Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Fucofullerenes are tight ligands of RSL and LecB, two bacterial lectins

Kevin Buffet, Emilie Gillon, Michel Holler, Jean-François Nierengarten*, Anne Imberty*, Stéphane P. Vincent*

Electronic Supplementary Information

I. Synthesis

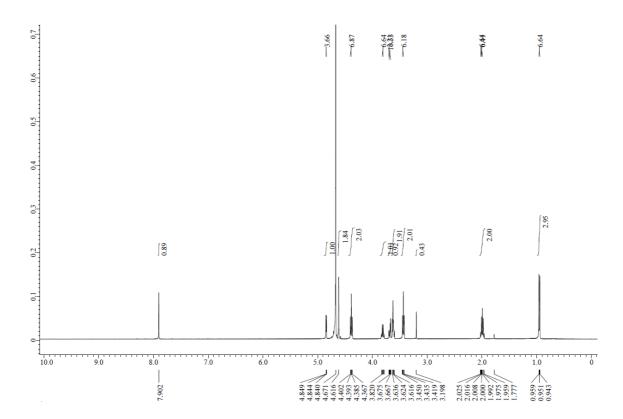
General. Compounds 2^1 , 3^1 , 12^2 , 13^3 , 14^4 , 16^5 , 17^6 , 18^2 , 24^7 , 25^8 , $C_{60}(A)_{12}$ were prepared according to previously reported procedures. All reactions were carried out in standard glassware under an argon atmosphere. Yields refer to chromatographically and spectroscopically homogeneous materials. Reagents and chemicals were purchased from Sigma-Aldrich and Acros at ACS grade and were used without purification. All reactions were performed using purified and solvents: tetrahydrofuran (THF) was refluxed over sodium-benzophenone, dichloromethane (CH₂Cl₂), triethylamine (NEt₃), and pyridine were refluxed over calcium hydride (CaH₂). All reactions were monitored by thin-layer chromatography (TLC) carried out on Merck aluminum roll silica gel 60-F254 using UV light and a molybdate-sufuric acid solution as revelator. Merck silica gel (60, particle size 0.040-0.063 mm) was employed for flash column chromatography using technically solvent distilled prior to use as eluting solvents. IR spectra (cm-¹) were recorded on a Perkin–Elmer Spectrum 65 spectrophotometer. UV/Vis spectra (λ_{max} in nm (ɛ)) were recorded on a SPECORD 205 spectrophotometer. NMR spectra were recorded on a JEOL ECX 400 with solvent peaks as reference. All compounds were characterized by ¹H and ¹³C NMR as well as by ¹H-¹H and ¹H-¹³C correlation experiment when necessary. The following abbreviations are used to describe the multiplicities: s= singlet, d= doublet, t= triplet, m= multiplet, br= broad, br s= broad singlet. The numbering of the protons and carbons is analogous to the proton numbers resulting from the name of the compound. Aromatic, acetyl and methyl (carbons and protons) are respectively labeled with "Arom", "Ac" and "Me", quaternary carbons are indicated with a "q" subscript. Chemical shifts (δ) are reported in ppm and referenced indirectly to TMS via the solvent (or residual solvent) signals. MALDI-MS mass spectra were recorded in University of Mons (UMH, Mass Spectrometry Research Group - CISMa) using a Waters QToF Premier mass spectrometer.

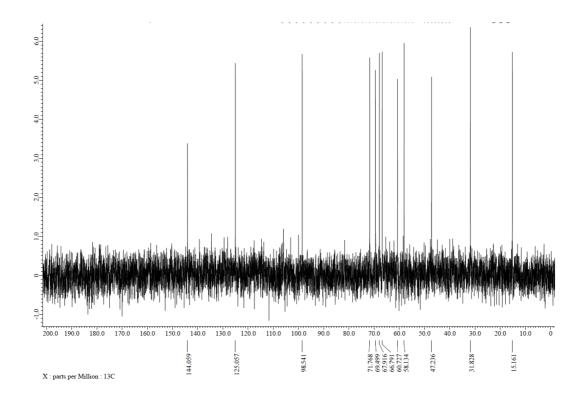
¹ J. F. Nierengarten, J. Iehl, V. Oerthel, M. Holler, B. M. Illescas, A. Munoz, N. Martin, J. Rojo, M. Sanchez-Navarro, S. Cecioni, S. Vidal, K. Buffet, M. Durka and S. P. Vincent, *Chem. Commun.* **2010**, *46*, 3860-3862.

² H. S. Gill, J. N. Tinianow, A. Ogasawara, J. E. Flores, A. N. Vanderbilt, H. Raab, J. M. Scheer, R. Vandlen, S. P. Williams and J. Marik, *J. Med. Chem.*, **2009**, *52*, 5816-5825.

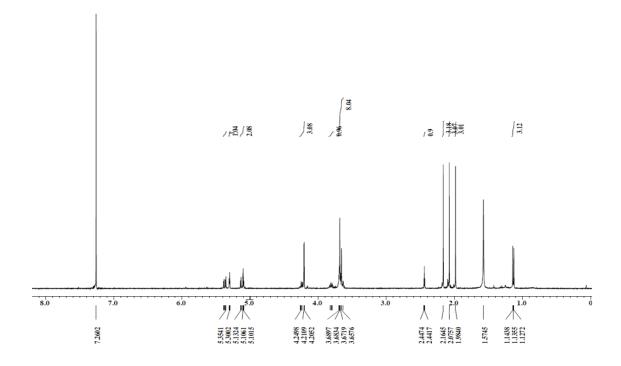
³ S. H. Baccaro and A. M. Weisbrod, *Synthesis*, **2007**, *13*, 1949-1954.

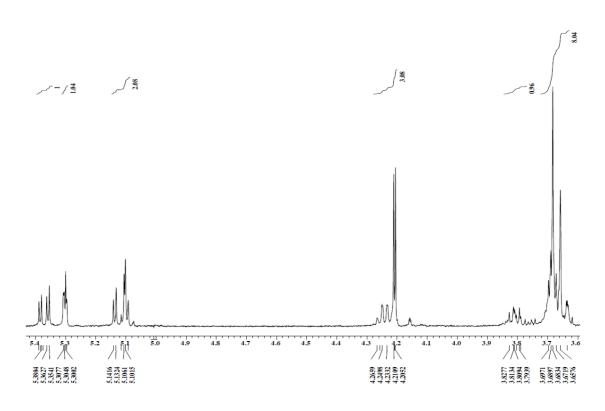
⁴ P. J. Jervis, M. Moulis, J. P. Jukes, H. Ghadbane, L. R. Cox, V. Cerundolo and G. S. Besra, *Carbohydr. Res.*, **2012**, *356*, 152-162.

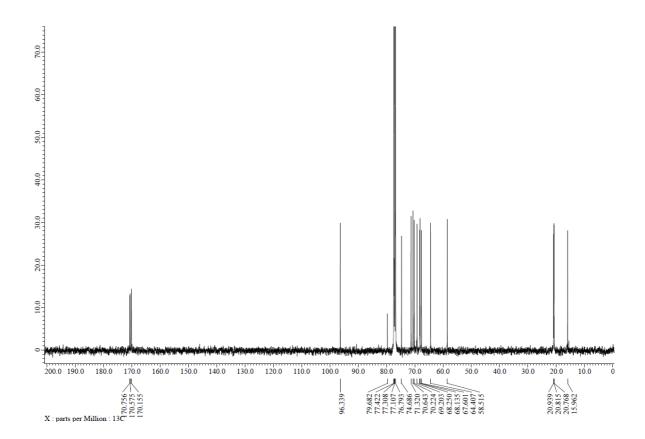

⁵ I. Lee, Y. S. Choe, J. Y. Choi, K.H. Lee, and B.T. Kim, *J. Med. Chem.*, **2012**, *55*, 883-892.

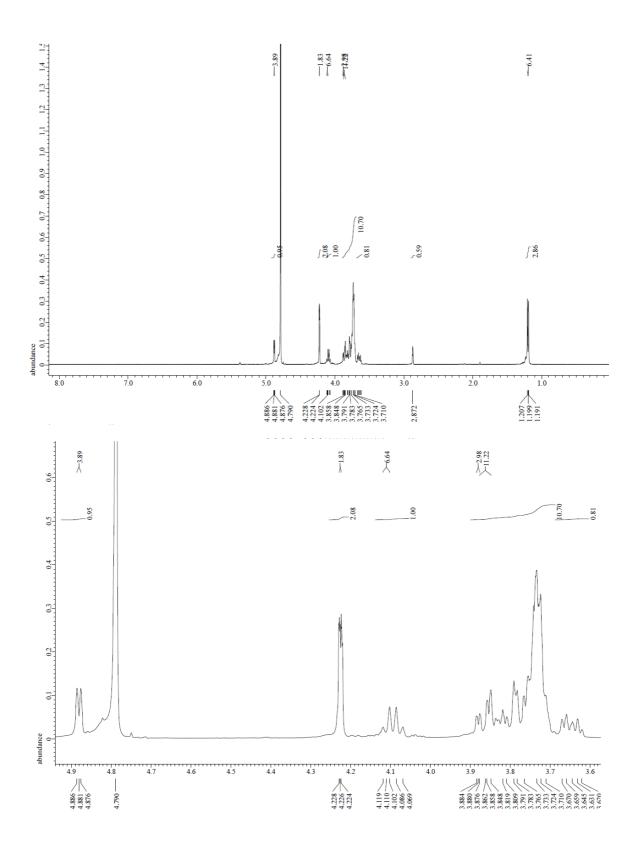

⁶ C. A. Vanderwerf, R. Y. Heisler and W. E. Mc Ewen, J. Am. Chem. Soc., 1954, 76, 1231-1235.

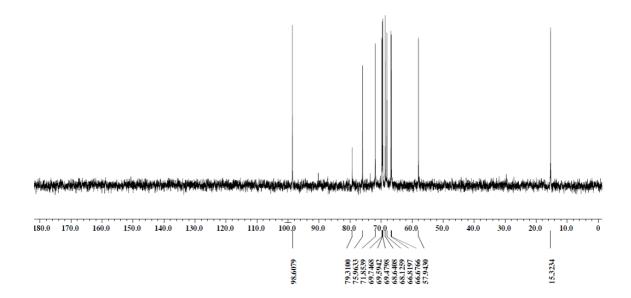
⁷ J. Iehl, R. P. de Freitas, B. Delavaux-Nicot and J. F. Nierengarten, *Chem. Commun.* **2008**, 2450-2452.

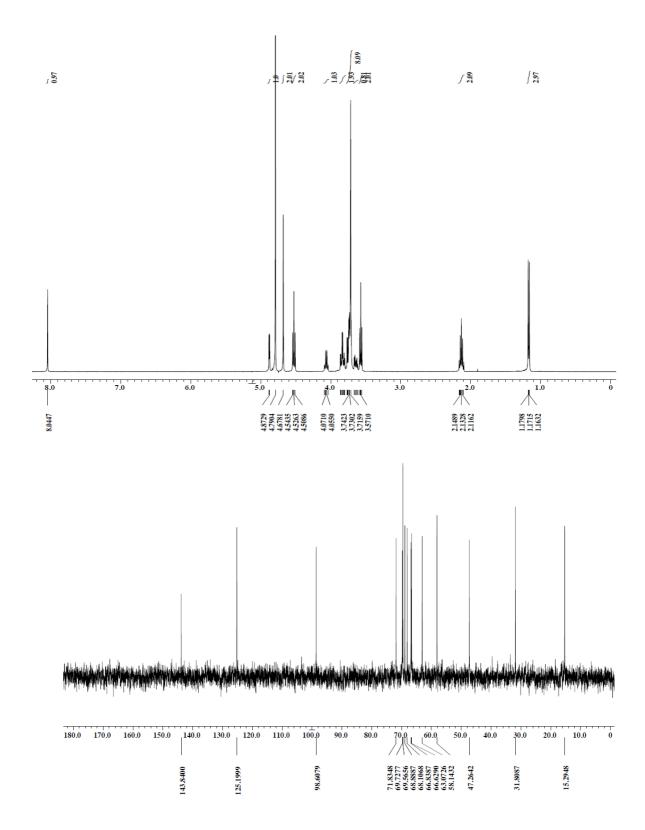

⁸ J. G. Badiang and J. Aubé, *J. Org, Chem.*, **1996**, *61*, 2484-2487.


To a solution of **3** (0.100 g, 0.49 mmol, 1 eq) in t-BuOH/H₂O 1:1 (3 mL) was added **25** (0.060 g, 0.59 mmol, 1.2 eq), sodium ascorbate (0.020 g, 0.10 mmol, 0.2 eq) and copper (II) sulfate (0.008 g, 0.05 mmol, 0.1 eq) under argon atmosphere. The solution was stirred during three hours at room temperature. Afterwards the solvents were evaporated under reduced pressure. The residue was purified by flash chromatography (SiO₂, EtOAc to EtOAc/MeOH 9:1) to afford **A** (0.100 g, 67%) as a colorless oil. ¹**H NMR** (400 MHz, D₂O) δ = 7.90 (s, 1H, H_{arom}), 4.84 (d, J = 3.7Hz, 1H, H-1), 4.62 (s, 2H, O CH_2 C=C), 4.39 (t, J = 3.9 Hz, 2H, N CH_2 CH₂CH₂OH), 3.81 (q, J = 6.6Hz, 1H, H-5), 3.68 (dd, J = 3.2Hz, J = 10.5Hz, H-2, 1H), 3.64-3.60 (m, 2H, H-3, H-4), 3.44 (t, J = 6.2 Hz, 2H, NCH₂CH₂CH₂OH), 1.99 (tt, J = 6.4Hz, J = 6.6Hz, 2H, NCH₂C H_2 CH₂OH), 0.95 (d, J = 6.6 Hz, 3H, H-6). ¹³C NMR (100 MHz, D₂O) δ = 144.06 (C_{arom}) 125.06 (C_{arom}), 98.54 (C-1), 71.77, 69.50 (C-2), 67.92, 66.79 (C-5), 60.73 (CH_2 C=C), 58.13 (NCH₂C H_2 CH₂OH), 47.24 (N CH_2 CH₂CH₂OH), 31.83 (NCH₂C H_2 CH₂OH), 15.16 (C-6). [α]_d (MeOH, c=0.5, 20°C) = -126.4 Mass (TOF-MS-ESI+): m/z: 326.13 (100%) [M+Na]+ HRMS (TOF-MS-ESI+, m/z): calculated for C₁₉H₂₈O₁₀Na+: 326.1323; found: 326.1312.

