A general Pd-catalyzed α - and γ -benzylation of aldehydes for the formation of quaternary centers

Ivan Franzoni, a Laure Guénée and Clément Mazet* a

^a Department of Organic Chemistry – University of Geneva – 30, Quai Ernest Ansermet, 1211 Geneva 4, Switzerland

e-mail: clement.mazet@unige.ch

Table of Contents

1 **General information** S2 2 Synthesis of electrophiles S3 2.1 Synthesis of benzyl methyl carbonates (2a-n) S3 2.2 Synthesis of 4-methoxybenzyl trifluoroacetate (2a-2) S3 S4 2.3 Synthesis of 4-methoxybenzyl acetate (2a-1) 3 Synthesis of nucleophiles S5 Synthesis of (*E*)-2-methyl-4,5-diphenylpent-2-enal (**12d**) S5 4 **S7 Reaction optimization** 5 Pd-catalyzed α - and γ -benzylation of aldehydes S9 5.1 S9 General procedure 5.2 Characterization data of aldehydes 6 Supporting organometallic chemistry S33 Synthesis of complex (9) S33 6.2 Synthesis of complex (**10**) S34 6.3 Stoichiometric cross coupling reaction using 10 S36 6.4 Ex situ cross coupling reaction S37 7 **Monitoring experiment** S39 8 Crystal data and structure refinement for complex 10 S40 S41 9 **NMR** spectra

^b Laboratoire de Cristallographie - University of Geneva - 24, Quai Ernest Ansermet, 1211 Geneva 4, Switzerland

1 General Information

All reactions were carried out under an inert atmosphere of nitrogen using either twomanifold vacuum/inert gas lines or a M.Braun glove-box, unless otherwise noted. Solvents were dried over activated alumina columns or by distillation from sodium and further degassed by three successive 'freeze-pump-thaw' cycles. N,N-dimethylformamide was stored in the dark and weekly degassed to remove possible decomposition products (i.e. dimethylamine and carbon monoxide). NMR spectra were recorded on AMX-400 and AMX-500 Bruker Avance spectrometers at 298K unless otherwise noted. Deuterated solvents were purchased from Cambridge Isotope Laboratories. Spin multiplicities are reported as a singlet (s), doublet (d), triplet (t), quartet (q) and heptet (hept) with coupling constants (J) given in Hz, or multiplet (m). Broad signals are indicated as 'br'. ¹H and ¹³C resonances were assigned with the aid of additional information from 1D and 2D NMR experiments (H,H-COSY, DEPT135, HSQC, HMBC and NOESY). ¹H and ¹³C NMR chemical shifts are given in ppm relative to SiMe₄, with the solvent resonance used as internal reference. ¹H NMR spectra were referenced to CDCl₃ (7.26 ppm) or CD₂Cl₂ (5.30 ppm) and ¹³C NMR spectra were referenced to CDCl₃ (77.36 ppm) unless otherwise indicated. ³¹P{¹H} NMR chemical shifts are reported in ppm relative to H₃PO₄. ¹⁹F{¹H}NMR chemical shifts are reported in ppm with absolute reference to ¹H. Infrared spectra were obtained on a Perkin-Elmer 1650 FT-IR spectrometer using neat samples on a diamond ATR Golden Gate sampler. Optical rotations were measured on a Perkin-Elmer 241 polarimeter equipped with a Na-lamp at 20 °C unless otherwise noted. The mass spectrometric data were obtained at the mass spectrometry facility of the University of Geneva (http://www.unige.ch/sciences/sms/index.html). Chiral HPLC analyses were performed on Shimadzu CTO-20AA at 30 °C. Retention times are given in minutes. Commercial reagents were purchased from Aldrich, Acros or Strem and used without further purification unless otherwise noted. Liquid reagents were transferred by stainless steel syringes or by cannula. Thin layer chromatography (TLC) was performed on plates of silica pre-coated with 0.25 mm Kieselgel 60 F₂₅₄. Flash chromatography was performed using silica gel 60 (230-400 mesh ASTM) from SiliCycle. Abbreviations used: THF (tetrahydrofuran); DMF (N,N-dimethylformamide); TFA (Trifluoroacetate); 4-DMAP (4dimethylaminopyridine).

2 Synthesis of the electrophiles

2.1 Synthesis of 4-methoxybenzyl acetate (2a-1)

In a 100 mL flame-dried round-bottom flask 4-methoxybenzylic alcohol (1.86 mL, 15 mmol, 1.0 eq.), 4-DMAP (183 mg, 1.5 mmol, 0.1 eq.) and pyridine (3.1 mL, 37.5 mmol, 2.5 eq.) were dissolved in dry dichloromethane (30 mL, 0.5 M) under a nitrogen atmosphere. After cooling to 0 °C, acetic anhydride (2.84 mL, 30 mmol, 2.0 eq.) was added dropwise and the reaction stirred at room temperature for 16 h (TLC eluent pentane/CH $_2$ Cl $_2$ 1:1). The reaction was carefully quenched with 60 mL of a saturated NaHCO $_3$ solution and the aqueous phase was extracted with dichloromethane (15 mL x 3). The combined organic layers were dried over Na $_2$ SO $_4$ and the solvent evaporated. The crude mixture was purified by flash chromatography (SiO $_2$, eluent pentane/CH $_2$ Cl $_2$ 1:1) to afford the benzyl acetate as colorless oil (2.48 g, 92% yield).

All spectroscopic and spectrometric data are consistent with those reported in the literature for this compound.¹

2.2 Synthesis of 4-methoxybenzyl trifluoroacetate (2a-2)

In a 50 mL flame-dried round-bottom flask 4-methoxybenzylic alcohol (2.48 mL, 20 mmol, 1.0 eq.) was dissolved in dry diethyl ether (27 mL, 0.5 M) under a nitrogen atmosphere. After cooling to 0 °C, trifluoroacetic anhydride (5.6 mL, 40 mmol, 2.0 eq.) was added dropwise and the reaction stirred at the same temperature for 20 min. (TLC eluent pentane/CH₂Cl₂ 1:1). The reaction was carefully quenched with 60 mL of a saturated NaHCO₃ solution and

¹ Tetrahedron Lett. **2014**. 55. 1784: Org. Lett. **2013**. 15. 5798

the organic phase was further washed with sat. NaHCO₃. The organic layer was dried over Na₂SO₄ and the solvent evaporated. The crude mixture was purified by flash chromatography (SiO₂, eluent pentane/CH₂Cl₂ 2:1) to afford the benzyl trifluoroacetate as colorless oil (3.52 g, 75% yield).

All spectroscopic and spectrometric data are consistent with those reported in the literature for this compound.²

2.3 Synthesis of benzyl methyl carbonates (2a-n)

In a 100 mL flame-dried round-bottom flask the appropriate benzyl alcohol (12 mmol, 1.0 eq.), 4-DMAP (147 mg, 1.2 mmol, 0.1 eq.) and pyridine (2.45 mL, 30 mmol, 2.5 eq.) were dissolved in dry dichloromethane (24 mL, 0.5 M) under a nitrogen atmosphere. After cooling to 0 °C, methyl chloroformate (1.58 mL, 20.4 mmol, 1.7 eq.) was added dropwise and the reaction stirred at room temperature until complete reaction was indicated by TLC (TLC eluent pentane/ CH_2Cl_2 1:1, reaction time 20-30 min.). The reaction was carefully quenched with 40 mL of a saturated NaHCO₃ solution and the aqueous phase was extracted with dichloromethane (15 mL x 3). The combined organic layers were dried over Na_2SO_4 and the solvent evaporated. The crude mixture was purified by flash chromatography (SiO₂, eluent pentane/ CH_2Cl_2).

All spectroscopic and spectrometric data are consistent with those reported in the literature for these compounds.³

³ Org. Lett. **2010**, 12, 1360; Org. Lett. 2012, 14, 338; Org. Lett. **2011**, 13, 430; J. Am. Chem. Soc. **2007**, 129, 14193; New J. Chem. **2013**, 37, 3057; Chem. Lett. **2007**, 36, 606; J. Am. Chem. Soc. **2012**, 134, 111.

² Angew. Chem. Int. Ed. **2014**, 53, 4685.

3 Synthesis of the nucleophiles

Aldehydes 1a, 1b, 1c, 1d, 1e and 6a are commercially available. Aldehydes 7a, 7b, 7c, 7d, 7e, 7f, 7g, 7h and 7i were prepared following the procedure reported by List and co-workers (*Angew. Chem. Int. Ed.* 2014, 53, 282). Aldehydes 11a, 11b and 11c were prepared following the procedure previously reported by our group (*Chem. Sci.* 2013, 4, 2619).

3.1 Synthesis of (*E*)-2-methyl-4,5-diphenylpent-2-enal (12d)

In a 25 mL flame-dried Schlenk under a nitrogen atmosphere $Pd(OAc)_2$ (32.2 mg, 0.14 mmol, 0.05 eq.), t-Bu₃P (58.1 mg, 0.29 mmol, 0.10 eq.) and Cs_2CO_3 (1122 mg, 3.44 mmol, 1.2 eq.) were mixed in dry and degassed dimethylformamide (8.7 mL, 0.33 M). After 10 min. stirring at room temperature, bromobenzene (302 μ L, 2.87 mmol, 1.0 eq.) and the appropriate aldehyde (500 mg, 2.87 mmol, 1.0 eq.) were added. The tube was sealed and placed at 110 °C for 16 h. The reaction was filtered through Celite[®] and the solvent evaporated. The crude mixture was purified by flash chromatography (SiO₂, eluent pentane/ CH_2Cl_2 2:1) to afford the desired product as yellow oil (521 mg, 72% yield).

12d

Chemical Formula: C₁₈H₁₈O Molecular Weight: 250.34

Yellow oil; $\mathbf{R_f} = 0.53$ (SiO₂, pentane/ CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, 400 MHz) δ (ppm) = 1.54 (d, ⁴J_{HH} = 1.4 Hz, 3H, H-14); 3.04 (dd, ³J_{HH} = 8.8 Hz, ²J_{HH} = 13.5 Hz, 1H, H-5); 3.20 (dd, ³J_{HH} = 6.1 Hz, ²J_{HH} = 13.5 Hz, 1H, H-5); 4.04-4.11 (m, 1H, H-4); 6.64 (dq, ⁴J_{HH} = 1.4 Hz, ³J_{HH} = 9.9 Hz, 1H, H-3); 7.07-7.09 (m, 2H, H-7); 7.16-7.27 (m, 6H, H-8, H-9, H-11 and H-13); 7.32-7.36

(m, 2H, H-12); 9.39 (s, 1H, H-1). ¹³C{¹H} NMR (CDCI₃, 100 MHz) δ (ppm) = 9.6 (C-14); 42.9 (C-5); 47.6 (C-4); 126.8 (C-9); 127.4 (C-13); 127.8 (C-11); 128.7 (C-8); 129.2 (C-12); 129.3 (C-7); 139.1 (C-6); 139.4 (C-9); 142.4 (C-10); 156.0 (C-3); 195.4 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 3027, 1679, 1494, 1453, 1007, 755, 696. **HRMS** (method: ESI positive) calculated for C₁₈H₁₈NaO 273.1250 [M+Na]⁺, found 273.1248.

4 Reaction optimization

General procedure: All reactions were conducted on a 0.4-0.5 mmol scale. All conversions were determined by ¹HNMR analysis of the crude mixture referring to an internal standard (1,3-di-*tert*-butyl-2-methoxy-5-methylbenzene).

$$R^{1} CHO \\ Me \\ 1a: R^{1} = Et \\ 1b: R^{1} = n-Pr \\ 2a-4: R^{2} = OMe \\ 2a-4: R^{2} = OMe \\ 2a-4: R^{2} = O(t-Bu) \\ 5 mol\% [Pd] source \\ 6 mol\% ligand \\ 1.2 eq. Base \\ Solvent [0.5] \\ T, t \\ 3aa: R^{1} = Et \\ 4ba: R^{1} = Et \\ 4ba: R^{1} = n-Pr \\ 3aa: R^{1} = Et \\ 3ba: R^{1} = n-Pr \\ 4aa: R^{1} = Et \\ 4ba: R^{1} = n-Pr \\$$

Inside a glove box, a 5 mL Young valve Schlenk tube was charged with the palladium source (0.02 mmol, 0.05 eq.), the ligand (0.024 mmol, 0.06 eq.) and the base (0.48 mmol, 1.2 eq.). The tube was sealed and taken outside the glove box and connected to a Schlenk line. After conditioning, dry and degassed solvent (0.5 M) was added and after 10 min. of additional stirring at room temperature the carbonate (0.40 mmol, 1.0 eq.), the aldehyde (0.80 mmol, 2.0 eq.) and the internal standard (0.5 eq.) were added. The tube was sealed and placed at the given temperature for the indicated time. After cooling to room temperature, the reaction was then filtered through Celite® and the solvent evaporated under reduced pressure. The crude mixture was analyzed by ¹HNMR to access conversions.

1	2	[Pd]	Ligand	Base	Solvent	T (°C)	t (h)	Conv. %
								$(3:4:5)^a$
1a	2a-1	Pd(OAc) ₂	rac-BINAP	Cs ₂ CO ₃	DMF	80	16	< 5 (-:-:-)
1a	2a-2	Pd(OAc) ₂	rac-BINAP	Cs_2CO_3	DMF	80	16	18 (3:2:1)
1a	2a-2	Pd(OAc) ₂	t -Bu ₃ P b	Cs_2CO_3	DMF	80	16	16 (0:1:2)
1a	2a-2	Pd(OAc) ₂	Ph_3P^b	Cs ₂ CO ₃	DMF	80	16	27 (0:5:1)
1a	2a-2	Pd(OAc) ₂	rac-BINAP	Cs ₂ CO ₃	THF	80	16	58 (1:9:1)
1a	2a-2	Pd(OAc) ₂	rac-BINAP	Cs_2CO_3	Toluene	80	16	62 (1:10:1)
1a	2a-2	Pd(OAc) ₂	rac-BINAP	Cs_2CO_3	DMA	80	16	20 (2:2:1)
1a	2a-4	Pd(OAc) ₂	rac-BINAP	Cs_2CO_3	DMF	80	16	29 (5:1:0)
1a	2a-3	Pd(OAc) ₂	rac-BINAP	Cs ₂ CO ₃	DMF	80	16	69 (11:1:1)
1a	2a-3	Pd(OAc) ₂	rac-BINAP	(<i>i</i> -Pr)NEt ₂	DMF	80	16	< 5 (-:-:-)
1a	2a-3	Pd(OAc) ₂	rac-BINAP	NaOAc	DMF	80	16	< 5 (-:-:-)
1a	2a-3	Pd(OAc) ₂	rac-BINAP	Na ₂ CO ₃	DMF	80	16	< 5 (-:-:-)
1a	2a-3	Pd(OAc) ₂	rac-BINAP	Et_3N	DMF	80	16	< 5 (-:-:-)

1a	2a-3	Pd(OAc) ₂	rac-BINAP	Cs ₂ CO ₃	THF	80	16	< 5 (-:-:-)
1a	2a-3	Pd(OAc) ₂	rac-BINAP	Cs_2CO_3	Toluene	80	16	< 5 (-:-:-)
1a	2a-3	Pd(OAc) ₂	rac-BINAP	Cs_2CO_3	Dioxane	80	16	< 5 (-:-:-)
1a	2a-3	Pd(OAc) ₂	rac-BINAP	Cs_2CO_3	MeCN	80	16	6 (1:1:10)
1a	2a-3	Pd(dba) ₂	rac-BINAP	Cs_2CO_3	DMF	80	16	28 (3:4:2)
1a	2a-3	Pd(TFA) ₂	rac-BINAP	Cs_2CO_3	MeCN	80	16	20 (0:3:1)
1b	2a-3	Pd(OAc) ₂	rac-BINAP	Cs ₂ CO ₃	DMF	80	4	62 (41:1:3)
1b	2a-3 ^c	Pd(OAc) ₂	rac-BINAP	Cs ₂ CO ₃	DMF	80	4	90 (5:1:3)
1b ^d	2a-3	Pd(OAc) ₂	rac-BINAP	Cs ₂ CO ₃	DMF	80	4	80 (48:1:-)
1b	2a-3	Pd(OAc) ₂	rac-BINAP	-	DMF	80	4	< 5 (-:-:-)

 $[^]a$ Conversions and product distribution determined by 1 HNMR analysis of the crude mixture; b 10 mol% of ligand; c 2.0 eq. of carbonate; d 2.0 eq. of aldehyde.

5 Pd-catalyzed α - and γ -benzylation of aldehydes

5.1 General procedure

MeO O R + or
$$R^2$$
 CHO R^1 R^3 CHO R^2 R^1 R^3 CHO R^2 R^1 R^3 R^2 R^1

Inside a glove box, a 5 mL Young valve Schlenk tube was charged with Pd(OAc)₂ (4.5 mg, 0.02 mmol, 0.05 eq.), *rac*-BINAP (14.9 mg, 0.024 mmol, 0.06 eq.) and Cs₂CO₃ (156.4 mg, 0.48 mmol, 1.2 eq.). The tube was sealed and taken outside the glove box and connected to a Schlenk line. After conditioning, dry and degassed dimethylformamide (0.8 mL, 0.5 M) was added and after 10 min. of additional stirring at room temperature the carbonate (0.40 mmol, 1.0 eq.), the aldehyde (0.80 mmol, 2.0 eq.) and the internal standard (0.5 eq.) were added. The tube was sealed and placed at the appropriate temperature for 4 or 16 h. After cooling to room temperature, the reaction was filtered through Celite[®] and the solvent evaporated under vacuum. The crude mixture was purified by flash chromatography (SiO₂, eluent pentane/CH₂Cl₂ or pentane/Et₂O).

5.2 Characterization data of aldehydes

3aa

Chemical Formula: C₁₃H₁₈O₂ Molecular Weight: 206.29

2-(4-methoxybenzyl)-2-methylbutanal (**3aa**). Pale yellow oil; SiO₂, pentane/Et₂O 5:1; ¹H NMR (CDCl₃, **400 MHz**) δ (ppm) = 0.87 (t, ³ J_{HH} = 7.6 Hz, 3H, H-4); 0.98 (s, 3H, H-5); 1.41-1.50 and 1.60-1.69 (2m, 1H+1H, H-3); 2.67 and 2.81 (2d, ² J_{HH} = 13.8 Hz, 1H+1H, H-6); 3.78 (2, 3H, H-11); 6.80 (d, ³ J_{HH} = 8.7 Hz, 2H, H-9); 7.00 (d, ³ J_{HH} = 8.7 Hz, 2H, H-8); 9.55 (s, 1H, H-1). ¹³C{¹H} NMR (CDCl₃, **100 MHz**) δ (ppm) = 8.9 (C-4); 18.0 (C-5); 28.4 (C-3); 41.1 (C-6);

50.9 (C-2); 55.5 (C-11); 113.9 (C-9); 129.2 (C-7); 131.5 (C-8); 158.6 (C-10); 207.1 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2966, 1724, 1611, 1511, 1460, 1246, 1178, 1034, 835, 818. **HRMS** (method: ESI positive) calculated for C₁₃H₂₂NO₂ 224.1645 [M+NH₄]⁺, found 224.1639. **Chiral HPLC conditions** Column IC, λ = 219 nm, hexanes/PrOH 99:1, 1 mL/min., t_1 = 10.76 and t_2 = 11.51 min.

4aa

Chemical Formula: C₁₃H₁₈O₃ Molecular Weight: 222.28

4-methoxybenzyl 2-methylbutanoate (**4aa**). Pale yellow oil; SiO₂, pentane/Et₂O 5:1; ¹H NMR (CDCl₃, **400 MHz**) δ (ppm) = 0.88 (t, ${}^{3}J_{HH}$ = 7.4 Hz, 3H, H-4); 1.14 (d, ${}^{3}J_{HH}$ = 7.0 Hz, 3H, H-5); 1.42-1.50 and 1.65-1.72 (2m, 1H+1H, H-3); 2.35-2.44 (m, 1H, H-2); 3.81 (s, 3H, H-11); 5.05 (s, 2H, H-6); 6.89 (d, ${}^{3}J_{HH}$ = 8.4 Hz, 2H, H-9); 7.29 (d, ${}^{3}J_{HH}$ = 8.4 Hz, 2H, H-8). ¹³C{¹H} NMR (CDCl₃, **100 MHz**) δ (ppm) = 11.9 (C-4); 16.9 (C-5); 27.1 (C-3); 41.4 (C-2); 55.6 (C-11); 66.1 (C-6); 114.2 (C-9); 128.8 (C-7); 130.2 (C-8); 159.8 (C-10); 177.0 (C-1). **IR** spectrum (neat) ν (cm⁻¹) = 2967, 1728, 1613, 1514, 1460, 1246, 1173, 1142, 1033, 819. **LRMS** (method: ESI positive) calculated for C₁₃H₂₀O₄ 240.1 [M+OH₂]⁺, found 239.9.

