Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Copper(II)-Catalyzed Highly Regio- and Stereoselective Hydrosilylation of Unactivated Internal Alkynes with Silylborate in Water

Qing-Qing Xuan,^{*a,b*} Chuan-Li Ren,^{*a,b*} Li Liu,^{* *a*} Dong Wang,^{*a*} and Chao-Jun Li ^{*}*c*</sup>

^a Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. ^bUniversity of Chinese Academy of Sciences, Beijing 100049, China ^c Department of Chemistry, McGill University, Montreal, Quebec, Canada H3A0B8

Supplementary Information

Table of Contents

1. General methods	S2
2. Experimental section	S2
3. NMR spectrums and NOESY spectrums	S7

1. General methods

Unless otherwise noted, all reagents were obtained from commercial suppliers and were used without further purification. Internal alkynes were prepared according to original or modified literature procedures. All reactions were carried out under N_2 atomosphere, unless otherwise noted. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard. The following abbreviations were used to designate chemical shift multiplicities: s= singlet, d= doublet, t= triplet, q= quartet, h= heptet, m= multiplet,. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). IR spectra were recorded on a Bruker tensor 27 infrared spectrometer. Melting points were measured on Beijing Tech X-4 apparatus without correction. Mass spectra were obtained using electrospray ionization (APCI) mass spectrometer. Column chromatography was performed using silica gel (200-300 mesh). TLC was performed on glass-backed silica plates.

2. Experimental section

2.1 The Preparation of Internal Alkynes

The internal alkynes were synthesized from methyl propiolate acid and an aryl halide following the literature procedure (eq s1).¹

General procedure:

A mixture of $Pd(PPh_3)_2Cl_2$ (0.0343 mmol), 1,4-bis(diphenylphosphanyl)butane (0.0701 mmol), 4halosubstituted benzene (3.04 mmol), 2-butynoic acid (3.00 mmol), base (6.0 mmol), and DMSO (6.0 mL) was stirred at 80-110 °C. After 2 -24 h, the reaction mixture was poured into a saturate aqueous solution of NH₄Cl and was extracted with CH₂Cl₂. The combined CH₂Cl₂ extracts were washed with H₂O, dried over Na₂SO₄, and filtered. The filtrate was concentrated *in vacuo*, and the resulting residue was purified using silicagel column chromatography.

1. Y. Okuno, M. Yamashita, K. Nozaki, Eur. J. Org. Chem. 2011, 3951.

2.2 General Procedure for the Reaction of Internal Alkynes 1 with Me₂PhSiBpin 2.

Ligand L9 (0.003mmol, 0.5mg), and Cs_2CO_3 were added to a Schlenk tube, which was evacuated and backfilled with N₂. Then 1ml solution of $Cu(OTf)_2$ (0.9mg/ml), Me₂PhSiBpin (0.15mmol, 40µl) and internal alkyne 1a (0.1mmol,12.6µl) were added via syringe, and the reaction mixture was stirred for 20h at room temperature. Then the reaction solution was extracted with ether for 3 times, the organic layer was combined and dried over Na₂SO₄. Next, the organic solvent was evaporated and the residue was subjected to flash column chromatography on silica gel with petroleum ether as eluent to afford the desired product 3a.

2.3 The screening of copper source.

Ph	Cu-salt (2.5 L9 (3 mo	^{mol%)} Ph Me → +	Ph Me
1a	Cs ₂ CO ₃ (10 2 H ₂ O, N ₂) mol%) Η SiMe ₂ Ph , RT (Ε)-β-3a	PhMe ₂ Si H (<i>E</i>)-α-3a
Entry ^a	Cu-salt	Yield(%) ^b	β/α ^c
1	CuOTf	65	88/12
2	CuOAc	22	83/17
3 ^d	Cu(OTf) ₂	75	92/8

^a General procedure: A mixture of 1a (1.0 equiv), 2 (1.5 equiv), ligand (3~6 mol%), base (10 mol%) and Cu(OTf)₂ (2.5 mol%) in water (1 mL) was stirred under N₂ at room temperature. ^b The yields of 3a were determined by ¹H NMR analysis. ^c The ratio (β/α) was determined by ¹H NMR analysis. ^d The reaction was carried out under air.