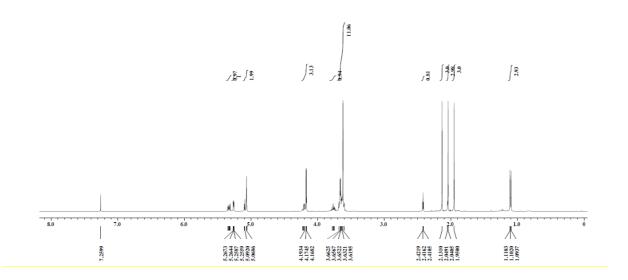


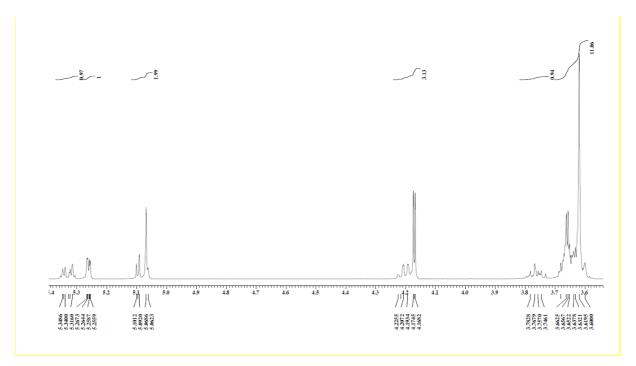

To a solution of **1** (3.00 g, 9.03 mmol, 1 eq) in dry CH_2Cl_2 (60.0 mL) was added **12** (5.20 g, 36.11 mmol, 4 eq) and boron trifluoride diethyl etherate (4.58 mL, 36.11 mmol, 4 eq) at 0°C under argon atmosphere and the solution was stirred during 7 days at room temperature. The reaction mixture was then washed with a saturated aqueous solution of NaHCO₃ (50 mL) and water (50 mL), extracted with CH_2Cl_2 (3x50 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, Cy/EtOAc 8:2 to Cy/EtOAc 5:5) to afford **4** (0.88 g, 23%) as a yellowish oil. ¹**H NMR** (400 MHz, CDCl₃) δ = 5.36 (dd, J = 3.2 Hz, J = 10.0 Hz, 1H, H-2), 5.30 (d, J = 1.8 Hz, 1H, H-3), 5.14-5.09 (m, 2H, H-1, H-4), 4.23 (q, J = 6.4 Hz, 1H, H-5), 4.20 (d, J = 2.3 Hz, 2H, CH_2O), 3.82-3.76 (m, 1H, CH_2O), 3.68-3.62 (m, 7H, CH_2O), 2.43 (t, J = 2.3 Hz, 1H, CH_2O), 2.15, 2.06, 1.97 (3s, 9H, CH_2O), 3.68-3.62 (m, 7H, CH_2O), 2.43 (t, J = 2.3 Hz, 1H, CH_2O), 2.15, 2.06, 1.97 (3s, 9H, CH_2O), 96.34 (C-1), 79.68, 74.69, 71.32, 70.64, 70.22, 69.20, 68.25, 68.14, 67.60, 64.41 (10C, C-2, C-3, C-4, C-5, CH_2O), CH_2CCH , CH_2CCH), 58.52 (CH_2CCH), 20.94, 20.82, 20.77 (3C, 3 CH_3), 15.96 (C-6). [CH_2CCH), CH_2CCH , CH_2CCH), 58.52 (CH_2CCH), 20.94, 20.82, 20.77 (3C, 3 CH_3), 15.96 (C-6). [CH_2CCH), CH_2CCH , CH_2CCH) calculated for CH_2CCH): CH_2CCH 0, CH_2CCH 1, CH_2CCH 2. (39.1584) (100%) [CH_2CCH 3) + **HRMS** (TOF-MS-ESI+, m/z): calculated for CH_2CCH 3.

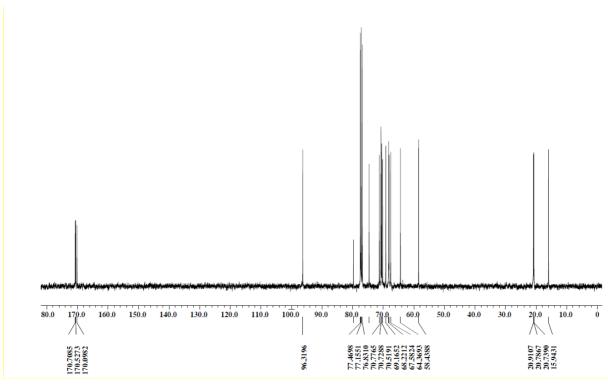


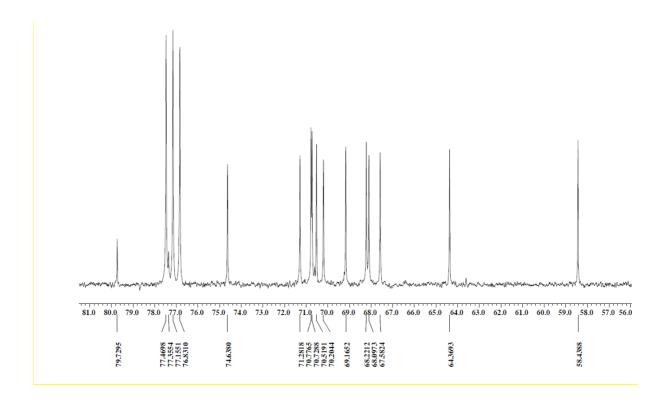


To a solution of **4** (0.40 g, 0.96 mmol, 1 eq) in methanol (5 mL) was added sodium methoxide (0.05 g, 0.96 mmol, 1 eq) at 0°C. The solution was stirred during two hours at room temperature then filtered over a short column of DowexTM 50WX8-200 (H+ resin form). The resin was washed with methanol (15 mL) and water (15 mL). Finally, the solvents were evaporated under reduced pressure to afford the desired product **5** as a yellowish oil (0.28 g, 99%). ¹**H NMR** (400 MHz, D₂O) δ = 4.76 (d, J = 3.9 Hz, 1H, H-1), 4.10 (d, J = 1.6 Hz, 2H, O*CH*₂CCH), 3.97 (q, J = 6.6 Hz, 1H, H-5), 3.76-3.58 (m, 10H, H-2, H-3, H-4, 4*CH*₂O), 3.54-3.50 (m, 1H, *CH*₂O), 2.74 (s, 1H, OCH₂CCH), 1.07 (d, J = 6.6 Hz, 3H, H-6). ¹³**C NMR** (100 MHz, D₂O) δ = 98.61 (C-1), 79.31 (OCH₂CCH), 75.96, 71.85, 69.75, 69.59, 69.48, 68.64, 68.13, 66.82, (8C, C-2, C-3, C-4, 4*CH*₂O, OCH₂C*CH*), 66.68 (C-5), 57.94 (0*CH*₂CCH), 15.32 (C-6). [α]_d (H₂O, c=1, 20°C) = -116.9 **Mass** (TOF-MS-ESI+): m/z: 313.1258; found: 313.1253

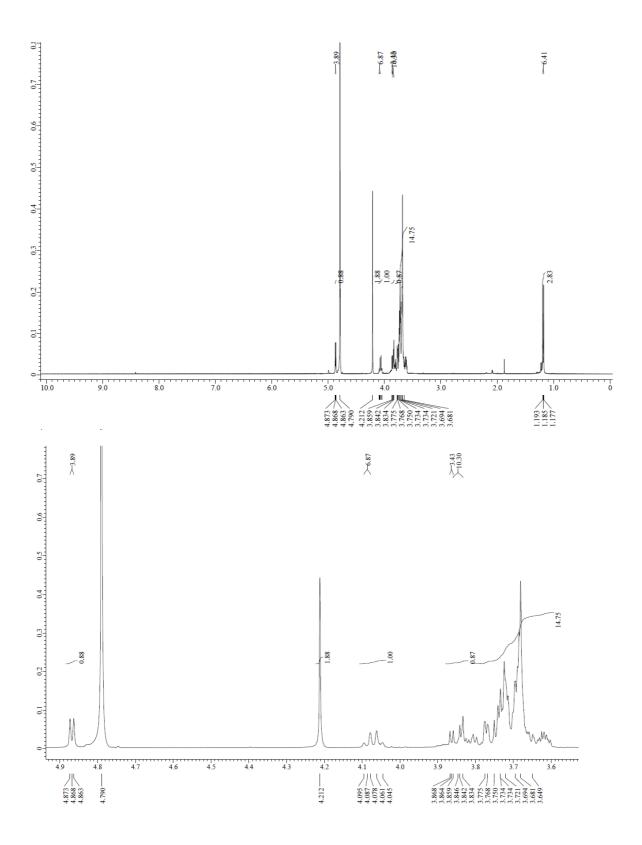


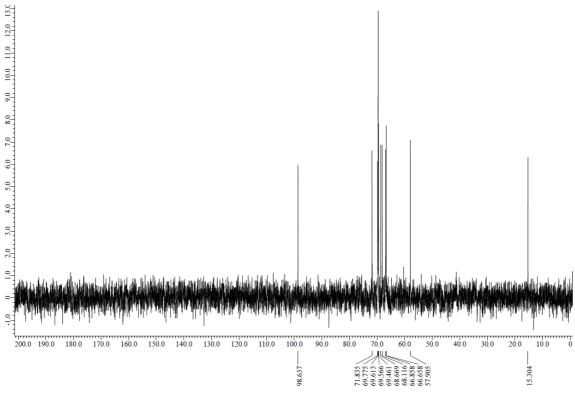


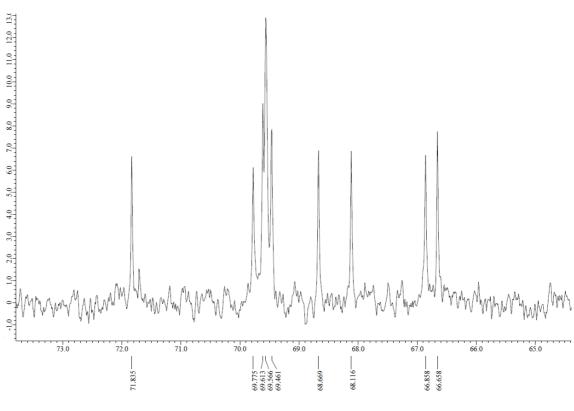

To a solution of **5** (0.057 g, 0.19 mmol, 1 eq) in *t*-BuOH/H₂O 1:1 (1.5 mL) was added **25** (0.029 g, 0.24 mmol, 1.2 eq), sodium ascorbate (0.0077 g, 0.039 mmol, 0.2 eq) and copper (II) sulfate (3.0 mg, 0.019 mmol, 0.1 eq) under argon atmosphere. The solution was stirred during six hours. Afterwards the solvents were evaporated under reduced pressure. The residue was purified by flash chromatography (SiO₂, EtOAc to EtOAc/MeOH 9:1) to afford **B** (0.038 g, 50%) as a colorless oil. ¹**H NMR** (400 MHz, D₂O) δ = 8.04 (s, 1H, H_{arom}), 4.88 (d, J = 3.9 Hz, 1H, H-1), 4.68 (s, 2H, 0*CH*₂C=C), 4.53 (t, J = 6.9 Hz, 2H, N*CH*₂CH₂CH₂OH), 4.06 (q, J = 6.9 Hz, 1H, H-5), 3.83 (dd, J = 3.4 Hz, J = 10.3 Hz, 1H, H-2), 3.85-3.80 (m, 1H), 3.77-3.72 (m, 8H, H-3, H-4, 3CH₂O), 3.66-3.61 (m, 1H, CH₂O), 3.57 (t, J = 6.2 Hz, 2H, NCH₂CH₂CH₂OH), 2.13 (tt, J = 6.4 Hz, J = 6.9 Hz, 2H, NCH₂CH₂CH₂OH), 1.17 (d, J = 6.6 Hz, 3H, H-6). ¹³**C NMR** (100 MHz, D₂O) δ = 143.83 (C_{arom}), 125.19 (C_{arom}), 98.60 (C-1), 71.83, 69.72, 69.55, 68.89, 68.10, 66.82 (7C, C-2, C-3, C-4, 4CH₂O), 66.62 (C-5), 63.06 (0*CH*₂C=C), 58.12 (NCH₂CH₂CH₂OH), 47.25 (N*CH*₂CH₂CH₂OH), 31.81 (NCH₂CH₂CH₂OH), 15.39 (C-6). [α]_d (MeOH, c=0.25, 20°C) = -70.8 **Mass** (TOF-MS-ESI-): m/z: 414.18 (100%) [M+Na]+ **HRMS** (TOF-MS-ESI+, m/z): calculated for C₁₈H₃₃N₃O₉Na+: 414.1847 [M+H]+, found: 414.1832.

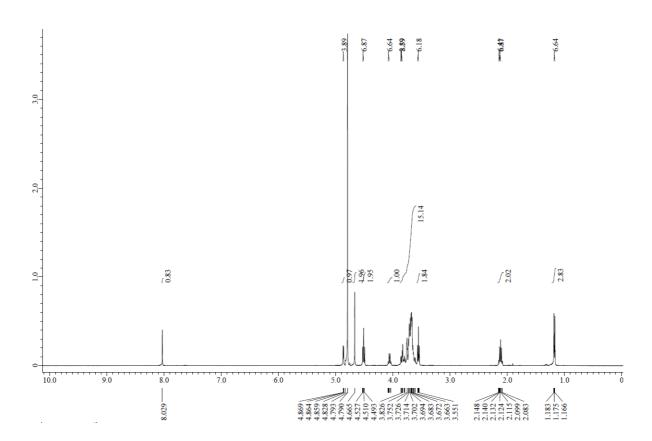


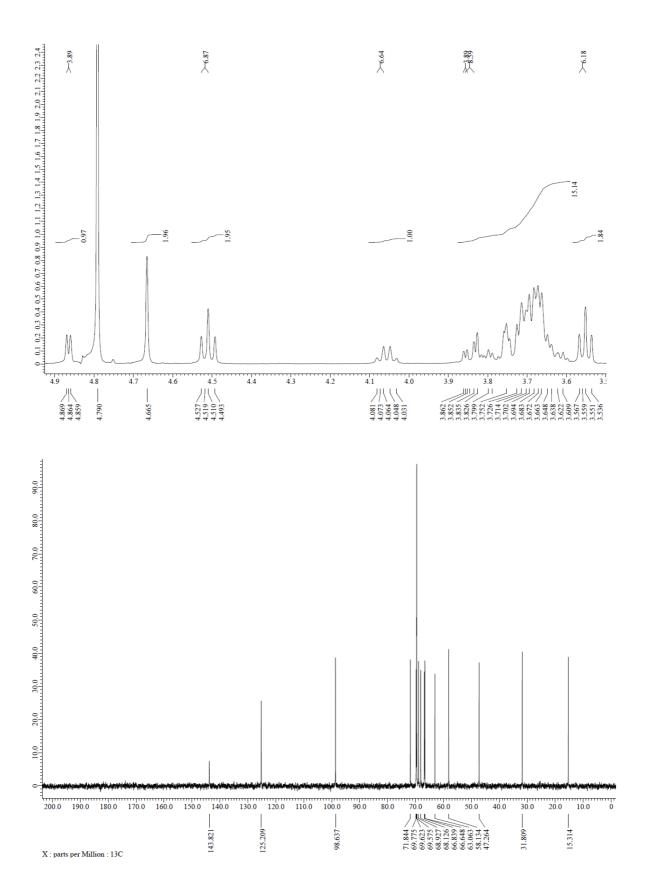
To a solution of 1(2.80 g, 8.40 mmol, 1 eq) in dry CH₂Cl₂ (60.0 mL) was added 13 (6.80 g, 33.7 mmol, 4 eq) and boron trifluoride diethyl etherate (4.27 mL, 33.7 mmol, 4 eq) at 0°C under argon atmosphere and the solution was stirred during three days at room temperature. The reaction mixture was washed with a saturated aqueous solution of NaHCO₃ (50 mL) and water (50 mL), extracted with CH2Cl2 (3x 50 mL), dried over MgSO4, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, Cy/EtOAc 8:2 to Cy/EtOAc 5:5) to afford **6** (0.93 g, 24%) as a yellowish oil. ¹**H NMR** (400 MHz, CDCl₃) δ = 5.33 (dd, J = 3.4 Hz, J = 9.6 Hz, 1H, H-2), 5.26 (dd, J = 1.1 Hz, J = 3.4 Hz, 1H, H-4), 5.10 (d, J = 3.7 Hz, 1H, H-3), 5.07 (s, 1H, H-1), 4.25-4.21 (q, I = 7.3 Hz, 1H, H-5), 4.17 (d, I = 2.5 Hz, 2H, 0*CH*₂CCH), 3.78-3.75 (m, 1H, CH₂O), 3.68-3.60 (m, 11H, 6CH₂O), 2.42 (t, J = 2.3 Hz, 1H, 0CH₂CCH), 2.13, 2.04, 1.95 (3s, 9H, 3CH₃), 1.10(d, J = 6.6 Hz, 3H, H-6). ¹³C NMR (100 MHz, CDCl₃) δ = 170.71, 170.53, 170.10 (3C, 3C=0), 96.32 (C-1), 79.73 (OCH₂CCH), 74.64 (OCH₂CCH), 71.28 (C-4), 70.78, 70.73, 70.52, 70.20, 69.17 (5C, 5CH₂O), 68.22 (C-3), 68.10 (C-2), 67.58 (CH₂O), 64.37 (C-5), 58.44 (OCH₂CCH) 20.91, 20.79, 20.74 (3C, 3CH₃), 15.94 (C-6). $[\alpha]_d$ (CHCl₃, c=1, 20°C) = -87.6 **Mass** (TOF-MS-ESI+) : m/z : 483.1831 (100%) [M+Na]⁺ **HRMS** (TOF-MS-ESI⁺, m/z): calculated for $C_{21}H_{32}O_{11}Na^+$: 483.1842; found: 483.1831.