3ba

Chemical Formula: C₁₄H₂₀O₂ Molecular Weight: 220.31

2-(4-methoxybenzyl)-2-methylpentanal (**3ba**). Colorless oil; $\mathbf{R_f} = 0.42$ (SiO₂, pentane/CH₂Cl₂ 1:1); $^{1}\mathbf{H}$ **NMR** (**CDCl₃**, **400 MHz**) δ (ppm) = 0.91 (t, $^{3}J_{HH} = 7.2$ Hz, 3H, H-5); 0.98 (s, 3H, H-6); 1.20-1.33 (m, 2H, H-4); 1.36-1.42 and 1.51-1.59 (2m, 1+1H, H-3); 2.66 (d, $^{2}J_{HH} = 13.8$ Hz, 1H, H-7); 2.80 (d, $^{2}J_{HH} = 13.8$ Hz, 1H, H-7); 3.78 (s, 3H, H-12); 6.80 (d, $^{3}J_{HH} = 8.7$ Hz, 2H, H-10); 6.99 (d, $^{3}J_{HH} = 8.7$ Hz, 2H, H-9); 9.55 (s, 1H, H-1). $^{13}\mathbf{C}\{^{1}\mathbf{H}\}$ **NMR** (**CDCl₃**, **100 MHz**) δ (ppm) = 15.0 (C-5); 17.9 (C-4); 18.5 (C-6); 38.2 (C-3); 41.5 (C-7); 50.8 (C-2); 55.5 (C-12); 113.9 (C-10); 129.2 (C-8); 131.5 (C-9); 158.6 (C-11); 207.1 (C-1). **IR spectrum** (**neat**) ν (cm⁻¹) = 2959, 1724, 1612, 1511, 1461, 1246, 1178, 1034, 831. **HRMS** (*method: ESI positive*)

calculated for $C_{14}H_{24}NO_2$ 238.1802 [M+NH₄]⁺, found 238.1807. **Chiral HPLC conditions** Column IC, $\lambda = 219$ nm, hexanes/ⁱPrOH 99:1, 1 mL/min., $t_1 = 9.87$ and $t_2 = 11.33$ min.

4ba

Chemical Formula: C₁₄H₂₀O₃ Molecular Weight: 236.31

4-methoxybenzyl 2-methylpentanoate (**4ba**). Colorless oil; $\mathbf{R_f} = 0.42$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, **400 MHz**) δ (ppm) = 0.88 (t, ³ J_{HH} = 7.2 Hz, 3H, H-5); 1.14 (d, ³ J_{HH} = 7.0 Hz, 3H, H-6); 1.24-1.34 (m, 2H, H-4); 1.37-1.43 and 1.60-1.69 (2m, 1+1H, H-3); 2.43-2.51 (m, 1H, H-2); 3.81 (s, 3H, H-12); 5.04 (s, 2H, H-7); 6.89 (d, ³ J_{HH} = 8.7 Hz, 2H, H-10); 7.29 (d, ³ J_{HH} = 8.7 Hz, 2H, H-9). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ (ppm) = 14.3 (C-5); 17.3 (C-6); 20.7 (C-4); 36.3 (C-3); 39.7 (C-2); 55.6 (C-12); 66.1 (C-7); 114.2 (C-10); 128.8 (C-8); 130.2 (C-9); 159.8 (C-11); 177.2 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2959, 1729, 1613, 1514, 1245, 1170, 1143, 1033, 822. **HRMS** (method: ESI positive) calculated for C₁₄H₂₀O₃Na 259.1305 [M+Na]⁺, found 259.1309.

3bb

Chemical Formula: C₁₄H₂₀O₂ Molecular Weight: 220.31

2-methyl-2-(3-methoxylbenzyl)pentanal (**3bb**). Colorless oil; $\mathbf{R_f} = 0.47$ (SiO₂, pentane/CH₂Cl₂ 1:1); $^1\mathbf{H}$ **NMR (CDCl₃**, **400 MHz)** δ (ppm) = 0.91 (t, $^3J_{HH} = 7.2$ Hz, 3H, H-5); 1.00 (s, 3H, H-6); 1.23-1.33 (m, 2H, H-4); 1.37-1.45 and 1.52-1.60 (2m, 1+1H, H-3); 2.68 and 2.84 (2d, $^2J_{HH} = 7.2$ Hz, 1+1H, H-7); 3.78 (s, 3H, H-14); 6.62-6.63 (m, 1H, H-9); 6.67 (br d, $^3J_{HH} = 8.3$ Hz, 1H, H-13); 6.76 (ddd, $^4J_{HH} = 0.8$ Hz, $^4J_{HH} = 2.5$ Hz, $^3J_{HH} = 8.3$ Hz, 1H, H-11); 7.18 (t, $^3J_{HH} = 8.3$ Hz, 1H, H-12); 9.56 (s, 1H, H-1). $^{13}\mathbf{C}^{1}\mathbf{H}$ **NMR (CDCl₃**, **100 MHz)** δ (ppm) = 15.0 (C-5); 17.9 (C-4); 18.7 (C-6); 38.3 (C-3); 42.3 (C-7); 50.7 (C-2); 55.5 (C-14); 111.9 (C-11); 116.6 (C-9); 123.0 (C-13); 129.4 (C-12); 138.8 (C-8); 159.7 (C-10); 206.8 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2959, 1724, 1600, 1584, 1489, 1457, 1261, 1154, 1043, 785, 739, 697. **LRMS** (*method: ESI positive*) calculated for C₁₄H₂₁O₂ 221.2 [M+H]⁺, found 221.3.

3bd

Chemical Formula: C₁₄H₂₀O Molecular Weight: 204.31

2-benzyl-2-(4-methylbenzyl)pentanal (**3bd**). Colorless oil; $\mathbf{R_f} = 0.59$ (SiO₂, pentane/CH₂Cl₂ 1:1); $^{\mathbf{1}}\mathbf{H}$ **NMR** (**CDCI₃**, **400 MHz**) δ (ppm) = 0.91 (t, $^{3}J_{HH} = 7.2$ Hz, 3H, H-5); 0.99 (s, 3H, H-6); 1.22-1.32 (m, 2H, H-4); 1.35-1.43 and 1.52-1.58 (2m, 1+1H, H-3); 2.31 (s, 3H, H-12); 2.68 and 2.82 (2d, $^{2}J_{HH} = 13.7$ Hz, 1+1H, H-7); 6.96 (d, $^{3}J_{HH} = 8.0$ Hz, 2H, H-9); 7.07 (d, $^{3}J_{HH} = 8.0$ Hz, 2H, H-10); 9.56 (s, 1H, H-1). $^{\mathbf{13}}\mathbf{C}\{^{\mathbf{1}}\mathbf{H}\}$ **NMR** (**CDCI₃**, **100 MHz**) δ (ppm) = 15.0 (C-5); 17.9 (C-4); 18.6 (C-6); 21.3 (C-12); 38.2 (C-3); 42.0 (C-7); 50.8 (C-2); 129.2 (C-10); 130.5 (C-9); 134.1 (C-8); 136.4 (C-11); 207.0 (C-1). **IR spectrum** (**neat**) ν (cm⁻¹) = 2959, 1724, 1514, 1458, 1179, 812. **LRMS** (*method: ESI positive*) calculated for $\mathbf{C}_{14}\mathbf{H}_{20}\mathbf{NaO}$ 227.1 [M+Na]⁺, found 227.2.

3be

Chemical Formula: C₁₄H₂₀O Molecular Weight: 204.31

2-methyl-2-(3-methylbenzyl)pentanal (**3be**). Colorless oil; $\mathbf{R_f} = 0.58$ (SiO₂, pentane/CH₂Cl₂ 1:1); $^{\mathbf{1}}\mathbf{H}$ **NMR** (**CDCl₃**, **400 MHz**) δ (ppm) = 0.91 (t, $^{3}J_{HH} = 7.2$ Hz, 3H, H-5); 0.99 (s, 3H, H-6); 1.22-1.34 (m, 2H, H-4); 1.39-1.44 and 1.52-1.60 (2m, 1+1H, H-3); 2.32 (s, 3H, H-14); 2.67 and 2.83 (2d, $^{2}J_{HH} = 13.6$ Hz, 1+1H, H-7); 6.87-6.88 (m, 2H, H-9 and H-13); 7.02-7.04 (m, 1H, H-11); 7.13-7.17 (m, 1H, H-12); 9.57 (s, 1H, H-1). $^{\mathbf{13}}\mathbf{C}\{^{\mathbf{1}}\mathbf{H}\}$ **NMR** (**CDCl₃**, **100 MHz**) δ (ppm) = 15.0 (C-5); 17.9 (C-4); 18.6 (C-6); 21.8 (C-14); 38.3 (C-3); 42.3 (C-7); 50.7 (C-2); 127.6 (C-11); 127.6 (C-13); 128.4 (C-12); 131.3 (C-9); 137.2 (C-8); 138.0 (C-10); 207.0 (C-1). **IR spectrum** (**neat**) ν (cm⁻¹) = 2960, 1726, 1459, 1146, 790, 138, 700. **LRMS** (*method: ESI positive*) calculated for $\mathbf{C}_{14}\mathbf{H}_{20}\mathbf{NaO}$ 227.1 [M+Na]⁺, found 227.4.

3bfChemical Formula: C₁₄H₂₀O
Molecular Weight: 204.31

2-methyl-2-(2-methylbenzyl)pentanal (**3bf**). Colorless oil; $\mathbf{R_f} = 0.61$ (SiO₂, pentane/CH₂Cl₂ 1:1); $^{\mathbf{1}}\mathbf{H}$ **NMR** (**CDCI₃**, **400 MHz**) δ (ppm) = 0.92 (t, $^{3}J_{HH} = 7.1$ Hz, 3H, H-5); 1.01 (s, 3H, H-6); 1.19-1.37 (m, 2H, H-4); 1.42-1.50 and 1.63-1.71 (2m, 1+1H, H-3); 2.29 (s, 3H, H-14); 2.77 and 2.90 (2d, $^{2}J_{HH} = 14.1$ Hz, 1+1H, H-7); 6.98-7.02 (m, 1H, H-13); 7.08-7.15 (m, 3H, H-10, H-11 and H-12); 9.56 (s, 1H, H-1). $^{\mathbf{13}}\mathbf{C}\{^{\mathbf{1}}\mathbf{H}\}$ **NMR** (**CDCI₃**, **100 MHz**) δ (ppm) = 15.1 (C-5); 17.9 (C-4); 18.1 (C-6); 20.7 (C-14); 38.9 (C-3); 39.0 (C-7); 51.4 (C-2); 126.0, 127.0 and 131.0 (C-10, C-11 and C-12); 131.2 (C-13); 135.7 (C-8); 137.1 (C-9); 207.0 (C-1). **IR spectrum** (**neat**) ν (cm⁻¹) = 2959, 2872, 1724, 1458, 1145, 739. **LRMS** (*method: ESI positive*) calculated for $\mathbf{C}_{\mathbf{14}}\mathbf{H}_{\mathbf{21}}\mathbf{O}$ 205.1 [M+H]⁺, found 205.1.

3bq

Chemical Formula: C₁₃H₁₈O Molecular Weight: 190.29

2-benzyl-2-methylpentanal (**3bg**). Colorless oil; $\mathbf{R_f} = 0.53$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H **NMR (CDCI₃, 400 MHz)** δ (ppm) = 0.91 (t, ${}^3J_{HH}$ = 7.3 Hz, 3H, H-5); 1.00 (s, 3H, H-6); 1.22-1.33 (m, 2H, H-4); 1.40-1.44 and 1.52-1.60 (2m, 1+1H, H-3); 2.71 and 2.87 (2d, ${}^2J_{HH}$ = 13.6 Hz, 1+1H, H-7); 7.07-7.09 (m, 2H, H-4); 7.21-7.28 (m, 3H, H-10 and H-11); 9.57 (s, 1H, H-1). ¹³C{}^1H} **NMR (CDCI₃, 100 MHz)** δ (ppm) = 15.0 (C-5); 17.9 (C-4); 18.6 (C-6); 38.3 (C-3); 42.3 (C-7); 50.7 (C-2); 126.8 (C-11); 125.8 (C-10); 130.6 (C-9); 137.3 (C-8); 206.9 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2960, 2873, 1723, 1454, 1179, 735, 700. **LRMS** (method: ESI positive) calculated for C₁₃H₁₇O 189.1 [M-H]⁺, found 189.2.

3bh Chemical Formula: C₁₄H₁₇F₃O

Molecular Weight: 258.28

2-methyl-2-(4-(trifluoromethyl)benzyl)pentanal (**3bh**). Colorless oil; $\mathbf{R_f} = 0.53$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, **500 MHz**) δ (ppm) = 0.92 (t, ³J_{HH} = 7.2 Hz, 3H, H-5); 1.00 (s, 3H, H-6); 1.26-1.34 (m, 2H, H-4); 1.39-1.44 and 1.51-1.58 (2m, 1+1H, H-3); 2.77 and 2.93 (2d, ²J_{HH} = 13.6 Hz, 1+1H, H-7); 7.20 (d, ³J_{HH} = 8.1 Hz, 2H, H-9); 7.52 (d, ³J_{HH} = 8.1 Hz, 2H, H-10); 9.55 (s, 1H, H-1). ¹³C{¹H} NMR (CDCl₃, 125 MHz) δ (ppm) = 15.0 (C-5); 17.8 (C-4); 18.8 (C-6); 38.4 (C-3); 41.6 (C-7); 50.7 (C-2); 124.5 (q, ¹J_{CF} = 271.8 Hz, C-12); 125.4 (q, ³J_{CF} = 3.7 Hz, -10); 129.2 (q, ²J_{CF} = 32.4 Hz, C-11); 130.9 (C-9); 141.6 (C-8); 206.1 (C-1). ¹⁹F{¹H} NMR (CDCl₃, 282 MHz) δ (ppm) = -61.73 (s). IR spectrum (neat) ν (cm⁻¹) = 2963, 1727, 1619, 1323, 1163, 1119, 1066, 1018, 848. LRMS (method: ESI positive) calculated for C₁₄H₁₈F₃O 259.1 [M+H]⁺, found 259.2.

3ca

Chemical Formula: C₁₅H₂₀O₂ Molecular Weight: 232.32

1-(4-methoxybenzyl)cyclohexanecarbaldehyde (**3ca**). Colorless oil; $\mathbf{R_f} = 0.45$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, **400 MHz**) δ (ppm) = 1.21-1.33, 1.53-1.64 and 1.88-1.92 (3m, 5+3+2H, H-3, H-4, H-5, H-6 and H-7); 2.66 (s, 2H, H-8); 3.78 (s, 3H, H-13); 6.79 (d, ${}^3J_{HH} = 8.7$ Hz, 2H, H-11); 6.97 (d, ${}^3J_{HH} = 8.7$ Hz, 2H, H-10); 9.50 (s, 1H, H-1). ¹³C{¹H} NMR (CDCl₃, **100 MHz**) δ (ppm) = 23.1 (C-3 and C-5); 26.0 (C-4); 31.5 (C-2 and C-6); 43.0 (C-7); 51.1 (C-2); 55.6 (C-13); 113.9 (C-11); 128.5 (C-9); 131.5 (C-10); 158.6 (C-12); 208.0 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2966, 1724, 1612, 1512, 1460, 1245, 1178, 1033, 826. **LRMS** (method: ESI positive) calculated for C₁₅H₂₁O₂ 233.1 [M+H]⁺, found 233.1.

3се

Chemical Formula: C₁₅H₂₀O Molecular Weight: 216.32

1-(3-methybenzyl)cyclohexanecarbaldehyde (**3ce**). Colorless oil; $\mathbf{R_f} = 0.59$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, **400 MHz**) δ (ppm) = 1.24-1.34, 1.54-1.64 and 1.89-1.93 (3m, 5+3+2H, H-3m H-4, H-5, H-6 and H-7); 2.31 (2, 3H, H-15); 2.68 (s, 2H, H-8), 6.84-8.68 (m, 2H, H-10and H.14); 7.01-7.03 (m, 1H, H-12); 7.12-7.16 (m, 1H, H-13); 9.52 (s, 1H, H-1). ¹³C{¹H} NMR (CDCl₃, **100 MHz**) δ (ppm) = 21.4 (C-15); 22.8 (C-4 and C-6); 25.6 (C-5); 31.2 (C-3 and C-7); 43.6 (C-8); 50.6 (C-2); 127.3 (C-12 and C-14); 128.0 (C-13); 131.0 (C-10); 136.1 (C-9); 137.7 (C-11); 207.5 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2926, 1723, 1450, 1167, 787, 738, 700. **LRMS** (method: ESI positive) calculated for C₁₅H₂₀NaO 239.1 [M+Na]⁺, found 239.3.

3cf

Chemical Formula: C₁₅H₂₀O Molecular Weight: 216.32

1-(2-methybenzyl)cyclohexanecarbaldehyde (**3cf**). Colorless oil; $\mathbf{R_f} = 0.48$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, **400 MHz**) δ (ppm) = 1.14-1.39, 1.56-1.64 and 2.01-2.05 (3m, 4+4+2H, H-3, 4, 5, 6 and H-7); 2.28 (s, 3H, H-15); 2.73 (s, 2H, H-8); 7.01-7.06 (m, 1H, H-14); 7.08-7.14 (m, 3H, H-11, 12 and H-13); 9.51 (s, 1H, H-1). ¹³C{¹H} NMR (CDCl₃, **100 MHz**) δ (ppm) = 20.7 (C-15); 23.3, 25.9 and 31.9 (C-3, 4, 5, 6 and C-7); 40.9 (C-8); 51.7 (C-2); 125.8 (C-11); 127.0 (C-12); 131.0 (C-13); 131.6 (C-14); 134.8 (C-9); 137.1 (C-10); 207.8 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2928, 2854, 1724, 1452, 763, 754. **LRMS** (*method: ESI positive*) calculated for C₁₅H₂₁O 217.2 [M+H]⁺, found 217.3.

3ciChemical Formula: C₁₄H₁₇CIO
Molecular Weight: 236.74

1-(4-chlorobenzyl)cyclohexanecarbaldehyde (**3ci**). Colorless oil; $\mathbf{R_f} = 0.50$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, **400 MHz**) δ (ppm) = 1.25-1.33, 1.54-1.65 and 1.87-1.91 (3m, 4+4+2H, H-3, 4, 5, 6 and H-7); 2.69 (s, 2H, H-8); 6.98 (d, ${}^3J_{HH} = 8.4$ Hz, 2H, H-10); 7.22 (d, ${}^3J_{HH} = 8.4$ Hz, 2H, H-11); 9.50 (s, 1H, H-1). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ (ppm) = 23.0, 25.9 and 31.5 (C-3, 4, 5, 6 and C-7); 43.0 (C-8); 51.0 (C-2); 128.6 (C-11); 131.8 (C-10); 132.7 (C-9); 135.1 (C-12); 207.3 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2928, 2853, 1722, 1491, 1452, 1408, 1015, 830, 811. **LRMS** (method: ESI positive) calculated for C₁₄H₁₈ClO 237.1 [M+H]⁺, found 237.3.