(*E*)-(1-(4-fluorophenyl)prop-1-en-2-yl)dimethyl(phenyl)silane (β -3a)¹

 $\begin{array}{l} \label{eq:simple} \hbox{ colourless oil.yield 95\%. 1H NMR (400 MHz, CDCl_3) &$: 7.57-7.56(d, J=4Hz, 2H), 7.36-7.26(m, 7H), 7.24-7.20(t, J=8Hz, 1H), 6.80(s, 1H), 1.94(s, 3H), 0.43(s, 6H). 1C NMR (100MHz, CDCl_3) &$: 137.99, 137.41, 137.4, 137.3, 133.2, 128.2, 128.1, 127.2, 126.9, 125.7, 15.8, -4.3. IR v_{max} (KBr, film, cm^{-1}): 1594, 1427, 1243, 1029, 823. HRMS (APCI): calcd for $C_{17}H_{20}Si[M+H]^{+}$ 253.14070, found: 253.14055. \\ \hline (E)-(1,2-diphenylvinyl)dimethyl(phenyl)silane (β-3b) \\ \end{array}$

SiMe₂Ph Ph colourless oil. yield 93% ¹H NMR (400 MHz, CDCl₃) δ: 7.55-7.53(t, *J*=4Hz, 2H), 7.36-7.35(d, *J*=4Hz, 3H), 7.36-7.14(m, 3H), 7.08-7.06(t, *J*=4Hz, 3H), 6.94-6.88(m, 4H), 6.82(s, 1H), 0.39(s, 6H). ¹³C NMR

 $(100 \text{MHz}, \text{CDCl}_3) \ \delta: \ 144.1, \ 141.4, \ 138.3, \ 136.8, \ 136.3, \ 133.4, \ 128.6, \ 128.2, \ 127.6, \ 127.0, \ 126.8, \ 127.7, \ 126.3, \ 124.8, \ -3.9. \ \text{IR} \ \nu_{\text{max}} \ (\text{KBr}, \ \text{film}, \ \text{cm}^{-1}): \ 1593, \ 1426, \ 1246, \ 968, \ 823. \ \text{HRMS} \ (\text{APCI}): \ \text{calcd for } C_{22}\text{H}_{22}\text{Si} \ [\text{M}]^+ \ 314.14853, \ \text{found:} \ 314.14835.$

(*E*)-(1-(4-fluorophenyl)prop-1-en-2-yl)dimethyl(phenyl)silane (β -3c)

colourless oil. yield 85%. ¹H NMR (400 MHz, CDCl₃) δ : 7.57-7.54(m, 2H), 7.38-7.36(m,3H), 7.28-7.25(m, 3H), 7.04-7.69(t, *J*=10Hz, 2H), 1.92-1.91(d, *J*=4Hz, 3H), 0.43(s, 6H). ¹³C NMR (100MHz, CDCl₃) δ : 140.6, 137.3, 137.1, 136.8, 133.4, 133.2, 129.8(d, ¹*J*_{CF}=160Hz), 129.7,

126.93, 114(d, ${}^{2}J_{CF}$ =21.2Hz), 15.7, -4.3. IR v_{max} (KBr, film, cm⁻¹): 1596, 1422, 1360, 1263, 908. HRMS (APCI): calcd for C₁₇H₁₉FSi [M+H]⁺ 271.13128, found: 271.13103.

(*E*)-4-(2-(dimethyl(phenyl)silyl)prop-1-en-1-yl)benzonitrile (β -3d)

colourless oil. yield 95%. ¹H NMR (400 MHz, CDCl₃) δ:7.62-7.60(d, J=8Hz, 2H), 7.56-7.53(m, 2H), 7.39-7.38(t, J=2Hz, 4H), 7.36(s, 1H), 6.760-6.757(d, J=1.2Hz, 1H), 1.934-1.929(d, J=1.5Hz, 3H), 0.45(s, IH), 0.45(s,

6H). ¹³C NMR (100MHz, CDCl₃) δ :142.0, 141.9, 136.8, 136.0, 133.1, 130.9, 128.7, 128.4, 127.0, 118.2, 109.1, 15.9, -4.5. IR ν_{max} (KBr, film, cm⁻¹): 2242, 1591, 1422, 1202, 1029, 834. HRMS (APCI): calcd for C₁₈H₁₉NSi [M+H]⁺ 278.13595, found: 278.13571.

