Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Kinetic resolution of primary allylic amines via palladium-catalyzed asymmetric allylic alkylation of malononitriles

Yong Wang, Ya-Nan Xu, Guo-Sheng Fang, Hong-Jian Kang, Yonghong Gu* and Shi-Kai Tian*

Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China

Supporting information

Table of contents

S-2
S-2
S-4
S-5
S-5
S-6
S-16
S-22
S-22
S-24
S-25
S-141

General information

¹H NMR and ¹³C NMR spectra were recorded on a Bruker AC-400 FT (400 MHz and 100 MHz, respectively) using tetramethylsilane as an internal reference. NMR multiplicities are abbreviated as follows: s = singlet, d = doublet, t = triplet, m = multiplet, br = broad signal. Chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz, respectively. Electron spray ionization (ESI) mass spectrometry data were acquired using a Thermo LTQ Orbitrap XL instrument equipped with an ESI source and controlled by Xcalibur software. High pressure liquid chromatography (HPLC) analyses were performed on a Hewlett-Packard 1200 Series instrument equipped with an isostatic pump using a Daicel Chiralpak column (AS, AD, OD, 250 x 4.6 mm) with isopropanol/hexane as mobile phase, and the UV detection was monitored at 254 nm or 220 nm. The chiral HPLC methods were calibrated with the corresponding racemic mixtures. Optical rotations were measured on a Perkin-Elmer 343 polarimeter with a sodium lamp at $\lambda = 589$ nm and reported as $[\alpha]_D^{T \circ C}$ (c = g/100 mL, solvent). Melting points are uncorrected.

The preparation of racemic allylic amines is shown below. The highly enantioenriched allylic amines shown in Scheme 3, **1a** and *ent*-**1a**, were prepared according to our general procedure for the kinetic resolution at 56% conversion using (*S*)-BINAP and (*R*)-BINAP as the ligand, respectively. Malononitriles **2a**-**d**¹ and sulfonyl hydrazides **3a**, **3c**, and **3d**² were prepared according to literature procedures. The rest of chemicals were purchased from the Sinopharm Chemical Reagent Co., Sinocompound, Meryer, Acros, Alfa Aesar, and TCI, and used as received.

Abbreviations: Ac = acetyl. BINAP = 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl. Bn = benzyl. dba = dibenzylideneacetone. DIOP = ((2,2-dimethyl-1,3-dioxolane-4,5-diyl)bis(methylene))bis-(diphenylphosphine). dppb = 1,4-bis(diphenylphosphino)butane. MOP = (2'-methoxy-[1,1'-binaphthalen]-2-yl)diphenylphosphine. ms = molecular sieves. SynPhos = 6,6'-bis(diphenylphosphino)-2,2',3,3'-tetrahydro-5,5'-bibenzo[*b*][1,4]dioxine. THF = tetrahydrofuran, TMS = trimethylsilyl.

Preparation of racemic allylic amines

Racemic allylic amines *rac*-1f ($R^1 = CH_2CH=CH_2$, $R^2 = Ph$)³ and *rac*-1p ($R^1 = Ph$, $R^2 = H$)⁴ were prepared according to literature procedures. Shown below are the methods for the preparation of the rest of racemic allylic amines.

(1) Method A^5

Entry	R ¹	R ²	rac-1	Yield (%)
1	(CH ₂) ₃ Me	Ph	<i>rac</i> -1c	64
2	(CH ₂) ₇ Me	Ph	<i>rac</i> -1d	58
3	(CH ₂) ₂ Ph	Ph	<i>rac</i> -1e	61
4	Me	cyclohexyl	<i>rac</i> -10	56

To a mixture of hydroxylamine hydrochloride (2.08 g, 30 mmol) and an α , β -unsaturated ketone

(25 mmol) in 80% ethanol (vol% aqueous, 20 mL) at room temperature was added sodium hydroxide (2.00 g, 50 mmol) portionwise. The mixture was heated under reflux for 10 min and then poured into ice-cooled aqueous HCl (1.7 M, 30 mL). The white solid was filtered, and washed with water to give the corresponding oxime.

To a solution of the oxime in ethanol (30 mL) and acetic acid (30 mL) was added zinc dust (3.25 g, 50 mmol) in portions and then the solution was refluxed for 1.0 h. The precipitate was filtered and washed with ethanol (2 x 50 mL). The filtrate was concentrated and the residue was dissolved in aqueous HCl (6 M, 25 mL), and extracted with dichloromethane (2 x 50 mL). The aqueous acidic layer was treated with solid sodium hydroxide (6.25 g, 156 mmol) and extracted with ether (2 x 50 mL). The combined organic extracts were dried (BaO) and concentrated to give amine *rac-1*.

(2) Method B^6

	$R^2 \sim R^1^+$	$R^{3}NH_{2} = \frac{1) Ti(O^{i}Pr)_{4} (2.0 equiv), E}{2) NaBH_{4} (2.0 equiv)}$	tOH or M		√ ^{R³} [`] R¹	
				rac-1		
Entry	R^1	R^2	R ³	rac-1	Yield (%)	
1	Et	Ph	Н	rac-1a	62	
2	Me	Ph	Н	<i>rac</i> -1b	68	
3	Ph	Ph	Н	<i>rac</i> -1g	76	
4	Et	4-MeOC ₆ H ₄	Н	<i>rac</i> -1h	64	
5	Et	$4-FC_6H_4$	Н	<i>rac</i> -1i	78	
6	Et	4-ClC ₆ H ₄	Н	rac-1j	61	
7	Et	4-NCC ₆ H ₄	Н	<i>rac</i> -1k	62	
8	Me	2-naphthyl	Н	rac-11	74	
9	Et	benzo[b]thien-2-yl	Н	<i>rac</i> -1m	45	
10	Me	(E)-PhCH=CH	Н	<i>rac</i> -1n	38	
11	(CH ₂) ₂ Ph	Ph	Me	<i>rac</i> -1ea	32	
12	(CH ₂) ₂ Ph	Ph	Bn	rac-1eb	28	

A mixture of an α , β -unsaturated ketone (3.0 mmol), titanium(IV) isopropoxide (1.82 mL, 1.71 g, 6.0 mmol), and ammonia in ethanol (2.0 M, 7.50 mL, 15 mmol) [For entry 11, methylamine in methanol (2.0 M, 7.50 mL, 15 mmol); For entry 12, benzylamine (1.64 mL, 1.61 g, 15 mmol) in methanol (7.50 mL)] was stirred under nitrogen at room temperature for 12 h. Sodium borohydride (170 mg, 4.5 mmol) was then added and the resulting mixture was stirred at room temperature for an additional 12 h. A second batch of sodium borohydride (56.7 mg, 1.5 mmol) was added and stirred for an additional 12 h. The reaction was quenched with ammonium hydroxide (2.0 M, 10 mL). The resulting precipitate (composed of inorganic byproducts) was filtered through celite and washed with ethyl acetate. The aqueous solution was acidified with aqueous 1 M HCl (PH < 4). The resulting solution was extracted with ethyl acetate (3 x 20 mL) and the organic layers were discarded. The

aqueous layer was then treated with aqueous 10% sodium hydroxide (PH = 10-12) and extracted with ethyl acetate (5 x 50 mL). The combined organic layers were washed with brine, and then dried with anhydrous sodium sulfate. The organic layer was concentrated under reduced pressure and the residue was purified by flash chromatography (99:1 ethyl acetate/triethylamine to 90:10:1 ethyl acetate/methanol/triethylamine) to give amine *rac-1*.

(3) Method C^7

A mixture of amine *rac*-1e (237 mg, 1.0 mmol), morpholine (0.107 mL, 105 mg, 1.2 mmol), TsOHH₂O (9.51 mg, 5 mol%), dppb (42.6 mg, 10 mol%), and Pd(OAc)₂ (11.2 mg, 5 mol%) in dioxane (1.0 mL) was heated under nitrogen at 80 °C for 4 h. The mixture was cooled to room temperature and purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether (1:20~1:2), to give amine *rac*-1ec (264 mg, 86%) as a colorless oil.

Survey of sulfonyl hydrazides (Scheme 2)

The reaction was performed following the general procedure shown below but without 5 Å molecular sieves and using racemic BINAP instead of (S)-BINAP as the ligand. The analytic data for the minor products, *rac*-5, were shown below.

Sulfone *rac*-5a, light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.41 (m, 2H), 7.39-7.29 (m, 3H), 6.70 (d, J = 16.0 Hz, 1H), 6.13 (dd, J = 16.0, 9.6 Hz, 1H), 3.56-3.49 (m, 1H), 2.86 (s, 3H), 2.34-2.23 (m, 1H), 1.88-1.76 (m, 1H), 1.05 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.1, 135.4, 128.8, 126.7, 121.8, 70.0, 38.4, 19.7, 11.3; HRMS (ESI) calcd for C₁₂H₁₆O₂Na⁺ (M+Na)⁺ 247.07632, found 247.07597.

Sulfone *rac*-**5b**,⁵ white solid; m.p. 66-67 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.4 Hz, 2H), 7.34-7.27 (m, 7H), 6.31 (d, J = 16.0 Hz, 1H), 5.90 (dd, J = 16.0, 9.6 Hz, 1H), 3.57-3.51 (m, 1H), 2.42 (s, 3H), 2.30-2.20 (m, 1H), 1.80-1.70 (m, 1H), 0.98 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 138.1, 136.0, 134.7, 129.5, 129.2, 128.6, 126.6, 121.2, 71.1, 21.6, 21.0, 11.4.

Allylic alkylation with enantioenriched primary allylic amines (Scheme 3)

The reaction was performed following the general procedure shown below but without 5 Å molecular sieves.

General procedure for the kinetic resolution of primary allylic amines (Table 2)

A mixture of racemic primary allylic amine *rac*-1 (0.30 mmol), malononitrile 2 (0.18 mmol), mesitylsulfonyl hydrazide (**3d**) (12.9 mg, 0.060 mmol), 5 Å molecular sieves (30 mg), (*S*)-BINAP (7.5 mg, 4 mol%), and [Pd(allyl)Cl]₂ (1.1 mg, 1 mol%) in dioxane (1.8 mL) was stirred under air at room temperature or at 50 °C for 4 h. A second batch of mesitylsulfonyl hydrazide (**3d**) (12.9 mg, 0.060 mmol) was added, and 4 h later a third batch of mesitylsulfonyl hydrazide (**3d**) (12.9 mg, 0.060 mmol) was added. The resulting mixture was stirred for 12 h, and quenched with aqueous HCl (2.0 M, 5.0 mL) solution. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (2 x 5.0 mL). The organic layers were combined, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether (1:20~1:40), to give malononitrile **4**. The α/γ selectivity for the formation of malononitrile **4** was determined by integrating the allylic proton signals in the ¹H NMR spectra of the crude product, and in each case the α -product **4** was separated from the γ -product by silica gel chromatography.