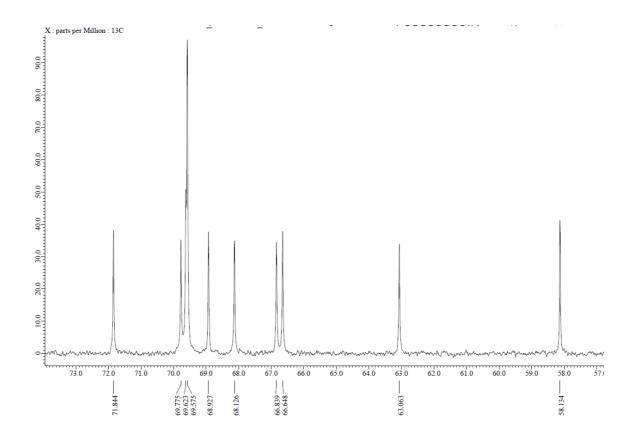


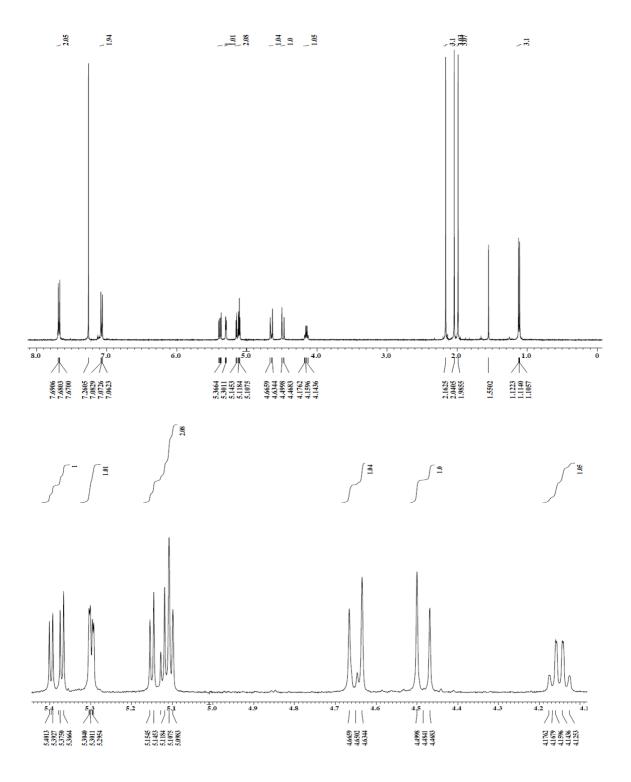


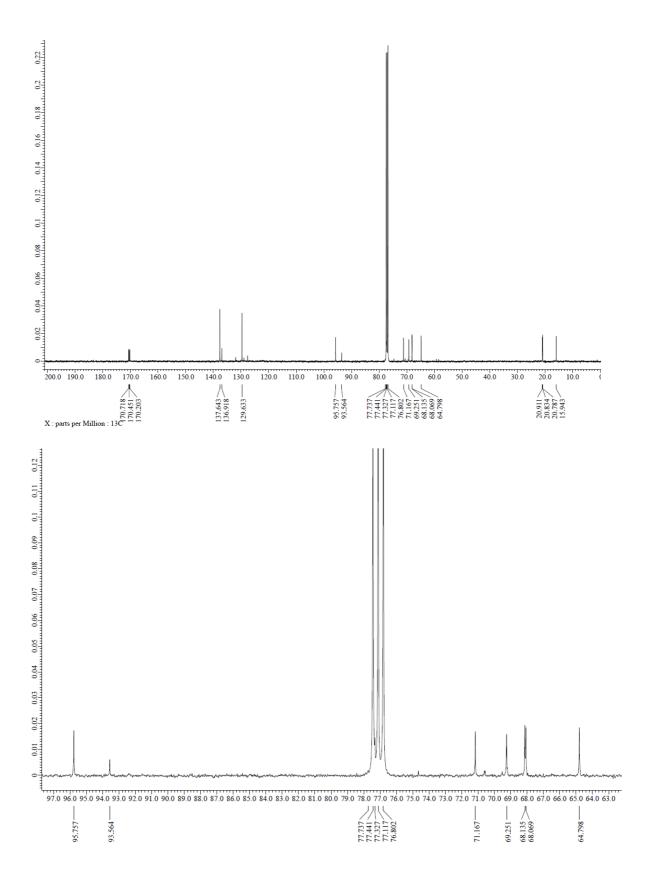


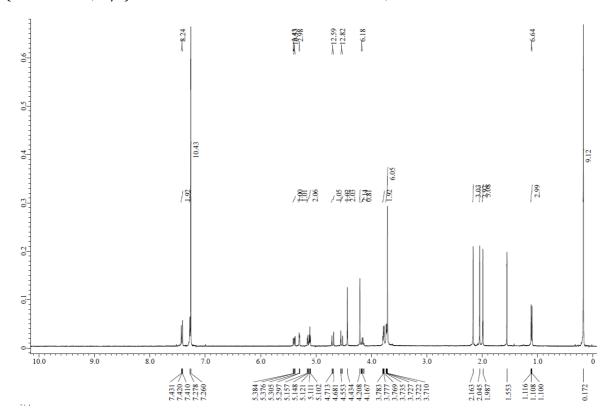

To a solution of **6** (0.83 g, 1.81 mmol, 1 eq) in MeOH (10 mL) was added sodium methoxide (0.10 g, 1.81 mmol, 1 eq) at 0°C. The solution was stirred during two hours at room temperature then filtered over a short column of DowexTM 50WX8-200 (H+ resin form). The resin was washed with methanol (15 mL) and water (15 mL). Finally, the solvents were evaporated under reduced pressure to afford the desired product **7** as a yellowish oil (0.59 g, 97%). ¹**H NMR** (400 MHz, D₂O) δ = 4.87 (d, J = 3.9 Hz, 1H, H-1), 4.21 (s, 2H, O*CH*₂CCH), 4.07 (q, J = 6.9 Hz, 1H, H-5), 3.85 (dd, J = 3.4 Hz, J = 10.3 Hz, 1H, H-3), 3.78-3.65 (m, 14H, H-2, H-4, 6CH₂O), 1.19 (d, J = 6.6 Hz, 3H, H-6). ¹³C **NMR** (100 MHz, D₂O) δ = 98.64 (C-1), 71.84, 69.78, 69.61, 69.57, 69.46, 68.67, 68.12, 66.86, 66.66 (12C, C-2, C-3, C-4, C-5, 6CH₂O, OCH₂CCH, OCH₂CCH), 57.91 (0*CH*₂CCH), 15.30 (C-6). [α]_d (CHCl₃, c=1, 20°C) = -65.7 **Mass** (TOF-MS-ESI+): m/z: 357.1517 (100%) [M+Na]+ **HRMS** (TOF-MS-ESI+, m/z): calculated for C₁₅H₂₆O₈Na+: 357.1525; found: 357.1517.

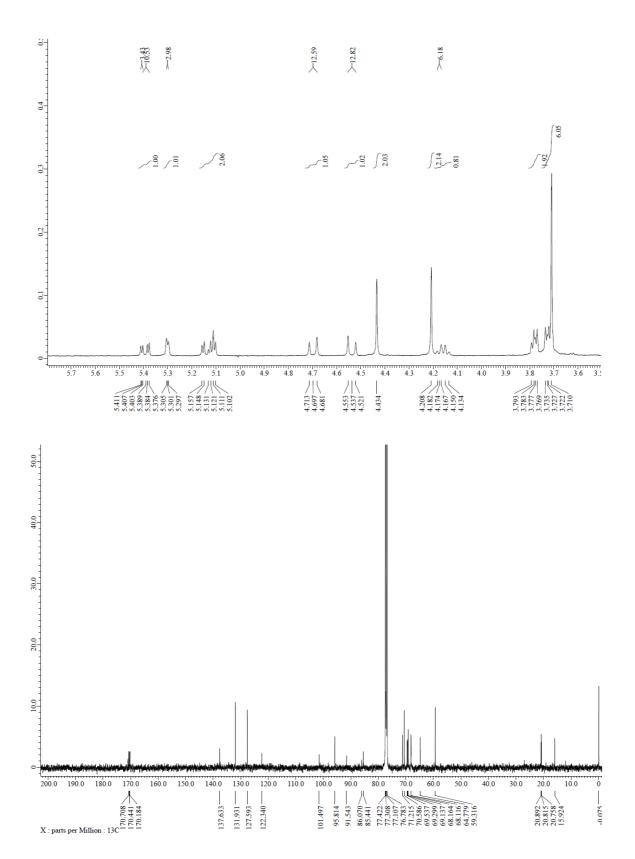


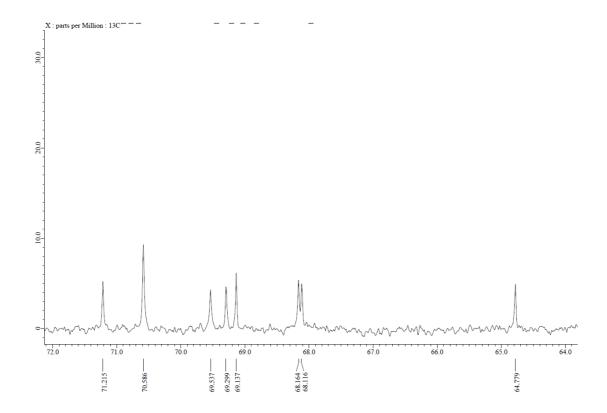



To a solution of **7** (0.054 g, 0.16 mmol, 1 eq) in *t*-BuOH/H₂O 1:1 (1.5 mL) was added **25** (0.020 g, 0.19 mmol, 1.2 eq), sodium ascorbate (0.0064 g, 0.032 mmol, 0.2 eq) and copper (II) sulfate (0.0025 g, 0.016 mmol, 0.1 eq) under argon atmosphere. The solution was stirred during 15 hours. Afterwards the solvents were evaporated under reduced pressure. The residue was purified by flash chromatography (SiO₂, EtOAc to EtOAc/MeOH 9:1) to afford **C** (0.021 g, 30%) as a colorless oil. ¹**H NMR** (400 MHz, D₂O) δ = 8.03 (s, 1H, H_{arom}), 4.86 (d, J = 3.9Hz, 1H, H-1), 4.67 (s, 2H, O*CH*₂C=C), 4.51 (t, J = 6.9Hz, 2H, N*CH*₂CH₂CH₂OH), 4.05 (q, J = 6.6Hz, 1H, H-5), 3.86-3.61 (m, 15H, H-2, H-3, H-4, 6CH₂O), 3.55 (t, J = 6.2Hz, 2H, NCH₂CH₂CH₂OH), 2.12 (tt, J = 6.1Hz, J = 6.9Hz, 2H, NCH₂CH₂CH₂OH), 1.18 (d, J = 6.6 Hz, 3H, H-6). ¹³**C NMR** (100 MHz, D₂O) δ = 143.82 (C_{arom}), 125.21 (C_{arom}), 98.64 (C-1), 71.84, 69.78, 69.62, 69.58, 68.93, 68.13, 66.84, 66.65 (10C, C-2, C-3, C-4, C-5, 6CH₂O), 63.06 (0*CH*₂C=C), 58.13 (NCH₂CH₂CH₂OH), 47.26 (N*CH*₂CH₂CH₂OH), 31.81 (NCH₂CH₂CH₂OH) 15.41 (C-6). [α]_d (MeOH, c=0.25, 20°C) = -64.0 **Mass** (TOF-MS-ESI+): m/z: 458.21 (100%) [M+Na]+ **HRMS** (TOF-MS-ESI+, m/z): calculated for C₁₉H₂₈O₁₀Na+: 458.2109; found: 458.2105.

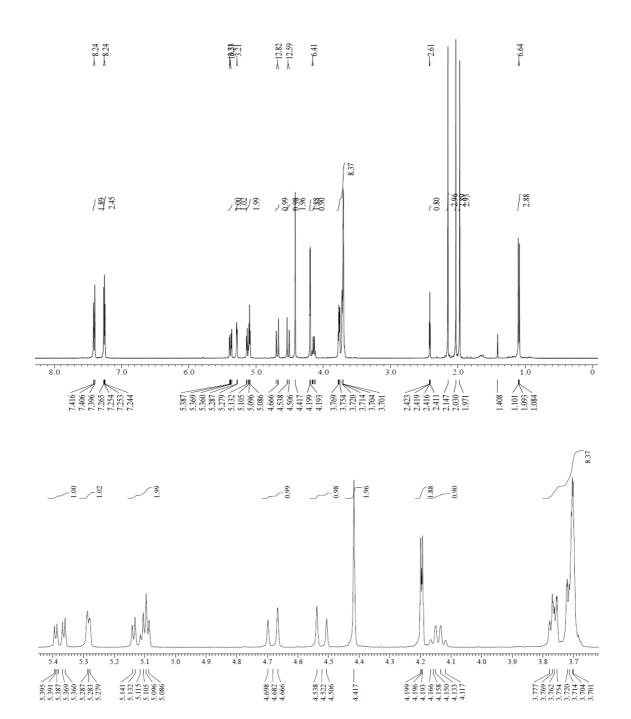


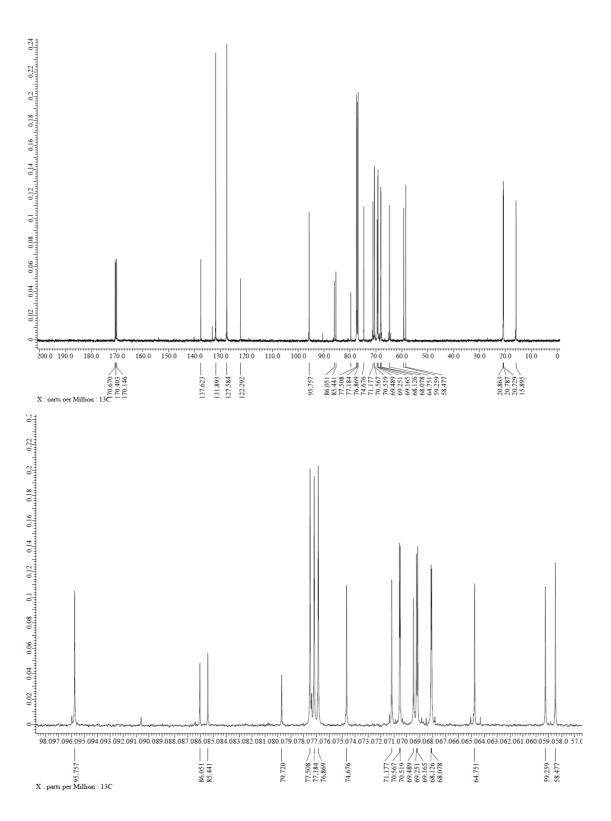


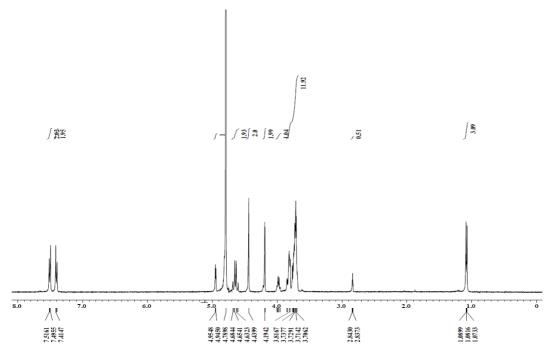

To a solution of **1** (2.0 g, 6.02 mmol, 1 eq) in dry CH₂Cl₂ (50 mL) was added *p*-iodobenzyl alcohol (2.48 mL, 10.23 mmol, 1.7 eq) and boron trifluoride diethyl etherate (3.10 mL, 20.09 mmol, 5 eq) at 0°C under argon atmosphere and the solution was stirred overnight. The reaction mixture was then washed with a saturated aqueous solution of NaHCO₃ (50 mL) and water (50 mL), extracted with CH₂Cl₂ (3x50 mL), dried over MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, Cy to Cy/EtOAc 8:2) to afford **8** (0.796 g, 26%) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ = 7.67 (d, J = 8.2 Hz, 2H, H_{arom}), 7.06 (d, J = 8.2 Hz, 2H, H_{arom}), 5.37 (dd, J_{3,4} = 3.4Hz, J_{2,3} = 10.5Hz, 1H, H-2), 5.29 (d, J_{1,2} = 3.0 Hz, 1H, H-3), 5.15-5.09 (m, 2H, H-1, H-4), 4.64 (AB, J = 12.6 Hz, 1H, 0*CH*₂Ph), 4.48 (AB, J = 12.6 Hz, 1H, 0*CH*₂Ph), 4.14 (q, J_{5,6} = 6.6 Hz, 1H, H-5), 2.16, 2.03, 1.98 (3s, 3CH₃, 3Ac), 1.11 (d, J_{5,6} = 6.6 Hz, 3H, H-6). ¹³**C NMR** (100 MHz, CDCl₃) δ = 170.72, 170.45, 170.20 (3C, 3 C=0), 137.64, 136.92, 129.63 (5C_{arom}), 95.76 (C-1), 93.56 (C_{arom}), 71.17 (C-3), 69.25 (0*CH*₂Ph), 68.14, 68.07 (2C, C-2, C-4), 64.80 (C-5), 20.91, 20.83, 20.79 (3C, 3CH₃), 15.94 (C-6). [α]_d (CHCl₃, c=0.5, 20°C) = -112.8 Mass (TOF-MS-ESI+): m/z: 529.03 (100%), 524.08 (100%) [M+Na]+. HRMS (TOF-MS-ESI+, m/z): calculated for C₁₉H₂₃O₈INa+: 529.0330; found: 529.0314.