(*E*)-4-(2-(dimethyl(phenyl)silyl)prop-1-en-1-yl)benzonitrile (β-3e)

SiMe₂Ph colourless oil. yield 90%. ¹H NMR (400 MHz, CDCl3) δ : 8.02-8.00(d, J=8Hz, 2H), 7.57-7.55(m, 2H), 7.39-7.34(m, 5H), 6.819-6.816(d, J=1.2Hz, 1H), 4.40-4.35(q, J=7.2Hz, 2H), 1.952-1.948(d, J=1.6Hz, 3H), 1.41-1.38(t, J=7.2Hz, 3H), 0.45(s, 6H). ¹³C NMR (100MHz, CDCl₃) δ : 165.6, 141.9, 140.3, 137.0, 133.2, 130.5, 128.5, 128.0, 127.6, 126.9, 59.9, 15.9, 13.5, -4.4. IR v_{max} (KBr,

film, cm⁻¹): 1597, 1716, 1437, 1263, 1029, 829. HRMS (APCI): calcd for C₂₀H₂₄O₂Si

[M+H]⁺325.16183, found: 325.16150. (*E*)-dimethyl(phenyl)(1-(4-(trifluoromethyl)phenyl)prop-1-en-2-yl)silane (β -3f)

 $F_{3}C$ SiMe₂Ph Me
SiMe₂Ph Me
SiMe₂Ph Me
SiMe₂Ph Me
SiMe₂Ph Me
SiMe₂Ph SiMe₂Ph Me
SiMe₂Ph SiMe₂P

CDCl₃) δ : 140.9, 140.4, 137.6, 136.7, 136.5, 133.2, 128.3, 127.4 (q, ${}^{2}J_{CF}$ =32.2Hz), 126.9, 124.7 (q, ${}^{1}J_{CF}$ =255), 124.1(q, ${}^{3}J_{CF}$ =3.8), 15.8, -4.4. IR v_{max} (KBr, film, cm⁻¹): 1595, 1332, 1426, 1223, 827. HRMS (APCI): calcd for C₁₈H₁₉F₃Si [M+H]⁺ 321.12809, found: 321.12750.

(*E*)-dimethyl(phenyl)(1-(2-(trifluoromethyl)phenyl)prop-1-en-2-yl)silane (β-3g)

CF₃ colourless oil. yield 78%. ¹H NMR (400 MHz, CDCl3) δ: 7.66-7.64(d, J=8Hz, 1H), 7.58-7.55(dd, J=2.5Hz, J=3.6Hz, 2H), 7.49-7.46(t, J=7.6Hz, 1H), 7.38-7.36(t, J=3.2Hz, 3H), 7.34-7.32(d, J=8Hz, 1H), 7.30-7.26(t, J=3.2Hz, 3H), 7.34-7.32(t, J=3.2Hz, 3H), 7.34-7.32(t, J=3.2Hz, 1H), 7.30-7.26(t, J=3.2Hz, 3H), 7.34-7.32(t, J=3.2Hz, 3H), 7.34-7.34(t, J=3.2Hz, 3H), 7.34(t, J=3.2Hz, 3H), 7.34(t, J=3.2Hz, 3H), 7.34(t, J=3.2Hz, 3H), 7.3

J=5.2Hz, 1H), 6.99(s, 1H), 1.698-1.695(d, *J*=1.2Hz, 3H), 0.44(s, 6H). ¹³C NMR (100MHz, CDCl₃) δ : 139.7, 136.8, 136.7, 135.0, 132.2, 133.1, 130.2, 129.9, 128.7, 127.6(d, ²*J*_{CF}=77.8Hz,), 126.9, 125.7(d, ¹*J*_{CF}=250), 124.8 (d, ³*J*_{CF}=5Hz), 15.4, -4.5. IR v_{max} (KBr, film, cm⁻¹): 1594, 1334, 1428, 1243, 1029. HRMS (APCI): calcd for C₁₈H₁₉F₃Si [M+H]⁺ 321.12809, found: 321.12757.