The aqueous layer was basified with 15% aqueous NaOH (pH = 10) and extraction with diethyl ether (5 x 10 mL). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel chromatography, eluting with ethyl acetate/triethylamine (100:1), to give chiral amine **1**.

The absolute configuration of compounds 1b, 1g, 1p, 4b, and 4o was assigned by comparison of the optical rotation (or the chiral HPLC trace) with that reported in the literature (see below) and that of compounds 1a, 1b, 1e, 1f, 1g, 1l, 1n, 1o, and 1p was assigned by benzoylation. The absolute

configuration of the rest of new products shown in Table 2 was assigned by analogy.

Analytical data for the products shown in Table 2

Amine **1a**,⁶ light yellow oil; $[\alpha]_D^{20} = -18.4$ (c = 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.35 (m, 2H), 7.33-7.27 (m, 2H), 7.24-7.18 (m, 1H), 6.47 (d, J = 16.0 Hz, 1H), 6.14 (dd, J = 16.0, 7.2 Hz, 1H), 3.43-3.35 (m, 1H), 1.59-1.50 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.1, 134.1, 129.5, 128.5, 127.3, 126.3, 55.6, 30.5 10.5. The ee was determined to be 95% by converting it to compound **1Bz-a** (see below).

Amine **1b**,⁸ light yellow oil; $[\alpha]_D^{20} = -19.6$ (c = 1.01, CHCl₃); Lit.⁸: $[\alpha]_D^{20} = 25.8$ (c = 1.16, CHCl₃, *R*-enantiomer, >99% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.34 (m, 2H), 7.33-7.27 (m, 2H), 7.24-7.18 (m, 1H), 6.46 (d, J = 16.0 Hz, 1H), 6.20 (dd, J = 16.0, 6.8 Hz, 1H), 3.70-3.62 (m, 1H), 1.25 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 136.2, 128.5, 127.8, 127.3, 126.2, 49.3, 23.9. The ee was determined to be 97% by converting it to compound **1Bz-b** (see below).

Amine 1c, light yellow oil; $[\alpha]_D^{20} = -28.7$ (c = 1.04, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.35 (m, 2H), 7.33-7.27 (m, 2H), 7.24-7.19 (m, 1H), 6.46 (d, J = 16.0 Hz, 1H), 6.14 (dd, J = 16.0, 7.6 Hz, 1H), 3.49-3.42 (m, 1H), 1.53-1.46 (m, 2H), 1.39-1.28 (m, 4H), 0.90 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 135.1, 128.9, 128.5, 127.3, 126.2, 54.2, 37.6, 28.4, 22.7, 14.1; HRMS (ESI) calcd for C₁₃H₂₀N⁺ (M+H)⁺ 190.15903, found 190.15872. The ee was determined to be 90% by converting it to compound **1Bz-c** (see below).

Amine 1d, light yellow oil; $[\alpha]_D^{20} = -21.5$ (c = 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.36 (m, 2H), 7.34-7.27 (m, 2H), 7.24-7.19 (m, 1H), 6.46 (d, J = 16.0 Hz, 1H), 6.14 (dd, J = 16.0, 7.2 Hz, 1H), 3.49-3.42 (m, 1H), 1.55-1.46 (m, 2H), 1.38-1.19 (m, 12H), 0.87 (t, J = 6.4 Hz, 3H); ¹³ C NMR (100 MHz, CDCl₃) δ 137.2, 135.1, 128.9, 128.5, 127.3, 126.2, 54.2, 37.9, 31.9, 29.7, 29.6, 29.3, 26.2, 22.7, 14.1; HRMS (ESI) calcd for C₁₇H₂₇NNa⁺ (M+Na)⁺ 268.20357, found 268.20374.

The ee was determined to be 96% by converting it to compound 1Bz-d (see below).

Amine 1e, light yellow oil; $[\alpha]_D^{20} = -18.9$ (c = 1.04, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.36 (m, 2H), 7.34-7.26 (m, 4H), 7.25-7.16 (m, 4H), 6.49 (d, J = 16.0 Hz, 1H), 6.17 (dd, J = 16.0, 7.2 Hz, 1H), 3.53-3.47 (m, 1H), 2.75-2.65 (m, 2H), 1.90-1.80 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 142.0, 137.1, 134.7, 129.4, 128.6, 128.4, 127.4, 126.3, 125.8, 53.7, 39.4, 32.5; HRMS (ESI) calcd for C₁₇H₂₀N⁺ (M+H)⁺ 238.15903, found 238.15904. The ee was determined to be 94% by converting it to compound **1Bz-e** (see below).

Amine **1f**,³ light yellow oil; $[\alpha]_D^{20} = -21.3$ (c = 1.06, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.35 (m, 2H), 7.33-7.27 (m, 2H), 7.25-7.19 (m, 1H), 6.51 (d, J = 16.0 Hz, 1H), 6.20 (dd, J = 16.0, 6.8 Hz, 1H), 5.88-5.76 (m, 1H), 5.19-5.06 (m, 2H), 3.62-3.53 (m, 1H), 2.40-2.31 (m, 1H), 2.28-2.19 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.1, 135.0, 134.2, 129.0, 128.6, 127.3, 126.3, 117.8, 53.2, 42.5. The ee was determined to be 60% by converting it to compound **1Bz-f** (see below).

Amine 1g,⁹ yellow oil; $[\alpha]_D{}^{20} = 15.4$ (c = 1.03, CHCl₃); $[\alpha]_D{}^{20} = 28.6$ (c = 1.00, CH₂Cl₂); Lit.⁹: $[\alpha]_D{}^{20} = 44.8$ (c = 0.9, CH₂Cl₂, *R*-enantiomer, >99% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.31 (m, 6H), 7.31-7.24 (m, 3H), 7.24-7.17 (m, 1H), 6.59 (d, J = 16.0 Hz, 1H), 6.36 (dd, J = 16.0, 6.4 Hz, 1H), 4.69 (d, J = 6.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 136.9, 133.8, 129.1, 128.6, 128.5, 127.4, 127.2, 126.7, 126.4, 58.0. The ee was determined to be 70% by converting it to compound **1Bz-g** (see below).

Amine **1h**, light yellow oil; $[\alpha]_D^{20} = -32.4$ (c = 1.08, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.30 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.8 Hz, 2H), 6.41 (d, J = 16.0 Hz, 1H), 5.99 (dd, J = 16.0, 7.2 Hz, 1H), 3.79 (s, 3H), 3.39-3.32 m, 1H), 1.58-1.46 (m, 2H), 0.93 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 132.5, 130.0, 128.6, 127.4, 114.0, 55.7, 55.3, 30.8, 10.6; HRMS (ESI) calcd for C₁₂H₁₇ONNa⁺ (M+Na)⁺ 214.12024, found 214.12022. The ee was determined to be 85% by

converting it to compound 1Bz-h (see below).

Amine **1i**, light yellow oil; $[\alpha]_D^{20} = -21.4$ (c = 1.03, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.30 (m, 2H), 7.02-6.95 (m, 2H), 6.47 (d, J = 16.0 Hz, 1H), 6.05 (dd, J = 16.0, 7.2 Hz, 1H), 3.47-3.40 (m, 1H), 2.58 (s, br, 2H), 1.67-1.51 (m, 2H), 0.93 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.3 (d, ¹ $J_{C-F} = 245.1$ Hz), 133.1 (d, ⁴ $J_{C-F} = 3.4$ Hz), 132.6, 129.2, 127.9 (d, ³ $J_{C-F} = 7.9$ Hz), 115.4 (d, ² $J_{C-F} = 21.5$ Hz), 55.6, 30.0, 10.4; HRMS (ESI) calcd for C₁₁H₁₅NF⁺ (M+H)⁺ 180.11830, found 180.11775. The ee was determined to be 93% by converting it to compound **1Bz-i** (see below).

Amine **1j**, light yellow oil; $[\alpha]_D^{20} = -17.5$ (c = 1.08, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.23 (m, 4H), 6.43 (d, J = 16.0 Hz, 1H), 6.12 (dd, J = 16.0, 7.2 Hz, 1H), 3.42-3.35 (m, 1H), 1.56-1.50 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.7, 135.3, 132.8, 128.7, 128.0, 127.5, 55.6, 30.7, 10.5; HRMS (ESI) calcd for C₁₁H₁₅NCl⁺ (M+H)⁺ 196.08875, found 196.08872. The ee was determined to be 94% by converting it to compound **1Bz-j** (see below).

Amine **1k**, light yellow oil; $[\alpha]_D^{20} = -38.6$ (c = 1.09, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.56 (m, 2H), 7.46-7.42 (m, 2H), 6.52 (d, J = 16.0 Hz, 1H), 6.29 (dd, J = 16.0, 7.2 Hz, 1H), 3.50-3.42 (m, 1H), 2.02 (s, br, 2H), 1.63-1.51 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 138.2, 132.4, 128.0, 126.8, 119.0, 110.5, 55.4, 30.4, 10.4; HRMS (ESI) calcd for C₁₂H₁₅N₂⁺ (M+H)⁺ 187.12298, found 187.12291. The ee was determined to be 91% by converting it to compound **1Bz-k** (see below).

Amine 11,⁶ colorless oil; $[\alpha]_D^{20} = -19.8$ (c = 1.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.75 (m, 3H), 7.71 (s, 1H), 7.61-7.57 (m, 1H), 7.47-7.39 (m, 2H), 6.63 (d, J = 16.0 Hz, 1H),

6.34 (dd, J = 16.0, 6.8 Hz, 1H), 3.76-3.69 (m, 1H), 1.29 (d, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.6, 134.6, 133.6, 132.8, 128.2, 128.0, 127.9, 127.6, 126.2, 126.0, 125.7, 123.6, 49.4, 23.9. The ee was determined to be 99% by converting it to compound **1Bz-I** (see below).

Amine **1m**, yellow oil; $[\alpha]_D^{20} = -60.5$ (c = 1.03, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.75-7.71 (m, 1H), 7.67-7.63 (m, 1H), 7.32-7.22 (m, 2H), 7.10 (s, 1H), 6.70 (d, J = 15.6 Hz, 1H), 6.08 (dd, J = 15.6, 7.2 Hz, 1H), 3.43-3.36 (m, 1H), 1.60-1.51 (m, 2H), 0.96 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 140.1, 138.7, 137.3, 124.5, 124.3, 123.3, 123.0, 122.2, 55.4, 30.6, 10.5; HRMS (ESI) calcd for C₁₃H₁₅NSNa⁺ (M+Na)⁺ 240.08174, found 240.08110 The ee was determined to be 91% by converting it to compound **1Bz-m** (see below).