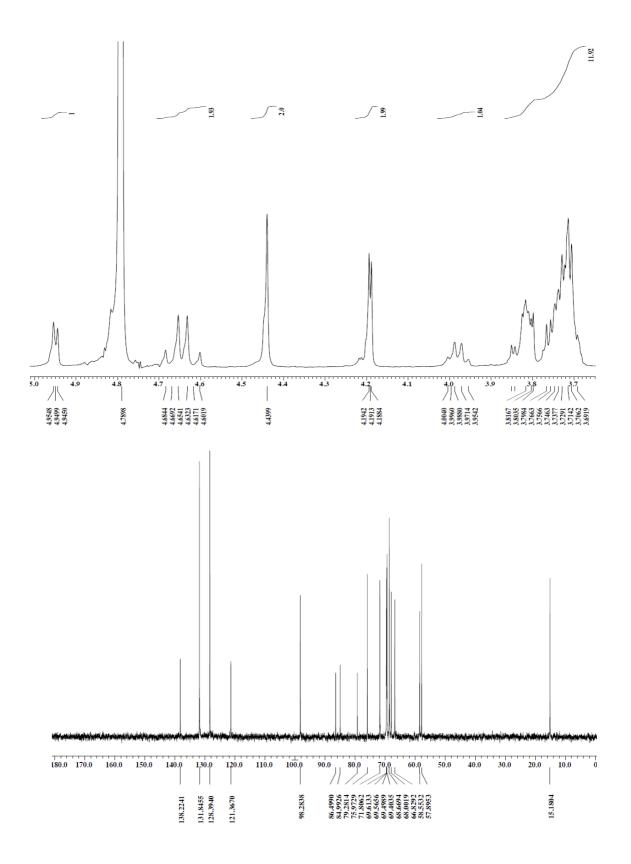


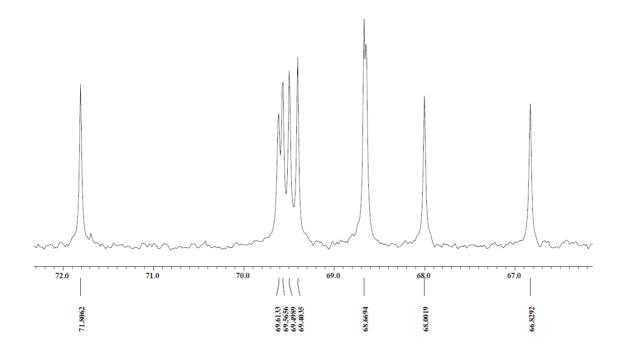
A solution of **8** (0.896 g, 1.77 mmol, 1 eq) in 9 mL of degazed DMF was added **15** (0.900 g, 3.54 mmol, 2 eq), degazed triethylamine (0.492 mL, 3.54 mmol, 2 eq), bistriphenylphosphine palladium chloride (0.124 g, 0.177 mmol, 0.1 eq) and copper iodide (0.067 g, 0.354 mmol, 0.2 eq) under argon atmosphere. The solution was stirred during 7 min at 80°C under microwave irradiation. Afterwards the mixture was diluted with EtOAc (100 mL), washed with brine (4x70 mL) and the aqueous phase was extracted with EtOAc (3x100 mL). The organic phase was dried over MgSO₄, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography (SiO₂, Cy to Cy/EtOAc 85:15) to afford 9 (0.93 g, 83%) as a colorless oil. ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta = 7.42 \text{ (d, J} = 8.2 \text{ Hz}, 2\text{H}, \text{H}_{arom}), 7.27 \text{ (d, J} = 8.2 \text{ Hz}, 2\text{H}, \text{H}_{arom}), 5.39 \text{ (dd, J} = 3.4)$ Hz, J = 10.5 Hz, 1H, H-2), 5.30 (d, J = 3.0 Hz, 1H, H-3), 5.16-5.10 (m, 2H, H-1, H-4), 4.70 (AB, J = 12.6Hz, 1H, OCH_2Ph), 4.54 (AB, J = 12.8 Hz, 1H, OCH_2Ph), 4.43 (s, 2H, CH_2 , OCH_2CC), 4.21 (s, 2H, CH_2 , OCH_2CC), 4.16 (q, J = 6.2 Hz, 1H, H-5), 3.79-3.77 (m, 2H, CH₂O), 3.74-3.71 (m, 6H, 3CH₂O), 2.16, 2.05, 1.99 (3s, 3CH₃), 1.11 (d, J = 6.6 Hz, 3H, H-6), 0.17 (s, 9H, TMS). ¹³C NMR (100 MHz, CDCl₃) δ = 170.71, 170.44, 170.18 (3C, 3C=0), 137.63, 131.93, 127.59, 122.34 (6 C_{arom}), 101.50 (C_q), 95.81 (C-1), 91.54, 86.07, 85.44 $(3C_0)$, 71.22, 70.59, 69.54, 69.30, 69.14, 68.16, 68.12 (8C, C-2, C-3, C-4, C-4)5CH₂O), 64.78 (C-5), 59.32 (2C, 2 0*CH*₂CC), 20.89, 20.82, 20.76 (3C, 3CH₃), 15.92 (C-6), -0.08 (3C, TMS). $[\alpha]_d$ (CHCl₃, c=0.5, 20°C) = -101.4 Mass (TOF-MS-ESI+): m/z: 655.25 (100%) [M+Na]+ HRMS (TOF-MS-ESI+, m/z): calculated for $C_{32}H_{44}O_{11}SiNa+: 655.2545$; found: 655.2537.

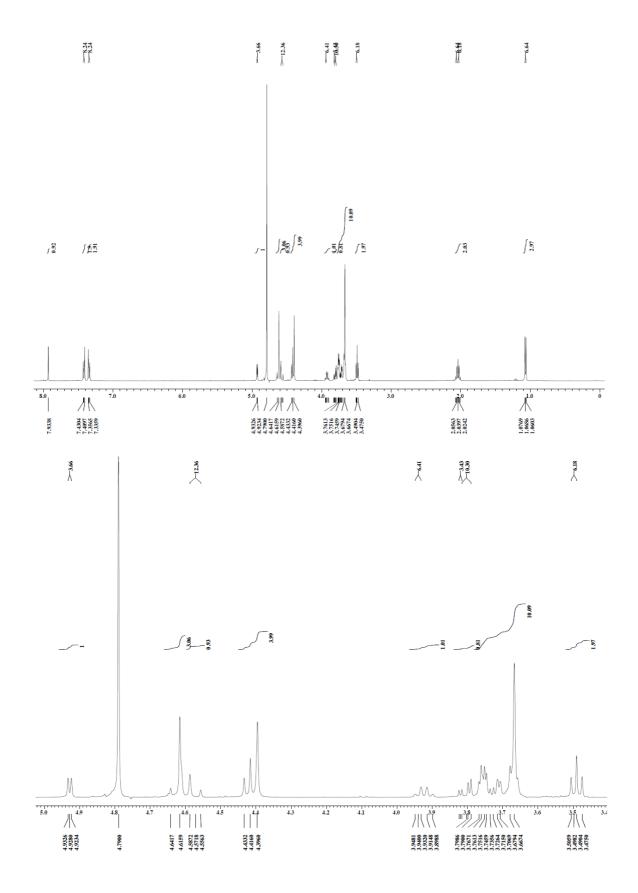


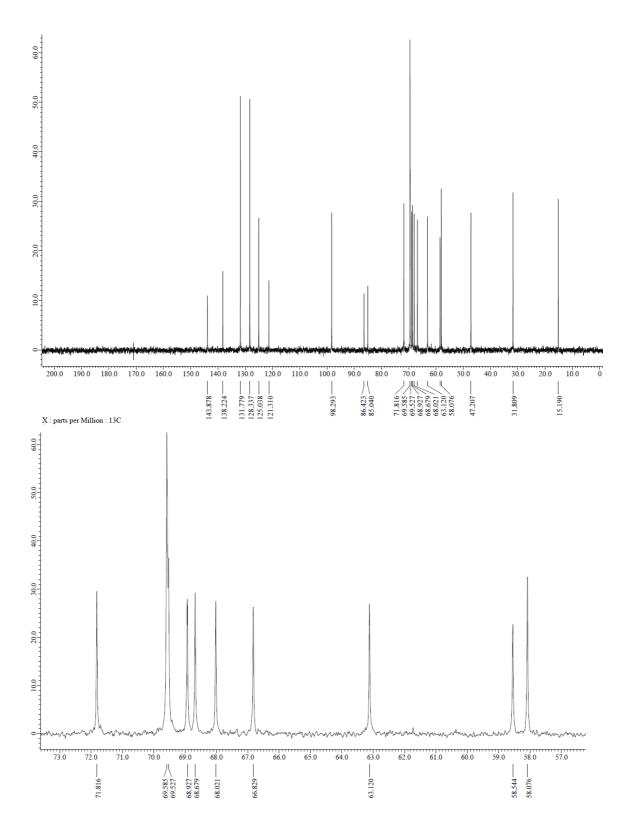


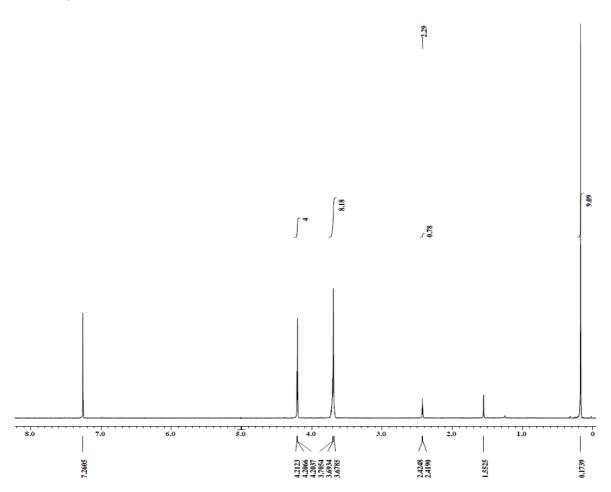

Tetrabutylammonium fluoride (0.416 g, 1.59 mmol, 1.2 eq) was added to a solution of **9** (0.840 g, 1.33 mmol, 1 eq) in 20 mL of distilled THF and the mixture was stirred during 5 minutes at room temperature. The solution was washed with a saturated aqueous solution of NH₄Cl (50 mL) and the aqueous phase was extracted with CH₂Cl₂ (3x 50 mL). The organic phase was dried over MgSO₄, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography (SiO₂, Cy to Cy/EtOAc 7:3) to afford **10** (0.550 g, 73%) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ = 7.41 (d, J = 8.2 Hz, 2H, H_{arom}), 7.25 (d, J = 8.2 Hz, 2H, H_{arom}), 5.38 (dd, J = 3.2 Hz, J = 10.5 Hz, 1H), 5.28 (d, J = 3.1 Hz, 1H), 5.14-5.09 (m, 2H, H-1), 4.68 (AB, J = 12.8 Hz, 1H, 0*CH*₂Ph), 4.52 (AB, J = 12.6 Hz, 1H, 0*CH*₂Ph), 4.42 (s, 2H, 0*CH*₂CC), 4.20 (m, 2H, 0*CH*₂CC), 4.14 (q, J = 6.6 Hz, 1H, H-5), 3.78-3.70 (m, 8H, 4CH₂O), 2.42 (t, J = 2.6 Hz, 1H, 0CH₂C*CH*), 2.15, 2.03, 1.97 (3s, 3CH₃), 1.11 (d, J = 6.6 Hz, 3H, H-6). ¹³**C NMR** (100 MHz, CDCl₃) δ = 170.67, 170.40, 170.15 (3C, 3C=O), 137.62, 131.89, 127.58, 122.29 (6C_{arom}), 95.76 (C-1), 86.05, 85.44, 79.72 (3C_q), 74.68 (0CH₂C*CH*), 71.18, 70.57, 70.52, 69.49, 69.25, 69.17, 68.13, 68.08 (8C, C-2, C-3, C-4, 4CH₂O, CH₂),

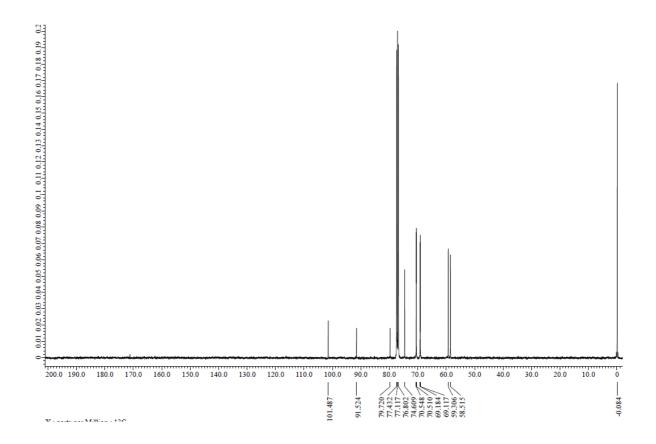

64.75 (C-5), 59.29, 58.48 (2C, $20CH_2CC$), 20.86, 20.79, 20.73 (3C, $3CH_3$), 15.90 (C-6). [α]_d (CHCl₃, c=0.5, 20°C) = -48.2 **Mass** (TOF-MS-ESI+): m/z: 583.21 (100%) [M+Na]+ **HRMS** (TOF-MS-ESI+, m/z): calculated for $C_{29}H_{36}O_{11}Na^+$: 583.2150; found: 583.2148.