(*E*)-(1-(2-methoxyphenyl)prop-1-en-2-yl)dimethyl(phenyl)silane (β-3h)

OMe SiMe₂Ph Me SiMe₂Ph Me SiMe₂Ph Me SiMe₂Ph Me SiMe₂Ph Me SiMe₂Ph Me SiMe₂Ph SiMe₂Ph Me SiMe₂Ph SiMe₂Ph

(E)-dimethyl(phenyl)(1-(3-(trifluoromethyl)phenyl)prop-1-en-2-yl)silane (β-3i)

SiMe₂Ph Me SiMe₂Ph Me SiMe₂Ph Me SiMe₂Ph Ne SiMe₂Ph SiMe₂Ph Ne SiMe₂Ph Ne SiMe₂Ph SiMe₂Ph Ne SiMe₂Ph SiMe₂Ph SiMe₂Ph SiMe₂Ph SiMe₂Ph SiMe₂Ph SiMe₃Ph SiMe

0.45(s, 6H).¹³C NMR (100MHz, CDCl₃) δ : 139.8, 138.0, 136.7, 136.4, 136.2, 131.3, 127.9 (q, ²J_{CF}=31.8Hz), 128.3, 127.5, 126.9, 124.8 (q, ³J_{CF}=5.3Hz), 124.7(d, ¹J_{CF}=270Hz), 122,3 (t, ³J_{CF}=3.7Hz), 15.7, -4.4. IR v_{max} (KBr, film, cm⁻¹): 1594, 1427, 1334, 1246, 1129. HRMS (APCI): calcd for C₁₈H₁₉F₃Si [M+H]⁺ 321.12809, found: 321.12769.

(E)-dimethyl(phenyl)(1-phenylhex-1-en-2-yl)silane (β-3j)

F₃C

SiMe₂Ph colourless oil. yield 65%. ¹H NMR (400 MHz, CDCl3) δ: 7.60-7.58(dd, J=2.8 Hz, J=3.6 Hz, 2H), 7.38-7.36(dd, J=2.8 Hz, J=2.8 Hz, 4H), 7.34-

7.32(d, *J*=8Hz, 2H), 7.29-7.21(m, 2H), 6.82(s, 1H), 2.38-2.34(t, *J*=8.2Hz, 2H), 1.35-1.23(m, 4H), 0.82-0.78(t, *J*=8Hz, 3H), 0.46(s, 6H). ¹³C NMR (100MHz, CDCl₃) δ : 142.7, 138.7, 137.9, 137.5, 133.2, 128.0, 127.8, 127.2, 126.8, 125.7, 31.1, 29.6, 22.1, 12.9, -3.3. IR v_{max} (KBr, film, cm⁻¹): 1594, 1485, 1288, 1110, 923. HRMS (APCI): calcd for C₂₀H₂₆Si [M+H]⁺ 295.18765, found: 295.18710.

(*E*)-dimethyl(1-(naphthalen-2-yl)prop-1-en-2-yl)(phenyl)silane (β -3k)

(E)-dimethyl(1-(naphthalen-1-yl)prop-1-en-2-yl)(phenyl)silane (β-3l)

colourless oil. yield 89%. ¹H NMR (400 MHz, CDCl3) δ: 7.92-7.89(t, *J*=6Hz, 1H), 7.86-7.83(t, *J*=6Hz, 1H), 7.76-7.74(d, *J*=8Hz, 1H), 7.65-7.64(t, J=2Hz, 2H), 7.49-7.46(m, 2H), 7.44-7.42(d, *J*=8Hz, 1H), 7.40-7.39(t, *J*=2Hz, 3H), 7.33-7.31(t, *J*=4Hz, 1H), 7.24(s, 1H), 1.78(s, 3H),

0.52(s, 6H). ¹³C NMR (100MHz, CDCl₃) δ : 139.4, 137.3, 136.6, 134.7, 133.2, 132.7, 130.8, 128.2, 127.5, 126.9, 126.2, 125.4, 124.9, 127.77, 124.3, 124.1, 15.9, -4.2. IR ν_{max} (KBr, film, cm⁻¹): 1634, 1423, 1247, 1129, 843. HRMS (APCI): calcd for C₂₁H₂₂Si [M]⁺ 320.14853, found: 302.14818.