3da

Chemical Formula: C₁₆H₂₄O₂ Molecular Weight: 248.37

2-ethyl-2-(4-methoxybenzyl)hexanal (**3da**). Colorless oil; $\mathbf{R_f} = 0.45$ (SiO₂, pentane/CH₂Cl₂ 1:1); $^{1}\mathbf{H}$ **NMR** (**CDCl**₃, **400 MHz**) δ (ppm) = 0.84-0.93 (m, 6H, H-8 and H-8); 1.19-1.35 (m, 4H, H-4 and H-5); 1.40-1.61 (m, 4H, H-3 and H-7); 2.77 (s, 2H, H-9); 3.78 (s, 3H, H-14); 6.79 (d, $^{3}J_{HH} = 8.6$ Hz, 2H, H-12); 6.99 (d, $^{3}J_{HH} = 8.6$ Hz, 2H, H-11); 9.54 (s, 1H, H-1). $^{13}\mathbf{C}\{^{1}\mathbf{H}\}$ **NMR** (**CDCl**₃, **100 MHz**) δ (ppm) = 8.4 (C-8); 14.3 (C-6); 23.7 (C-4); 24.5 (C-7); 26.1 (C-5); 31.4 (C-3); 38.1 (C-9); 54.0 (C-2); 55.6 (C-14); 113.9 (C-12); 129.3 (C-10); 131.3 (C-11); 158.5 (C-13); 207.8 (C-1). **IR spectrum** (**neat**) ν (cm⁻¹) = 2933, 1721, 1612, 1512, 1460, 1247, 1178, 1035, 826. **LRMS** (*method: ESI positive*) calculated for C₁₆H₂₅O₂ 249.2 [M+H]⁺, found 249.4.

3ea

Chemical Formula: C₁₇H₂₄O₂ Molecular Weight: 260.38

2-(4-methoxybenzyl)-2,6-dimethylhept-5-enal (**3ea**). Colorless oil; $\mathbf{R_f} = 0.35$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, **400 MHz**) δ (ppm) = 1.00 (s, 3H, H-9); 1.40-1.47 and 1.57-1.65 (2m, 1+1H, H-3); 1.58 (s, 3H, H-8); 1.67 (s, 3H, H-7); 1.84-2.03 (m, 2H, H-4); 2.67 and 2.81 (2d, ${}^2J_{HH} = 13.8$ Hz, 1+1H, H-10); 3.78 (s, 3H, H-15); 5.02-5.06 (m, 1H, H-5); 6.80 (d, ${}^3J_{HH} = 8.6$ Hz, 2H, H-13); 7.00 (d, ${}^3J_{HH} = 8.6$ Hz, 2H, H-12); 9.55 (s, 1H, H-1). ¹³C{¹H} NMR (CDCl₃, **100 MHz**) δ (ppm) = 18.0 (C-8); 18.4 (C-9); 23.3 (C-4); 26.0 (C-7); 36.1 (C-3); 41.6 (C-10); 50.7 (C-2); 55.6 (C-15); 113.9 (C-13); 124.1 (C-5); 129.1 (C-11); 131.5 (C-12); 132.6 (C-6); 158.6 (C-14); 206.8 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2920, 1721, 1511, 1245, 1178, 1036, 827. **LRMS** (method: ESI positive) calculated for C₁₇H₂₇O₃ 279.2 [M+H₃O]⁺, found 279.5.

7aa

Chemical Formula: C₁₇H₁₈O₂ Molecular Weight: 254.33

3-(4-methoxyphenyl)-2-methyl-2-phenylpropanal (**7aa**). Colorless oil; $\mathbf{R_f} = 0.35$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, **400 MHz**) δ (ppm) = 1.37 (s, 3H, H-7); 3.09-3.19 (m 2H, H-8); 3.74 (s, 3H, H-13); 6.67-6.72 (m, 4H, H-10 and H-11); 7.17-7.19 (m, 2H, H-4); 7.28-7.32 (m, 1H, H-6); 7.35-7.38 (m, 2H, H-5); 9.63 (s, 1H, H-1). ¹³C{¹H} NMR (CDCl₃, **100 MHz**) δ (ppm) = 18.6 (C-7); 42.2 (C-8); 55.5 (C-13); 55.5 (C-2); 113.6 (C-11); 127.7 (C-6); 127.9 (C-4); 129.1 (C-5 and C-9); 131.2(C-10); 139.7 (C-3); 158.5 (C-12); 202.6 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2934, 1721, 1610, 1511, 1444, 1243, 1178, 1032, 820, 757, 698, 572. **HRMS** (method: ESI positive) calculated for C₁₇H₂₂NO₂ 272.1645 [M+NH₄]⁺, found 272.1647. **Chiral HPLC conditions** Column IC, λ = 208 nm, hexanes/ⁱPrOH 99:1, 1 mL/min., t_1 = 11.30 and t_2 = 12.94 min.

7ab Chemical Formula: C₁₇H₁₈O₂

Molecular Weight: 254.33

3-(3-methoxyphenyl)-2-methyl-2-phenylpropanal (**7ab**). Colorless oil; $\mathbf{R_f} = 0.37$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, **400** MHz) δ (ppm) = 1.39 (s, 3H, H-7); 3.13-3.21 (m, 2H, H-8); 3.61 (s, 3H, H-15); 6.24-6.25 (m, 1H, H-10); 6.43 (d, ${}^3J_{HH} = 7.9$ Hz, 1H, H-14); 6.70 (ddd, ${}^4J_{HH} = 0.9$ Hz, ${}^4J_{HH} = 2.6$ Hz, ${}^3J_{HH} = 7.9$ Hz, 1H, H-12); 7.06 (t, ${}^3J_{HH} = 7.9$ Hz, 1H, H-13); 7.18-7.20 (m, 2H, H-4); 7.29-7.32 (m, 1H, H-6); 7.36-7.39 (m, 2H, H-5); 9.63 (s, 1H, H-1).

13C{}^1H} NMR (CDCl₃, **100** MHz) δ (ppm) = 18.1 (C-7); 42.7 (C-8); 54.8 (C-15); 54.9 (C-2); 112.1 (C-12); 115.6 (C-10); 122.8 (C-14); 127.3 (C-6); 127.6 (C-4); 128.6 (C-13); 128.7 (C-5); 138.2 (C-9); 139.2 (C-3); 158.9 (C-11); 201.8 (C-1).
IR spectrum (neat) ν (cm⁻¹) = 2940, 1721, 1599, 1583, 1449, 1263, 1154, 1043, 784, 761.
LRMS (method: ESI positive) calculated for $C_{17}H_{19}O_2$ 255.1 [M+H]⁺, found 255.0.

7ac

Chemical Formula: C₁₇H₁₈O₂ Molecular Weight: 254.33

3-(2-methoxyphenyl)-2-methyl-2-phenylpropanal (**7ac**). Colorless oil; $\mathbf{R_f} = 0.50$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, **400 MHz**) δ (ppm) = 1.32 (s, 3H, H-7); 3.03 and 3.56 (2d, $^2J_{HH} = 13.4$ Hz, 1+1H, H-8); 3.68 (s, 3H, H-15); 6.77-6.85 (m, 3H, H-11, H-13 and H-14); 7.16-7.20 (m, 1H, H-12); 7.27-7.31 (m, 3H, H-4 and H-6); 7.35-7.40 (m, 2H, H-5); 9.65 (s, 1H, H-1). ¹³C{¹H} NMR (CDCl₃, **100 MHz**) δ (ppm) = 18.9 (C-7); 36.7 (C-8); 55.2 (C-15); 55.2 (C-2); 110.7 (C-14); 120.4 (C-11); 125.7 (C-9); 127.5 (C-6); 127.7 (C-4); 128.4 (C-12); 129.0 (C-5); 132.5 (C-11); 141.1 (C-3); 157.9 (C-10); 202.2 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2831, 1713, 1599, 1492, 1463, 1439, 1244, 1024, 753, 696. **HRMS** (method: ESI positive) calculated for $C_{17}H_{19}O_2$ 255.1380 [M+H]⁺, found 255.1376.

Chemical Formula: C₁₇H₁₈O Molecular Weight: 238.33

2-methyl-2-phenyl-3-(p-tolyl)propanal (**7ad**). Colorless oil; $\mathbf{R_f} = 0.54$ (SiO₂, pentane/CH₂Cl₂ 1:1); $^{\mathbf{1}}\mathbf{H}$ **NMR** (**CDCI₃**, **400 MHz**) δ (ppm) = 1.37 (s, 3H, H-7); 2.27 (s, 3H, H-13); 3.13 and 3.20 (2d, $^{2}J_{HH} = 13.7$ Hz, 1+1H, H-8); 6.69 (d, $^{3}J_{HH} = 8.0$ Hz, 2H, H-10); 6.95 (d, $^{3}J_{HH} = 8.0$ Hz, 2H, H-11); 7.18-7.20 (m, 2H, H-4); 7.28-7.32 (m, 1H, H-6); 7.35-7.39 (m, 2H, H-5); 9.63 (s, 1H, H-1). $^{\mathbf{13}}\mathbf{C}(^{\mathbf{1}}\mathbf{H})$ **NMR** (**CDCI₃**, **100 MHz**) δ (ppm) = 18.6 (C-7); 21.3 (C-13); 42.6 (C-8); 55.4 (C-2); 127.7 (C-6); 127.9 (C-4); 128.9 (C-11); 129.1 (C-5); 130.6 (C-10); 133.9 (C-9); 136.2 (C-12); 139.8 (C-3); 202.5 (C-1). **IR spectrum** (**neat**) ν (cm⁻¹) = 2925, 2707, 1722, 1513, 1494, 1445, 805, 759, 698, 569. **LRMS** (*method: ESI positive*) calculated for C₁₇H₁₉O 239.1 [M+H]⁺, found 239.1.

7aeChemical Formula: C₁₇H₁₈O
Molecular Weight: 238.33

2-methyl-2-phenyl-3-(m-tolyl)propanal (**7ae**). Colorless oil; **R**_f = 0.53 (SiO₂, pentane/CH₂Cl₂ 1:1); ¹**H NMR (CDCl₃** , **400 MHz)** δ (ppm) = 1.40 (s, 3H, H-7); 2.24 (s, 3H, H-15); 3.14 and 3.23 (2d, ${}^{2}J_{HH}$ = 13.6 Hz, 1+1H, H-8); 6.61-6.63 (m, 2H, H-10 and H-14); 6.98-7.00 (m, 1H, H-10); 7.05 (t, ${}^{3}J_{HH}$ = 7.6 Hz, 1H, H-13); 7.20-7.22 (m, 2H, H-4); 7.31-7.35 (m, 1H, H-6); 7.38-7.41 (m, 2H, H-5); 9.66 (s, 1H, H-1). ¹³C{}^{1}H} NMR (CDCl₃ , **100 MHz**) δ (ppm) = 18.7 (C-7); 21.7 (C-15); 43.0 (C-8); 55.4 (C-2); 127.5 (C-12); 127.7 (C-6 and C-14); 127.9 (C-4); 128.0 (C-13); 129.0 (C-5); 131.6 (C-10); 137.0 (C-9); 137.7 (C-11); 139.8 (C-3); 202.4 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2936, 1722, 1445, 786, 759, 696. **LRMS** (method: ESI positive) calculated for C₁₈H₂₂O₂ 270.2 [M+OMe]⁺, found 270.4.

7af Chemical Formula: C₁₇H₁₈O

Molecular Weight: 238.33

2-methyl-2-phenyl-3-(o-tolyl)propanal (**7af**). Colorless oil; **R**_f = 0.53 (SiO₂, pentane/CH₂Cl₂ 1:1); ¹**H NMR (CDCl₃**, **400 MHz)** δ (ppm) = 1.40 (s, 3H, H-7); 1.99 (s, 3H, H-15); 3.16 and 3.32 (2d, ${}^2J_{HH}$ = 14.1 Hz, 1+1H, H-8); 6.70 (br d, ${}^3J_{HH}$ = 7.6 Hz, 1H, H-14); 6.95-6.99 (m, 1H, H-13); 7.04-7.09 (m, 2H, H-11 and H-12); 7.14-7.16 (m, 2H, H-4); 7.28-7.37 (m, 3H, H-5 and H-6); 9.67 (s, 1H, H-1). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ (ppm) = 18.6 (C-7); 20.2 (C-15); 38.9 (C-8); 55.8 (C-2); 125.7 (C-13); 126.8 (C-12); 127.8 (C-6); 128.0 (C-4); 129.1 (C-5); 130.7 (C-11); 131.4 (C-14); 135.6 (C-9); 137.7 (C-10); 140.1 (C-3); 202.5 (C-1). **IR** spectrum (neat) ν (cm⁻¹) = 2966, 1721, 1493, 1446, 1029, 762, 697. **LRMS** (method: ESI positive) calculated for C₁₇H₁₉O 239.1 [M+H]⁺, found 239.0. **HPLC conditions** Column ODH, λ = 210 nm, hexanes/ⁱPrOH 99:1, 1 mL/min., t_1 = 8.38 and t_2 = 10.28 min.

7ag

Chemical Formula: C₁₆H₁₆O Molecular Weight: 224.30

2-methyl-2,3-diphenylpropanal (**7ag**). Colorless oil; $\mathbf{R_f} = 0.54$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H **NMR (CDCl₃**, **400 MHz)** δ (ppm) = 1.38 (s, 3H, H-7); 3.18 and 3.23 (2d, ² J_{HH} = 13.6 Hz, 1+1H, H-8); 6.79-6.81 (m, 2H, H-10); 7.13-7.15 (m, 3H, H-11 and H-12); 7.17-7.19 (m, 2H, H-4); 7.29-7.32 (m, 1H, H-6); 7.35-7.39 (m, 2H, H-5); 9.64 (s, 1H, H-1). ¹³C{¹H} **NMR (CDCl₃**, **100 MHz)** δ (ppm) = 18.6 (C-7); 43.0 (C-8); 55.4 (C-2); 126.7 (C-12); 127.8 (C-6); 127.9 (C-4); 128.2 (C-11); 129.1 (C-5); 130.7 (C-10); 137.1 (C-9); 139.6 (C-3); 202.3 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 1721, 1494, 1449, 759, 697. **LRMS** (method: ESI positive) calculated for C₁₆H₁₇O 225.1 [M+H]⁺, found 225.0. **Chiral HPLC conditions** Column ODH, λ = 208 nm, hexanes/ⁱPrOH 99:1, 1 mL/min., t_1 = 8.57 and t_2 = 10.82 min.

Chemical Formula: C₁₇H₁₅F₃O Molecular Weight: 292.30

2-methyl-2-phenyl-3-(4-(trifluoromethyl)phenyl)propanal (**7ah**). Colorless oil; **R**_f = 0.56 (SiO₂, pentane/CH₂Cl₂ 1:1); ¹**H NMR (CDCl₃ , 400 MHz)** δ (ppm) = 1.41 (s, 3H, H-7); 3.21-3.28 (m, 2H, H-8); 6.89 (d, ³ J_{HH} = 8.0 Hz, 2H, H-10); 7.15-7.18 (m, 2H, H-4); 7.33-7.42 (m, 5H, H-5, H-6 and H-11); 9.61 (s, 1H, H-1). ¹³C{¹H} NMR (CDCl₃ , 100 MHz) δ (ppm) = 18.3 (C-7); 42.9 (C-8); 55.3 (C-2); 124.6 (q, ¹ J_{CF} = 271.8 Hz, C-13); 125.0 (q, ³ J_{CF} = 3.7 Hz, C-11); 127.9 (C-4); 128.1 (C-6); 129.1 (q, ² J_{CF} = 32.5 Hz, C-12); 129.3 (C-5); 131.0 (C-10); 138.8 (C-3); 141.45 (C-9); 201.6 (C-1). ¹⁹F{¹H} NMR (CDCl₃ , 282 MHz) δ (ppm) = -61.7 (s). **IR spectrum** (neat) ν (cm⁻¹) = 1723, 1619, 1322, 1162, 1115, 1066, 1018, 822, 699. **LRMS** (method: ESI positive) calculated for C₁₈H₁₉F₃O₂ 324.2 [M+OMe]⁺, found 324.5.

7ai

Chemical Formula: C₁₆H₁₅CIO Molecular Weight: 258.75

3-(4-chlorophenyl)-2-methyl-2-phenylpropanal (**7ai**). Colorless oil; $\mathbf{R_f} = 0.52$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, **400 MHz**) δ (ppm) = 1.37 (s, 3H, H-7); 3.14 (s, 2H, H-8); 6.69 (d, $^2J_{HH} = 8.6$ Hz, 2H, H-10); 7.09 (d, $^2J_{HH} = 8.6$ Hz, 2H, H-11); 7.13-7.15 (m, 2H, H-4); 7.29-7.32 (m, 1H, H-6); 7.35-7.39 (m, 2H, H-5); 9.59 (s, 1H, H-1). ¹³C{¹H} NMR (CDCl₃, **100 MHz**) δ (ppm) = 18.4 (C-7); 42.4 (C-8); 55.3 (C-2); 127.9 (C-4); 128.0 (C-6); 128.3 (C-11); 129.2 (C-5); 132.0 (C-10); 132.6 (C-12); 135.6 (C-9); 139.1 (C-3); 201.9 (C-1). **IR** spectrum (neat) ν (cm⁻¹) = 2934, 1721, 1677, 1491, 1445, 1090, 1015, 810, 760, 698. **LRMS** (method: ESI positive) calculated for C₁₇H₁₉ClO₂ 290.1 [M+OMe]⁺, found 290.0.

7baChemical Formula: C₁₈H₂₀O₃
Molecular Weight: 284.36

2,3-bis(4-methoxyphenyl)-2-methylpropanal (**7ba**). Colorless oil; $\mathbf{R_f} = 0.31$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹**H NMR (CDCl₃**, **400 MHz)** δ (ppm) = 1.33 (s, 3H, H-8); 3.06-3.15 (m, 2H, H-9); 3.74 (s, 3H, H-7); 3.82 (s, 3H, H-14); 6.67-6.73 (m, 4H, H-4 and H-5); 6.90 (d, ³ $J_{HH} = 8.9$ Hz, 2H, H-12); 7.09 (d, ³ $J_{HH} = 8.9$ Hz, 2H, H-11); 9.57 (s, 1H, H-1). ¹³**C{¹H} NMR** (**CDCl₃**, **100 MHz)** δ (ppm) = 18.7 (C-8); 42.1 (C-9); 54.8 (C-2); 55.5 (C-7); 55.6 (C-14); 113.6 (C-4 or C-5); 114.4 (C-12); 129.1 (C-11); 129.2 (C-10); 131.7 (C-3); 131.7 (C-4 or C-5); 158.5 (C-6); 159.1 (C-13); 202.5 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2941, 1719, 1609, 1510, 1460, 1244, 1179, 1030, 826. **LRMS** (method: ESI positive) calculated for C₁₈H₂₁O₃ 285.1 [M+H]⁺, found 285.3.

7bgChemical Formula: C₁₇H₁₈O₂
Molecular Weight: 254.33

2-(4-methoxyphenyl)-2-methyl-3-phenylpropanal (**7bg**). Colorless oil; $\mathbf{R_f} = 0.47$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹**H NMR (CDCl₃** , **400 MHz)** δ (ppm) = 1.34 (s, 3H, H-8); 3.12-3.21 (m, 2H, H-9); 3.82 (s, 3H, H-7); 6.79-6.82 (m, 2H, H-11); 6.90 (d, ³ $J_{HH} = 8.9$ Hz, 2H, H-5); 7.09 (d, ³ $J_{HH} = 8.9$ Hz, 2H, H-4); 7.14-7.15 (m, 3H, H-12 and H-13); 9.57 (s, 1H, H-1). ¹³C{¹H} **NMR (CDCl₃** , **100 MHz)** δ (ppm) = 18.6 (C-8); 43.0 (C-9); 54.7 (C-2); 55.6 (C-7); 114.5 (C-5); 126.7 (C-13); 128.2 (C-12); 129.1 (C-4); 130.7 (C-11); 131.3 (C-3); 137.3 (C-10); 159.2 (C-6); 202.2 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2935, 1719, 1607, 1511, 1454, 1249, 1183, 1030, 827, 750, 699. **LRMS** (method: ESI positive) calculated for C₁₇H₁₉O₂ 255.1 [M+H]⁺, found 255.4.