Amine $\mathbf{1n}$,⁶ yellow oil; $[\alpha]_D^{20} = -34.5$ (c = 1.06, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.34 (m, 2H), 7.32-7.27 (m, 2H), 7.23-7.18 (m, 1H), 6.74 (dd, J = 15.6, 10.4, 1H), 6.50 (d, J = 15.6 Hz, 1H), 6.27 (dd, J = 15.2, 10.4 Hz, 1H), 5.80 (dd, J = 15.2, 6.6 Hz, 1H), 3.63-3.54 (m, 1H), 2.49 (s, br, 2H), 1.21 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 137.4, 131.6, 128.7, 128.6, 128.4, 127.4, 126.2, 49.0, 23.8. The ee was determined to be 80% by converting it to compound **1Bz-n** (see below).

Amine 10,⁵ yellow oil; $[\alpha]_D{}^{20} = -8.4$ (c = 1.06, CHCl₃); Lit.⁵: $[\alpha]_D{}^{20} = -15.5$ (c = 1.1, CHCl₃, *S*-enantiomer, 99% ee); ¹H NMR (400 MHz, CDCl₃) δ 5.45 (dd, J = 15.6, 6.4 Hz, 1H), 5.37 (dd, J = 15.6, 6.4 Hz, 1H), 3.46-3.39 (m, 1H), 1.92-1.84 (m, 1H), 1.75-1.60 (m, 3H), 1.29-0.99 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δ 134.6, 133.9, 49.1, 40.3, 33.1, 26.2, 26.1, 24.2. The ee was determined to be 70% by converting it to compound **1Bz-o** (see below).

Amine $\mathbf{1p}$,⁴ yellow oil; $[\alpha]_D^{20} = 8.6$ (c = 1.03, CHCl₃); Lit.⁴: $[\alpha]_D^{25} = -10.2$ (c = 4, CHCl₃, *S*-enantiomer, >99.6% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.30 (m, 4H), 7.28-7.22 (m, 1H), 6.02 (ddd, J = 17.2, 10.4, 6.4 Hz, 1H), 5.27-5.20 (m, 1H), 5.13-5.09 (m, 1H), 4.54-4.50 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 142.2, 128.5, 127.1, 126.6, 113.7, 58.4. The ee was determined to be 89% by converting it to compound **1Bz-p** (see below).

Malononitrile **4a**, light yellow oil; $[\alpha]_D^{20} = 35.5$ (c = 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.43 (m, 2H), 7.42-7.35 (m, 7H), 7.34-7.30 (m, 1H), 6.63 (d, J = 15.6 Hz, 1H), 6.02 (dd, J = 15.6, 9.6 Hz, 1H), 3.27 (d, J = 13.6 Hz, 1H), 3.09 (d, J = 13.6 Hz, 1H), 2.61-2.53 (m, 1H), 2.18-2.08 (m, 1H), 1.82-1.71 (m, 1H), 1.01 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 135.6, 132.4, 130.2, 128.9, 128.8, 128.7, 128.6, 126.7, 123.9, 115.1, 114.4, 52.1, 44.6, 42.1, 24.7, 11.8; HRMS (ESI) calcd for C₂₁H₂₀N₂Na⁺ (M+Na)⁺ 323.15187, found 323.15183. The ee was determined to be 86% by HPLC analysis (Chiralpak AS, $\lambda = 254$ nm, hexane/isopropanol = 99:1, flow rate = 1.0 mL/min): t_R (minor) = 13.3 min, t_R (major) = 11.6 min.

Malononitrile **4b**,¹ white solid; m.p. 112.1-113.0 °C; $[\alpha]_D^{20} = 24.6$ (c = 1.04, CHCl₃); Lit.¹: $[\alpha]_D^{25} = -32.3$ (c = 1.0, CHCl₃, *S*-enantiomer, 95% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.28 (m, 10H), 6.65 (d, J = 15.6 Hz, 1H), 6.17 (dd, J = 15.6, 9.2 Hz, 1H), 3.23 (d, J = 14.0 Hz, 1H), 3.10 (d, J = 14.0 Hz, 1H), 2.94-2.85(m, 1H), 1.54 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.6, 132.4, 130.2, 128.9, 128.8, 128.7, 128.5, 126.7, 125.5, 114.9, 114.3, 45.1, 44.8, 41.7, 17.7. The ee was determined to be 79% by HPLC analysis (Chiralpak AD, $\lambda = 254$ nm, hexane/isopropanol = 97:3, flow rate = 1.0 mL/min): t_R (minor) = 15.5 min, t_R (major) = 14.7 min.

Malononitrile **4c**, light yellow oil; $[\alpha]_D^{20} = 34.1$ (c = 1.03, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.43 (m, 2H), 7.42-7.29 (m, 8H), 6.62 (d, J = 15.6 Hz, 1H), 6.04 (dd, J = 15.6, 9.6 Hz, 1H), 3.26 (d, J = 14.0 Hz, 1H), 3.08 (d, J = 14.0 Hz, 1H), 2.70-2.61 (m, 1H), 2.09-1.99 (m, 1H), 1.84-1.69 (m, 1H), 1.47-1.24 (m, 4H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 135.6, 132.4, 130.2, 128.9, 128.8, 128.7, 128.6, 126.7, 124.3, 115.1, 114.4, 50.6, 44.7, 42.1, 31.3 29.3, 22.3, 13.9; HRMS (ESI) calcd for C₂₃H₂₄N₂Na⁺ (M+Na)⁺ 351.18317, found 351.18295. The ee was determined to be 94% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 6.8 min, t_R (major) = 8.1 min.

Malononitrile **4d**, light yellow oil; $[\alpha]_D^{20} = 48.6$ (c = 1.08, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.43 (m, 2H), 7.41-7.36 (m, 7H), 7.34-7.30 (m, 1H), 6.62 (d, J = 15.6 Hz, 1H), 6.03 (dd, J = 15.6, 10.0 Hz, 1H), 3.26 (d, J = 13.6 Hz, 1H), 3.08 (d, J = 13.6 Hz, 1H), 2.69-2.61 (m, 1H), 2.05-1.98 (m, 1H), 1.81-1.72 (m, 1H), 1.60-1.20 (m, 12H), 0.86 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 135.6, 132.4, 130.2, 128.9 128.8, 128.7, 128.6, 126.7, 124.3, 115.1, 114.4, 50.6, 44.7, 42.0, 31.8, 31.5, 29.3, 29.2, 27.1, 22.6, 14.1; HRMS (ESI) calcd for C₂₇H₃₂N₂Na⁺ (M+Na)⁺ 407.24577, found 407.24542. The ee was determined to be 94% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 6.3 min, t_R (major) = 8.5 min.

Malononitrile **4e**, light yellow oil; $[\alpha]_D^{20} = 35.7$ (c = 1.06, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.45 (m, 2H), 7.42-7.27 (m, 10H), 7.25-7.17 (m, 3H), 6.62 (d, J = 15.6 Hz, 1H), 6.09 (dd, J = 15.6, 10.0 Hz, 1H), 3.22 (d, J = 14.0 Hz, 1H), 3.04 (d, J = 14.0 Hz, 1H), 2.91-2.83 (m, 1H), 2.72-2.55 (m, 2H), 2.46-2.36 (m, 1H), 2.16-2.07 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.1, 137.9, 135.5, 132.3, 130.2, 128.9, 128.7, 128.6, 128.4, 126.7, 126.4, 123.8, 114.9, 114.3, 49.7, 44.6, 41.9, 32.9, 32.8; HRMS (ESI) calcd for C₂₇H₂₄N₂Na⁺ (M+Na)⁺ 399.18317, found 399.18292. The ee was determined to be 93% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 9.7 min, t_R (major) = 12.1 min.

Malononitrile **4f**, white solid; m.p. 68.3-69.1 °C; $[\alpha]_D^{20} = 48.0$ (c = 1.04, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.29 (m, 10H), 6.61 (d, J = 16.0 Hz, 1H), 6.06 (dd, J = 16.0, 9.6 Hz, 1H), 5.79-5.68 (m, 1H), 5.21-5.10 (m, 2H), 3.28 (d, J = 13.6 Hz, 1H), 3.10 (d, J = 13.6 Hz, 1H), 2.86-2.72 (m, 2H), 2.60-2.50 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 137.6, 135.6, 133.4, 132.3, 130.3, 129.0, 128.9, 128.8, 128.7, 126.8, 123.6, 118.7, 114.9, 114.2, 50.2, 44.2, 42.0, 36.2; HRMS (ESI) calcd for C₂₂H₂₀N₂Na⁺ (M+Na)⁺ 335.15187, found 335.15189. The ee was determined to be 94% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 11.5 min, t_R (major) = 13.8 min.

Malononitrile **4g**, white solid; m.p. 153.0-154.0 °C; $[\alpha]_D^{20} = -16.8$ (c = 1.06, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.54-7.50 (m, 2H), 7.48-7.27 (m, 13H), 6.73 (d, J = 15.6 Hz, 1H), 6.73 (d, J = 15.6 Hz, 1H), 6.66 (dd, J = 15.6, 8.8 Hz, 1H), 3.90 (d, J = 8.8 Hz, 1H), 3.23 (d, J = 13.6 Hz, 1H), 3.03 (d, J = 13.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 136.7, 136.3, 135.6, 132.2, 130.3, 129.3, 129.0, 128.9, 128.8, 128.7, 128.6, 126.8, 123.6, 114.8, 114.4, 55.9, 45.8, 42.5. HRMS (ESI) calcd for C₂₅H₂₀N₂Na⁺ (M+Na)⁺ 371.15187, found 371.15088. The ee was determined to be 60% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 90:10, flow rate = 1.0 mL/min): t_R (minor) = 15.5 min, t_R (major) = 13.1 min.

Malononitrile **4h**, light yellow oil; $[\alpha]_D^{20} = 41.4$ (c = 1.04, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.36 (m, 7H), 6.93-6.87 (m, 2H), 6.56 (d, J = 15.6 Hz, 1H), 5.87 (dd, J = 15.6, 10.0 Hz, 1H), 3.83 (s, 3H), 3.27 (d, J = 13.6 Hz, 1H), 3.07 (d, J = 13.6 Hz, 1H), 2.57-2.49 (m, 1H), 2.16-2.05 (m, 1H), 1.80-1.68 (m, 1H), 1.01 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 136.9, 132.5, 130.2, 128.9, 128.6, 128.4, 127.9, 121.5, 115.2, 114.5, 114.2, 55.4, 52.3, 44.7, 42.1, 24.8, 11.8; HRMS (ESI) calcd for C₂₂H₂₂ON₂Na⁺ (M+Na)⁺ 353.16243, found 353.16232. The ee was determined to be 96% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 70:30, flow rate = 1.0 mL/min): t_R (minor) = 6.7 min, t_R (major) = 16.4 min.