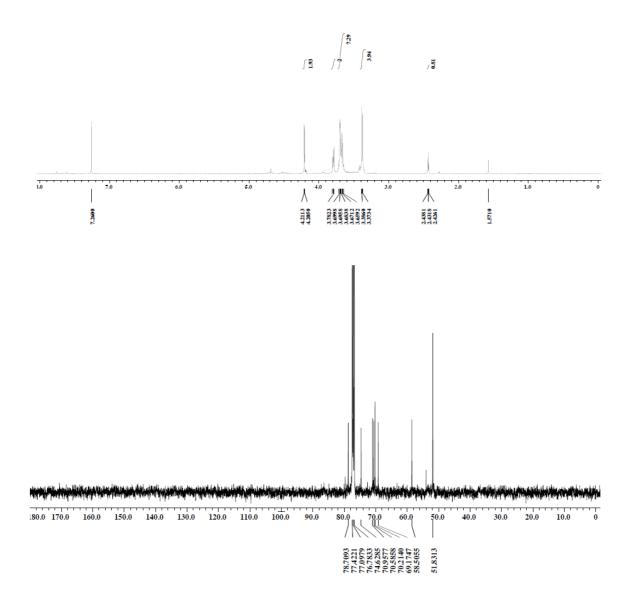


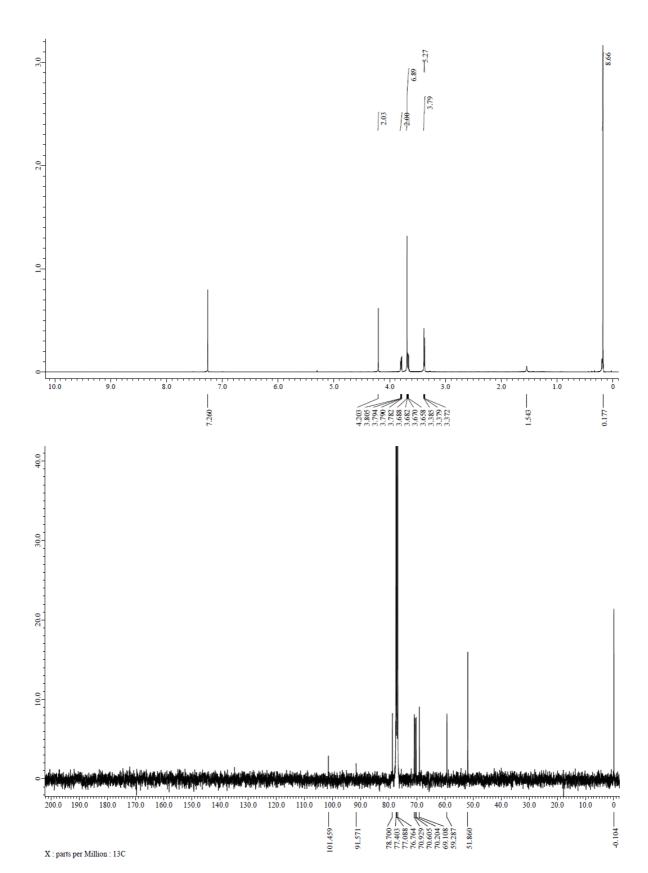

Sodium methoxide (0.008 g, 0.16 mmol, 1 eq) was added to a solution of **10** (0.087 g, 0.16 mmol, 1 eq) in 2 mL of MeOH at 0°C and the mixture was stirred during two hours at room temperature. The solution was filtered over a short column of DowexTM 50WX8-200 (H+ resin form). The resin was washed with methanol (15 mL) and water (15 mL). Finally, the solvents were evaporated under reduced pressure to afford the product **11** (0.066 g, 98%) as a colorless oil. ¹**H NMR** (400 MHz, D₂O) δ = 7.51 (d, J = 8.2 Hz, 2H, H_{arom}), 7.40 (d, J = 8.2 Hz, 2H, H_{arom}), 4.95 (d, J = 3.9 Hz, 1H, H-1), 4.67 (AB, J = 12.1 Hz, 1H, 0*CH*₂Ph), 4.62 (AB, J = 12.1 Hz, 1H, 0*CH*₂Ph), 4.44 (s, 2H, 0*CH*₂CC), 4.19 (d, J = 2.3 Hz, 2H, 0*CH*₂CC), 3.98 (q, J = 6.4 Hz, 1H, H-5), 3.85-3.69 (m, 11H, H-2, H-3, H-4, 4CH₂O), 2.84 (t, J = 2.3 Hz, 1H, 0CH₂C*CH*), 1.08 (d, J = 6.6 Hz, 3H, H-6). ¹³**C NMR** (100 MHz, D₂O) δ = 138.22, 131.85, 128.39, 121.37 (6C_{arom}), 98.28 (C-1), 86.50, 85.00, 79.28 (3C_q), 75.97 (0CH₂C*CH*), 71.81, 69.61, 69.57, 69.50, 69.40, 68.67, 68.00 (8C, C-2, C-3, C-4, 5CH₂O), 66.83 (C-5), 58.55, 57.90 (2C, 2 0*CH*₂C*C*), 15.18 (C-6). [α]_d (MeOH, c=0.5, 20°C) = -88.6 **Mass** (TOF-MS-ESI+): m/z: 457.18 (100%) [M+Na]+ **HRMS** (TOF-MS-ESI+, m/z): calculated for C₂₃H₃₀O₈Na+: 457.1833; found: 457.1846.



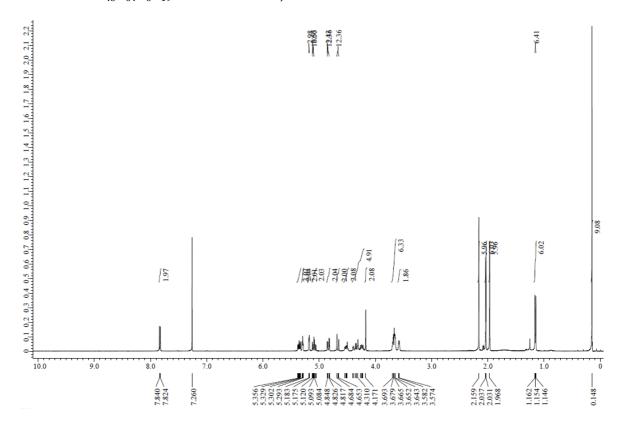


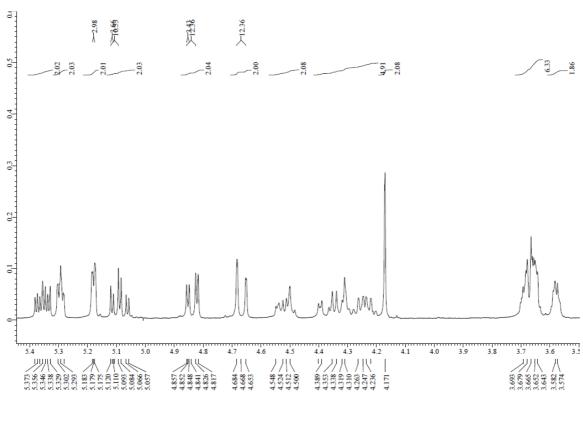

To a solution of **11** (0.022 g, 0.051 mmol, 1 eq) in t-BuOH/H₂O 1:1 (0.6 mL) was added azide **25** (0.006 g, 0.061 mmol, 1.2 eq), sodium ascorbate (0.002 g, 0.010 mmol, 0.2 eq) and copper (II) sulfate (0.001 g, 0.0051 mmol, 0.1 eq) under argon atmosphere. The solution was stirred during 15 hours. Afterwards the solvents were evaporated under reduced pressure. The residue was purified by flash chromatography (SiO₂, EtOAc to EtOAc/MeOH 9:1) to afford **D** (0.016 g, 60%) as a colorless oil. ¹**H NMR** (400 MHz, D₂O) δ = 7.93 (s, 1H, H_{arom}), 7.42 (d, J = 8.2 Hz, 2H, H_{arom}), 7.35 $(d, I = 8.2 \text{ Hz}, 2H, H_{arom}), 4.93 (d, I = 3.7 \text{ Hz}, 1H, H-1), 4.64-4.62 (m, 3H, OCH₂Ph, CH₂O), 4.57 (AB, I$ = 12.4 Hz, 1H, OCH₂Ph), 4.43-4.40 (m, 4H, N CH_2 CH₂CH₂OH, CH₂O), 3.92 (q, J = 6.4 Hz, 1H, H-5), 3.81 (dd, J = 3.4 Hz, J = 10.3 Hz, 1H), 3.77-3.67 (m, 10H, 4CH₂), 3.49 (t, J = 6.2 Hz, 2H, NCH₂CH₂OH)2.04 (tt, I = 6.2 Hz, I = 6.6 Hz, $NCH_2CH_2CH_2OH$), 1.07 (d, I = 6.6 Hz, 3H, H-6). ¹³C NMR (100 MHz, D_2O) $\delta = 143.88, 138.22, 131.78, 128.34, (6C_{arom}), 125.04 (C_{arom}), 121.31 (C_{arom}), 98.29 (C-1), 86.42,$ 85.04 (2C₀), 71.82, 69.58, 69.53, 68.93, 68.68, 68.02, (8C, C-2, C-3, C-4, 5CH₂O), 66.83 (C-5), 63.12 58.08 (2C, NCH₂CH₂CH₂OH, CH₂O), 47.21 (NCH₂CH₂CH₂OH), 58.54. $(NCH_2CH_2CH_2OH)$, 15.19 (C-6). [α]_d (MeOH, c=0.45, 20°C) = -74.0 **Mass** (TOF-MS-ESI+): m/z: 536.26 (100%) [M+H]+, 558.24 (90%) [M+Na]+ **HRMS** (TOF-MS-ESI+, m/z): calculated for $C_{26}H_{37}N_3O_9H^+$: 536.2603; found: 536.2609.

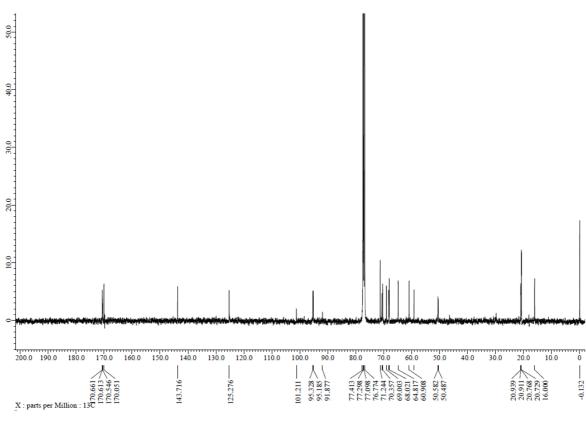

To a solution of **14** (5.00 g, 27.44 mmol, 1 eq) in dry THF (100 mL) was added dropwise n-butyl lithium 2.3 M (17.89 mL, 41.15 mmol, 1.5 eq) at -78°C. The solution was stirred during 60 minutes at -78°C afterwards trimethylsilyl chloride (3.85 mL, 30.18 mmol, 1.1 eq) was added to the mixture and stirred during 15h at room temperature. The THF was evaporated under reduced pressure and the product was solubilized in CH_2Cl_2 (100 mL). Water (100 mL) was added and the aqueous phase was extracted with CH_2Cl_2 (3x 10 mL) and the organic phase was dried over MgSO₄, filtered and solvents were evaporated under reduced pressure. The residue was purified by flash chromatography (SiO₂, Cy to Cy/EtOAc 9:1) to afford **15** (2.12 g, 30%) as a colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ = 4.21-4.20 (m, 4H, 2CH₂), 3.71-3.67 (m, 8H, 4CH₂O), 2.43 (t, J = 2.3 Hz, 1H, OCH₂C*CH*), 0.17 (s, 9H, TMS). ¹³*C NMR* (100 MHz, CDCl₃) δ = 101.49, 91.52, 79.72 (3C_q), 74.61 (OCH₂C*CH*), 70.55, 70.51, 69.18, 69.12, 59.31, 58.52 (6CH₂O), -0.08 (3CH₃, TMS). **Mass** (TOF-MS-ESI+): m/z: 277.1228 (100%) [M+Na]+ **HRMS** (TOF-MS-ESI+, m/z): calculated for C₁₃H₂₂O₃SiNa+: 277.1230; found: 277.1228.

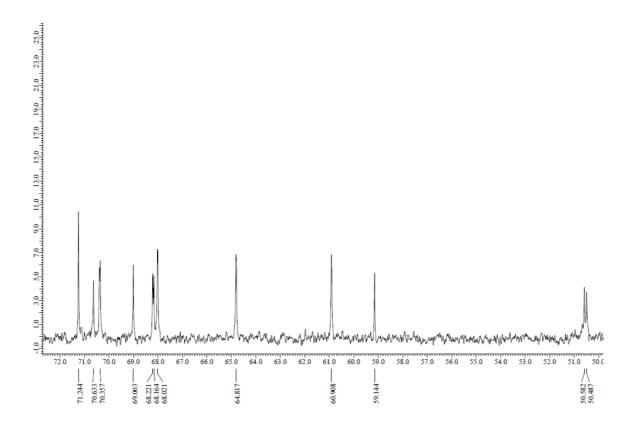

$$N_3$$
 OH N_3 N_3 N_3 N_3 N_3

To a solution of **17** (0.500 g, 2.78 mmol, 1 eq) in DMF (7 mL) at 0°C was added sodium hydride (60% w/w in mineral oil, 0.120 g, 3.05 mmol, 1.1 eq). The solution was stirred for 30 minutes. Afterwards **18** (0.910 g, 3.05 mmol, 1.1 eq) diluted in DMF (3 mL) was added. After overnight reaction, the solution was diluted with EtOAc (50 mL), washed with brine (3x 25 mL), dried with MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, Cy to Cy/EtOAc 85:15) to afford **19** (0.687 g, 92%) as colorless oil. *N.B. It was not possible to obtain the compound totally pure by chromatography, however the impurities were removed after the following step. ¹H NMR (400 MHz, CDCl₃) \delta = 4.21 (d, J = 2.5 Hz, 2H, CH₂CCH), 3.81-3.78 (m, 2H, CH₂O), 3.72-3.65 (m, 7H, CH₂OC(H)(CH₂N)₂, 3CH₂O), 3.38 (d, J = 5.0 Hz, 4H, 2CH₂N), 2.43 (t, J = 2.5 Hz, 1H, CH₂CCH). ¹³C NMR (100 MHz, D₂O) \delta = 78.71, 74.63 (2C_q), 70.96, 70.59, 70.21, 69.17, 58.51 (6C, 5CH₂O, C(H)O, 51.83 (2C, 2CH₂N₃). Mass (TOF-MS-ESI-): m/z: 269.1368 (100%) [M+H]+ HRMS (TOF-MS-ESI+, m/z): calculated for C₁₀H₁₇N₆O₃+: 269.1357; found: 269.1368.*