(E)-dimethyl(1-(phenanthren-9-yl)prop-1-en-2-yl)(phenyl)silane (β-3m)

white soilde. yield 91%. M.p. 80-82°C. ¹H NMR (400 MHz, CDCl3) δ: 8.77-8.75(d, *J*=8Hz, 1H), 8.72-8.70(d, *J*=8Hz, 1H), 8.05-8.03(m, 1H), 7.90-7.88(m, 1H), 7.74-7.71(m, 2H), 7.70-7.66(m, 2H), 7.64-7.61(m, 3H), 7.30(s, 1H), 1.894-1.890(d, *J*=1.6Hz, 3H), 0.597(s, 6H). ¹³C NMR (100MHz, CDCl₃) δ: 139.8, 137.3, 136.8, 133.3, 133.2, 130.7,

130.3, 129.6, 128.9, 128.3, 127.6, 127.1, 126.0, 125.8, 125.6, 125.5, 125.5, 124.8, 122.1, 121.7, 16.0, -4.1. IR ν_{max} (KBr, film, cm⁻¹): 1698, 1574, 1457, 1029, 893. HRMS (APCI): calcd for $C_{25}H_{24}Si$ [M]⁺ 352.16418, found: 352.16388.

$(E) - 2 - (2 - (dimethyl(phenyl)silyl)prop - 1 - en - 1 - yl)pyridine (\beta - 3n)$

(*E*)-dimethyl(phenyl)(1-(thiophen-2-yl)prop-1-en-2-yl)silane (β -30)

SiMe₂Ph

yellow oil. yield 94%. ¹H NMR (400 MHz, CDCl3) δ: 7.55-7.53(m, 2H), 7.37-7.35(dd, *J*=2Hz, *J*=1.6Hz, 3H), 7.299-7.287(d, *J*=5.2Hz, 1H), 7.06-7.02(m, 2H), 6.936-6.933(d, *J*=1.2Hz. 3H), 0.42(s, 6H). ¹³C NMR

(100MHz, CDCl₃) δ: 140.9, 137.1, 135.0, 133.2, 132.1, 130.4, 128.2, 126.9, 125.8, 124.9, 16.2, -

4.3. IR v_{max} (KBr, film, cm⁻¹): 1592, 1426, 1126, 1111, 868. HRMS (APCI): calcd for C₁₅H₁₈SSi [M+H]⁺ 259.09712, found:259.09690.

(*E*)-(2-(dimethyl(phenyl)silyl)vinyl)trimethylsilane (β-3p)

 $\begin{array}{c} \mbox{SiMe}_2\mbox{Ph} & \mbox{colourless oil. yield 95\%. }^1\mbox{H NMR (400 MHz, CDCl3) } \delta: 7.56-7.53(dd, \\ J=2.8\mbox{Hz}, J=3.6\mbox{Hz}, 2\mbox{H}), 7.39-7.38(t, J=2\mbox{Hz}, 3\mbox{H}), 6.73(s, 2\mbox{H}), 0.37(s, 6\mbox{H}), \\ 0.1(s, 9\mbox{H}). \\^{13}\mbox{C NMR (100\mbox{MHz}, CDCl_3) } \delta: 152.1, 147.1, 137.9, 132.9, 127.9, 126.8, -2.5, -3.8. \mbox{IR} \\ \nu_{max} (\mbox{KBr, film, cm}^{-1}): 1594, 14527, 1243, 867, 823. \mbox{HRMS (APCI): calcd for $C_{13}\mbox{H}_{22}\mbox{Si}[\mbox{M+H}]^+ \\ 235.13328, found: 235.13307. \end{array}$

(*E*)-dimethyl(phenyl)(1-phenylprop-1-en-2-yl-1-d)silane (β -4a)

D SiMe₂Ph Me

colourless oil. yield 96%. ¹H NMR (400 MHz, CDCl3) δ: 7.56-7.55(t, *J*=2Hz, 2H), 7.37-7.35(t, *J*=4Hz, 3H), 7.33-7.30(t, *J*=6Hz, 4H), 7.22-7.19(m, 1H), 1.94(s, 3H), 0.43(s, 6H). ¹³C NMR (100MHz, CDCl₃) δ: 137.3, 137.3, 137.2, 133.2, 128.2, 128.1, 127.2, 126.9, 125.8, 124.5, 15.8,

-4.3. IR ν_{max} (KBr, film, cm⁻¹): 2596, 1584, 1426, 1019, 833. HRMS (APCI): calcd for C₁₇H₁₉DSi [M+H]⁺ 254.14705, found:254.14698.

1. Hazra, C. K.; Fopp, C.; Oestreich, M. Chem. Asian J., 2014, 9, 3005.

s9

s18

s21

NOESY spectrum of β-3a

NOESY spectrum of β-3n