Malononitrile **4i**, light yellow oil; $[\alpha]_D{}^{20} = 38.6$ (c = 1.06, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.36 (m, 7H), 7.09-7.02 (m, 2H), 6.59 (d, J = 15.6 Hz, 1H), 5.94 (dd, J = 15.6, 10.0 Hz, 1H), 3.25 (d, J = 13.6 Hz, 1H), 3.09 (d, J = 13.6 Hz, 1H), 2.59-2.51 (m, 1H), 2.16-2.08 (m, 1H), 1.80-1.70 (m, 1H), 1.01 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9 (d, ¹ $_{J_{C-F}} = 246.9$ Hz), 136.3, 132.4, 131.8 (d, ⁴ $_{J_{C-F}} = 3.3$ Hz), 130.2, 128.9, 128.7, 128.3 (d, ³ $_{J_{C-F}} = 8.1$ Hz), 123.7 (d, ⁴ $_{J_{C-F}} = 2.2$ Hz), 115.8 (d, ² $_{J_{C-F}} = 21.6$ Hz), 115.1, 114.4, 52.1, 44.6, 42.0, 24.7, 11.8; HRMS (ESI) calcd for C₂₁H₁₉N₂FNa⁺ (M+Na)⁺ 341.14245, found 341.14233. The ee was determined to be 88% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 6.2 min, t_R (major) = 10.5 min.

Malononitrile **4j**, light yellow oil; $[\alpha]_D^{20} = 35.4$ (c = 1.06, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.32 (m, 9H), 6.58 (d, J = 15.6 Hz, 1H), 6.00 (dd, J = 15.6, 10.0 Hz, 1H), 3.24 (d, J = 13.6 Hz, 1H), 3.09 (d, J = 13.6 Hz, 1H), 2.60-2.50 (m, 1H), 2.17-2.08 (m, 1H), 1.81-1.69 (m, 1H), 1.00 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.3, 134.3, 134.1, 132.3, 130.2, 129.0, 128.9, 128.8, 127.9, 124.6, 115.0, 114.4, 52.1, 44.6, 42.0, 24.6, 11.8; HRMS (ESI) calcd for C₂₁H₁₉N₂ClNa⁺ (M+Na)⁺ 357.11290, found 357.11270. The ee was determined to be 84% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 6.7 min, t_R (major) = 9.9 min.

Malononitrile **4k**, light yellow oil; $[\alpha]_D^{20} = 32.0$ (c = 1.07, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.66 (dd, J = 6.8, 1.6 Hz, 2H), 7.53 (d, J = 6.0 Hz, 2H), 7.42-7.35 (m, 5H), 6.65 (d, J = 15.6 Hz, 1H), 6.17 (dd, J = 15.6, 10.0 Hz, 1H), 3.23 (d, J = 13.6 Hz, 1H), 3.12 (d, J = 13.6 Hz, 1H), 2.64-2.56 (m, 1H), 2.18-2.11 (m, 1H), 1.82-1.73 (m, 1H), 1.02 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 135.8, 132.7, 132.1, 130.2, 129.0, 128.9, 128.1, 127.2, 118.6, 114.7, 114.3, 111.9, 51.9, 44.4, 42.0, 24.4, 11.8; HRMS (ESI) calcd for C₂₂H₁₉N₃Na⁺ (M+Na)⁺ 348.14712, found 348.14700. The ee was determined to be 90% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 70:30, flow rate = 1.0 mL/min): t_R (minor) = 11.4 min, t_R (major) = 20.3 min.

Malononitrile **4I**, light yellow oil; $[\alpha]_D^{20} = 33.6$ (c = 1.08, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.78 (m, 4H), 7.65-7.62 (m, 1H), 7.51-7.47 (m, 2H), 7.43-7.35 (m, 5H), 6.81 (d, J = 15.6 Hz, 1H), 6.30 (dd, J = 15.6, 8.8 Hz, 1H), 3.27 (d, J = 13.6 Hz, 1H), 3.14 (d, J = 13.6 Hz, 1H), 2.99-2.92 (m, 1H), 1.59 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 135.7, 133.4, 133.0, 132.4, 130.2, 128.9, 128.7, 128.5, 128.1, 127.7, 127.0, 126.6, 126.4, 125.8, 123.4, 114.9, 114.3, 45.1, 45.0, 41.8, 17.8; HRMS (ESI) calcd for C₂₄H₂₀N₂Na⁺ (M+Na)⁺ 359.15187, found 359.15161. The ee was determined to be 73% by HPLC analysis (Chiralpak AD, $\lambda = 254$ nm, hexane/isopropanol = 95:5, flow rate = 1.0 mL/min): t_R (minor) = 21.1 min, t_R (major) = 19.3 min.

Malononitrile **4m**, white solid; m.p. 161-162 °C; $[\alpha]_D^{20} = 26.8$ (c = 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.75 (m, 1H), 7.74-7.68 (m, 1H), 7.41-7.30 (m, 7H), 7.25-7.23 (m, 1H), 6.85 (d, J = 15.6 Hz, 1H), 5.92 (dd, J = 15.6, 10.0 Hz, 1H), 3.26 (d, J = 13.6 Hz, 1H), 3.10 (d, J = 13.6 Hz, 1H), 2.62-2.51 (m, 1H), 2.17-2.10 (m, 1H), 1.83-1.74 (m, 1H), 1.03 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.4, 139.7, 139.0, 132.3, 131.1, 130.2, 128.9, 128.7, 125.8, 125.3, 124.7, 124.2, 123.8, 122.3, 115.0, 114.2, 52.0, 44.5, 42.0, 24.7, 11.8; HRMS (ESI) calcd for C₂₃H₂₀N₂NaS⁺ (M+Na)⁺ 379.12394, found 379.12396. The ee was determined to be 95% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 9.8 min, t_R (major) = 28.7 min.

Malononitrile **4n**, light yellow oil; $[\alpha]_D^{20} = 14.2$ (c = 1.06, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.31 (m, 9H), 7.28-7.24 (m, 1H), 6.82 (dd, J = 15.6, 10.4 Hz, 1H), 6.62 (d, J = 15.6 Hz, 1H), 6.45 (dd, J = 14.8, 10.4 Hz, 1H), 5.79 (dd, J = 14.8, 8.8 Hz, 1H), 3.21 (d, J = 13.7 Hz, 1H), 3.08 (d, J = 13.7 Hz, 1H), 2.83 (dq, J = 13.6, 6.8 Hz, 1H), 1.50 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.6, 135.8, 134.5, 132.4, 130.2, 129.1, 128.9, 128.7, 128.1, 127.3, 126.6, 114.9, 114.3, 45.1, 44.6, 41.6 17.6; HRMS (ESI) calcd for C₂₂H₂₀N₂Na⁺ (M+Na)⁺ 335.15187, found 335.15179. The ee was determined to be 69% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 70:30, flow rate = 1.0 mL/min): t_R (minor) = 11.5 min, t_R (major) = 22.1 min.

Malononitrile **40**,¹ light yellow oil; $[\alpha]_D{}^{20} = 4.3$ (c = 1.04, CHCl₃); Lit.¹: $[\alpha]_D{}^{20} = -9.8$ (c = 1.0, CHCl₃, *S*-enantiomer, 98% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.32 (m, 5H), 5.70 (dd, J = 15.6, 7.2 Hz, 1H), 5.40 (ddd, J = 15.6, 8.8, 1.2 Hz, 1H), 3.16 (d, J = 13.6 Hz, 1H), 3.02 (d, J = 13.6 Hz, 1H), 2.67-2.59 (m, 1H), 2.10-2.00 (m, 1H), 1.79-1.71 (m, 4H), 1.41 (d, J = 6.8 Hz, 3H), 1.35-1.10 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 132.6, 130.2, 128.8, 128.6, 124.0, 115.0, 114.4, 45.1, 44.2, 41.4, 40.7, 32.8, 32.7, 26.0, 25.8, 17.6. The ee was determined to be 46% by HPLC analysis (Chiralpak AD, $\lambda = 254$ nm, hexane/isopropanol = 90:10, flow rate = 1.0 mL/min): t_R (minor) = 14.8 min, t_R (major) = 16.6 min.

Malononitrile **4p**,¹⁰ light yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.27 (m, 10H), 6.71 (d, J = 15.6 Hz, 1H), 6.27 (dt, J = 15.6, 7.6 Hz 1H), 3.25 (s, 2H), 2.88 (dd, J = 7.6, 0.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 138.0, 135.7, 131.9, 130.2, 129.0, 128.9, 128.7, 128.5, 126.7, 119.1, 115.0, 42.7, 40.9, 39.6.

Malononitrile **4q**, light yellow oil; $[\alpha]_D^{20} = 36.8$ (c = 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.43 (m, 2H), 7.40-7.35 (m, 3H), 7.34-7.26 (m, 3H), 7.23-7.15 (m, 3H), 6.62 (d, J = 16.0 Hz, 1H), 6.39-6.34 (m, 2H), 6.03 (dd, J = 16.0, 10.0 Hz, 1H), 3.33 (d, J = 14.8 Hz, 1H), 3.22 (d, J = 14.8 Hz, 1H), 2.87-2.79 (m, 1H), 2.66-2.52 (m, 2H), 2.41-2.31 (m, 1H), 2.11-2.01 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 146.3, 143.4, 140.1, 138.2, 135.4, 128.8, 128.7, 128.6, 128.4, 126.7, 126.3, 123.4, 114.6, 114.1, 110.8, 110.6, 48.6, 42.5, 34.6, 32.8, 32.5; HRMS (ESI) calcd for C₂₅H₂₂ON₂Na⁺ (M+Na)⁺ 389.16243, found 389.16208. The ee was determined to be 93% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 70:30, flow rate = 1.0 mL/min): t_R (minor) = 8.7 min, t_R (major) = 9.6 min.