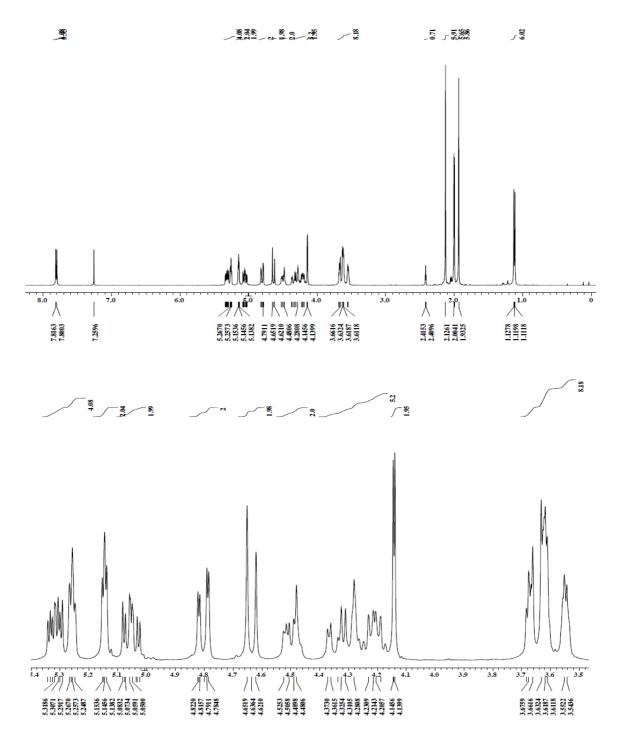


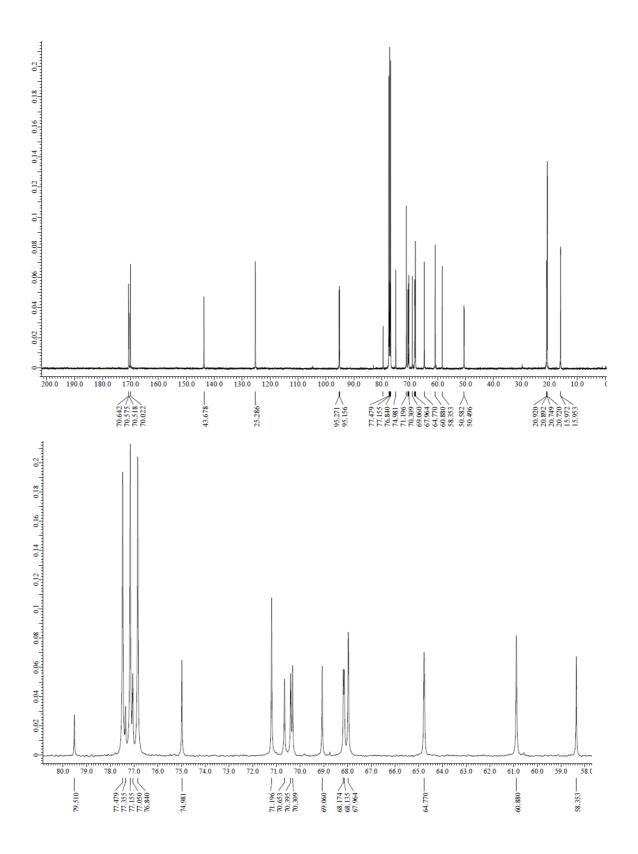

$$N_3$$
 N_3 N_3


To a solution of **19** (2.015 g, 7.51 mmol, 1 eq) in THF (40 mL) at -84°C was added dropwise n-BuLi (2.0 M in hexanes, 4.50 mL, 9.01 mmol, 1.2 eq). The solution was stirred for 15 minutes afterwards trimethylsilyl chloride (1.91 mL, 15.02 mmol, 2.0 eq) was added. After 30 minutes, the solution was diluted with Et₂O (50 mL) and washed with water (50 mL). The aqueous phase was extracted with CH₂Cl₂ (3x 10 mL) and the organic phase was dried with MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, Cy to Cy/EtOAc 9:1) to afford **20** (0.998 g, 39%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ = 4.20 (s, 2H, 0*CH*₂CC-TMS), 3.81-3.78 (m, 2H, CH₂O), 3.69-3.66 (m, 7H, 3CH₂O, (N₃CH₂)₂C(*H*)OCH₂), 3.38 (d, J = 5.3 Hz, 4H, 2CH₂N₃), 0.18 (s, 9H, TMS). ¹³C NMR (100 MHz, D₂O) δ = 101.46, 91.57 (2C, 2C_q), 78.70 (CH), 70.93, 70.61, 70.20, 69.11(4C, 4CH₂O), 59.29 (0*CH*₂CC-TMS), 51.86 (2C, 2CH₂N₃), -0.10 (3C, TMS). Mass (TOF-MS-ESI-): m/z: 341.1756 (100%) [M+H]+ HRMS (TOF-MS-ESI+, m/z): calculated for C₁₃H₂₅N₆O₃+: 341.1752; found: 341.1756.

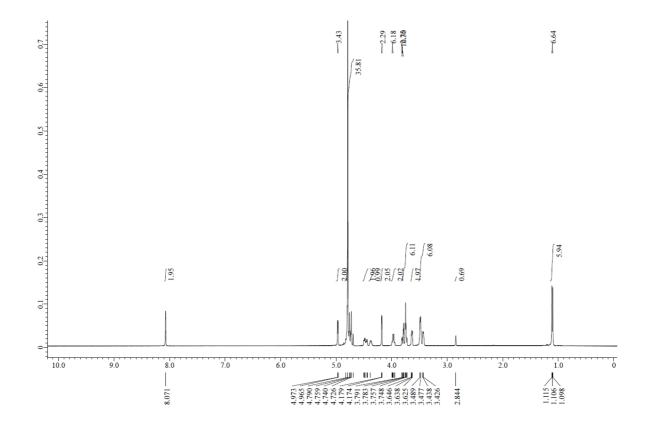


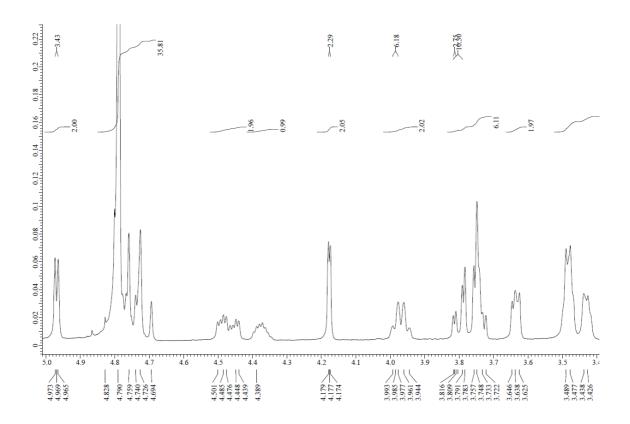
To a solution of **20** (0.940 g, 2.761 mmol, 1 eq) in t-BuOH/H₂O 3:1 (25 mL) was added **2** (1.99 g, 6.074 mmol, 2.2 eq), sodium ascorbate (0.109 g, 0.552 mmol, 0.2 eq) and copper (II) sulfate (0.044 g, 0.2761 mmol, 0.1 eq). The solution was stirred overnight at 60°C. Afterwards the solvents were evaporated under reduced pressure. The residue was purified by flash chromatography (SiO₂, Cy to EtOAc) to afford **21** (1.927 g, 72%) as a white powder. ¹**H NMR** (400 MHz, CDCl₃) δ = 7.84, 7.82 $(2s, 2H, 2H_{arom}), 5.38-5.33$ (m, 2H, 2H-3), 5.30-5.28 (m, 2H, 2H-4), 5.18 (d, J = 3.0 Hz, 2H, 2H-1), 5.09 (td, J = 3.7 Hz, J = 10.3 Hz, 2H, 2H-2), 4.84 (AB, J = 3.4 Hz, J = 12.4 Hz, 2H, 2H, 2H20), 4.67 (d, J = 12.4 Hz, 2H30), 4.67 (d, J = 12.4 Hz, 2H41), 4.67 (d, J = 12.4 Hz, J = 112.4 Hz, 2H, CH_2O), 4.55-4.50 (m, 2H, CH_2N), 4.40-4.22 (m, 5H, 2H-5, CH_2N , $(CH_2)C(H)OCH_2$), 4.17 (s, 2H, CH₂), 3.69-3.64 (m, 6H, 3CH₂0), 3.58-3.57 (m, 2H, CH₂0), 2.16, 2.04, 2.03, 1.97 (4s, 18H, $6CH_3$), 1.15 (d, J = 6.4 Hz, 6H, 2H-6), 0.15 (s, 9H, TMS). ¹³C NMR (100 MHz, D₂O) δ = 170.66, 170.61, 170.55, 170.05 (6C, 6C=0), 143.72 (2C, $2C_{arom}$), 125.28 (2C, $2C_{arom}$), 101.21 (2C, $2C_{o}$), 95.33 (C-1), 95.19 (C-1), 91.88 (2C, 2C_q), 71.24, 70.63, 70.36, 69.00, 68.22, 68.16, 68.02 (10C, 4CH₂O, 2C-2, 2C-3, 2C-4), 64.82 (2C, 2C-5), 60.91 (2C, 2CH₂O), 59.14 (CH_2 CC-TMS), 50.58 (CH_2 N), 50.49 (CH_2 N), 20.94, 20.91, 20.77, 20.73 (6C, 6CH₃), 16.00 (2C, 2C-6), -0.13 (3C, TMS). $[\alpha]_d$ (CHCl₃, c=0.5, 20°C) = -72.0 **Mass** (TOF-MS-ESI⁻): m/z: 1019.3924 (100%) [M+Na]⁺ **HRMS** (TOF-MS-ESI⁺, m/z): calculated for $C_{43}H_{64}N_6O_{19}SiNa^+$: 1019.3888; found: 1019.3924.

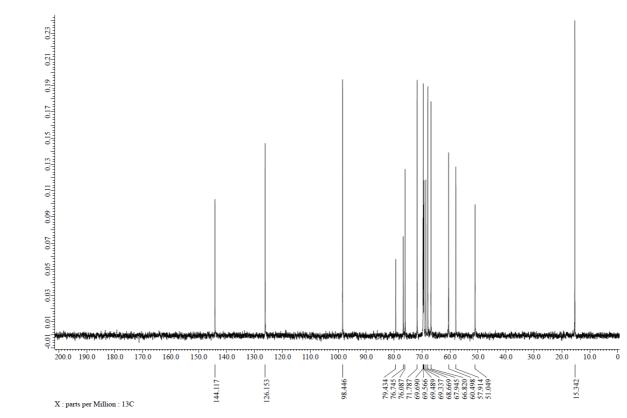


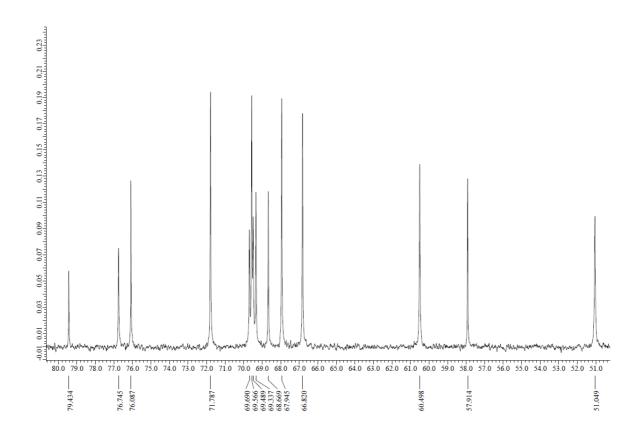


To a solution of **21** (1.927 g, 1.933 mmol, 1 eq) in THF (50 mL) at 0°C was added TBAF•3H₂O (0.606 mg, 2.319 mmol, 1.2 eq). The solution was stirred for three minutes afterwards the solvents were evaporated, the residue dissolved in CH₂Cl₂ (100 ml) and washed with a saturated solution of NH₄Cl (50 mL). The aqueous phase was extracted with CH₂Cl₂ (3x 50 mL) and the organic phase was dried with MgSO₄, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography (SiO₂, Cy to EtOAc) to afford **22** (1.59 g, 86%) as a white powder. ¹H NMR (400 MHz, CDCl₃) δ = 7.82 (s, 1H, H_{arom}), 7.80 (s, 1H, H_{arom}), 5.35-5.29 (m, 2H, 2H-3), 5.26 (t, J = 3.9 Hz, 2H), 5.15 (t, J = 3.2 Hz, 2H, 2H-1), 5.06 (td, J = 3.9 Hz, J = 10.8 Hz, 2H, 2H-2), 4.80 (dd, J = 2.5 Hz, J = 12.4 Hz, 2H), 4.64 (d, J = 12.4 Hz, 2H), 4.53-4.48 (m, 2H), 4.37-4.19 (m, 5H, H-5), 4.14 (d, J = 2.3 Hz, 2H, 0*CH*₂CCH), 3.68-3.54 (m, 8H, 4CH₂O), 2.43 (t, J = 2.4 Hz, 1H, 0CH₂C*CH*), 2.13, 2.00, 2.00, 1.93 (4s, 18H, 6CH₃), 1.12 (d, J = 6.4 Hz, 6H, 2H-6). ¹³C NMR (100 MHz, CDCl₃) δ = 170.64, 170.58, 170.52, 170.02 (6C, 6 C=O), 143.68 (2C, 2C_{arom}), 125.29 (2C, 2C_{arom}), 95.27, 95.16 (2C, 2C-1), 79.51 (0CH₂CCH), 74.98 (0CH₂C*CH*), 71.20, 70.65, 70.40, 70.31, 69.06 (8C, 2C-4, 5*CH*₂O), 68.17, 68.14, 67.96 (4C, 2C-2, 2C-3), 64.77 (2C, 2C-5), 60.88 (2C), 58.35 (0*CH*₂CCH), 50.58, 50.50 (2C, 2*CH*₂N), 20.92, 20.89, 20.75, 20.72 (6C, 6CH₃), 15.97, 15.95 (2C, 2C-6). [α]_d (CHCl₃, c=0.5, 20°C) =

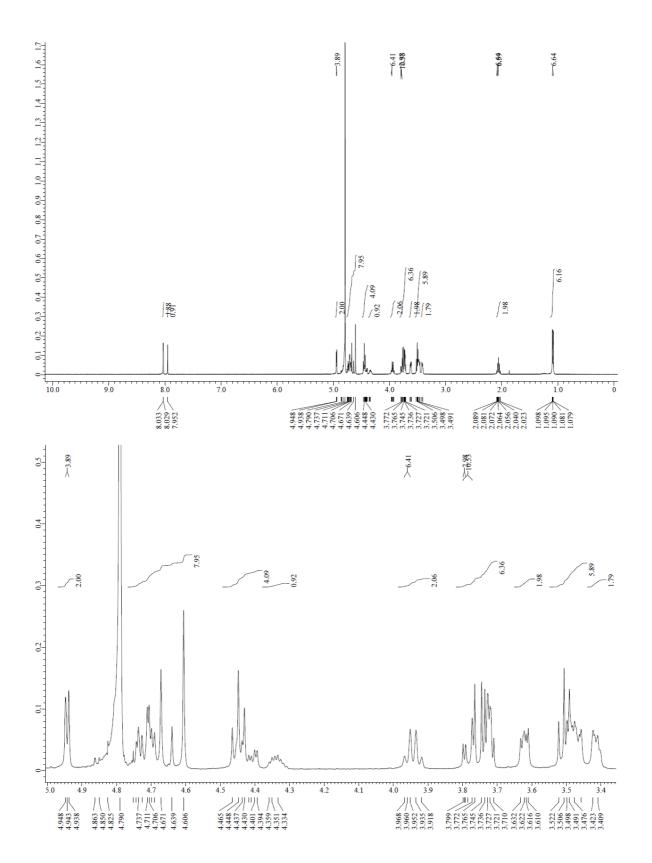

-116.6 **Mass** (TOF-MS-ESI-): m/z: 947.3513 (100%) [M+Na]+ **HRMS** (TOF-MS-ESI+, m/z): calculated for $C_{40}H_{56}N_6O_{19}Na+$: 947.3492; found: 947.3513.

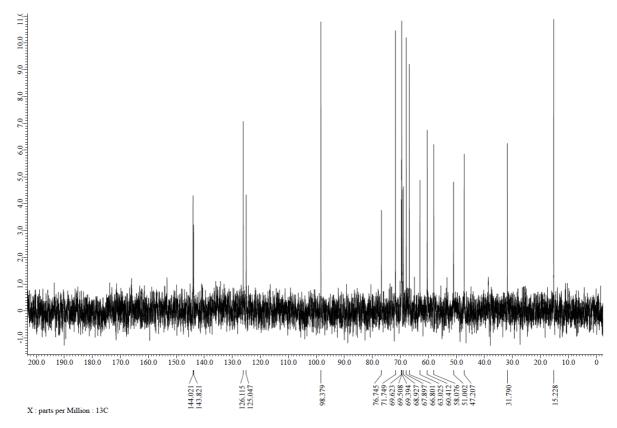


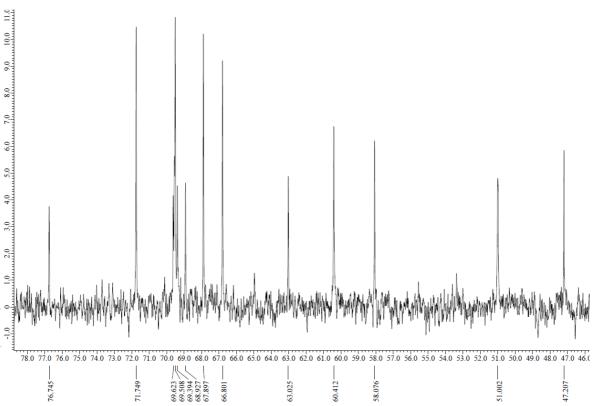



Synthesis of compound 23.