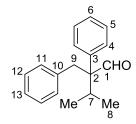
7cd

Chemical Formula: C₁₈H₁₇F₃O Molecular Weight: 306.33

2-methyl-3-(p-tolyl)-2-(4-(trifluoromethyl)phenyl)propanal (**7cd**). Yellow oil; $\mathbf{R_f} = 0.64$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, **400 MHz**) δ (ppm) = 1.41 (s, 3H, H-8); 2.27 (s, 3H, H-14); 3.12-3.22 (m, 2H, H-9); 6.68 (d, ${}^3J_{HH} = 8.0$ Hz, 2H, H-11); 6.96 (d, ${}^3J_{HH} = 8.0$ Hz, 2H, H-12); 7.29 (d, ${}^3J_{HH} = 8.2$ Hz, 2H, H-4); 7.62 (d, ${}^3J_{HH} = 8.2$ Hz, 2H, H-5); 9.65 (s, 1H, H-1). ¹³C{}^1H} NMR (CDCl₃, **100 MHz**) δ (ppm) = 18.8 (C-8); 21.3 (C-14); 42.8 (C-9); 55.6 (C-2); 124.4 (q, ${}^1J_{CF} = 272$ Hz, C-7); 125.8 (q, ${}^3J_{CF} = 3.7$ Hz, C-5); 128.4 (C-4); 129.1 (C-12); 130.0 (q, ${}^2J_{CF} = 32.6$ Hz, C-6); 130.5 (C-11); 133.2 (C-10); 136.6 (C-13); 144.1 (C-3); 201.8 (C-1). ¹⁹F{}^1H} NMR (CDCl₃, **282 MHz**) δ (ppm) = -61.9 (s). **IR spectrum (neat)** ν (cm⁻¹) = 2930, 1725, 1324, 1165, 1118, 1075, 834. **LRMS** (method: ESI positive) calculated for C₁₉H₂₀F₃O₂ 338.1 [M+OMe]⁺, found 338.0.

7ch

Chemical Formula: C₁₈H₁₄F₆O Molecular Weight: 360.30


2-methyl-2,3-bis(4-(trifluoromethyl)phenyl)propanal (**7ch**). Colorless oil; $\mathbf{R_f} = 0.68$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, 400 MHz) δ (ppm) = 1.44 (s, 3H, H-8); 3.20-3.30 (m, 2H, H-9); 6.88 (d, ${}^{3}J_{HH} = 8.0$ Hz, 2H, H-11); 7.28 (d, ${}^{3}J_{HH} = 8.3$ Hz, 2H, H-4); 7.40 (d, ${}^{3}J_{HH} = 8.0$ Hz, 2H, H-12); 7.64 (d, ${}^{3}J_{HH} = 8.3$ Hz, 2H, H-5); 9.60 (s, 1H, H-1). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ (ppm) = 18.5 (C-8); 42.9 (C-9); 55.4 (C-2); 124.2 (q, ${}^{1}J_{CF} = 272.1$ Hz, C-14); 124.5 (q, ${}^{1}J_{CF} = 272.0$ Hz, C-7); 125.2 (q, ${}^{3}J_{CF} = 3.7$ Hz, C-12); 126.1 (q, ${}^{3}J_{CF} = 3.7$ Hz, C-5); 128.3 (C-4); 129.4 (q, ${}^{2}J_{CF} = 32.4$ Hz, C-13); 130.4 (q, ${}^{2}J_{CF} = 32.8$ Hz, C-6); 131.0 (C-11); 140.7 (C-10); 143.2 (C-3); 200.9 (C-1). ¹⁹F{¹H} NMR (CDCl₃, 282 MHz) δ (ppm) = -61.9 (s); -61.8 (s). **IR spectrum (neat)** ν (cm⁻¹) = 2941, 1726, 1619, 1321, 1163, 1111, 1065,

835. **LRMS** (method: ESI positive) calculated for $C_{19}H_{20}F_6O_3$ 410.1 [M+H₂O+OMe]⁺, found 410.5.

7da

Chemical Formula: C₁₉H₂₂O₂ Molecular Weight: 282.38

2-(4-methoxybenzyl)-3-methyl-2-phenylbutanal (**7da**). Colorless oil; **R**_f = 0.36 (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, **400 MHz**) δ (ppm) = 0.98-1.02 (m, 6H, H-8 and H-9); 2.45 (h, 1H, H-7); 3.09-3.20 (m, 2H, H-10); 3.72 (s, 3H, H-15); 6.62-6.68 (m, 4H, H-12 and H-13); 6.99-7.01 (m, 2H, H-4); 7.27-7.34 (m, 3H, H-5 and H-6); 9.86 (s, 1H, H-1). ¹³C{¹H}NMR (CDCl₃, **100 MHz**) δ (ppm) = 18.5 and 18.8 (C-8 and C-9); 31.4 (C-7); 39.5 (C-10); 55.4 (C-15); 62.2 (C-2); 113.4 (C-13); 127.3 (C-6); 128.5 (C-5); 129.0 (C-11); 129.2 (C-4); 131.8 (C-12); 138.5 (C-3); 158.3 (C-14); 205.5 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2961, 1719, 1611, 1511, 1248, 1178, 1033, 824, 701. **HRMS** (method: ESI positive) calculated for C₁₉H₂₄O₃ 300.1720 [M+H₂O]⁺, found 300.1717. **Chiral HPLC conditions** Column ADH, λ = 220 nm, hexanes/PrOH 99:1, 1 mL/min., t_1 = 9.65 and t_2 = 12.00 min.

7dq

Chemical Formula: C₁₈H₂₀O Molecular Weight: 252.36

2-benzyl-3-methyl-2-phenylbutanal (**7dg**). Colorless oil; $\mathbf{R_f} = 0.47$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, 400 MHz) δ (ppm) = 1.01-1.03 (m, 6H, H-8); 2.47 (hept, ${}^3J_{HH} = 6.9$ Hz, 1H, H-7); 3.15 and 3.23 (2d, ${}^2J_{HH} = 13.9$ Hz, 1+1H, H-9); 6.73-6.76 (m, 2H, H-11); 6.98-7.00 (m, 2H, H-4); 7.05-7.10 (m, 3H, H-12 and H-13); 7.27-7.33 (m, 3H, H-5 and H-6); 9.88 (s, 1H, H-1). ¹³C{}^1H} NMR (CDCl₃, 100 MHz) δ (ppm) = 18.6 and 18.8 (C-8); 31.6 (C-7); 40.4 (C-9); 62.2 (C-2); 126.6 (C-13); 127.3 (C-6); 128.0 (C-12); 128.6 (C-5); 129.2(C-4); 130.9 (C-11); 137.1 (C-10); 138.4 (C-3); 205.3 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2963,

1720, 1495, 1450, 1028, 761, 697. **LRMS** (method: ESI positive) calculated for $C_{18}H_{24}NO$ 270.2 [M+NH₄]⁺, found 270.8. **Chiral HPLC conditions** Column ASH, $\lambda = 208$ nm, hexanes/ⁱPrOH 99:1, 1 mL/min., $t_1 = 4.82$ and $t_2 = 5.97$ min.

7ej

Chemical Formula: C₂₀H₂₄O Molecular Weight: 280.41

3-(4-isopropylphenyl)-2-methyl-2-(o-tolyl)propanal (**7ej**). Colorless oil; $\mathbf{R_f} = 0.55$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, **400 MHz**) δ (ppm) = 1.18-1.20 (2d superimposed, ${}^3J_{HH} = 6.9$ Hz, 3+3H, H-17); 1.33 (s, 3H, H-10); 2.80 (hept, ${}^3J_{HH} = 6.9$ Hz, 1H, H-16); 3.18 and 3.23 (2d, ${}^2J_{HH} = 13.7$ Hz, 1+1H, H-11); 6.60 (d, ${}^3J_{HH} = 8.1$ Hz, 2H, H-13); 6.96 (d, ${}^3J_{HH} = 8.1$ Hz, 2H, H-14); 7.13-7.15 (m, 1H, H-5 or H-6); 7.22-7.24 (m, 3H, H-4, H-5 or H-6 and H-7); 9.72 (s, 1H, H-1). ¹³C{¹H} NMR (CDCl₃, **100 MHz**) δ (ppm) = 20.6 (C-10); 21.6 (C-9); 24.3 and 24.3 (C-17); 33.9 (C-16); 39.8 (C-11); 55.7 (C-2); 126.0 (C-14); 126.4 (C-5 or C-6); 128.0 and 128.7 (C-5 or C-6 and C-4); 130.9 (C-13); 132.4 (C-7); 134.3 (C-12); 136.8 (C-8); 138.3 (C-3); 147.1 (C-15); 204.3 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2960, 1721, 1513, 1459, 1383, 903, 824, 758, 724. **HRMS** (method: ESI positive) calculated for C₂₀H₂₅O 281.1900 [M+H]⁺, found 281.1907.

7fe

Chemical Formula: C₁₈H₂₀O Molecular Weight: 252.36

2-methyl-2,3-di-m-tolylpropanal (**7fe**). Colorless oil; $\mathbf{R_f} = 0.53$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹**H NMR (CDCl₃**, **400 MHz)** δ (ppm) = 1.35 (s, 3H, H-9); 2.23 (s, 3H, H-17); 2.35 (s, 3H, H-18); 3.09 and 3.21 (2d, ${}^2J_{HH} = 13.6$ Hz, 1+1H, H-10); 6.61 (br d, ${}^3J_{HH} = 7.7$ Hz, 1H, H-14); 6.63 (br s, 1H, H-12); 6.96-7.00 (m, 3H, H-4, H-8 and H-16); 7.04 (t, ${}^3J_{HH} = 7.7$ Hz, 1H, H-15); 7.12 (br d, ${}^3J_{HH} = 7.8$ Hz, 1H, H-6); 7.24-7.27 (m, 1H, H-7); 9.62 (s, 1H, H-1). 13 C{¹H} NMR (CDCl₃, 100 MHz) δ (ppm) = 18.7 (C-9); 21.7 (C-17); 21.9 (C-18); 42.8 (C-10); 55.3 (C-2); 124.9 (C-8); 127.4 (C-16); 127.8 (C-14); 128.0 (C-15); 128.5 (C-4); 128.6 (C-6); 128.9 (C-7);

131.6 (C-12); 137.1 (C-11); 137.7 (C-13); 138.7 (C-5); 139.8 (C-3); 202.4 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2924, 1722, 1605, 1455, 782, 702. **HRMS** (method: ESI positive) calculated for C₁₈H₂₀NaO 275.1406 [M+Na]⁺, found 275.1403.

7geChemical Formula: C₁₅H₁₆OS
Molecular Weight: 244.35

2-methyl-2-(thiophen-2-yl)-3-(p-tolyl)propanal (**7ge**). Yellow oil; $\mathbf{R_f} = 0.53$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, **400 MHz)** δ (ppm) = 1.42 (s, 3H, H-7); 2.29 (s, 3H, H-13); 3.12 and 3.28 (2d, ${}^2J_{HH} = 13.7$ Hz, 1+1H, H-8); 6.84 (d, ${}^3J_{HH} = 7.8$ Hz, 2H, H-10); 6.88 (dd, ${}^4J_{HH} = 1.1$ Hz, ${}^3J_{HH} = 3.6$ Hz, 1H, H-4); 7.01 (d, ${}^3J_{HH} = 7.8$ Hz, 2H, H-11); 7.04 (dd, ${}^3J_{HH} = 3.6$ Hz, 1H, H-5); 7.30 (dd, ${}^4J_{HH} = 1.1$ Hz, ${}^3J_{HH} = 5.1$ Hz, 1H, H-6); 9.61 (s, 1H, H-1). ¹³C{¹H} NMR (CDCl₃, **100 MHz)** δ (ppm) = 20.1 (C-7); 21.4 (C-13); 43.7 (C-8); 53.8 (C-2); 125.7 (C-6); 125.8 (C-4); 127.7 (C-5); 129.1 (C-11); 130.5 (C-10); 133.3 (C-9); 136.6 (C-12); 144.7 (C-3); 200.1 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2925, 1723, 1514, 1453, 1237, 821, 798, 697. **HRMS** (method: ESI positive) calculated for C₁₅H₁₆NaOS 267.0814 [M+Na]⁺, found 267.0820.

7hkChemical Formula: C₁₉H₂₀O
Molecular Weight: 264.37

1-(4-ethylbenzyl)-2,3-dihydro-1H-indene-1-carbaldehyde (**7hk**). Yellow oil; $\mathbf{R_f} = 0.55$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, 400 MHz) δ (ppm) = 1.19 (t, ${}^3J_{HH}$ = 7.6 Hz, 3H, H-17); 2.10 (ddd, ${}^3J_{HH}$ = 5.6 Hz, ${}^3J_{HH}$ = 8.7 Hz, ${}^2J_{HH}$ = 13.3 Hz, 1H, H-10); 2.40 (ddd, ${}^3J_{HH}$ = 6.3 Hz, ${}^3J_{HH}$ = 8.9 Hz, ${}^2J_{HH}$ = 13.3 Hz, 1H, H-10'); 2.43-2.62 (m, 3H, H-9 and H-16); 2.82 (ddd, ${}^3J_{HH}$ = 5.6 Hz, ${}^3J_{HH}$ = 8.9 Hz, ${}^2J_{HH}$ = 14.7 Hz, 1H, H-9'); 3.01 and 3.32 (2d, ${}^2J_{HH}$ = 13.8 Hz, 1+1H, H-11); 6.87 (d, ${}^3J_{HH}$ = 8.2 Hz, 2H, H-13); 7.01 (d, ${}^3J_{HH}$ = 8.2 Hz, 2H, H-14); 7.19-7.27 (m, 4H, H-4, H-5, H-6 and H-7); 9.66 (s, 1H, H-1). ¹³C{}^1H} NMR (CDCl₃, 100 MHz) δ (ppm) = 15.9 (C-17); 28.7 (C-16); 30.9 (C-10); 31.2 (C-9); 40.6 (C-11); 65.0 (C-2); 125.8, 125.4, 127.1 and 128.5 (C-4, C-5, C-6 and C-7); 127.9 (C-14); 130.3 (C-13); 134.5 (C-12); 142.2

(C-3); 142.7 (C-15); 145.6 (C-8); 201.5 (C-1). **IR spectrum (neat)** ν (cm⁻¹) = 2963, 1719, 1512, 1454, 827, 754, 722. **HRMS** (method: ESI positive) calculated for C₁₉H₂₁O 265.1587 [M+H]⁺, found 265.1591.

7ibChemical Formula: C₂₁H₂₀O₂
Molecular Weight: 304.39

3-(3-methoxyphenyl)-2-methyl-2-(naphthalen-2-yl)propanal (**7ib**). Colorless oil; $\mathbf{R_f} = 0.58$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, 400 MHz) δ (ppm) = 1.49 (s, 3H, H-13); 3.28 (s, 2H, H-14); 3.50 (s, 3H, H-21); 6.28-6.29 (m, 1H, H-16); 6.43 (br d, ${}^3J_{HH} = 7.8$ Hz, 1H, H-20); 6.66-6.68 (m, 1H, H-18); 7.01-7.05 (m, 1H, H-19); 7.35 (dd, ${}^4J_{HH} = 2.0$ Hz, ${}^3J_{HH} = 8.6$ Hz, 1H, H-10); 7.47-7.52 (m, 2H, H-6 and H-7); 7.61 (d, ${}^4J_{HH} = 2.0$ Hz, 1H, H-4); 7.78-7.80 (m, 1H, H-5); 7.83-7.87 (m, 2H, H-8 and H-9); 9.68 (s, 1H, H-1). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ (ppm) = 18.7 (C-13); 42.9 (C-14); 55.2 (C-21); 55.6 (C-2); 112.5 (C-18); 116.1 (C-16); 123.2 (C-20); 125.7 (C-10); 126.7 (C-6 and C-7); 127.1 (C-4); 127.9 (C-8); 128.4 (C-5); 128.8 (C-9); 129.1 (C-19); 132.8 (C-12); 133.7 (C-11); 137.0 (C-3); 138.7 (C-15); 159.4 (C-17); 202.2 (C-1). IR spectrum (neat) ν (cm⁻¹) = 2935, 1834, 1720, 1597, 1488, 1263, 1154, 1043, 817, 745, 697. LRMS (method: ESI positive) calculated for $C_{21}H_{22}O_2$ 305.1 [M+H]⁺, found 305.6.

Chemical Formula: C₂₀H₁₇CIO Molecular Weight: 308.81

3-(4-chlorophenyl)-2-methyl-2-(naphthalen-2-yl)propanal (**7ii**). Colorless oil; $\mathbf{R_f} = 0.60$ (SiO₂, pentane/CH₂Cl₂ 1:1); ¹**H NMR (CDCl₃** , **400 MHz)** δ (ppm) = 1.48 (s, 3H, H-13); 3.20-3.31 (m, 2H, H-14); 6.70 (d, ${}^3J_{HH} = 8.4$ Hz, 2H, H-16); 7.06 (d, ${}^3J_{HH} = 8.4$ Hz, 2H, H-17); 7.30 (dd, ${}^4J_{HH} = 1.9$ Hz, ${}^3J_{HH} = 8.7$ Hz, 1H, H-10); 7.48-7.54 (m, 2H, H-6 and H-7); 7.58 (d, ${}^4J_{HH} = 1.9$ Hz, 1H, H-4); 7.78-7.81 (m, 1H, H-5); 7.84-7.88 (m, 2H, H-8 and H-9); 9.64 (s, 1H, H-1).

¹³C{¹H} NMR (CDCl₃, 100 MHz) δ (ppm) = 18.5 (C-13); 42.2 (C-14); 55.5 (C-2); 125.6 (C-10); 126.8 (C-6 and C-7); 127.1 (C-4); 127.9 (C-8); 128.3 (C-17); 128.4 (C-5); 128.9 (C-9); 132.0 (C-16); 132.7 (C-18); 132.8 (C-11); 133.6 (C-12); 135.6 (C-15); 136.4 (C-3); 201.9 (C-1). IR spectrum (neat) ν (cm⁻¹) = 3055, 2972, 2806, 2705, 1720, 1490, 1090, 1015, 816, 745. LRMS (method: ESI positive) calculated for C₂₁H₂₀ClO 340.1 [M+OMe]⁺, found 340.3.

Chemical Formula: C₁₉H₂₂O Molecular Weight: 266.38

Mixture of inseparable isomers **7al-1**, **7al-2** and **7al-3**. Colorless oil; $\mathbf{R_f} = 0.60$ (SiO₂, pentane/CH₂Cl₂ 1:1);

¹H NMR (CDCI₃, 500 MHz) δ (ppm) = All the protons from the phenyl group cannot be assigned due to superimposing of signals.

7al-1: 1.33 (s, 3H, α -Me); 1.92 (s, 6H, o-Me); 2.23 (s, 3H, p-Me); 3.09 and 3.56 (2d, $^2J_{HH}$ = 14.6 Hz, 1+1H, -CH₂); 6.77 (s, 2H, m-H); 9.66 (s, 1H, H-aldehyde).

7al-2: 1.36 (s, 3H, α -Me); 2.09 (2, 3H, p-Me); 2.14 (s, 6H, m-Me); 3.04 and 3.18 (2d, $^2J_{HH}$ = 13.6 Hz, 1+1H, -CH₂); 6.45 (s, 2H, o-H); 9.69 (s, 1H, H-aldehyde).

7al-3: 1.37 (s, 3H, α -Me); 1.85 (s, 3H, o-Me); 2.12 (s, 3H, m-Me); 2.17 (s, 3H, p-Me); 3.14 and 3.36 (2d, $^2J_{HH}$ = 14.1 Hz, 1+1H, -CH₂); 6.37 (s, 1H, o-H); 6.81 (s, 1H, p-H); 9.65 (s, 1H, H-aldehyde).

¹³C{¹H} NMR (CDCI₃, 125 MHz) δ (ppm) = All the carbon not listed here cannot be assigned due to superimposing of signals in both mono- and bi-dimensional spectra.

7al-1: 18.3 (α -Me); 21.1 (p-Me); 21.3 (o-Me); 35.5 (-CH₂); 55.3 (α -C); 129.5 (m-C); 202.6 (Caldehyde).

7al-2: 15.4 (*p*-Me); 18.6 or 18.8 (α -Me); 20.8 (*m*-Me); 42.5 (-CH₂); 55.3 or 55.9 (α -C); 130.0 (*o*-C); 202.8 (C-aldehyde).

7al-3: 15.8 (*o*-Me); 18.6 or 18.8 (α -Me); 39.4 (-CH₂); 55.3 or 55.9 (α -C); 129.5 (*p*-C); 130.1 (*o*-C); 202.7 (C-aldehyde).

LRMS (method: ESI positive) calculated for C₁₉H₂₂NaO 289.2 [M+Na]⁺, found 289.1.

