.773	C8	H11	3.280

Table 12. Intramolecular contacts less than $3.60 \AA$ involving hydrogens (continued)

atom	atom	distance	atom	atom	distance
C8	H12	3.359	C9	H7	2.671
C9	H11	2.683	C10	H7	3.235
C10	H8	3.386	C10	H12	3.365
C11	H7	2.661	C11	H9	2.666
C12	H6	2.831	C12	H8	3.354
C12	H9	3.225	C12	H10A	3.366
C12	H10B	2.760	C13	H3	2.649
C13	H5	2.712	C14	H3	3.399
C14	H5	3.507	C15	H5	3.211
C15	H13A	2.825	C15	H13B	3.410
H2	H3	2.380	H2	H7	3.430
H2	H8	2.375	H3	H13A	3.511
H3	H13B	2.417	H5	H6	2.331
H5	H13A	2.489	H5	H13B	3.553
H6	H7	2.585	H6	H12	2.244
H7	H8	2.336	H7	H9	2.505
H7	H11	2.516	H7	H12	2.285
H8	H9	2.353	H9	H10A	2.337
H9	H10B	2.863	H9	H11	2.505
H10A	H11	2.335	H10B	H11	2.866
H11	H12	2.337	H13A	H14	2.338
H13B	H14	2.396			

Table 13. Intermolecular contacts less than $3.60 \AA$

atom	atom	distance	atom	atom	distance
Cl 1	O15 ${ }^{1}$	3.586(13)	Cl 1	O15 ${ }^{2}$	3.539(14)
Cl 1	O16 ${ }^{1}$	3.004(13)	Cl 1	N17	3.351(14)
Cl 1	N17 ${ }^{3}$	3.153(14)	Cl 1	N17 ${ }^{2}$	3.240(15)
Cl 1	C14 ${ }^{2}$	3.467(16)	Cl1	C15 ${ }^{2}$	3.60(2)
F8	F9 ${ }^{4}$	3.278(13)	F8	F115	3.554(13)
F8	C51	3.31(2)	F8	C61	3.159(18)
F8	C94	3.250(18)	F9	F8 ${ }^{3}$	3.278(13)
F9	F11 ${ }^{6}$	3.563(16)	F9	C5 ${ }^{7}$	3.24(2)
F11	F88	3.554(13)	F11	F99	3.563(16)
F11	C10 ${ }^{8}$	3.40(2)	F11	C10 ${ }^{9}$	3.45(2)
F12	C94	3.300 (19)	F12	C104	3.248(18)
F12	C114	3.126(17)	015	$\mathrm{Cl} 1{ }^{10}$	3.586(13)
015	Cl 111	3.539(14)	015	N17 ${ }^{11}$	3.053(18)
015	C13 ${ }^{3}$	3.44(2)	015	C14 ${ }^{3}$	3.24(2)
016	$\mathrm{Cl} 1{ }^{10}$	3.004(13)	016	C2 ${ }^{10}$	3.49(2)
016	C3 ${ }^{10}$	3.35(2)	N17	$\mathrm{Cl} 1{ }^{4}$	3.153(14)
N17	Cl 1	3.351(14)	N17	Cl 111	3.240(15)
N17	O15 ${ }^{2}$	3.053(18)	C2	O161	3.49(2)
C3	O16 ${ }^{1}$	3.35(2)	C5	F8 ${ }^{10}$	3.31(2)
C5	F9 ${ }^{12}$	3.24(2)	C6	F8 ${ }^{10}$	3.159(18)
C9	F8 ${ }^{3}$	3.250(18)	C9	F12 ${ }^{3}$	3.300(19)
C10	F115	3.40(2)	C10	F11 ${ }^{6}$	3.45(2)

C 10	$\mathrm{~F} 12^{3}$	$3.248(18)$	C 11	$\mathrm{~F} 12^{3}$	$3.126(17)$
C 13	$\mathrm{O} 15^{4}$	$3.44(2)$	C 14	$\mathrm{Cl1}^{11}$	$3.467(16)$
C 14	$\mathrm{O} 15^{4}$	$3.24(2)$	C 15	$\mathrm{Cl1} 11$	$3.60(2)$

Symmetry Operators:
(1) $X, Y+1, Z$
(2) $-X+1, Y+1 / 2,-Z+2$
(3) $X+1, Y, Z$
(4) $X-1, Y, Z$
(5) $-X+1, Y+1 / 2,-Z+1$
(6) $-X+2, Y+1 / 2,-Z+1$
(7) $X+1, Y+1, Z$
(8) $-X+1, Y+1 / 2-1,-Z+1$
(9) $-X+2, Y+1 / 2-1,-Z+1$
(11) $-X+1, Y+1 / 2-1,-Z+2$
(10) $X, Y-1, Z$
(12) $\mathrm{X}-1, \mathrm{Y}-1, \mathrm{Z}$