To a solution of **22** (1.44 g, 1.556 mmol, 1 eq) in MeOH (25 mL) was added sodium methoxide (0.168 g, 3.114 mmol, 2 eq) at 0°C. The solution was stirred during two hours at room temperature and the solution was filtered over a short column of DowexTM 50WX8-200 (H+ resin form). The resin was washed with MeOH (15 mL) and water (15 mL). Finally, the solvents were evaporated under reduced pressure to afford the desired product **23** as a colorless oil (1.036 g, 99%). ¹**H NMR** (400 MHz, D₂O) δ = 8.07 (s, 2H, 2H_{arom}), 4.97 (d, J = 3.4 Hz, 2H, 2H-1), 4.82-4.69 (m), 4.50-4.44 (m, 2H, CH₂), 4.39 (m, 1H, CH₂O*C*(*H*)(CH₂N)₂), 4.18 (d, J = 2.3 Hz, 2H, 0*CH*₂CCH), 3.97 (q, J = 6.2 Hz, 2H, 2H-5), 3.80 (dd, J = 2.8 Hz, J = 10.3 Hz, 2H, 2H-2), 3.76-3.72 (m, 4H), 3.65-3.63 (m, 2H), 3.49-3.48 (m, 4H), 3.44-3.43 (m, 2H), 2.84 (s, 1H, 0CH₂C*CH*), 1.11 (d, J = 6.6 Hz, 6H, 2H-6). ¹³**C NMR** (100 MHz, D₂O) δ = 144.12 (2C, 2C_{arom}), 126.15 (2C, 2C_{arom}), 98.45 (2C, 2C-1), 79.43 (C_q), 76.75 (CH₂O*C*(*H*)(CH₂N)₂), 76.09 (0CH₂C*CH*), 71.79, 69.69, 69.57, 69.49, 69.34, 68.67, 67.95 (10C, 2C-2, 2C-3, 2C-4, 4CH₂O), 66.82 (2C, 2C-5), 60.50 (2C, 2CH₂O), 57.91 (0*CH*₂CCH), 51.05 (2C, 2*CH*₂N), 15.34 (2C, 2C-6). [α]_d (MeOH, c=0.5, 20°C) = -108.0 **Mass** (TOF-MS-ESI·): m/z: 695.2889 (100%) [M+Na]+ **HRMS** (TOF-MS-ESI·+, m/z): calculated for C₂₈H₄₄N₆O₁₃Na+: 695.2859; found: 695.2889.

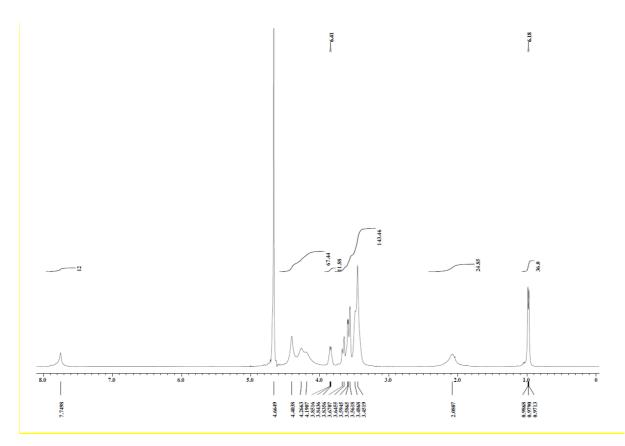


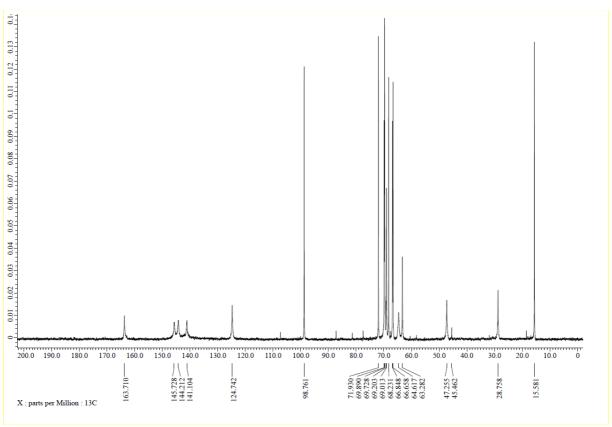




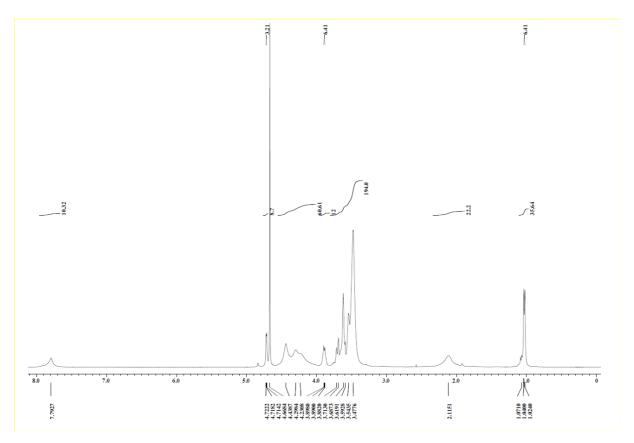
Synthesis of compound E.

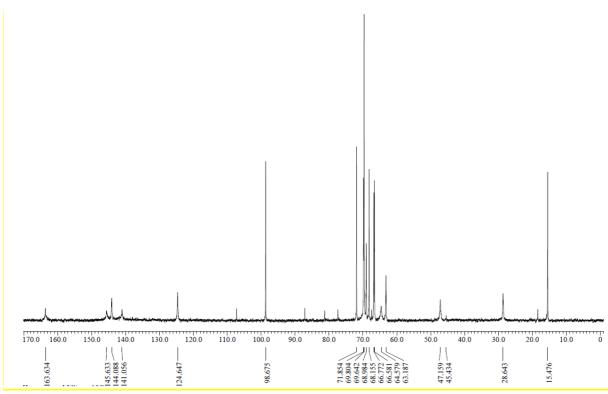
To a solution of **23** (0.050 g, 0.0743 mmol, 1 eq) in *t*-BuOH/H₂O 1:1 (1 mL) was added **25** (0.009 g, 0.0892 mmol, 1.2 eq), sodium ascorbate (0.003 g, 0.0148 mmol, 0.2 eq) and copper (II) sulfate (0.0012 g, 0.00743 mmol, 0.1 eq). The solution was stirred three hours at room temperature afterwards the solvents were evaporated under reduced pressure. The residue was purified by flash chromatography (SiO₂, EtOAc to EtOAc/EtOH 1:1) to afford **E** (0.044 g, 76%) as a white powder. ¹**H NMR** (400 MHz, D₂O) δ = 8.03 (2s, 2H, 2H_{arom}), 7.95 (s, 1H, H_{arom}), 4.94 (d, J = 3.9 Hz, 2H, 2H-1), 4.75-4.61 (m, 8H), 4.47-4.39 (m, 4H, CH₂, N*CH*₂CH₂CH₂OH), 4.36-4.33 (m, 1H, CH₂O*C*(*H*)(CH₂N)₂), 3.94 (q, J = 6.4 Hz, 2H, 2H-5), 3.78 (dd, J = 3.0 Hz, J = 10.5 Hz, 2H, 2H-2), 3.75-3.71 (m, 4H), 3.63-3.61 (m, 2H), 3.52-3.46 (m, 6H, NCH₂CH₂CH₂OH), 3.42-3.41 (m, 2H), 2.06 (tt, J = 6.6 Hz Hz, J = 6.6 Hz Hz, 2H, NCH₂CH₂CH₂OH), 1.09 (2d, J = 6.6 Hz, J = 6.6 Hz, 6H, 2H-6). ¹³**C NMR** (100 MHz, D₂O) δ = 144.02, 143.82 (3C, 3C_{arom}), 126.12, 125.05 (3C, 3C_{arom}), 98.38 (2C, 2C-1), 76.75, 71.75, 69.62, 69.51, 69.39, 68.93, 67.90, 66.80, 66.82, 63.03, 60.41, 58.08 (17C, 2C-2, 2C-3, 2C-4, 2C-5, 9CH₂), 51.00 (2C, 2*CH*₂N), 47.21 (CH₂), 31.79 (NCH₂C*H*₂CH₂OH), 15.23 (2C, 2C-6). [α]_d (MeOH, c=1.15, 20°C) = -64.7 **Mass** (TOF-MS-ESI-): m/z: 796.3474 (100%) [M+Na]+ **HRMS** (TOF-MS-ESI+, m/z): calculated for C₃₁H₅₁N₉O₁₄Na+: 796.3448; found: 796.3474.





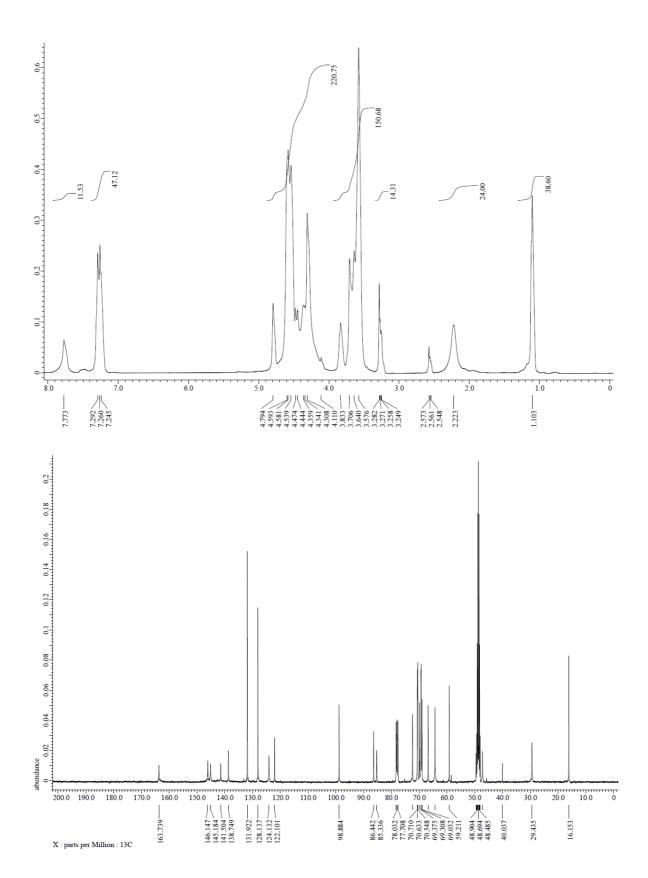
Synthesis of compound C₆₀(B)₁₂


To a solution of **24** (75 mg, 3.22 10^{-2} mmol, 1 eq) in THF (3 mL) was added **5** (121 mg, 41.9 10^{-2} mmol, 13 eq) dissolved in 1 mL of DMSO. Afterwards sodium ascorbate (1.9 mg, 0.97 10^{-2} mmol, 0.3 eq) and copper (II) sulfate (0.5 mg, 0.32 10^{-2} mmol, 0.1 eq) dissolved in 1 mL of water were added. Microwave irradiation during two hours afforded the desired product, which was then precipitated with acetone (3 mL), washed with acetone (10 mL) and methanol (5mL) and purified on SephadexTM G-25. Evaporation of the solvent afforded $\mathbf{C}_{60}(\mathbf{B})_{12}$ (127 mg, 68%) as a red solid. **IR**: 3391 (O-H), 1743 (C=O). **UV/Vis** (H₂O): 246 (sh, 72700), 276 (63400), 319 (sh, 34700), 337 (sh, 28400). ¹**H NMR** (400 MHz, D₂O) δ = 7.75 (s, 12H), 4.40-4.19 (m, 72H), 3.84 (d, J = 6.4 Hz, 12H), 3.67-3.45 (m, 144H), 2.08 (s, 24H), 0.98 (d, J = 6.2 Hz, 36H, H-6). ¹³**C NMR** (100 MHz, D₂O) δ = 163.71 (C=O), 145.73, 144.21, 141.10, 124.74 (4C, 4C_{arom}), 98.76 (C-1), 71.93, 69.89, 69.73, 69.20, 69.01, 68.23, 66.85, 66.66 (C-2, C-3, C-4, C-5, 4CH₂O), 64.62, 63.28 (2CH₂O), 47.26 (CH₂N), 45.46 (C_q), 28.76 (CH₂), 15.58 (C-6). **Mass** (TOF-MS-LD+): m/z: 5838.2 [M+Na]+, 5420.0 [M-C₁₇H₂₈N₃O₉+Na]+, 5989.8 [M-C₃₅H₅₆N₆O₁₈+Na]+, 4570.6 [M-C₅₂H₈₄N₉O₂₇+Na]+, 4141.4 [M-C₇₀H₁₁₂N₁₂O₃₆+Na]+, 3723.2 [M-C₈₇H₁₄₀N₁₅O₄₅+Na]+, 3293.0 [M-C₁₀₅H₁₆₈N₁₈O₅₄+Na]+, 2874.9 [M-C₁₂₂H₁₉₆N₂₁O₆₃+Na]+, 2443.7 [M-C₁₄₀H₂₂₄N₂₄O₇₂+Na]+, 3025.5 [M-C₁₅₇H₂₅₂N₂₇O₈₁+Na]+.