Chemical Formula: C₁₄H₁₄O₂ Molecular Weight: 214.26

2-(5-methylfuran-2-yl)-2-phenylpropanal (7am). Colorless oil; R_{f} 0.60 (SiO₂, pentane/CH₂Cl₂ 1:1); ¹H NMR (CDCl₃, 400 MHz) δ (ppm) = 1.72 (s, 3H, H-7); 2.28 (d, $^4J_{HH}$ = 1.0 Hz, 3H, H-12); 5.98-5.99 (m, 1H, H-10); 6.15 (d, ${}^{3}J_{HH}$ = 3.1 Hz, 1H, H-9); 7.11-7.13 (m, 2H, H-4); 7.27-7.32 (m, 1H, H-6); 7.34-7.38 (m, 2H, H-5); 9.85 (s, 1H, H-1). ¹³C{¹H} NMR (CDCI₃, 100 MHz) δ (ppm) = 14.0 (C-12); 21.1 (C-7); 57.1 (C-2); 106.7 (C-10); 109.8 (C-9); 127.7 (C-4); 127.8 (C-6); 129.2 (C-5); 140.7 (C-3); 152.1 (C-8); 153.2 (C-11); 198.2 (C-1). IR **spectrum (neat)** v (cm⁻¹) = 2986, 1724, 1493, 1446, 1216, 1023, 784, 760, 697. **HRMS** (method: ESI positive) calculated for C₁₄H₁₄NaO₂ 237.0886 [M+Na]⁺, found 237.0886.

Chemical Formula: C₂₂H₂₆O₃ Molecular Weight: 338.45

The two isomers of **12an** are not separable by chromatography

E isomer: (E)-4-benzyl-5-(3,4-dimethoxyphenyl)-2,4-dimethylpent-2-enal. Colorless oil; $R_f =$ 0.44 (SiO₂, pentane/Et₂O 1:1); ¹H NMR (CDCI₃, 400 MHz) δ (ppm) = 1.16 (s, 3H, H-10); 1.44 (br s, 3H, H-11); 2.85-2.95 (m, 2H, H-12); 3.32 (s, 2H, H-5); 3.82 (s, 3H, H-19); 3.86 (s, 3H, H-20); 5.20 (br s, 1H, H-3); 9.54 (s, 1H, H-1); Protons H-7, 8, 9, 14, 17 and 18 cannot be assigned due to overlapping of signals. ¹³C{¹H} NMR (CDCI₃, 100 MHz) δ (ppm) = 17.6 (C-11); 21.6 (C-10); 42.3 (C-12); 47.6 (C-5); 52.3 (C-4); 56.2 (C-19 and C-20); 127.7 (C-3); 203.8 (C-1); Carbons C-2, 6, 7, 8, 9, 13, 14, 15, 16, 17 and 18 cannot be assigned due to overlapping of signals.

Z isomer: (Z)-4-benzyl-5-(3,4-dimethoxyphenyl)-2,4-dimethylpent-2-enal. Colorless oil; $\mathbf{R_f} = 0.44$ (SiO₂, pentane/Et₂O 1:1); ¹H NMR (CDCI₃, 400 MHz) δ (ppm) = 1.20 (s, 3H, H-10); 1.65 (br s, 3H, H-11); 2.91-2.99 (m, 2H, H-12); 3.18 and 3.27 (2d, $^2J_{HH} = 15.4$ Hz, 1+1H, H-5); 3.83 (s, 3H, H-19); 3.87 (s, 3H, H-20); 5.29 (br s, 1H, H-3); 9.65 (s, 1H, H-1); Protons H-7, 8, 9, 14, 17 and 18 cannot be assigned due to overlapping of signals. ¹³C{¹H} NMR (CDCI₃, 100 MHz) δ (ppm) = 21.8 (C-10); 24.6 (C-11); 39.0 (C-5); 43.1 (C-12); 52.4 (C-4); 56.1 (C-19 and C-20); 128.4 (C-3); 203.7 (C-1); Carbons C-2, 6, 7, 8, 9, 13, 14, 15, 16, 17 and 18 cannot be assigned due to overlapping of signals.

Mixture IR spectrum (neat) ν (cm⁻¹) = 2933, 1718, 1589, 1513, 1452, 1263, 1236, 1147, 1027, 852, 809, 738, 699. **LRMS** *(method: ESI positive)* calculated for $C_{22}H_{27}O_3$ 339.2 [M+H]⁺, found 339.5.

12bnChemical Formula: C₁₇H₂₂O₃
Molecular Weight: 274.36

3-(3,4-dimethoxybenzyl)-3-methylcyclohex-1-enecarbaldehyde (12bn). Colorless oil; $\mathbf{R_f} = 0.45$ (SiO₂, pentane/Et₂O 1:1); ¹H NMR (CDCl₃, 400 MHz) δ (ppm) = 1.36-1.44, 1.55-1.60 and 1.79-1.90 (3m, 1+2+3H, H-5, H-6 and H-7); 1.73 (s, 3H, H-8); 2.73-2.86 (AB system, $^2J_{HH} = 13.8$ Hz, 2H, H-9); 3.84 (s, 3H, H-16); 3.85 (s, 3H, H-17); 5.26 (br s, 1H, H-3); 6.62-6.65 (m, 2H, H-11 and H-15); 6.76 (d, $^3J_{HH} = 8.0$ Hz, 1H, H-14); 9.50 (s, 1H, H-1). ¹³C{¹H}NMR (CDCl₃, 100 MHz) δ (ppm) = 19.3, 27.4 and 29.6 (C-5, C-6 and C-7); 24.1 (C-8); 42.2 (C-9); 52.2 (C-4); 55.7 and 55.73 (C-16 and C-17); 110.7 (C-14); 113.4 (C-11); 120.5 (C-3); 122.3 (C-15); 129.2 (C-10); 139.7 (C-2); 147.6 (C-13); 148.3 (C-12); 203.6 (C-1). IR spectrum (neat) ν (cm⁻¹) = 2932, 2833, 1717, 1513, 1448, 1418, 1260, 1235, 1155, 1141, 1026, 855, 809, 765, 740. LRMS (method: ESI positive) calculated for $C_{17}H_{23}O_3$ 275.2 [M+H]⁺, found 275.5.

Chemical Formula: C₂₁H₃₀O₃ Molecular Weight: 330.47

The two isomers of **12cn** are not separable by chromatography

E isomer: (*E*)-4-(3,4-dimethoxybenzyl)-2,4,8-trimethylnona-2,7-dienal. Colorless oil; $\mathbf{R_f} = 0.50$ (SiO₂, pentane/Et₂O 1:1); ¹H NMR (CDCl₃, 400 MHz) δ (ppm) = 1.13 (s, 3H, H-11); 1.52 (d, ⁴J_{HH} = 1.1 Hz, 3H, H-12); 1.63 (s, 3H, H-10); 1.71 (s, 3H, H-9); 9.53 (s, 1H, H-1). Protons H-3, 5, 6, 7, 13, 15, 18 and 19 cannot be <u>precisely</u> assigned due to overlapping of signals. ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ (ppm) = 17.8 (C-12); 18.1 (C-10); 21.4 (C-11); 26.0 (C-9); 27.1 and 41.1 (C-5 and C-6); 42.1 (C-13); 52.1 (C-4); 123.1 (C-19); 124.0 (C-7); 125.9 (C-3); 130.0 (C-14); 132.2 (C-8); 141.1 (C-2); 204.0 (C-1). Carbons C-15, 16, 17, 18, 20 and 21 cannot be <u>precisely</u> assigned due to overlapping of signals.

Z isomer: (*Z*)-4-(3,4-dimethoxybenzyl)-2,4,8-trimethylnona-2,7-dienal. Colorless oil; $\mathbf{R_f} = 0.50$ (SiO₂, pentane/Et₂O 1:1); ¹H NMR (CDCl₃, 400 MHz) δ (ppm) = 1.11 (s, 3H, H-11); 1.60 (s, 3H, H-10); 1.69 (s, 3H, H-9); 1.79 (d, ${}^4J_{HH} = 1.4$ Hz, 3H, H-12); 9.55 (s, 1H, H-1). Protons H-3, 5, 6, 7, 13, 15, 18 and 19 cannot be <u>precisely</u> assigned due to overlapping of signals. ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ (ppm) = 18.0 (C-10); 21.7 (C-11); 24.2 (C-12); 26.0 (C-9); 26.6 and 33.3 (C-5 and C-6); 42.6 (C-13); 52.1 (C-4); 123.0 (C-19); 123.8 (C-7); 127.0 (C-3); 130.0 (C-14); 132.6 (C-8); 141.0 (C-2); 204.0 (C-1). Carbons C-15, 16, 17, 18, 20 and 21 cannot be <u>precisely</u> assigned due to overlapping of signals.

Mixture IR spectrum (neat) ν (cm⁻¹) = 2924, 1719, 1514, 1450, 1263, 1232, 1149, 1029, 809, 765. **LRMS** (method: ESI positive) calculated for $C_{21}H_{31}O_3$ 331.3 [M+H]⁺, found 331.8.

Molecular Weight: 400.52

The two isomers of **12dn** are not separable by chromatography

E isomer: (*E*)-4-benzyl-5-(3,4-dimethoxyphenyl)-2-methyl-4-phenylpent-2-enal.Colorless oil; $\mathbf{R_f} = 0.38$ (SiO₂, pentane/Et₂O 1:1); ¹H NMR (CDCl₃, 400 MHz) δ (ppm) = 1.28 (s, 3H, H-14); 2.98 and 3.06 (2d, ${}^2J_{HH} = 13.6$ Hz, 1+1H, H-15); 3.69 (br s, 2H, H-5); 3.75 (s, 3H, H-22); 5.80 (br s, 1H, H-3); 9.67 (s, 1H, H-1). Protons H-7, 8, 9, 11, 12, 13, 17, 20, 21 and 23 cannot be precisely assigned due to overlapping of signals. ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ (ppm) = 22.1 (C-14); 36.3 (C-5); 42.9 (C-15); 53.1 (C-4); 56.1 (C-22); 132.3 (C-3); 203.5 (C-1). Carbons 2, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21 and 23 cannot be precisely assigned due to overlapping of signals.

Z isomer: (*Z*)-4-benzyl-5-(3,4-dimethoxyphenyl)-2-methyl-4-phenylpent-2-enal. Colorless oil; $\mathbf{R_f} = 0.38$ (SiO₂, pentane/Et₂O 1:1); ¹H NMR (CDCI₃, 400 MHz) δ (ppm) = 1.00 (s, 3H, H-14); 2.73-2.81 (m, 2H, H-15); 3.57 (br s, 2H, H-5); 3.82 (s, 3H, H-22); 5.42 (br s, 1H, H-3); 9.16 (s, 21H, H-1). Protons H-7, 8, 9, 11, 12, 13, 17, 20, 21 and 23 cannot be precisely assigned due to overlapping of signals. ¹³C{¹H} NMR (CDCI₃, 100 MHz) δ (ppm) = 22.0 (C-14); 43.5 (C-15); 48.4 (C-5); 53.0 (C-4); 56.3 (C-22); 130.6 (C-3); 202.1 (C-1). Carbons 2, 6, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21 and 23 cannot be precisely assigned due to overlapping of signals.

Mixture IR spectrum (neat) ν (cm⁻¹) = 2932, 1718, 1513, 1494, 1450, 1262, 1236, 1145, 1026, 755, 725, 697. **LRMS** (*method: ESI positive*) calculated for $C_{27}H_{29}O_3$ 401.2 [M+H]⁺, found 401.5.

6 Supporting organometallic chemistry

6.1 Synthesis of Chloro[(1,2,5,6-η)-1,5-cyclooctadiene][(2-methylphenyl)methyl]-palladium (9)

In a 10 mL flame-dried Young valve Schlenk tube connected to a Schlenk line [(COD)PdCl₂] (150 mg, 0.53 mmol, 1.0 eq.) was suspended in dry THF (4.4 mL, 0.12 M) under a nitrogen atmosphere. After cooling to -78 °C, a freshly prepared solution of the Grignard reagent was slowly added over 20-30 minutes. The mixture was stirred for 3 h at -78 °C and then gently warmed to room temperature. The solvents were evaporated and the residue was dissolved in 15 mL of CH_2Cl_2 . The resulting solution was washed with water (5 mL x 2), the organic phase dried over MgSO₄ and the solvent evaporated. The resulting dark residue was dissolved in a small amount of acetone (ca. 10 mL, gently heated if necessary), the solution filtered through $Celite^{\oplus}$ and the solvent evaporated to afford a yellow solid. The crude mixture was purified by flash chromatography (SiO₂, eluent CH_2Cl_2 then CH_2Cl_2 /Acetone 8:1) to afford the final compound as a yellow solid (62 mg, 33% yield).

During the elution with CH_2CI_2 it is possible to recover the following by product: di- μ -chloro[(1,4,5- η)-8-(2-methylbenzyl)-4-cycloocten-1-yl]dipalladium.

Chemical Formula: C₁₆H₂₁CIPd Molecular Weight: 355.21

Chloro[(1,2,5,6-η)-1,5-cyclooctadiene][(2-methylphenyl)methyl]-palladium (9). Yellow solid; $\mathbf{R}_{\mathbf{f}} = 0.13 \text{ (SiO}_2, \text{CH}_2\text{Cl}_2); \ ^1\text{H NMR (CDCl}_3, 400 \text{ MHz)} \ \delta \text{ (ppm)} = 2.37-2.56 \text{ (m, 11H, -CH}_2\text{- of COD and H-16)}; 3.66 \text{ (s, 2H, H-9)}; 4.26 \text{ and 5.94 (2br s, 2+2H, Olefinic -CH- of COD)}; 6.98-7.01 (m, 1H, H-14); 7.06-7.08 (m, 1H, H-15); 7.12-7.16 (m, 1H, H-12); 7.16-7.20 (m, 1H, H-13). <math>^{13}\text{C}_{\mathbf{f}}$ NMR (CDCl₃, 100 MHz) $\delta \text{ (ppm)} = 21.6 \text{ (C-16)}; 20.8 \text{ and } 31.3 \text{ (-CH}_2\text{- of COD)};$

35.8 (C-9); 107.3 and 123.9 (olefinic -CH- of COD); 126.2 (C-14); 126.5 (C-12); 129.6 (C-13); 131.0 (C-15); 136.7 (C-11); 144.7 (C-10). **IR spectrum (neat)** ν (cm⁻¹) = 2946, 1580, 1479, 1435, 1043, 999, 858, 842, 818, 769, 748, 674. **LRMS** (method: ESI positive) calculated for $C_{32}H_{42}CIPd_2$ 673.1 [2M-CI]⁺, found 673.3.

Chemical Formula: C₃₂H₄₂Cl₂Pd₂ Molecular Weight: 710.43

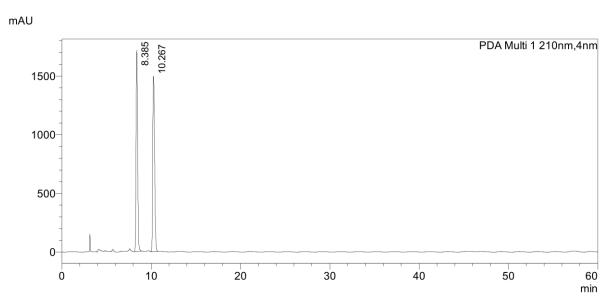
Di- μ -chloro[(1,4,5- η)-8-(2-methylbenzyl)-4-cycloocten-1-yl]dipalladium. White solid; $\mathbf{R}_f = 0.57$ (SiO₂, CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz) δ (ppm) = 1.31-1.36 (m, 1H, H-8); 1.69-1.76 (m, 2H, H-3); 2.02-2.07 (m, 1H, H-2); 2.17-2.50 (m, 9H, H-4, H-7, H-8', H-9 and H-16); 2.67 (dd, $^2J_{HH} = 13.6$ Hz, $^3J_{HH} = 4.8$ Hz, 1H, H-9'); 3.60 (br s, 1H, H-1); 5.47-5.49 (m, 1H, H-5); 5.93-5.99 (m, 1H, H-5); 7.00-7.03 (m, 1H, H-15); 7.07-7.14 (m, 3H, H-12, H-13 and H-14). ¹³C{}^1H} NMR (CDCl₃, 100 MHz) δ (ppm) = 20.0 (C-16); 27.1 (C-7); 30.2 (C-4); 30.5 (C-3); 36.3 (C-8); 37.2 (C-9); 44.5 (C-2); 60.4 (C-1); 101.5 (C-5); 105.3 (C-6); 126.0, 126.4 and 130.7 (C-12, C-13 and C-14); 130.1 (C-15); 136.7 (C-11); 139.0 (C-10). The signals of carbons 1-5-6 and 10 are very broad. IR spectrum (neat) ν (cm⁻¹) = 2924, 2873, 1444, 1328, 1231, 1207, 1124, 1044, 986, 866, 741. LRMS (method: ESI positive) calculated for C₃₂H₄₂ClPd₂ 673.1 [M-Cl]⁺, found 673.3.

6.2 Synthesis of [(R)-(BINAP)Pd(2-methylbenzyl)]OTf (10)

Inside a glove box, the palladium complex 9 (51.6 mg, 0.15 mmol, 1.0 eq.) and (R)-BINAP (90.5 mg, 0.15 mmol, 1.0 eq.) were dissolved in dry and degassed CH_2CI_2 (4.8 mL, 0.03M). After 10 minutes stirring at room temperature, AgOTf (37.3 mg, 0.15 mmol, 1.0 eq.) was added in the dark and the stirring prolonged for 10 additional minutes at room temperature.

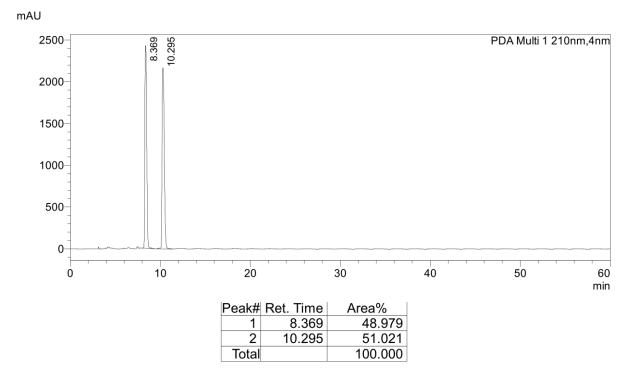
The mixture was filtered through Celite[®] and the solvent evaporated to reduce the volume to ca. 1 mL. The solution was layered with Et_2O and left in the freezer at ca – 30 °C overnight. The yellow crystals thus obtained were filtered, washed with Et_2O and dried (129 mg, 90% yield).

10Chemical Formula: C₅₃H₄₂F₃O₃P₂PdS
Molecular Weight: 984.34


Two isomeric species have been detected in CD_2CI_2 at room temperature while a single species was seen in DMF- d_7 at room temperature. In the NMR section of the Supporting Information, you will find the spectra recorded in DMF- d_7 , followed by the ¹H and ³¹P{¹H} spectra recorded in CD_2CI_2 at 298 K and 243 K. Complete assignment of all carbon was not possible.

[(R)-(BINAP)Pd(2-methylbenzyl)]OTf (10). Yellow solid; ¹H NMR (DMF- d_7 , 400 MHz) δ (ppm) = 2.38 (s, 3H); 3.09-3.13 (m, 1H); 3.76-3.79 (m, 1H); 6.53 (d, J = 8.7 Hz, 1H); 6.56-6.60 (m, 1H); 6.77-6.81 (m, 5H); 6.90-6.98 (m, 4H); 7.02 (t, J = 9.0 Hz, 1H); 7.13-7.19 (m, 5H); 7.24-7.28 (m, 1H); 7.41-7.51 (m, 4H); 7.57 (d, J = 7.2 Hz, 1H); 7.66-7.70 (m, 3H); 7.72-7.79 (m, 7H); 7.93-7.95 (m, 1H); 7.99-8.04 (m, 2H). ³¹P{¹H} NMR (DMF- d_7 , 162 MHz) δ (ppm) = 21.4 (d, ${}^3J_{PP}$ = 56.4 Hz); 33.4 (d, ${}^3J_{PP}$ = 56.4 Hz). ¹⁹F{¹H} NMR (CDCI₃, 282 MHz) δ (ppm) = -78.1 (s). IR spectrum (neat) ν (cm⁻¹) = 3054, 1502, 1477, 1435, 1262, 1143, 1029, 813, 746, 695, 634. LRMS (method: ESI positive) calculated for C₉₆H₇₄P₄Pd₂ 1562.3 [2M-2OTf-Benzyl fragment]⁺, found 1562.7.