Table 14. Intermolecular contacts less than $3.60 \AA$ involving hydrogens

atom	atom	distance	atom	atom	distance
Cl1	H16 ${ }^{1}$	2.1(2)	Cl 1	H17A ${ }^{2}$	2.31(15)
Cl1	H17B	3.55(19)	Cl 1	H17B ${ }^{3}$	2.25(18)
Cl1	H17C	2.41(18)	Cl 1	H3 ${ }^{3}$	3.264
Cl1	H13B ${ }^{3}$	2.948	Cl 1	H142	3.060
F8	H5 ${ }^{1}$	2.771	F8	H61	2.460
F8	H94	2.441	F9	H5 ${ }^{5}$	2.966
F9	H61	2.708	F9	H65	3.591
F9	H7 ${ }^{1}$	3.440	F9	H12 ${ }^{1}$	3.093
F11	H10A ${ }^{6}$	2.544	F11	H10B ${ }^{7}$	2.413
F11	H12 ${ }^{8}$	3.250	F12	H94	2.530
F12	H10A ${ }^{4}$	2.918	F12	H10A ${ }^{7}$	3.351
F12	H10B ${ }^{7}$	3.147	F12	H114	2.296
015	H17A ${ }^{9}$	2.61(18)	015	H17B ${ }^{9}$	3.11(19)
015	H17C ${ }^{9}$	3.1(2)	015	H13A ${ }^{3}$	3.369
015	H13B ${ }^{3}$	3.098	015	H14 ${ }^{3}$	2.403
016	H17A ${ }^{9}$	3.27(15)	016	H17B ${ }^{10}$	3.46(17)
O16	H17C ${ }^{10}$	3.5(2)	016	$\mathrm{H} 2{ }^{10}$	3.002
016	H3 ${ }^{10}$	2.752	H16	$\mathrm{Cl} 1{ }^{10}$	2.1(2)
H16	N17 ${ }^{10}$	3.6(2)	H16	H17A ${ }^{9}$	2.8(3)
H16	H17B ${ }^{10}$	3.2(3)	H16	H17C ${ }^{10}$	2.9(3)
H16	C2 ${ }^{10}$	3.1(2)	H16	C3 ${ }^{10}$	3.0(2)
H16	$\mathrm{H} 2{ }^{10}$	2.767	H16	$\mathrm{H} 3{ }^{10}$	2.626

N17	H16 ${ }^{1}$	3.6(2)	N17	H1411	3.560
H17A	$\mathrm{Cl} 1{ }^{9}$	2.31(15)	H17A	O15 ${ }^{2}$	2.61(18)
H17A	O16 ${ }^{2}$	3.27(15)	H17A	H16 ${ }^{2}$	2.8(3)
H17A	C15 ${ }^{2}$	3.13(18)	H17A	H14 ${ }^{11}$	3.238
H17B	$\mathrm{Cl} 1{ }^{4}$	2.25(18)	H17B	Cl 1	3.55(19)
H17B	O15 ${ }^{2}$	3.11(19)	H17B	O16 ${ }^{1}$	3.46(17)
H17B	H16 ${ }^{1}$	3.2(3)	H17B	H14 ${ }^{11}$	3.182
H17C	Cl 1	2.41(18)	H17C	O15 ${ }^{2}$	3.1(2)
H17C	O161	3.5(2)	H17C	H16 ${ }^{1}$	2.9(3)
H17C	C15 ${ }^{2}$	3.6(2)	H17C	H13B ${ }^{3}$	3.539
C1	H7 ${ }^{4}$	3.535	C1	H94	3.360
C1	H13B ${ }^{3}$	3.316	C2	H16 ${ }^{1}$	3.1(2)
C2	H5 ${ }^{1}$	3.447	C2	H7 ${ }^{4}$	3.183
C2	H84	3.425	C2	H94	3.015
C2	H13B ${ }^{3}$	3.584	C3	H16 ${ }^{1}$	3.0(2)

Table 14. Intermolecular contacts less than $3.60 \AA$ involving hydrogens (continued)

atom	atom	distance	atom	atom	distance
C3	H7 ${ }^{4}$	2.907	C3	H84	3.226
C4	H7 ${ }^{4}$	3.130	C5	$\mathrm{H} 2{ }^{10}$	3.462
C5	H7 ${ }^{4}$	3.491	C5	H13A ${ }^{3}$	3.529
C5	H13B ${ }^{3}$	3.375	C6	H13A ${ }^{3}$	3.376
C6	H13B ${ }^{3}$	3.203	C8	H61	3.276
C8	H94	3.511	C9	H5 ${ }^{5}$	3.587
C9	H61	3.544	C10	$\mathrm{H} 11^{12}$	3.457
C11	H10A ${ }^{6}$	3.055	C11	H10B ${ }^{7}$	3.474
C12	H10B ${ }^{7}$	3.475	C12	H114	3.524
C15	H17A ${ }^{9}$	3.13(18)	C15	H17C ${ }^{9}$	3.6(2)
C15	H143	3.448	H2	O161	3.002
H2	H16 ${ }^{1}$	2.767	H2	C5 ${ }^{1}$	3.462
H2	H5 ${ }^{1}$	2.551	H2	H84	3.298
H2	H94	2.851	H3	$\mathrm{Cl} 1{ }^{4}$	3.264
H3	O16 ${ }^{1}$	2.752	H3	H16 ${ }^{1}$	2.626
H3	H74	3.160	H3	H84	2.876
H5	F810	2.771	H5	F913	2.966
H5	$\mathrm{C} 2{ }^{10}$	3.447	H5	C913	3.587
H5	$\mathrm{H} 2{ }^{10}$	2.551	H5	H8 ${ }^{13}$	3.326
H5	H8 ${ }^{10}$	3.499	H5	$\mathrm{H} 9^{13}$	3.307
H5	H13A ${ }^{3}$	3.557	H6	F8 ${ }^{10}$	2.460
H6	F913	3.591	H6	F910	2.708