Malononitrile **4r**, light yellow oil; $[\alpha]_D^{20} = 43.0$ (c = 1.06, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.86-7.81 (m, 4H), 7.52-7.28 (m, 10H), 7.24-7.17 (m, 3H), 6.64 (d, J = 16.0 Hz, 1H), 6.13 (dd, J = 16.0, 10.0 Hz, 1H), 3.40 (d, J = 14.0 Hz, 1H), 3.22 (d, J = 14.0 Hz, 1H), 2.92-2.83 (m, 1H), 2.75-2.68 (m, 1H), 2.64-2.55 (m, 1H), 2.47-2.38 (m, 1H), 2.18-2.08 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.1, 138.0, 135.5, 133.2, 133.1, 129.8, 129.7, 128.9, 128.8, 128.7, 128.5, 128.0, 127.7, 127.5, 126.8, 126.6, 126.5, 126.4, 123.8, 115.0, 114.3, 49.8, 44.6, 42.1, 32.9, 32.8; HRMS (ESI) calcd for C₃₁H₂₆N₂Na⁺ (M+Na)⁺ 449.19882, found 449.19806. The ee was determined to be 99% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 70:30, flow rate = 1.0 mL/min): t_R (minor) = 23.2 min, t_R (major) = 33.3 min.

Malononitrile **4s**, light yellow oil; $[\alpha]_D^{20} = 47.2$ (c = 1.04, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.11 (m, 10H), 6.59 (d, J = 15.6 Hz, 1H), 5.90 (dd, J = 15.6, 10.0 Hz, 1H), 2.95 (d, J = 16.8 Hz, 1H), 2.88-2.76 (m, 3H), 2.61-2.52 (m, 1H), 2.38-2.29 (m, 1H), 2.10-2.00 (m, 1H), 0.13 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 138.3, 135.4, 128.9, 128.8, 128.7 128.4, 126.7, 126.5, 122.7, 114.3, 113.8, 96.0, 92.9, 47.8, 41.5, 32.8, 32.4, 28.5, -0.33; HRMS (ESI) calcd for C₂₆H₂₈N₂NaSi⁺ (M+Na)⁺ 419.19140, found 419.19070. The ee was determined to be 94% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 4.8 min, t_R (major) = 5.7 min.

Malononitrile **4t**, light yellow oil; $[\alpha]_D^{20} = 40.2$ (c = 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.15 (m, 10H), 6.55 (d, J = 15.6 Hz, 1H), 5.97 (dd, J = 15.6, 10.0 Hz, 1H), 2.94 (d, J = 16.8 Hz, 1H), 2.88-2.82 (m, 1H), 2.79-2.72 (m, 2H), 2.63-2.57 (m, 1H), 2.43-2.35 (m, 1H), 2.13-2.05 (m, 1H), 1.48 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 140.0, 138.2, 135.3, 132.1, 128.9, 128.7, 128.5, 126.8, 126.4, 123.2, 114.8, 114.0, 84.0, 49.0, 41.1, 38.6, 32.8, 32.5, 27.9; HRMS (ESI) calcd for C₂₆H₂₈O₂N₂Na (M+Na)⁺ 423.20430, found 423.20410. The ee was determined to be 87% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 6.5 min, t_R (major) = 8.3 min.

Benzoylation of chiral amines for ee determination

To a solution of chiral amine 1 (0.10 mmol) and triethylamine (0.021 mL, 15.2 mg, 0.15 mmol) in dichloromethane (0.40 mL) at 0 °C was added dropwise a solution of benzoyl chloride (16.9 mg, 0.014 mL, 0.12 mmol) in dichloromethane (0.10 mL). The mixture was allowed to warm to room temperature and stirred overnight. The mixture was quenched with water (0.50 mL) and extracted with dichloromethane (2.5 mL), and the aqueous layer was washed with dichloromethane (1.5 mL). The organic layers were combined, dried over sodium sulfate, and concentrated. The residue was purified by silica gel chromatography, eluting with ethyl acetate/petroleum ether (1:5~1:10), to give

amide 1Bz.

Amide **1Bz-a**,⁶ prepared from chiral amine **1a** in 99% yield. White solid; m.p. 125.6-126.8 °C; $[\alpha]_D^{20} = -31.2 \ (c = 1.00, \text{CHCl}_3); \text{Lit.}^6: [\alpha]_D^{20} = 17.2 \ (c = 1.0, \text{CHCl}_3, R\text{-enantiomer}, 68.6\% \text{ ee}); ^1\text{H}$ NMR (400 MHz, CDCl₃) δ 7.84-7.75 (m, 2H), 7.56-7.14 (m, 8H), 6.59 (d, J = 16.0 Hz, 1H), 6.19 (dd, J = 16.0, 6.4 Hz, 1H), 4.82-4.74 (m, 1H), 1.85-1.63 (m, 2H), 1.02 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 136.7, 134.8, 131.5, 130.9, 129.6, 128.6, 128.5, 127.6, 126.9, 126.4, 52.9, 28.3, 10.4. The ee was determined to be 95% by HPLC analysis (Chiralpak OD, $\lambda = 254 \text{ nm}$, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 9.6 min, t_R (major) = 11.6 min.

Amide **1Bz-b**,⁶ prepared from chiral amine **1b** in 99% yield. White solid; m.p. 118.0-119.0 °C; $[\alpha]_D^{20} = -26.4 \ (c = 1.02, \text{ CHCl}_3); \text{ Lit.}^6: [\alpha]_D^{20} = 13.2 \ (c = 1.0, \text{ CHCl}_3, R-\text{enantiomer, } 68.2\% \text{ ee}); ^1\text{H}$ NMR (400 MHz, CDCl₃) δ 7.81-7.77 (m, 2H), 7.51-7.46 (m, 1H), 7.44-7.39 (m, 2H), 7.37-7.32 (m, 2H), 7.31-7.27 (m, 2H), 7.26-7.20 (m, 1H), 6.57 (d, J = 16.0 Hz, 1H), 6.30-6.22 (m, 2H), 5.01-4.91 (m, 1H), 1.44 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 136.6, 134.6, 131.4, 130.8, 130.0, 128.6, 127.6, 126.9, 126.4, 46.9, 20.7. The ee was determined to be 97% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 70:30, flow rate = 1.0 mL/min): t_R (minor) = 6.4 min, t_R (major) = 10.6 min.

Amide **1Bz-c**, prepared from chiral amine **1c** in 99% yield. White solid; m.p. 117.8-118.6 °C; $[\alpha]_D^{20} = -33.6 \ (c = 1.04, \text{ CHCl}_3);$ ¹H NMR (400 MHz, CDCl}3) δ 7.85-7.76 (m, 2H), 7.50-7.15 (m, 8H), 6.56 (d, J = 16.0 Hz, 1H), 6.43 (d, J = 6.0 Hz, 1H), 6.18 (dd, J = 16.0, 5.6 Hz, 1H), 4.88-4.76 (m, 1H), 1.76-1.65 (m, 2H), 1.46-1.25 (m, 4H), 0.94-0.86 (m, 3H); ¹³C NMR (100 MHz, CDCl}3) δ 166.8, 136.7, 134.7, 131.4, 130.6, 130.0, 128.5, 127.5, 127.0, 126.4, 51.6, 35.0, 28.1, 22.5, 14.0; HRMS (ESI) calcd for C₂₀H₂₃ONNa⁺ (M+Na)⁺ 316.16719, found 316.16718. The ee was determined to be 90% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 90:10, flow rate = 1.0 mL/min): t_R (minor) = 20.9 min, t_R (major) = 17.3 min.

Amide **1Bz-d**, prepared from chiral amine **1d** in 99% yield. White solid; m.p. 99.8-101.0 °C; $[\alpha]_D^{20} = -42.3 \ (c = 1.02, \text{CHCl}_3); {}^1\text{H} \text{NMR} (400 \text{ MHz}, \text{CDCl}_3) \delta 7.80 \ (d, J = 7.2 \text{ Hz}, 2\text{H}), 7.52-7.41 \ (m, 3\text{H}), 7.38-7.20 \ (m, 5\text{H}), 6.59 \ (d, J = 16.0 \text{ Hz}, 1\text{H}), 6.23-6.13 \ (m, 2\text{H}), 4.88-4.78 \ (m, 1\text{H}), 1.78-1.67 \ (m, 2\text{H}), 1.49-1.25 \ (m, 12\text{H}), 0.87 \ (t, J = 6.8 \text{ Hz}, 3\text{H}); {}^{13}\text{C} \text{NMR} (100 \text{ MHz}, \text{CDCl}_3) \delta 166.7, 136.7, 134.8, 131.4, 130.7, 129.9, 128.6, 128.5, 127.6, 126.9, 126.4, 51.5, 35.4, 31.8, 29.5 \ 29.2, 26.0, 22.7, 14.1; \text{HRMS} (ESI) calcd for C₂₄H₃₁ONNa⁺ (M+Na)⁺ 372.22979, found 372.22974. The ee was determined to be 96% by HPLC analysis (Chiralpak OD, <math>\lambda = 254 \text{ nm}$, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 17.8 min, t_R (major) = 13.5 min.

Amide **1Bz-e**,¹¹ prepared from chiral amine **1e** in 99% yield. White solid; m.p. 163-164 °C; $[\alpha]_D^{20} = -15.6 \ (c = 1.01, \text{CHCl}_3)$; Lit.¹¹: $[\alpha]_D^{20} = -8.4 \ (c = 1.0, \text{CHCl}_3, S\text{-enantiomer}, 52\% \text{ ee})$; ¹H NMR (400 MHz, CDCl}3) δ 7.73-7.69 (m, 2H), 7.53-7.48 (m, 1H), 7.46-7.40 (m, 2H), 7.39-7.35 (m, 2H), 7.33-7.17 (m, 8H), 6.61 (d, J = 16.0 Hz, 1H), 6.23 (dd, J = 16.0, 6.4 Hz, 1H), 6.08 (d, J = 8.0 Hz, 1H), 4.98-4.87 (m, 1H), 2.82-2.77 (m, 2H), 2.14-2.08 (m, 2H); ¹³C NMR (100 MHz, CDCl}3) δ 166.7, 141.5, 139.7, 136.6, 136.0, 134.5, 131.5, 131.2, 129.4, 128.6, 128.4, 127.7, 126.9, 126.5, 126.1, 51.4, 36.8, 32.3. The ee was determined to be 94% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 19.8 min, t_R (major) = 24.4 min.