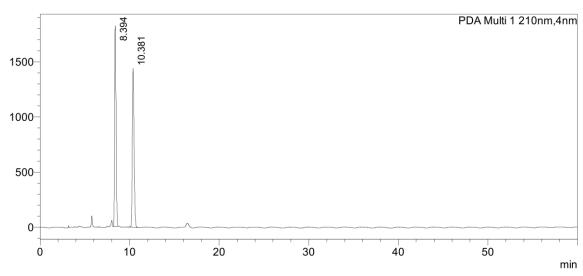
6.3 Stoichiometric cross coupling reaction using 10


Inside a glove box, a 2 mL Young valve Schlenk tube was charged with complex **10** (49.2 mg, 0.05 mmol, 1.0 eq.) and Cs_2CO_3 (19.5 mg, 0.06 mmol, 1.2 eq.). The tube was sealed, taken outside the glove box and connected to a Schlenk line. After conditioning, dry and degassed *N,N*-dimethylformamide (0.1 mL, 0.5 M) was added and after 10 min. stirring at room temperature the aldehyde **6a** (13 μ L, 0.10 mmol, 2.0 eq.) and the internal standard (5.9 mg, 0.025 mmol, 0.5 eq.) were added. The tube was sealed and placed at 50 °C for 16 h. After cooling to room temperature, the reaction was filtered through Celite[®] and the solvent evaporated under vacuum. The crude mixture was purified by flash chromatography (SiO₂, eluent pentane/CH₂Cl₂ 3:2) to afford the final product as a colorless oil (9.5 mg, 84% yield, **<5% ee**).

HPLC trace (racemic): Column ODH, hexane/i-PrOH (99:1), 1 mL/min., λ = 210 nm.

Peak#	Ret. Time	Area%
1	8.385	49.368
2	10.267	50.632
Total		100.000

HPLC trace of the stoichiometric experiment

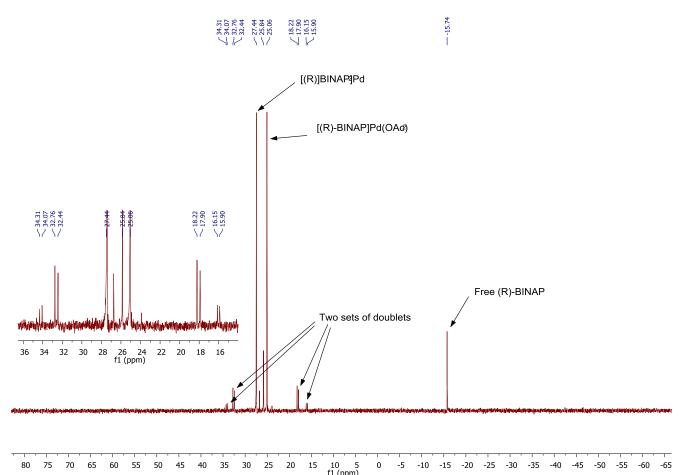

6.4 Ex situ cross coupling reaction

Inside a glove box, a 2 mL Young valve Schlenk tube was charged with complex **10** (12.3 mg, 0.01 mmol, 0.05 eq.) and Cs_2CO_3 (97.7 mg, 0.30 mmol, 1.2 eq.). The tube was sealed, taken outside the glove box and connected to a Schlenk line. After conditioning, dry and degassed N,N-dimethylformamide (0.5 mL, 0.5 M) was added and after 10 min. of additional stirring at room temperature the carbonate **2f** (45.1 mg, 0.25 mmol, 1.0 eq.), the aldehyde **6a** (67 μ L, 0.50 mmol, 2.0 eq.) and the internal standard (29.3 mg, 0.13 mmol, 0.5 eq.) were added. The tube was sealed and placed at 50 °C for 16 h. After cooling to room temperature, the reaction was filtered through Celite[®] and the solvent evaporated under

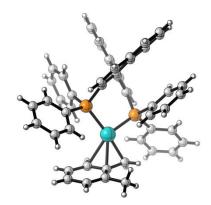
vacuum. The crude mixture was purified by flash chromatography (SiO_2 , eluent pentane/ CH_2CI_2 3:2) to afford the final product as colorless oil (34 mg, 57% yield, < 5% ee).

HPLC trace of the reaction

mAU



Peak#	Ret. Time	Area%
1	8.394	51.271
2	10.381	48.729
Total		100.000


7 Monitoring experiment

Inside a glove box, a Young valve NMR tube was charged with $Pd(OAc)_2$ (1.6 mg, 0.007 mmol, 1.0 eq.), (R)-BINAP (5.2 mg, 0.008 mmol, 1.2 eq.) and Cs_2CO_3 (2.7 mg, 0.008 mmol 1.2 eq.). DMF- d_7 (0.6 mL, 0.012M) was added the reaction mixed for 10 minutes at room temperature. Next, 2-methylbenzyl methyl carbonate **2f** (1.3 mg, 0.007 mmol, 1.0 eq.) was added and the tube placed at 50 °C for 1.5 h. After cooling to room temperature, NMR spectra were recorded.

³¹P{¹H}NMR, DMF-d₇, 162 MHz, 298 K

8 Crystal data and structure refinement for complex 10

Empirical formula $C_{54} H_{43} Cl_2 F_3 O_3 P_2 Pd S$

Formula weight 1068.18

Temperature 180(2) K

Wavelength 1.54184 Å

Crystal system Monoclinic

Space group P 1 21 1

Unit cell dimensions a = 10.9070(3) Å $\alpha = 90^{\circ}$

b = 20.1115(5) Å β = 99.508(3)°

c = 11.0941(3) Å $\gamma = 90^{\circ}$

Volume 2400.12(11) Å³

Z 2

Density (calculated) 1.478 Mg/m³
Absorption coefficient 5.641 mm⁻¹

F(000) 1088

Crystal size 0.3239 x 0.1751 x 0.0297 mm³

Theta range for data collection 4.04 to 73.62°.

Index ranges -13<=h<=13, -24<=k<=24, -13<=l<=8

Reflections collected 17699

Independent reflections 9439 [R(int) = 0.0252]

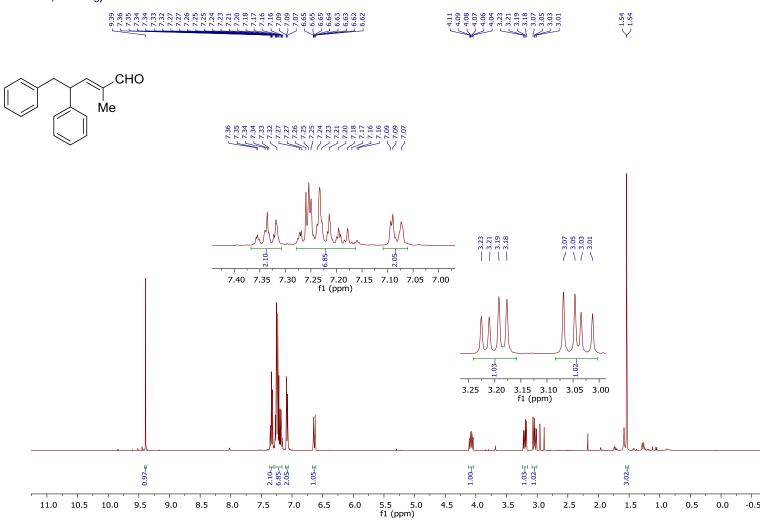
Completeness to theta = 67.50° 100.0 %
Absorption correction Analytical

Max. and min. transmission 0.918 and 0.606

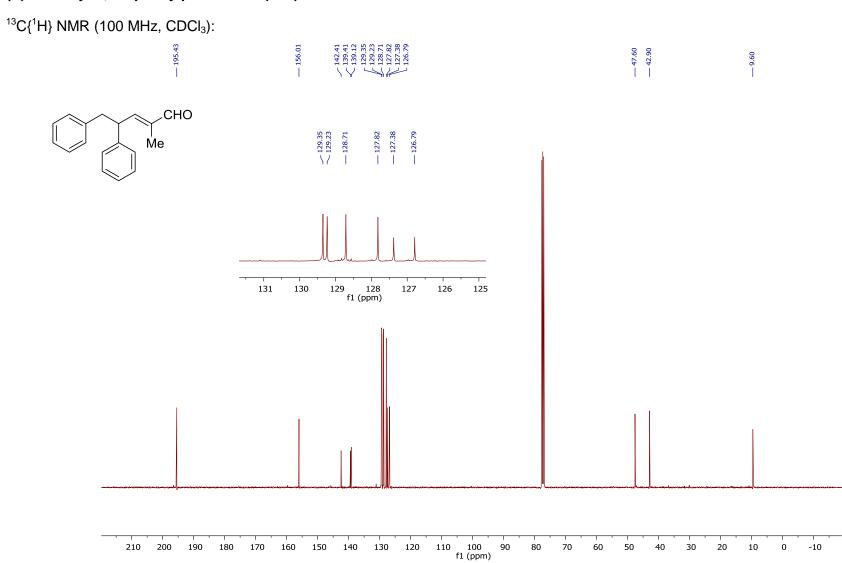
Refinement method Full-matrix least-squares on F²

Data / restraints / parameters 9439 / 1 / 571

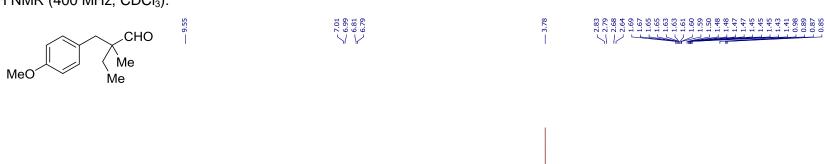
Goodness-of-fit on F² 1.059

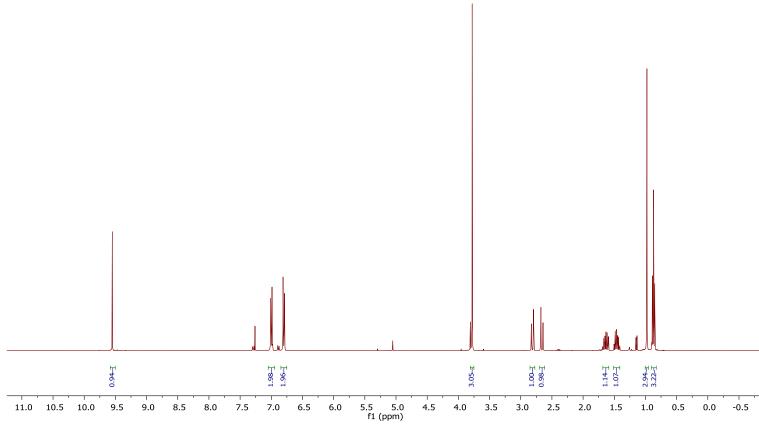

Final R indices [I>2sigma(I)] R1 = 0.0605, wR2 = 0.1619 R indices (all data) R1 = 0.0630, wR2 = 0.1652

Absolute structure parameter -0.003(10)

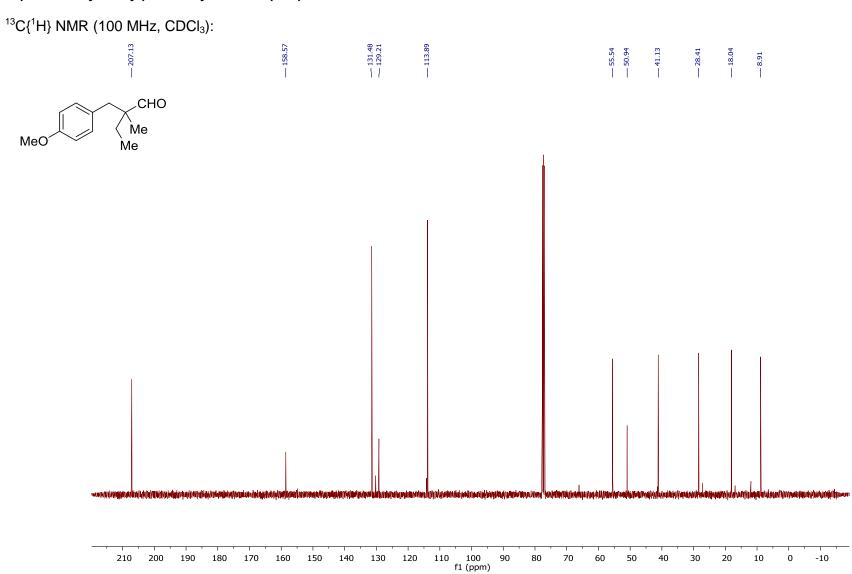

Largest diff. peak and hole 2.178 and -1.120 e.Å-3

9 NMR spectra

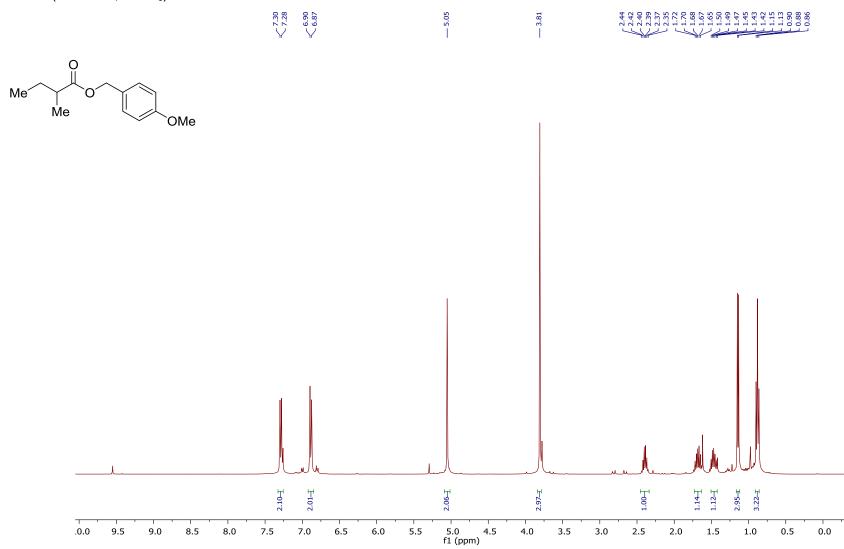

(E)-2-methyl-4,5-diphenylpent-2-enal (12d)



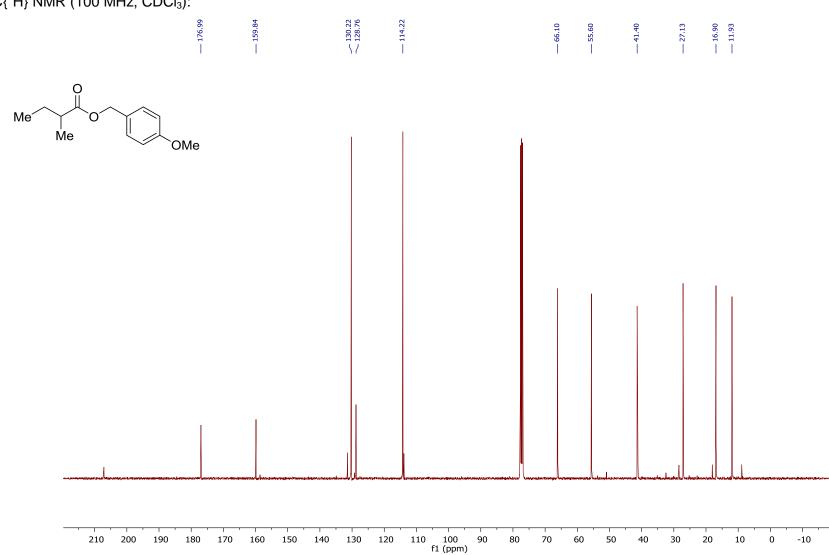
(E)-2-methyl-4,5-diphenylpent-2-enal (12d)



2-(4-methoxybenzyl)-2-methylbutanal (3aa)



2-(4-methoxybenzyl)-2-methylbutanal (3aa)

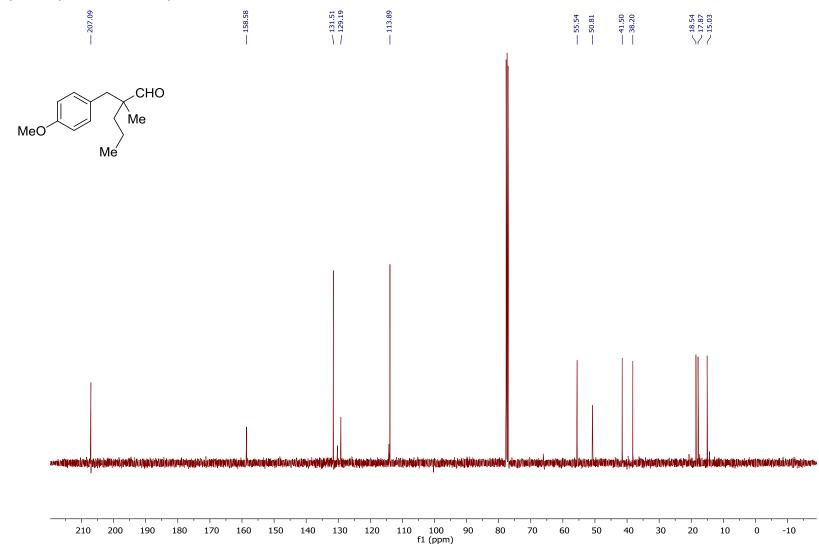


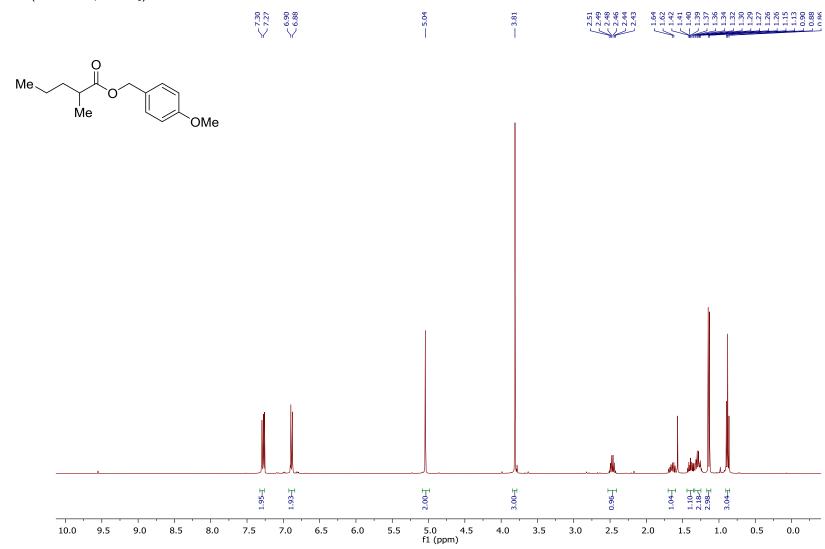
4-methoxybenzyl 2-methylbutanoate (4aa)



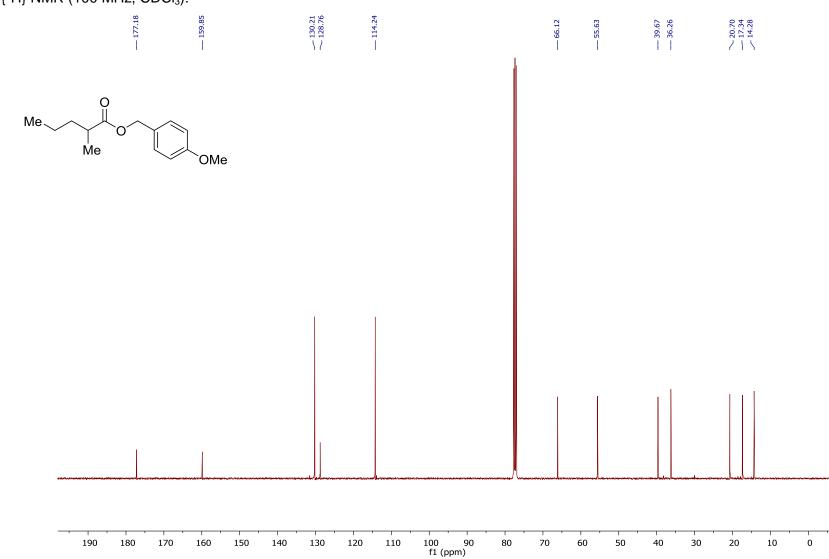
4-methoxybenzyl 2-methylbutanoate (4aa)



