Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Palladium-catalyzed *ortho*-acyloxylation of *N*-nitrosoanilines *via* direct sp² C–H bond activation

Dan-Dan Li,^a Yi-Xuan Cao^a and Guan-Wu Wang*^{a,b}

^a Hefei National Laboratory for Physical Sciences at Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China ^b State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China

gwang@ustc.edu.cn

Table of Contents

¹ H NMR and ¹³ C NMR spectra of compounds 1d and 1l	S2-S3
¹ H NMR and ¹³ C NMR spectra of compounds 2a–p , 3a , 3b and 3g	S4-S22

¹H NMR and ¹³C NMR spectra of compounds 1d and 1l

¹³ C NMR (100 MHz, CDCl₃) of compound 1d

¹³ C NMR (100 MHz, CDCl₃) of compound 11

¹³ C NMR (100 MHz, CDCl₃) of compound 2a

¹³ C NMR (100 MHz, CDCl₃) of compound 2b

S5

¹H NMR (400 MHz, CDCl₃) of compound 2c

$^{13}\,C$ NMR (100 MHz, CDCl₃) of compound 2c

¹H NMR (400 MHz, CDCl₃) of compound 2d

¹³ C NMR (100 MHz, CDCl₃) of compound 2d

¹H NMR (400 MHz, CDCl₃) of compound 2e

¹³ C NMR (100 MHz, CDCl₃) of compound 2e

S8

¹H NMR (400 MHz, CDCl₃) of compound 2f

¹³ C NMR (100 MHz, CDCl₃) of compound 2f

¹H NMR (400 MHz, CDCl₃) of compound 2h

¹³ C NMR (100 MHz, CDCl₃) of compound 2h

¹³ C NMR (100 MHz, CDCl₃) of compound 2i

¹H NMR (400 MHz, CDCl₃) of compound 2j

¹³ C NMR (100 MHz, CDCl₃) of compound 2j

¹³ C NMR (100 MHz, CDCl₃) of compound 2k

¹H NMR (400 MHz, CDCl₃) of compound 2l

¹³ C NMR (100 MHz, CDCl₃) of compound 2l

¹H NMR (400 MHz, CDCl₃) of compound 2m

¹³ C NMR (100 MHz, CDCl₃) of compound 2m

¹ H NMR (400 MHz, CDCl₃) of compound 2n

¹³ C NMR (100 MHz, CDCl₃) of compound 2n

¹³ C NMR (100 MHz, CDCl₃) of compound 20

¹³ C NMR (100 MHz, CDCl₃) of compound 2p

S19

¹H NMR (400 MHz, CDCl₃) of compound 3a

¹H NMR (400 MHz, CDCl₃) of compound 3g