Amide **1Bz-f**,¹¹ prepared from chiral amine **1f** in 99% yield. White solid; m.p. 99.0-100.1 °C; $[\alpha]_D^{20} = -20.2 \ (c = 1.05, \text{CHCl}_3); \text{Lit.}^{11}: [\alpha]_D^{20} = -23.6 \ (c = 1.0, \text{CHCl}_3, \text{S-enantiomer}, 76\% \text{ ee}); ^{1}\text{H}$ NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 7.2 Hz, 2H), 7.51-7.46 (m, 1H), 7.44-7.38 (m, 2H), 7.36-7.19 (m, 5H), 6.56 (d, J = 16.0 Hz, 1H), 6.40 (d, J = 7.2 Hz, 2H), 7.51-2.50 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 136.6, 134.6, 133.9, 131.5, 130.7, 129.1, 128.6, 128.5, 127.6, 126.9, 126.4, 118.6, 50.4, 39.5. The ee was determined to be 60% by HPLC analysis (Chiralpak OD, $\lambda = 254 \text{ nm}$, hexane/isopropanol = 90:10, flow rate = 1.0 mL/min): t_R (minor) = 19.9 min, t_R (major) = 24.2 min.

Amide **1Bz-g**,¹² prepared from chiral amine **1g** in 99% yield. White solid; m.p. 163.1-164.2 °C; $[\alpha]_D^{20} = 12.4 \ (c = 1.05, \text{CHCl}_3); \text{Lit.}^{12}: [\alpha]_D^{23} = 20.4 \ (c = 1.0, \text{CHCl}_3, R-\text{enantiomer}, 95\% \text{ ee}); ^1\text{H}$ NMR (400 MHz, CDCl}3) δ 7.84-7.80 (m, 2H), 7.53-7.47 (m, 1H), 7.46-7.35 (m, 8H), 7.34-7.26 (m, 3H), 7.25-7.20 (m, 1H), 6.66-6.61 (m, 2H), 6.43 (dd, J = 16.0, 6.0 Hz, 1H), 6.05-5.99 (m, 1H); ¹³C NMR (100 MHz, CDCl}3) δ 166.5 140.8, 136.4, 134.3, 131.7, 128.9, 128.7, 128.6, 127.8, 127.2, 127.0, 126.6, 55.2. The ee was determined to be 70% by HPLC analysis (Chiralpak AS, $\lambda = 254 \text{ nm}$, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 23.9 min, t_R (major) = 10.3 min.

Amide **1Bz-h**, prepared from chiral amine **1h** in 99% yield. White solid; m.p. 131.2-132.1 °C; $[\alpha]_D^{20} = -33.2$ (c = 1.08, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.78 (m, 2H), 7.52-7.46 (m, 1H), 7.45-7.39 (m, 2H), 7.29 (d, J = 8.8 Hz, 2H), 6.83 (d, J = 8.8 Hz, 2H), 6.53 (d, J = 16.0 Hz, 1H), 6.10-6.02 (m, 2H), 4.78-4.69 (m, 1H), 3.80 (s, 3H), 1.80-1.70 (m, 2H), 1.01 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 159.2, 134.8, 131.4, 130.4, 129.4, 128.5, 127.5, 127.3, 126.9, 113.9, 55.3, 52.9, 28.3, 10.4; HRMS (ESI) calcd for C₁₉H₂₁O₂NNa⁺ (M+Na)⁺ 318.14645, found 318.14645. The ee was determined to be 85% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 13.2 min, t_R (major) = 9.0 min.

Amide **1Bz-i**, prepared from chiral amine **1i** in 99% yield. Colorless oil; $[\alpha]_D^{20} = -45.1$ (c = 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.79 (m, 2H), 7.54-7.42 (m, 3H), 7.35-7.30 (m, 2H), 7.01-6.96 (m, 2H), 6.56(d, J = 16.0 Hz, 1H), 6.17-6.07 (m, 2H), 4.80-4.71 (m, 1H), 1.81-1.72 (m, 2H), 1.03 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 162.3 (d, ¹ $_{JC-F} = 245.4$ Hz), 134.7, 133.5, 132.9 (d, ⁴ $_{JC-F} = 3.1$ Hz), 131.6, 129.8, 128.6, 127.9 (d, ³ $_{JC-F} = 7.8$ Hz), 126.9, 115.5 (² $_{JC-F}$, J = 21.6 Hz), 52.9, 28.3, 10.4; HRMS (ESI) calcd for C₁₈H₁₈ONFNa⁺ (M+Na)⁺ 306.12646, found 306.12646. The ee was determined to be 93% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 7.9 min, t_R (major) = 6.4 min.

Amide **1Bz-j**, prepared from chiral amine **1j** in 99% yield. White solid; m.p. 129.6-130.1 °C; $[\alpha]_D^{20} = -12.8 \ (c = 1.05, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.0 Hz, 2H), 7.50-7.45 (m, 1H), 7.42-7.36 (m, 2H), 7.24-7.20 (m, 4H), 6.54 (s, br, 1H), 6.49 (d, J = 16.0 Hz, 1H), 6.13 (dd, J = 16.0, 6.4 Hz, 1H), 4.78-4.66 (m, 1H), 1.80-1.68 (m, 2H), 0.99 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 135.2, 134.6, 133.1, 131.4, 130.4, 129.5, 128.6, 128.5, 127.5 126.9., 52.9, 28.1, 10.4; HRMS (ESI) calcd for C₁₈H₁₈ONClNa⁺ (M+Na)⁺ 322.09691, found 322.09692. The ee was determined to be 94% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 9.3 min, t_R (major) = 6.7 min.

Amide **1Bz-k**, prepared from chiral amine **1k** in 99% yield. White solid; m.p. 86.1-87.3 °C; $[\alpha]_D^{20} = -41.6 \ (c = 1.05, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.80 (m, 2H), 7.57 (d, J = 8.4 Hz, 2H), 7.54-7.49 (m, 1H), 7.47-7.40 (m, 4H), 6.59 (d, J = 16.0 Hz, 1H), 6.32 (dd, J = 16.0, 6.4 Hz, 1H), 6.27 (s, br, 1H), 4.82-4.74 (m, 1H), 1.84-1.73 (m, 2H), 1.04 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 141.3, 134.4, 133.9, 132.4, 131.7, 129.2, 128.7, 127.0, 126.9, 118.9, 110.7, 52.9, 28.1, 10.5; HRMS (ESI) calcd for C₁₉H₁₈ON₂Na⁺ (M+Na)⁺ 313.13113, found 313.13119. The ee was determined to be 91% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 24.9 min, t_R (major) = 12.0 min.

Amide **1Bz-l**,⁶ prepared from chiral amine **11** in 98% yield. White solid; m.p. 126.0-127.3 °C; $[\alpha]_D^{20} = -21.5 \ (c = 1.03, \text{CHCl}_3); \text{Lit.}^6: [\alpha]_D^{20} = 12.7 \ (c = 1.0, \text{CHCl}_3, R-\text{enantiomer, } 62.4\% \text{ ee}); ^1\text{H}$ NMR (400 MHz, CDCl₃) δ 7.84-7.74 (m, 5H), 7.72-7.70 (m, 1H), 7.58-7.55 (m, 1H), 7.52-7.40 (m, 5H), 6.73 (d, J = 16.0 Hz, 1H), 6.39 (dd, J = 16.0, 5.6 Hz, 1H), 6.28 (d, J = 8.0 Hz, 1H), 5.08-4.97 (m, 1H), 1.48 (d, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.7, 134.6, 134.1, 133.5, 133.0, 131.5, 131.2, 130.1, 128.6, 128.2, 128.0, 127.6, 127.0, 126.4, 126.3, 125.9, 123.5, 47.0, 20.7. The ee was determined to be 99% by HPLC analysis (Chiralpak OD, $\lambda = 254 \text{ nm}$, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 19.0 min, t_R (major) = 16.9 min.

Amide **1Bz-m**, prepared from chiral amine **1m** in 99% yield. White solid; m.p. 116.0-117.0 °C; $[\alpha]_D^{20} = -21.6 \ (c = 1.00, CHCl_3);$ ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 7.2 Hz, 2H), 7.75-7.72 (m, 1H), 7.68-7.64 (m, 1H), 7.54-7.49 (m, 1H), 7.48-7.42 (m, 2H), 7.33-7.26 (m, 2H), 7.12 (s, 1H), 6.82 (d, J = 15.6 Hz, 1H), 6.16 (d, J = 8.0 Hz, 1H), 6.10 (dd, J = 15.6, 6.4 Hz, 1H), 4.84-4.75 (m, 1H), 1.84-1.73 (m, 2H), 1.04 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.9, 141.8, 140.0, 138.8, 134.6, 131.9, 131.6, 128.6, 126.9, 124.9, 124.7, 124.4, 123.5, 123.1, 122.2, 52.6, 28.2, 10.4; HRMS (ESI) calcd for C₂₀H₁₉ONNaS⁺ (M+Na)⁺ 344.10796, found 344.10797. The ee was determined to be 91% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 12.7 min, t_R (major) = 8.8 min.

Amide **1Bz-n**,⁶ prepared from chiral amine **1n** in 99% yield. White solid; m.p. 143.1-143.8.0 °C; $[\alpha]_D^{20} = -21.4$ (c = 1.05, CHCl₃); Lit.⁶: $[\alpha]_D^{20} = 16.5$ (c = 1.0, CHCl₃, *R*-enantiomer, 65.8% ee); ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.77 (m, 2H), 7.53-7.47 (m, 1H), 7.46-7.41 (m, 2H), 7.39-7.36 (m, 2H), 7.33-7.28 (m, 2H), 7.24-7.19 (m, 1H), 6.75 (dd, J = 15.6, 10.4 Hz, 1H), 6.54 (d, J = 15.6 Hz, 1H), 6.39 (dd, J = 15.2, 10.4 Hz, 1H), 6.17 (d, J = 8.0 Hz, 1H), 5.87 (dd, J = 15.2, 5.6 Hz, 1H), 4.95-4.85 (m, 1H), 1.40 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 137.1, 134.9, 134.6, 132.8, 131.5, 130.4, 128.6, 128.1, 127.6, 126.9, 126.4, 46.7, 20.6. The ee was determined to be 80% by HPLC analysis (Chiralpak OD, $\lambda = 280$ nm, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): t_R (minor) = 20.5 min, t_R (major) = 16.9 min.