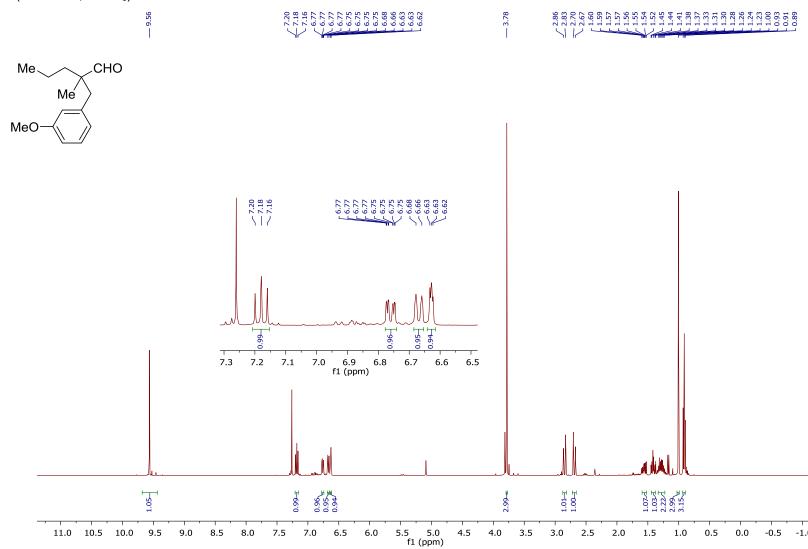

2-(4-methoxybenzyl)-2-methylpentanal (3ba)



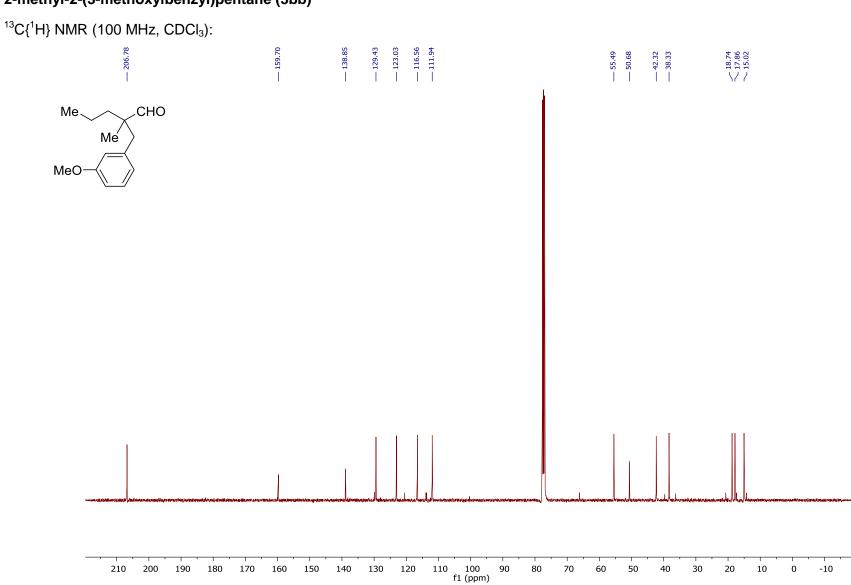
2-(4-methoxybenzyl)-2-methylpentanal (3ba)

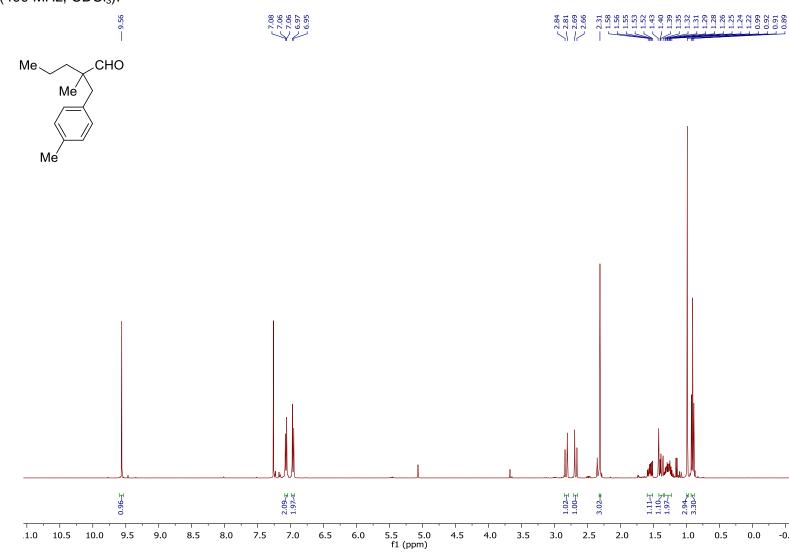


4-methoxybenzyl 2-methylpentanoate (4ba)

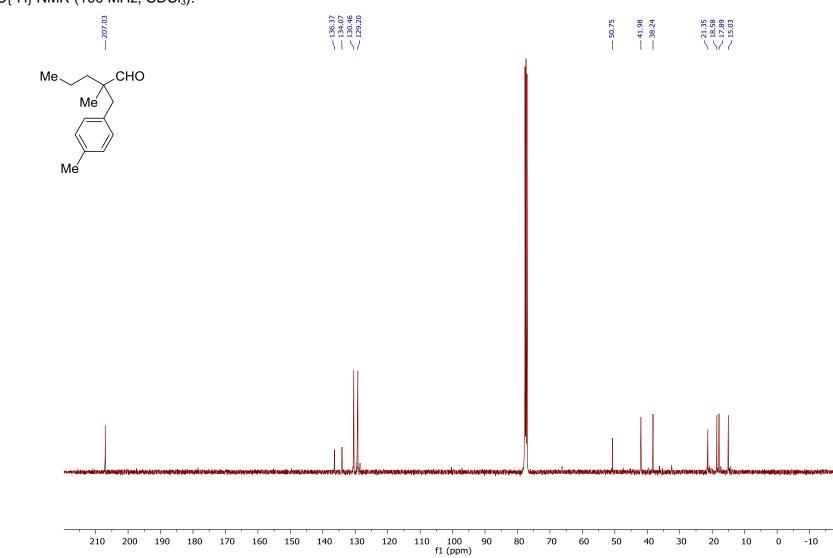


4-methoxybenzyl 2-methylpentanoate (4ba)



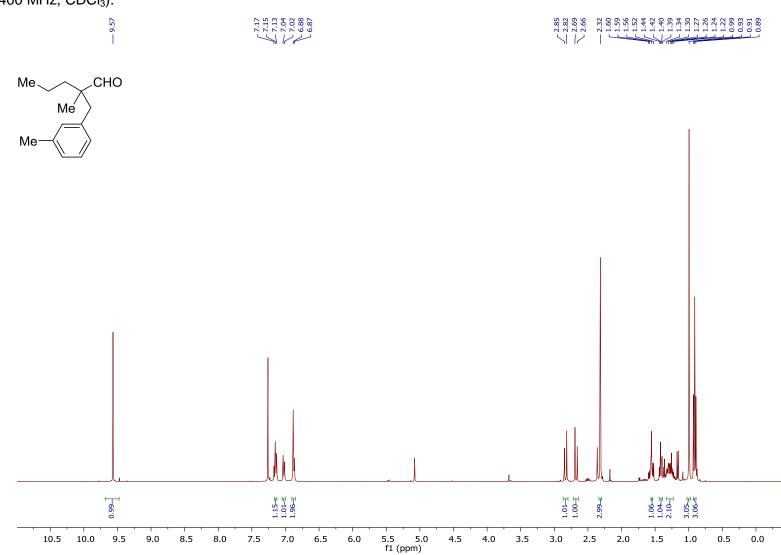

2-methyl-2-(3-methoxylbenzyl)pentane (3bb)

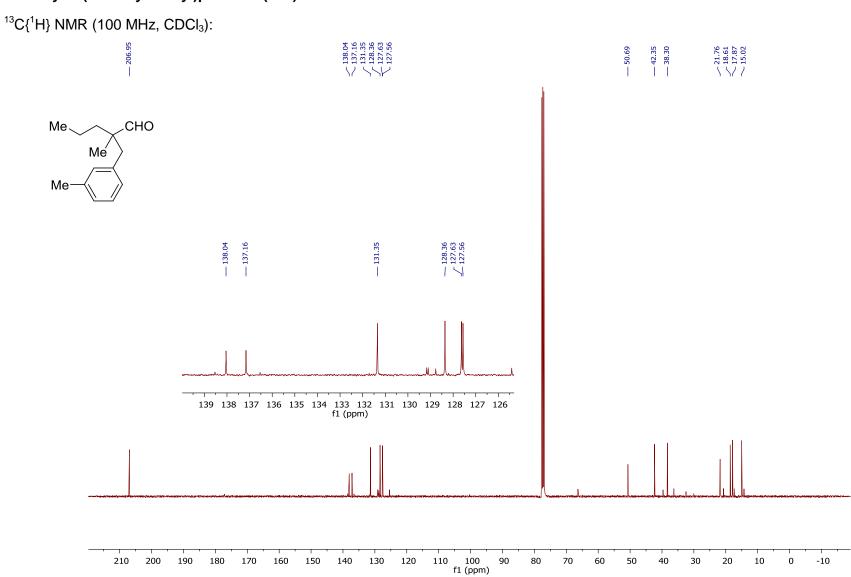
2-methyl-2-(3-methoxylbenzyl)pentane (3bb)



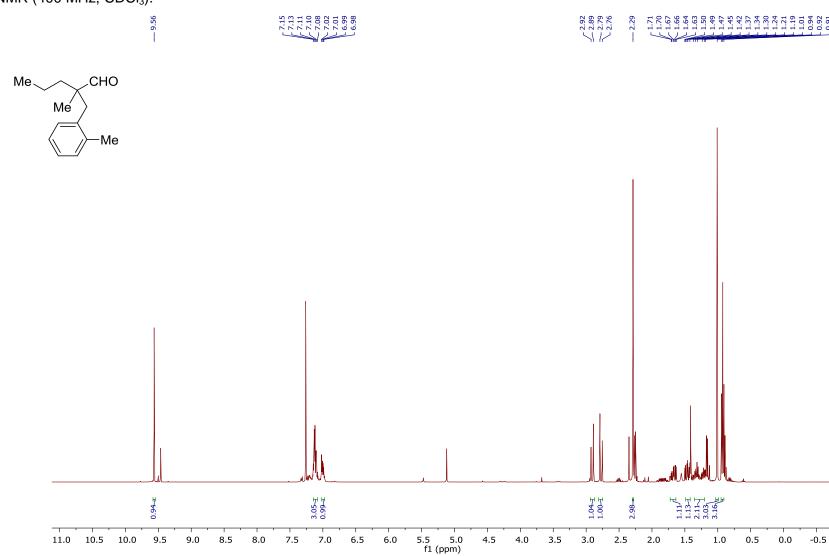
2-benzyl-2-(4-methylbenzyl)pentanel (3bd)

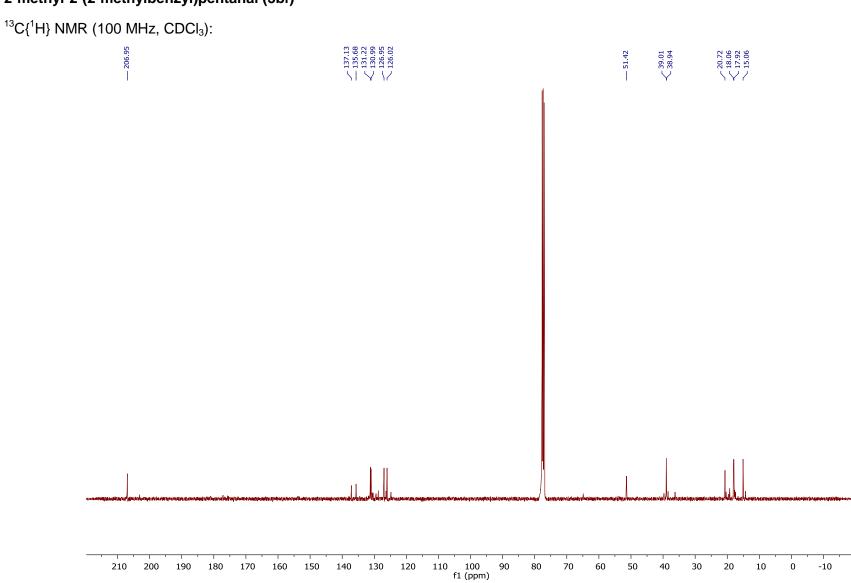


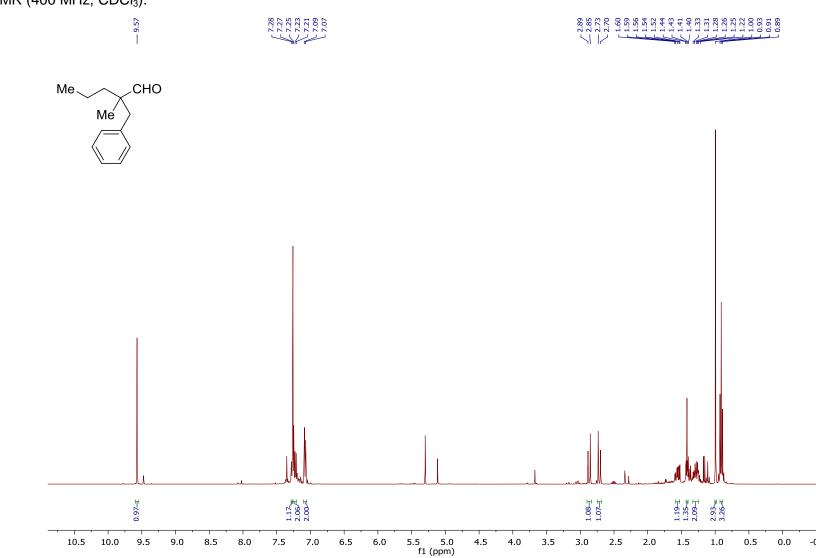

2-benzyl-2-(4-methylbenzyl)pentanel (3bd)



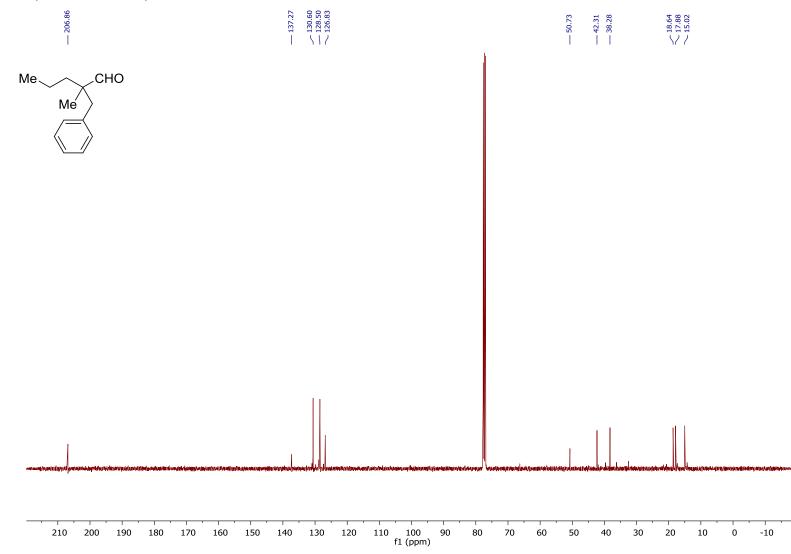
2-methyl-2-(3-methylbenzyl)pentanal (3be)



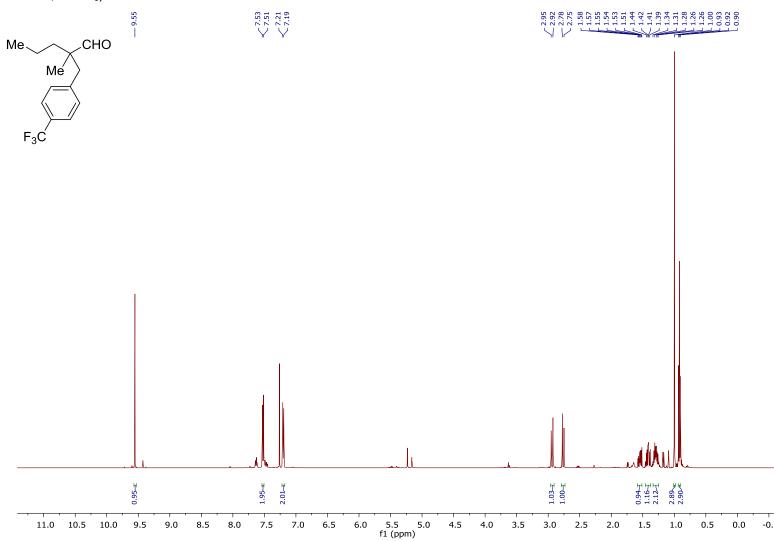

2-methyl-2-(3-methylbenzyl)pentanal (3be)


2-methyl-2-(2-methylbenzyl)pentanal (3bf)

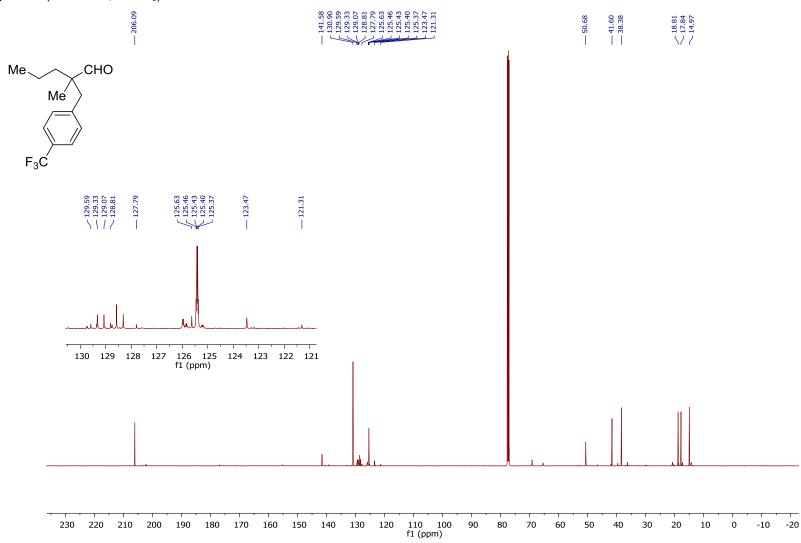
2-methyl-2-(2-methylbenzyl)pentanal (3bf)



2-benzyl-2-methylpentanal (3bg)

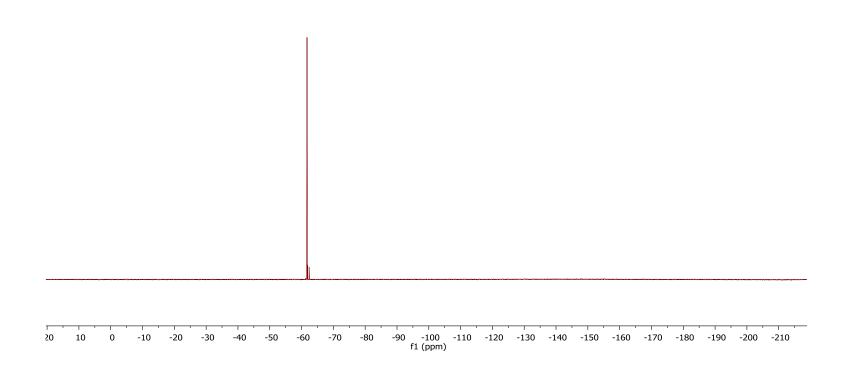


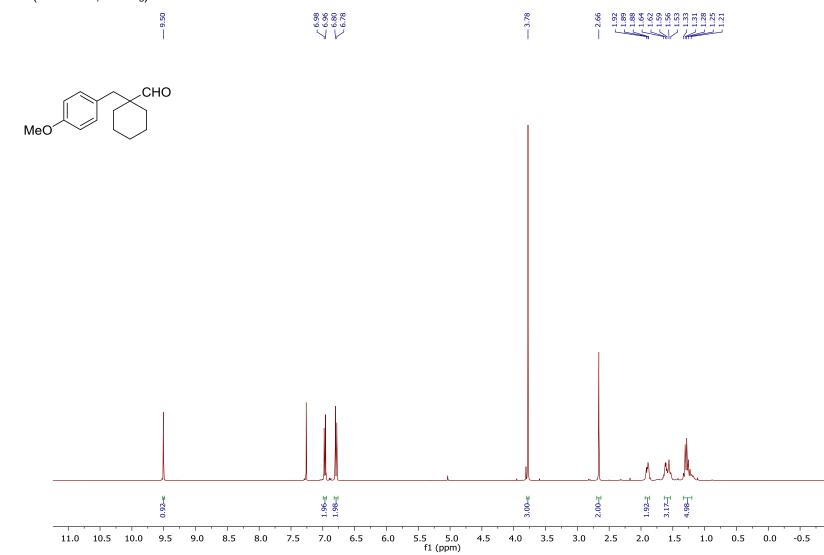
2-benzyl-2-methylpentanal (3bg)