H6	C8 ${ }^{10}$	3.276	H6	C910	3.544
H6	H8 ${ }^{10}$	3.277	H6	H13A ${ }^{3}$	3.328
H6	H13B ${ }^{3}$	3.541	H7	F910	3.440
H7	$\mathrm{C} 1^{3}$	3.535	H7	$\mathrm{C} 2{ }^{3}$	3.183
H7	C3 ${ }^{3}$	2.907	H7	$C 4^{3}$	3.130
H7	C5 ${ }^{3}$	3.491	H7	H3 ${ }^{3}$	3.160
H8	C2 ${ }^{3}$	3.425	H8	C3 ${ }^{3}$	3.226
H8	$\mathrm{H} 2^{3}$	3.298	H8	H3 ${ }^{3}$	2.876
H8	H5 ${ }^{1}$	3.499	H8	H5 ${ }^{5}$	3.326
H8	H61	3.277	H8	H13A ${ }^{5}$	3.064
H9	$F 8^{3}$	2.441	H9	F12 ${ }^{3}$	2.530
H9	C1 ${ }^{3}$	3.360	H9	$\mathrm{C} 2{ }^{3}$	3.015
H9	C83	3.511	H9	$\mathrm{H} 2{ }^{3}$	2.851
H9	H5 ${ }^{5}$	3.307	H10A	F11 ${ }^{12}$	2.544
H10A	F12 ${ }^{3}$	2.918	H10A	F12 ${ }^{8}$	3.351

Table 14. Intermolecular contacts less than $3.60 \AA$ involving hydrogens (continued)

atom	atom	distance	atom	atom	distance
H10A	C1112	3.055	H10A	H11 ${ }^{12}$	2.582
H10B	F11 ${ }^{8}$	2.413	H10B	F12 ${ }^{8}$	3.147
H10B	C11 ${ }^{8}$	3.474	H10B	C12 ${ }^{8}$	3.475
H10B	H11 ${ }^{12}$	3.508	H10B	H12 ${ }^{8}$	3.219
H11	F12 ${ }^{3}$	2.296	H11	C10 ${ }^{6}$	3.457
H11	C12 ${ }^{3}$	3.524	H11	H10A ${ }^{6}$	2.582
H11	H10B ${ }^{6}$	3.508	H12	F910	3.093
H12	F11 ${ }^{7}$	3.250	H12	H10B ${ }^{7}$	3.219
H13A	O15 ${ }^{4}$	3.369	H13A	C54	3.529
H13A	C64	3.376	H13A	H54	3.557
H13A	H64	3.328	H13A	H8 ${ }^{13}$	3.064
H13B	$\mathrm{Cl} 1{ }^{4}$	2.948	H13B	O15 ${ }^{4}$	3.098
H13B	H17C ${ }^{4}$	3.539	H13B	C1 ${ }^{4}$	3.316
H13B	$\mathrm{C} 2{ }^{4}$	3.584	H13B	C54	3.375
H13B	C64	3.203	H13B	H64	3.541
H14	$\mathrm{Cl} 1{ }^{9}$	3.060	H14	O15 ${ }^{4}$	2.403
H14	N17 ${ }^{14}$	3.560	H14	H17A ${ }^{14}$	3.238
H14	H17B ${ }^{14}$	3.182	H14	C154	3.448

Symmetry Operators:
(1) $X, Y+1, Z$
(2) $-X+1, Y+1 / 2,-Z+2$
(3) $X+1, Y, Z$
(4) $X-1, Y, Z$
(5) $\mathrm{X}+1, \mathrm{Y}+1, \mathrm{Z}$
(6) $-X+2, Y+1 / 2-1,-Z+1$
(7) $-X+1, Y+1 / 2-1,-Z+1$
(8) $-X+1, Y+1 / 2,-Z+1$
(9) $-X+1, Y+1 / 2-1,-Z+2$
(10) $X, Y-1, Z$
(11) $-X, Y+1 / 2,-Z+2$
(12) $-X+2, Y+1 / 2,-Z+1$
(13) $X-1, Y-1, Z$
(14) $-X, Y+1 / 2-1,-Z+2$