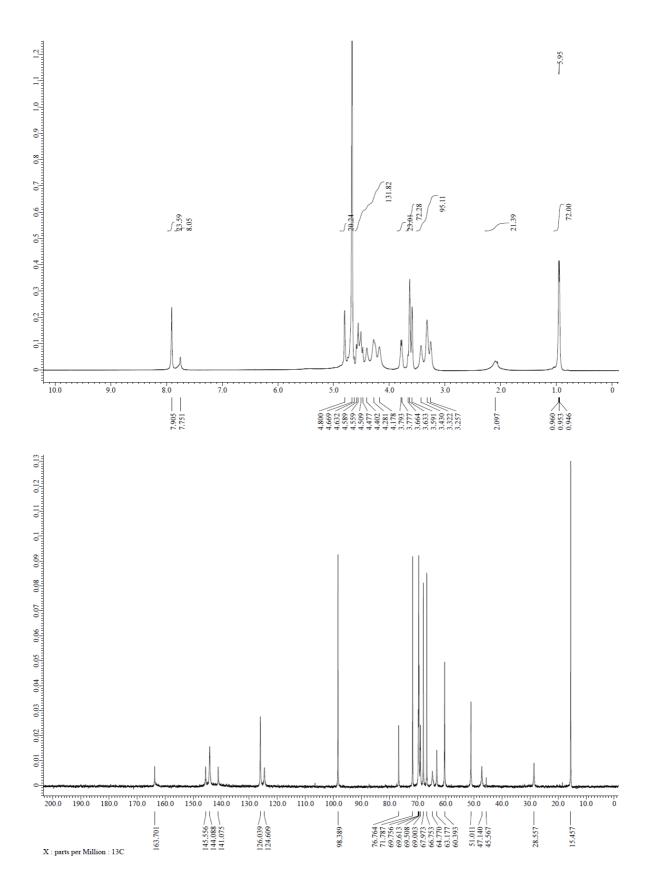


Synthesis of compound $C_{60}(C)_{12}$

To a solution of **24** (75 mg, 3.22 10^{-2} mmol, 1 eq) in THF (3 mL) was added **7** (140 mg, 41.9 10^{-2} mmol, 13 eq) dissolved in 1 mL of DMSO. Afterwards sodium ascorbate (1.9 mg, 0.97 10^{-2} mmol, 0.3 eq) and copper (II) sulfate (0.5 mg, 0.32 10^{-2} mmol, 0.1 eq) dissolved in 1 mL of water was added. Microwave irradiation during two hours afforded the desired product, which was then precipitated with acetone (2 mL), washed with acetone (10 mL) and methanol (5 mL) and purified on SephadexTM G-25. Evaporation of the solvent afforded $\mathbf{C}_{60}(\mathbf{C})_{12}$ (102 mg, 50%) as a red solid. **IR**: 3401 (0-H), 1742 (C=0). **UV/Vis** (H₂0): 246 (sh, 69600), 276 (59500), 320 (sh, 33900), 337 (sh, 27900). ¹**H NMR** (400 MHz, D₂O) δ = 7.79 (s, 12H), 4.72 (d, J = 3.2 Hz, 12H) 4.44-4.23 (m, 60H), 3.89 (d, J = 6.4 Hz, 12H, H-5), 3.71-3.48 (m, 192H), 2.12 (s, 24H), 1.04 (d, J = 6.4 Hz, 36H, H-6). ¹³**C NMR** (75 MHz, D₂O) δ = 163.63 (C=0), 145.63, 144.09, 141.06, 124.65 (4C, 4C_{arom}), 98.68 (C-1), 71.85, 69.80, 69.64, 68.98, 68.16, 66.77, 66.56, 64.58, 63.19 (12C, C-2, C-3, C-4, C-5, 8CH₂O), 47.16 (CH₂N), 45.43 (C_q), 28.64 (CH₂), 15.48 (C-6). **Mass** (TOF-MS-LD+): m/z: 6365.8 [M+Na]+, 5902.7 [M-C₁₉H₃₂N₃O₁₀+Na]+, 5428.6 [M-C₃₉H₆₄N₆O₂₀+Na]+, 4965.4 [M-C₅₈H₉₆N₉O₃₀+Na]+, 4492.2 [M-C₇₈H₁₂₈N₁₂O₄₀+Na]+, 4028.0 [M-C₉₇H₁₆₀N₁₅O₅₀+Na]+.



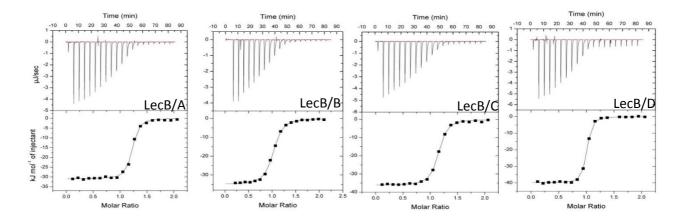
Synthesis of compound C₆₀(D)₁₂


$$R = \begin{pmatrix} N_{2}N \\ N_{1}N \\ N_{2}N \\ N_{1}N \\ N_{2}N \\ N_{3}N \\ N_{1}N \\ N_{2}N \\ N_{3}N \\ N_{1}N \\ N_{2}N \\ N_{3}N \\ N_{3}N \\ N_{4}N \\ N_{5}N \\ N_{5$$

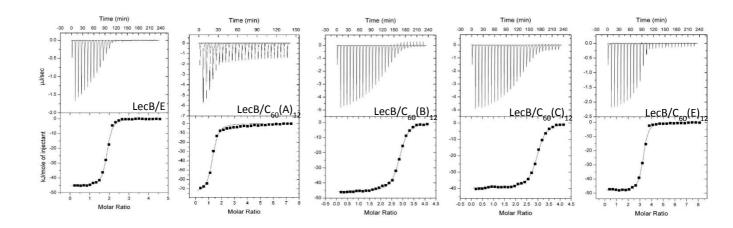
To a solution of **24** (50 mg, 2.14×10^{-2} mmol, 1 eq) in THF (1.5 mL) was added **11** (121 mg, 27.9 10-² mmol, 13 eq) dissolved in 0.5 mL of DMSO. Afterwards sodium ascorbate (1.3 mg, 0.64 10⁻² mmol, 0.3 eq) and copper (II) sulfate (0.3 mg, 0.21 10⁻² mmol, 0.1 eq) dissolved in 0.5 mL of water were added. Microwave irradiation during two hours afforded the desired product, which was then precipitated with water (2 mL), washed with water (10 mL) and purified on Sephadex™ G-25. Evaporation of the solvent afforded $C_{60}(\mathbf{D})_{12}$ (122 mg, 76%) as a red solid. **IR**: 3424 (O-H), 1743 (C=O). **UV/Vis** (CHCl₃/MeOH): 249 (178300), 258 (147300), 274 (sh, 43600), 282 (sh, 44400), 319 (sh, 24300), 339 (sh, 18100). ¹**H NMR** (400 MHz, CDCl₃/MeOD 1:1) δ = 7.77 (s, 12H), 7.29-7.24 (m), 4.79-4.31 (m), 3.83-3.58 (m), 3.29-3.25 (m), 2.22 (s, 24H), 1.10 (s, 36H, H-6). ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3/\text{MeOD } 1:1) \delta = 163.74 \text{ (C=O)}, 146.15, 145.18, 141.50, 138.75, 131.92, 128.14,$ 124.13, 122.10 (10C, 10C_{arom}), 98.88 (C-1), 86.44 (C_q), 85.34 (C_q), 72.43, 70.71, 71.63, 71.55, 69.89, 69.38, 69.31, 69.03, 66.80 (11C, C-2, C-3, C-4, C-5, C_q, 6CH₂O), 64.35 (CH₂O), 59.21 (CH₂O), 47.24 (CH₂N), 40.04 (C_q), 29.44 (CH₂), 16.15 (C-6). **Mass** (TOF-MS-LD⁺): m/z: 7568.8 [M+Na]⁺, 6430.5 $[M-C_{55}H_{72}N_6O_{20}+Na]^+,\,5868.2\,\,[M-C_{82}H_{108}N_9O_{30}+Na]^+,\,5297.0\,\,[M-C_{110}H_{144}N_{12}O_{40}+Na]^+,\,4732.7\,\,[M-C_{110}H_{144}N_{12}O_{40}+Na]^+,\,4732.7\,\,[M-C_{110}H_{144}N_{12}O_{40}+Na]^+,\,4732.7\,\,[M-C_{110}H_{144}N_{12}O_{40}+Na]^+,\,4732.7\,\,[M-C_{110}H_{144}N_{12}O_{40}+Na]^+,\,4732.7\,\,[M-C_{110}H_{144}N_{12}O_{40}+Na]^+,\,4732.7\,\,[M-C_{110}H_{144}N_{12}O_{40}+Na]^+,\,4732.7\,\,[M-C_{110}H_{144}N_{12}O_{40}+Na]^+,\,4732.7\,\,[M-C_{110}H_{144}N_{12}O_{40}+Na]^+,\,4732.7\,\,[M-C_{110}H_{144}N_{12}O_{40}+Na]^+,\,4732.7\,\,[M-C_{110}H_{144}N_{12}O_{40}+Na]^+]$ $C_{137}H_{180}N_{15}O_{50} + Na]^+, \ 4156.4 \ [M-C_{165}H_{210}N_{18}O_{60} + Na]^+, \ 3593.2 \ [M-C_{192}H_{252}N_{21}O_{70} + Na]^+, \ 3018.9 \ [M-C_{192}H_{252}N_{21}O_{70} + Na]^+, \ 3018.9$ $C_{220}H_{288}N_{24}O_{80}+Na]^+$.

Synthesis of compound $C_{60}(E)_{12}$

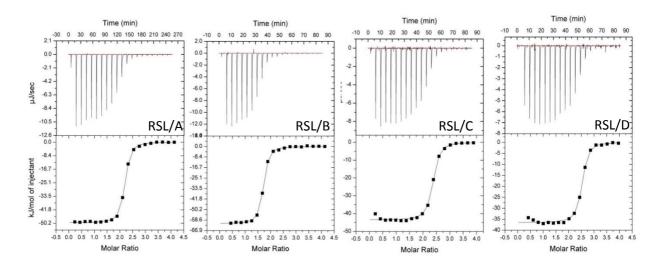
To a solution of **24** (50 mg, 2.146 10^{-2} mmol, 1 eq) in THF (1 mL) was added **23** (180 mg, 27.9 10^{-2} mmol, 13 eq) dissolved in 0.3 mL of DMSO. Afterwards sodium ascorbate (1.3 mg, 0.2146 10^{-2} mmol, 0.3 eq) and copper (II) sulfate (0.5 mg, 0.32 10^{-2} mmol, 0.1 eq) dissolved in 0.3 mL of water were added. Microwave irradiation during two hours afforded the desired product, which was then precipitated with acetone (2 mL), washed with acetone (10 mL) and methanol (5mL) and purified on SephadexTM G-25. Evaporation of the solvent afforded $\mathbf{C}_{60}(\mathbf{E})_{12}$ (182 mg, 81%) as a red solid. **IR**: 3424 (0-H), 1744 (C=O). **UV/Vis** (H₂O): 248 (sh, 76900), 277 (67400), 321 (sh, 36500), 340 (sh, 29400). ¹**H NMR** (400 MHz, D₂O) δ = 7.91 (s, 24H), 7.75 (s, 12H), 4.80 (m, 24H), 4.66-4.18 (m), 3.78 (d, J = 6.4 Hz, 24H), 3.66-3.59 (m, 72H), 3.43-3.26 (m, 96H), 2.10 (s, 24H), 0.95 (d, J = 6.0 Hz, 72H, H-6). ¹³**C NMR** (100 MHz, D₂O) δ = 163.70 (C=O), 145.56, 144.09, 141.08 (4C_{arom}), 126.04, 124.61 (2C_{arom}), 98.39 (C-1), 76.76, 71.79, 69.76, 69.61, 69.51, 69.00, 67.97, 66.75, 64.77, 63.18, 60.39 (C-2, C-3, C-4, C-5, 6CH₂, CH₂OC(H)(CH₂N)₂, C_q), 51.01(CH₂OC(H)(CH₂N)₂), 47.14 (CH₂N), 45.57 (C_q), 28.56(OCH₂CH₂CH₂N), 15.46 (C-6). **Mass** (TOF-MS-LD+): m/z: 10424.6 [M+Na]+, 9627.9 [M-C₃₂H₄₆N₉O₁₅+Na]+, 8818.1 [M-C₆₅H₉₂N₁₈O₃₀+Na]+, 8014.9 [M-C₉₇H₁₃₈N₂₇O₄₅+Na]+, 7213.4 [M-C₁₃₀H₁₈₄N₃₆O₆₀+Na]+, 6400.1 [M-C₆₆H₂₃₀N₄₅O₇₅+Na]+, 8014.9 [M-C₁₉₅H₂₇₆N₅₄O₉₀+Na]+.


II. Biochemical techniques.

Isothermal Titration Microcalorimetry (ITC).


LecB and RSL were produced in *Escherichia coli* and purified on affinity columns as previously described. (1,2) Lyophilized LecB and RSL were dissolved in buffer (20 mM Tris-HCl, 0.1 M NaCl pH 7.5 with 100 μ M CaCl₂). Titration was performed using ITC200 microcalorimeter (Malvern Instruments, UK) with a 200 μ l sample cell operating at 25°C. Titrations were performed with 20 injections of 2 μ l every 120 s.

For direct titration of monovalent probes **A** to **D**, the glycocompounds (50mM water stock solution) were diluted to 1 mM in the same buffer as lectins, loaded in the injection syringe, and injected in solution of LecB (100 μ M) or RSL (50 μ M) in the microcalorimeter cell. For inverse titration of divalent compound **E**, the lectins LecB (200 μ M) or RSL (100 μ M) were injected in the cell containing the glycocompound (10 μ M). The glycofullerenes were dissolved in the same buffer with the addition of 5% DMSO (in both fullerene and lectin solutions). They were loaded in the syringe at concentrations varying from 0.5 to 20 μ M and injected in the cell containing either LecB (200 to 400 μ M) or RSL (30 to 300 μ M).


The experimental data were fitted to a theoretical titration curve using the supplied Origin software, with ΔH (enthalpy change), Ka (association constant) and n (number of binding sites per monomer) as adjustable parameters. Free energy change (ΔG) and entropy contributions ($T\Delta S$) were derived from the equation $\Delta G = \Delta H - T\Delta S = -RT$ ln Ka (with T as the absolute temperature and R = 8.314 J mol⁻¹ K⁻¹). Two or three independent titrations were performed for each tested ligand.

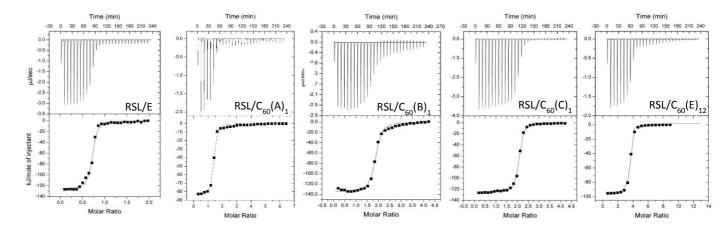

Figure S1: ITC data for direct titration of LecB by monovalent probes. Top: thermograms obtained by injection of compounds **A** to **D** (1 mM) in LecB solution (100 μ M). Bottom: Corresponding integrated titration curve as a function of molar ratio compound/lecB.

Figure S2 ITC data for reverse titration of LecB by divalent probe and glycosylated fullerenes. Top: thermograms obtained by injection of LecB (200 to 400 μ M) in compound E solution (10 μ M) or in glycofullerene solutions (10 to 20 μ M). Bottom: Corresponding integrated titration curves as a function of molar ratio LecB/compound.

Figure S3: ITC data for direct titration of RSL by monovalent probes. Top: thermograms obtained by injection of compounds **A** to **D** (1 mM) in RSL solution (50 μ M). Bottom: Corresponding integrated titration curve as a function of molar ratio compound/RSL.

Figure S4: ITC data for reverse titration of RSL by divalent probe and glycosylated fullerenes. Top: thermograms obtained by injection of RSL (30 to 300 μ M) in glycofullerene solution (10 μ M) or in glycosylated fullerene solution (0.5 to 10 μ M). Bottom: Corresponding integrated titration curve as a function of molar ratio RSL/compound.

Model Building

The C60 fullerene starting structure was generated using Nanotube Modeler Software (JCrystalSoft, jcrystal.com). The attached linkers decorated with fucose were built in their extended conformation using the molecular editor from the Sybyl-X suite (Certara, www.certara.com), and structures were optimized for removing any steric conflict with the Tripos force field. [2] Crystal structures of LecB/fucose (PDB code 1GZT)[4] and RSL/ α -methyl-fucoside (PDB code 2BT9)[2] were used for building the complexes. Docking of glycosylated fullerenes in the proteins binding sites was performed by fitting the fucose residues from fucosylated fullerenes to the same sugar in the binding site of crystal structure with the use of the fitting procedure in Sybyl-X.

III. References

- [1] S. Perret, C. Sabin, C. Dumon, M. Pokorná, C. Gautier, O. Galanina, S. Ilia, N. Bovin, M. Nicaise, M. Desmadril, N. Gilboa-Garber, M. Wimmerová, E. P. Mitchell and A. Imberty, *Biochem. J.* **2005**, 389, 325-332.
- [2] N. Kostlanova, E. P. Mitchell, H. Lortat-Jacob, S. Oscarson, M. Lahmann, N. Gilboa-Garber, G. Chambat, M. Wimmerova and A. Imberty, *J. Biol. Chem.* **2005**, 280, 27839–27849.
- [23] M. Clark, R.D. Cramer, N. van den Opdenbosch. J. Comput. Chem. 1989, 10, 982-1012.
- [4] E. Mitchell, C. Houles, D. Sudakevitz, M. Wimmerova, C. Gautier, S. Pérez, A. M. Wu, N. Gilboa-Garber and A. Imberty, *Nature Struct. Biol.* **2002**, *9*, 918-921.