Amide **1Bz-o**,⁵ prepared from chiral amine **1o** in 99% yield. White solid; m.p. 76.5-77.1 °C; $[\alpha]_D^{20} = -10.8 \ (c = 1.04, \text{ CHCl}_3); \text{ Lit.}^5: [\alpha]_D^{20} = -21.1 \ (c = 0.52, \text{ CHCl}_3, S-enantiomer, 99\% ee); ^1\text{H}$ NMR (400 MHz, CDCl₃) δ 7.79-7.75 (m, 2H), 7.51-7.46 (m, 1H), 7.45-7.39 (m, 2H), 6.01 (d, J = 7.2Hz, 1H), 5.61 (ddd, J = 15.6, 6.4, 1.2 Hz, 1H), 5.47 (ddd, J = 15.6, 6.4, 1.2 Hz, 1H), 4.79-4.67 (m, 1H), 1.98-1.90 (m, 1H), 1.76-1.60 (m, 4H), 1.31 (d, J = 8.4 Hz, 3H), 1.30-0.99 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 137.0, 134.9, 131.3, 128.5, 126.9, 46.7, 40.3, 32.9, 32.8, 26.1, 26.0, 20.9. The ee was determined to be 70% by HPLC analysis (Chiralpak AD, λ = 254 nm, hexane/isopropanol = 90:10, flow rate = 1.0 mL/min): t_R (minor) = 6.7 min, t_R (major) = 8.3 min.

Amide **1Bz-p**,¹³ prepared from chiral amine **1p** in 99% yield. White solid; m.p. 97.0-98.1 °C; $[\alpha]_D^{20} = 25.4 \ (c = 1.08, \text{CHCl}_3); \text{Lit.}^{13}: [\alpha]_D^{22} = -52.4 \ (c = 1, \text{CHCl}_3, S-\text{enantiomer}, 90\% \text{ ee}); ^1\text{H NMR}$ (400 MHz, CDCl₃) δ 7.82-7.77 (m, 2H), 7.53-7.47 (m, 1H), 7.45-7.27 (m, 7H), 6.43 (d, J = 7.2 Hz, 1H), 6.11 (ddd, J = 17.2, 10.0, 5.2 Hz, 1H), 5.88-5.83 (m, 1H), 5.33-5.27 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 166.5, 140.5, 137.1, 134.3, 131.6, 128.8, 128.6, 127.8, 127.3, 127.0, 116.2, 55.5. The ee was determined to be 89% by HPLC analysis (Chiralpak AD, $\lambda = 220$ nm, hexane/isopropanol = 90:10, flow rate = 1.0 mL/min): t_R (minor) = 22.1 min, t_R (major) = 13.5 min.

Enantiospecific allylic alkylation (Scheme 4)

The reaction was performed following the general procedure shown above but using racemic BINAP instead of (S)-BINAP.

Malononitrile *ent*-4a, light yellow oil; 95% ee as determined by HPLC analysis (Chiralpak AD, $\lambda = 254$ nm, hexane/isopropanol = 99:1, flow rate = 1.0 mL/min): t_R (minor) = 11.1 min, t_R (major) = 12.6 min; $[\alpha]_D^{20} = -41.2$ (*c* = 1.00, CHCl₃).

Malononitrile *ent*-4e, light yellow oil; 94% ee as determined by HPLC analysis Chiralpak OD, $\lambda = 254 \text{ nm}$, hexane/isopropanol = 80:20, flow rate = 1.0 mL/min): $t_R (\text{minor}) = 12.7 \text{ min}$, $t_R (\text{major}) = 10.0 \text{ min}$; $[\alpha]_D^{20} = -36.4 (c = 1.04, \text{CHCl}_3)$.

Kinetic resolution of secondary and tertiary allylic amines (Scheme 5)

The reaction was performed following the general procedure shown above. Analytical data for the products are shown below.

Amine **1ea**, light yellow oil; $[\alpha]_D{}^{20} = -42.8$ (c = 1.04, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 7.6 Hz, 2H), 7.35-7.25 (m, 5H), 7.20-7.16 (m, 3H), 6.50 (d, J = 16.0 Hz, 1H), 6.03 (dd, J = 16.0, 8.4 Hz, 1H), 3.16-3.08 (m, 1H), 2.75-2.62 (m, 2H), 2.41 (s, 3H), 2.01-1.93 (m, 1H), 1.90-1.82 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 141.9, 136.8, 132.6, 131.3, 128.6, 128.4, 127.6, 126.4, 125.9, 62.7, 37.0, 33.7, 32.2; HRMS (ESI) calcd for C₁₈H₂₂N⁺ (M+H)⁺ 252.17468, found 252.17435. The ee was determined to be 91% by converting it to compound **1Bz-ea** (see below).

Amide **1Bz-ea** was prepared from chiral amine **1ea** in 99% yield according to the above procedure (Benzoylation of chiral amines for ee determination). Yellowish oil; $[\alpha]_D^{20} = -24.5$ (c = 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃, mixture of rotamers) δ 7.48-7.09 (m, 15H), 6.65-6.40 (m 1H), 6.30-6.10 (m, 1H), 4.50-4.40 (m, 1H), 3.05 (s, 3H), 2.65-2.45 (m, 1H), 2.15-1.95 (m, 2H), 1.75-1.60 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, mixture of rotamers) δ 172.7, 171.8, 140.7, 136.6, 136.3, 132.6, 131.7, 129.5, 128.7, 128.5, 128.2, 128.0, 127.5, 126.9, 126.5, 126.4, 126.2, 100.0, 59.8, 54.4, 34.2, 32.9, 32.4, 27.7; HRMS (ESI) calcd for C₂₅H₂₆NO⁺ (M+H)⁺ 356.20089, found 356.20012. The ee was determined to be 91% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 90:10, flow rate = 1.0 mL/min): t_R (minor) = 12.1 min, t_R (major) = 15.4 min.

Amine **1eb**, light yellow oil; $[\alpha]_D{}^{20} = -28.6$ (c = 1.03, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.39 (m, 2H), 7.36-7.29 (m, 6H), 7.27-7.23 (m, 4H), 7.19-7.14 (m, 3H), 6.49 (d, J = 16.0 Hz, 1H), 6.08 (dd, J = 16.0, 8.4 Hz, 1H), 3.86 (d, J = 13.2 Hz, 1H), 3.69 (d, J = 13.2 Hz, 1H), 3.29-3.22 (m, 1H), 2.75-2.61 (m, 2H), 1.99-1.83 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 142.0, 140.2, 137.0, 132.4, 132.0, 128.6, 128.4, 128.3, 127.5, 127.0, 126.4, 125.8, 60.2, 51.3, 37.5, 32.3; HRMS (ESI) calcd for C₂₄H₂₆N⁺ (M+H)⁺ 328.20598, found 328.20548. The ee was determined to be 70% by HPLC analysis (Chiralpak OD, $\lambda = 254$ nm, hexane/isopropanol = 90:10, flow rate = 1.0 mL/min): t_R (minor) = 23.9 min, t_R (major) = 10.3 min.

Amine **1ec**, light yellow oil; $[\alpha]_D^{20} = -18.5$ (c = 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.14 (m, 10H), 6.46 (d, J = 16.0 Hz, 1H), 6.15 (dd, J = 16.0, 8.8 Hz, 1H), 3.76-3.64 (m, 4H), 2.95-2.88 (m, 1H), 2.76-2.68 (m, 1H), 2.66-2.58 (m, 3H), 2.54-2.47 (m, 2H), 2.12-2.02 (m, 1H), 1.87-1.77 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 136.7, 133.3, 129.0, 128.6, 128.4, 128.3, 127.5, 126.3, 125.7, 67.4, 67.2, 50.3, 33.5, 32.4; HRMS (ESI) calcd for C₂₁H₂₆ON⁺ (M+H)⁺ 308.20089, found 308.20041. The ee was determined to be 43% by HPLC analysis (Chiralpak AD, λ = 254 nm, hexane/isopropanol = 95:5, flow rate = 1.0 mL/min): t_R (minor) = 11.1 min, t_R (major) = 8.3 min.

References

- (1) M.-B. Li, H. Li, J. Wang, C.-R. Liu and S.-K. Tian, Chem. Commun., 2013, 49, 8190.
- (2) (a) A. G. Myers, B. Zheng and M. Movassaghi, J. Org. Chem., 1997, 62, 7507; (b) F.-L. Yang, X.-T. Ma and S.-K. Tian, Chem.-Eur. J., 2012, 18, 1582.
- (3) M. Sugiura, K. Hirano and S. Kobayashi, J. Am. Chem. Soc., 2004, 126, 7182.
- (4) M. Pallavicini, E. Valoti, L. Villa and O. Piccolo, *Tetrahedron: Asymmetry*, 2000, 11, 4017.
- (5) X.-S. Wu, Y. Chen, M.-B. Li, M.-G. Zhou and S.-K. Tian, J. Am. Chem. Soc., 2012, 134, 14694.
- (6) E. G. Klauber, N. Mittal, T. K. Shah and D. Seidel, Org. Lett., 2011, 13, 2464.
- (7) Y. Wang, M. Li, X. Ma, C. Liu, Y. Gu and S.-K. Tian, Chin. J. Chem., 2014, 32, 741.
- (8) A. R. Katritzky, D. Cheng and J. Li, J. Org. Chem., 1998, 63, 3438.
- (9) Z. Liu, Z. Cao and H. Du, Org. Biomol. Chem., 2011, 9, 5369.
- (10) K.-G. Shim, J. C. Park, C. S. Cho, S. C. Shim and Y. Yamamoto, Chem. Commun., 2002, 852.
- (11) A. Jaganathan, R. J. Staples and B. Borhan, J. Am. Chem. Soc., 2013, 135, 14806.
- (12) J. A. Bishop, S. Lou and S. E. Schaus, Angew. Chem., Int. Ed., 2009, 48, 4337.
- (13) M. Lafrance, M. Roggen and E. M. Carreira, Angew. Chem., Int. Ed., 2012, 51, 3470.

S-25

1g ¹H NMR (400 MHz, CDCl₃)

S-48

S-49

S-59

S-65

S-69

5.0 4.5 f1 (ppm) 4.0

2.04 10.05 3.03 석사

. 0

9.5

9.0

8.5

8.0

7.5 7.0

1. 00 Å

6.5

1.02 \pm

6. 0

5.5

1.06 9.09 1.05 2.04 1.07 1.07 1.02 1.02 1.02

3.0

3.5

2.5

2.0

1.5

1.0

0.5

0.0 -0

---0.000

S-83

---0.000

0

---0.000

S-123

1Bz-m ¹H NMR (400 MHz, CDCl₃)

942 925 909 875 858

S-127

$$-141.852$$

 -141.852
 -141.852
 -131.8619
 -131.8162
 -128.8126
 -128.8126
 -128.816
 -128.816
 -125.874
 -127.0376
 -127.0376
 -127.0376
 -127.0376
 -127.0376
 -126.740

S-134

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	9.359	1006.6	41.5	0.3657	0.725	50.022
2	11.372	1005.7	33.7	0.4505	0.74	49.978

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	9.63	81.9	3.7	0.3719	0.783	2.459
2	11.638	3250.1	107.4	0.5043	0.737	97.541

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.365	2281.7	144	0.2387	0.688	50.261
2	10.476	2258	81.8	0.46	0.761	49.739

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.417	94.8	6	0.2372	0.701	1.705
2	10.601	5468.6	195.9	0.4261	0.731	98.295

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	17.621	1083.2	24.3	0.6703	0.697	50.388
2	21.316	1066.5	19	0.936	0.691	49.612

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	17.259	1982	45.8	0.6493	0.68	94.964
2	20.851	105.1	2.1	0.8188	0.779	5.036

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	13.953	760.1	22.4	0.5105	0.742	50.156
2	18.744	755.4	15.2	0.8275	0.765	49.844

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	13.564	992.1	30.7	0.4888	0.741	97.902
2	17.821	21.3	5.8E-1	0.606	0.854	2.098

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	$(mAU \cdot s)$	(mAU)	(min)	factor	
1	19.513	490.4	9.1	0.7966	0.778	50.170
2	23.898	487.1	7.5	0.9456	0.785	49.830

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	19.849	215.8	3.2	0.8761	0.603	3.243
2	24.4	6436.8	88.6	1.1027	0.678	96.757

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	20.328	1074.6	21.6	0.7446	0.675	50.189
2	24.797	1066.5	17.5	0.9094	0.685	49.811

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	19.886	452.4	9.4	0.7015	0.724	19.829
2	24.215	1829.1	30.8	0.8901	0.656	80.171

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	10.265	4585.9	121.8	0.5687	0.629	50.190
2	23.896	4551.1	34.2	2.2187	0.609	49.810

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	10.325	5266.5	143.3	0.554	0.635	84.784
2	23.94	945.1	8.1	1.946	0.695	15.216

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	9.171	3761.9	152.3	0.3755	0.682	49.636
2	13.598	3817	102.8	0.6187	0.738	50.364

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	9.018	8753.5	365.5	0.3624	0.666	92.599
2	13.248	699.6	19.1	0.6106	0.819	7.401

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.438	2519.5	147.1	0.2609	0.752	50.070
2	7.986	2512.5	119.8	0.3175	0.724	49.930

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.412	2936.3	167.5	0.2642	0.73	96.457
2	7.942	107.8	4.9	0.3265	0.775	3.543

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.676	10992	687.2	0.2419	0.699	50.115
2	9.141	10941.7	486.1	0.3427	0.724	49.885

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.715	16399.7	978.3	0.2794	0.731	96.931
2	9.323	519.2	23.5	0.3686	0.766	3.069

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	5.956	2056.9	126.2	0.247	0.712	50.183
2	10.48	2041.9	63.7	0.4919	0.774	49.817

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.039	1404.9	82.2	0.2592	0.727	95.382
2	10.764	68	1.8	0.5495	0.597	4.618

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	16.88	2435.9	50.3	0.7276	0.712	49.544
2	19.006	2480.7	48.8	0.8468	0.766	50.456

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	16.9	4698	96.7	0.8094	0.722	99.488
2	18.991	24.2	6.2E-1	0.6502	0.243	0.512

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	9.256	3613.1	148.5	0.3682	0.706	49.716
2	14.068	3654.4	97.5	0.6245	0.72	50.284

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	8.849	1347.6	62	0.3266	0.668	95.657
2	12.709	61.2	2	0.4374	0.808	4.343

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	16.2	568.8	12.3	0.6982	0.696	49.784
2	21.969	573.8	9.8	0.8517	0.793	50.216

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	16.86	499.6	9.9	0.8453	0.674	89.908
2	20.459	56.1	1.1	0.8821	0.81	10.032

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.749	1507.8	120.3	0.1928	0.804	50.250
2	8.351	1492.9	98.1	0.2357	0.827	49.750

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.735	169.3	13.4	0.1941	0.868	14.792
2	8.335	975.2	64.4	0.235	0.842	85.208

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	12.941	2573.1	108.1	0.3693	0.832	50.025
2	21.074	2570.5	64.6	0.6145	0.779	49.975

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	13.479	1265.6	50.9	0.3864	0.845	94.479
2	22.172	74	1.9	0.5517	0.783	5.521

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	11.433	958.8	39	0.3788	0.789	49.970
2	13.225	959.9	25.1	0.6362	0.778	50.030

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	11.596	2364.2	85.4	0.4221	0.722	92.961
2	13.345	179	3.5	0.7241	0.709	7.039

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	14.841	1730.5	72.8	0.3692	0.896	49.597
2	15.692	1758.6	68.5	0.3971	0.905	50.403

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	14.698	3717.9	157.5	0.3643	0.875	89.569
2	15.544	433	17.1	0.3891	0.896	10.431

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	7.488	1499.8	94.3	0.2394	0.659	50.209
2	8.891	1487.3	78.6	0.2849	0.697	49.791

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.809	140.1	10	0.2106	0.672	3.082
2	8.057	4405	205.8	0.3036	0.49	96.918

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	5.683	4938.3	374.8	0.1974	0.638	50.107
2	7.303	4917.3	282	0.2631	0.693	49.893

	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.344	167.7	11.2	0.2291	0.718	3.229
2	8.54	5024.3	234.2	0.3275	0.723	96.771

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	9.66	2529.1	105.2	0.3649	0.677	50.049
2	12.08	2524.1	80.7	0.4785	0.693	49.951

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	9.722	99.7	3.7	0.4523	0.567	3.500
2	12.102	2749.3	87.8	0.4789	0.694	96.500

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	11.453	3043.1	133.7	0.3829	0.646	50.028
2	13.832	3399.3	114.7	0.4461	0.682	49.972

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	11.477	36.4	1.5	0.3923	0.877	2.937
2	13.823	1204.1	40.8	0.4477	0.701	97.063

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	13.254	2026.7	64.8	0.4682	0.654	50.330
2	15.578	2000.1	42.9	0.6904	0.539	49.670

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	13.126	2662.4	84.6	0.4718	0.639	80.000
2	15.52	665.6	14.6	0.7623	0.619	20.000

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.554	684.2	47	0.221	0.716	50.094
2	15.584	681.6	17.1	0.6091	0.767	49.906

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.741	17.5	1.2	0.241	0.791	1.989
2	16.381	862.1	20.8	0.6326	0.752	98.011

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.628	4070.1	277.5	0.2206	0.663	49.768
2	11.614	4108	152.1	0.4083	0.698	50.232

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.209	803.9	52.6	0.2291	0.731	6.239
2	10.461	12082.5	476.8	0.3816	0.641	93.761

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.876	5425.5	355.6	0.2304	0.677	49.978
2	10.3	5430.2	228.5	0.3602	0.716	50.022

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.699	246.1	17.6	0.2065	0.692	7.957
2	9.863	2847.2	128.6	0.3226	0.681	92.043

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	11.365	1917.2	66.6	0.4346	0.695	50.138
2	20.354	1906.6	36.2	0.8788	0.77	49.862

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	11.384	328	11.5	0.4341	0.701	5.112
2	20.292	6088.3	115.8	0.7996	0.729	94.888

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	19.746	4032.3	126.1	0.5327	0.923	50.300
2	21.502	3984.2	105.6	0.6288	1.02	49.700

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	19.305	12671	386.3	0.5079	0.881	86.836
2	21.103	1954.5	54.1	0.5597	0.909	13.364

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	9.814	1876.8	86.4	0.3227	0.687	50.386
2	28.777	1848.1	26.6	1.0474	0.692	49.614

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	9.79	72.8	3.4	0.3201	0.706	2.433
2	28.655	2917.9	41.4	1.0738	0.663	97.567

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	10.663	4322.9	177.4	0.3688	0.713	49.952
2	20.563	4331.2	84.3	0.7845	0.733	50.048

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	11.452	234.5	8.9	0.4	0.732	15.657
2	22.074	1263.2	23.6	0.8067	0.76	84.343

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	14.382	6898.4	218.2	0.4767	0.616	49.847
2	16.017	6940.8	194.6	0.5427	0.625	50.153

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	14.868	847.3	27.2	0.519	0.735	27.101
2	16.645	2279.1	65.1	0.5831	0.706	72.899

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	8.505	1616.8	83.3	0.2933	0.7	49.785
2	9.441	1630.7	73.6	0.3343	0.704	50.215

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	8.658	73.4	3.7	0.2992	0.733	3.581
2	9.626	1976.8	87.3	0.3429	0.698	96.419

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	22.985	2304.8	33	1.0545	0.69	49.938
2	33.359	2310.5	21.1	1.8287	0.665	50.062

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	23.233	44.6	7E-1	1.0614	0.822	0.740
2	33.314	5981.5	54.6	1.6235	0.602	99.260

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	4.752	2743.4	260.4	0.1579	0.643	49.853
2	5.689	2759.6	211.1	0.1962	0.669	50.147

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	4.77	244.5	18.9	0.2021	0.582	3.156
2	5.698	7502.5	574.3	0.1961	0.669	96.844

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	5.563	1197	95.8	0.188	0.717	50.175
2	7.299	1188.6	63.3	0.283	0.717	49.825

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	6.484	514.3	30.4	0.2456	0.528	6.631
2	8.293	7241.2	333.6	0.326	0.75	93.369

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	11.433	958.8	39	0.3788	0.789	49.970
2	13.225	959.9	25.1	0.6362	0.778	50.030

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	11.057	208.5	8.3	0.3934	0.83	2.700
2	12.61	7514.1	190.5	0.6576	0.549	97.300

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	9.66	2529.1	105.2	0.3649	0.677	50.049
2	12.08	2524.1	80.7	0.4785	0.693	49.951

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	9.998	3452.7	134	0.3894	0.653	96.817
2	12.734	113.5	3.4	0.4906	0.782	3.183

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	11.987	4525.8	142.2	0.4834	0.613	50.064
2	15.45	4514.2	104.8	0.6541	0.637	49.936

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	12.107	66.2	2.4	0.4593	0.754	4.313
2	15.397	1469.8	34.3	0.7132	0.7	95.687

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	10.265	4585.9	121.8	0.5687	0.629	50.190
2	23.896	455.1	34.2	2.2187	0.609	49.810

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	10.325	5266.5	143.3	0.554	0.635	84.784
2	23.94	945.1	8.1	1.946	0.695	15.216

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	7.905	35901.3	1528.6	0.3206	0.204	49.056
2	10.397	37282.6	1154.3	0.4394	0.195	50.944

Number	Time	Area	Height	Width	Symmetry	Area (%)
	(min)	(mAU·s)	(mAU)	(min)	factor	
1	8.255	3833.8	90.9	0.5634	0.179	71.410
2	11.116	1534.9	25.5	0.8432	0.254	28.590