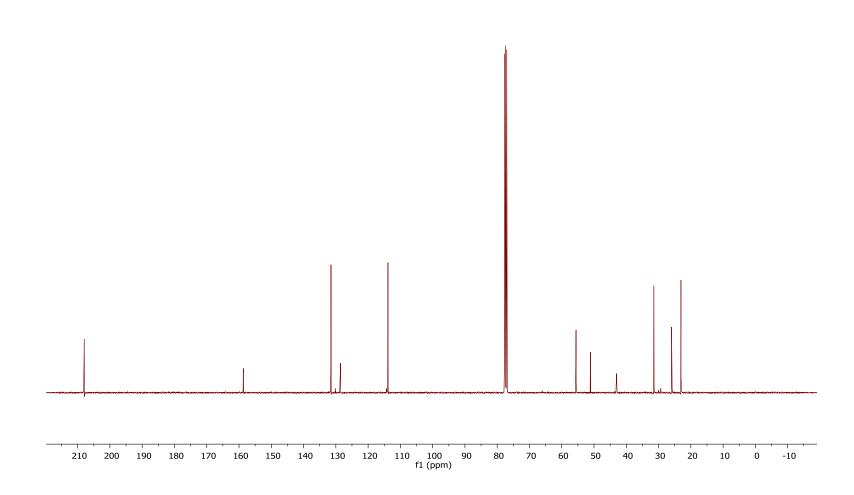
2-methyl-2-(4-(trifluoromethyl)benzyl)pentanal (3bh)

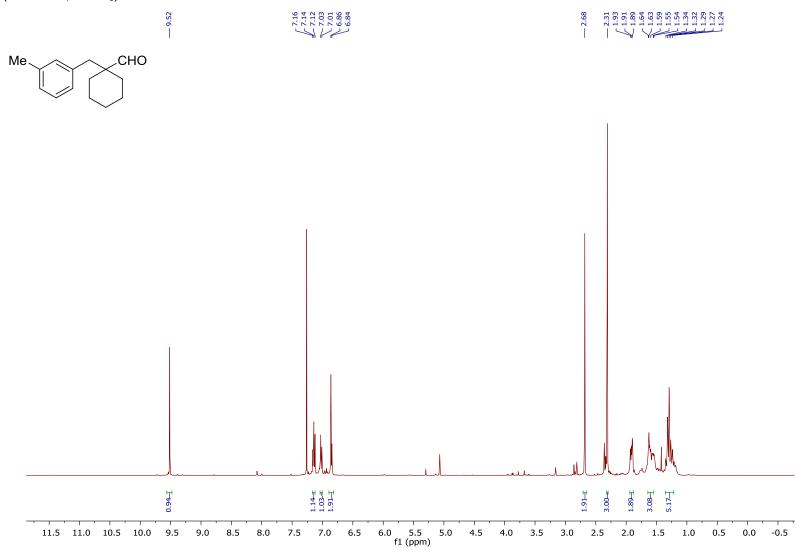
2-methyl-2-(4-(trifluoromethyl)benzyl)pentanal (3bh)




2-methyl-2-(4-(trifluoromethyl)benzyl)pentanal (3bh)

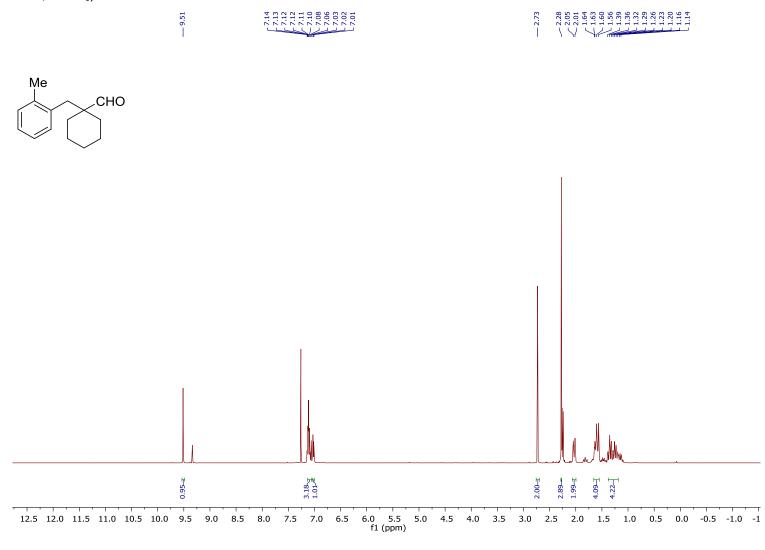
¹⁹F{¹H} NMR (282 MHz, CDCl₃):


1-(4-methoxybenzyl)cyclohexanecarbaldehyde (3ca)


1-(4-methoxybenzyl)cyclohexanecarbaldehyde (3ca)

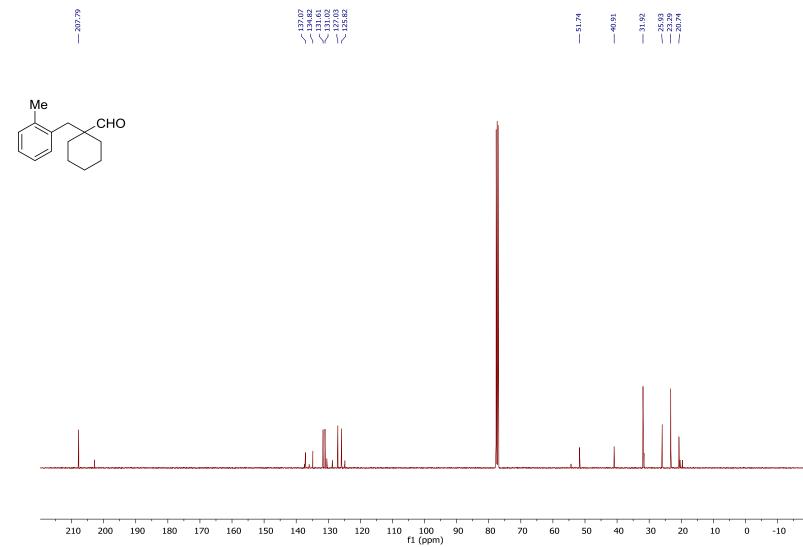


1-(3-methybenzyl)cyclohexanecarbaldehyde (3ce)

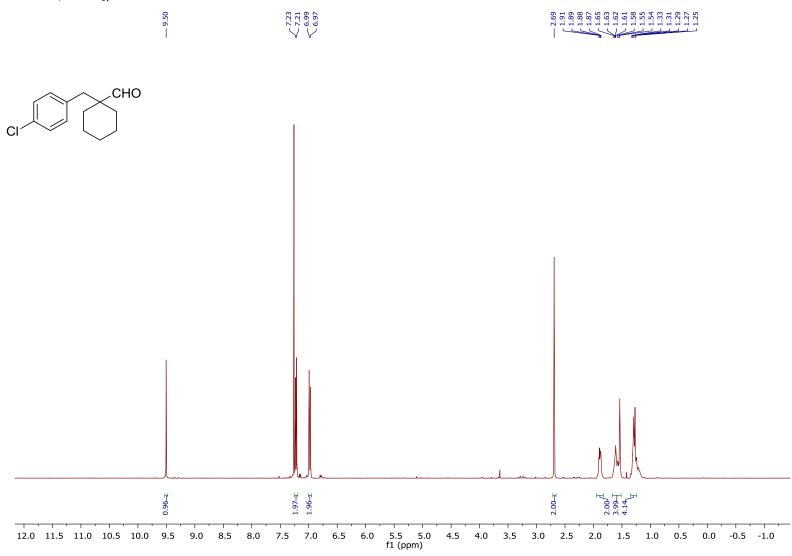


1-(3-methybenzyl)cyclohexanecarbaldehyde (3ce)

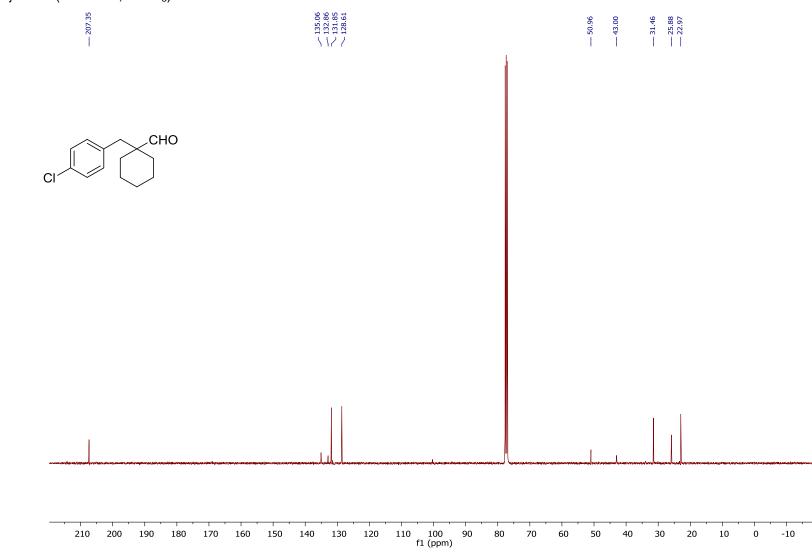
¹³C{¹H} NMR (100 MHz, CDCl₃):



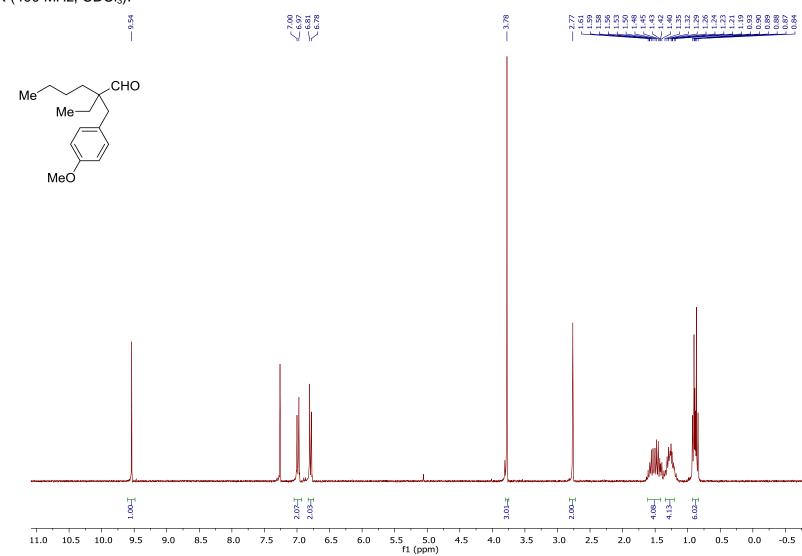
1-(2-methybenzyl)cyclohexanecarbaldehyde (3cf)



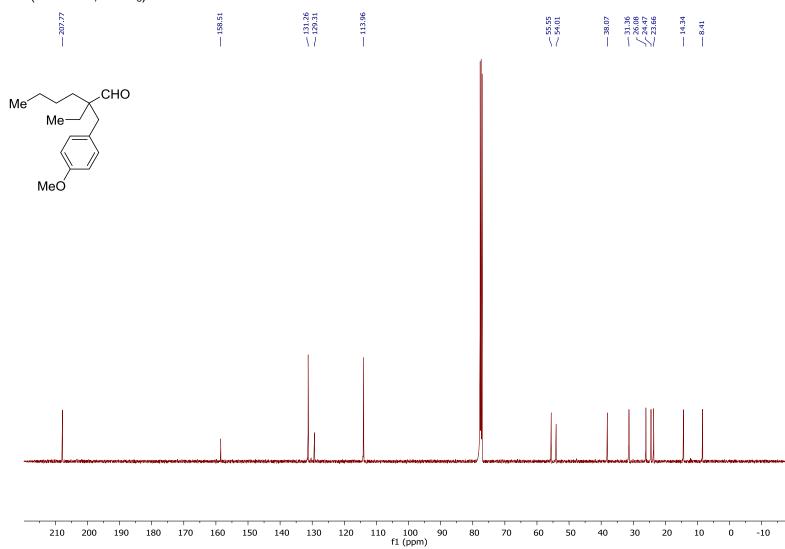
1-(2-methybenzyl)cyclohexanecarbaldehyde (3cf)



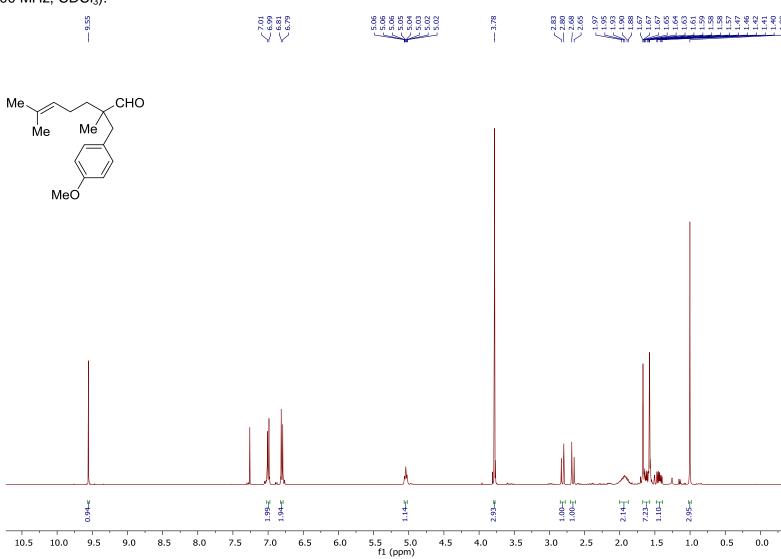
1-(4-chlorobenzyl)cyclohexanecarbaldehyde (3ci)



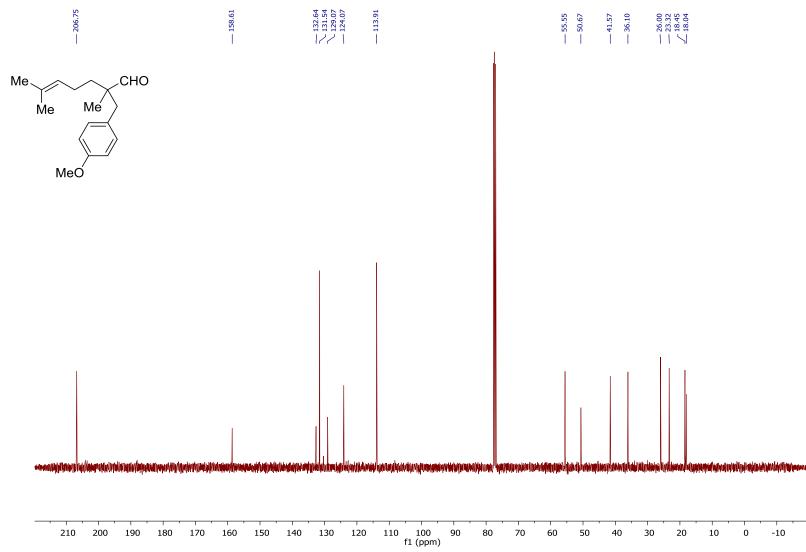
1-(4-chlorobenzyl)cyclohexanecarbaldehyde (3ci)



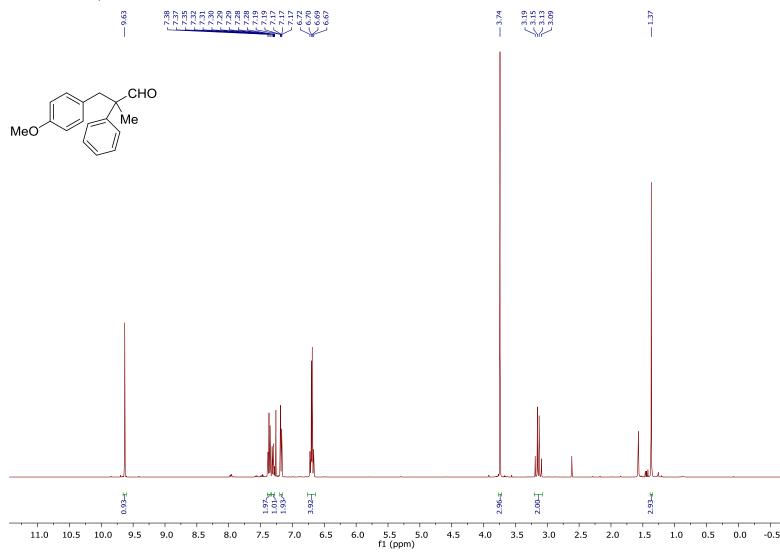
2-ethyl-2-(4-methoxybenzyl)hexanal (3da)



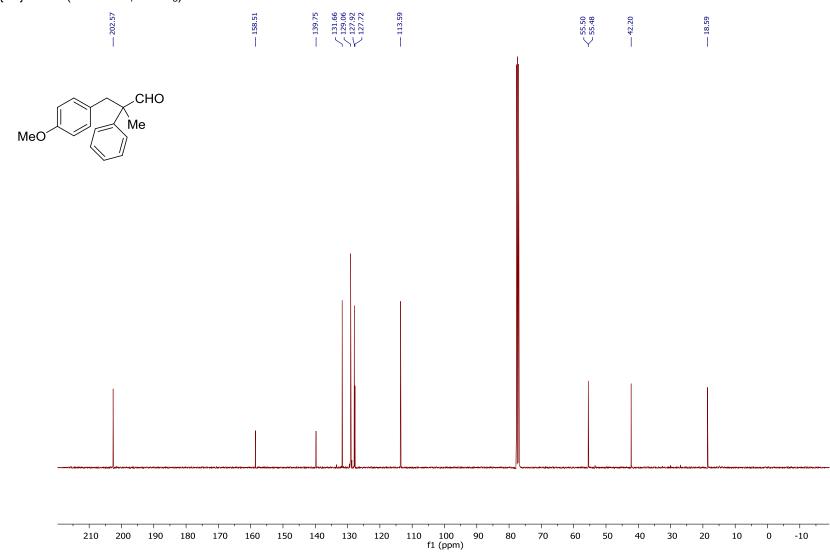
2-ethyl-2-(4-methoxybenzyl)hexanal (3da)



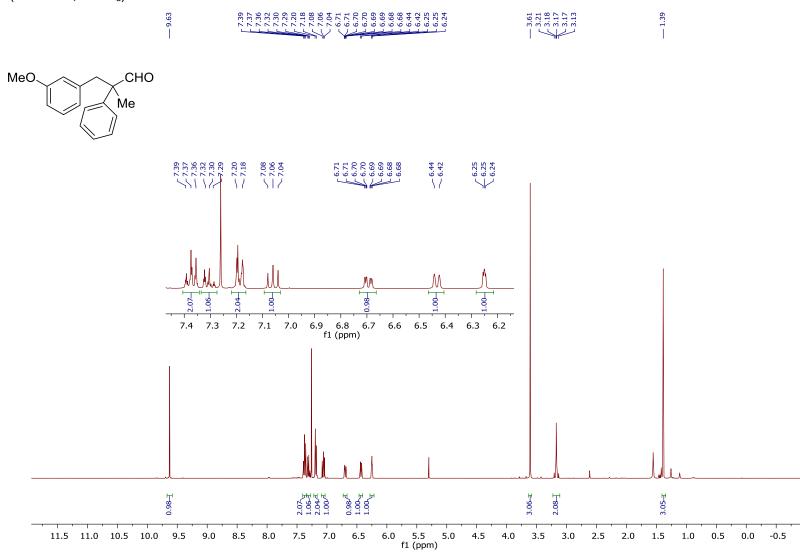
2-(4-methoxybenzyl)-2,6-dimethylhept-5-enal (3ea)



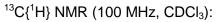
2-(4-methoxybenzyl)-2,6-dimethylhept-5-enal (3ea)

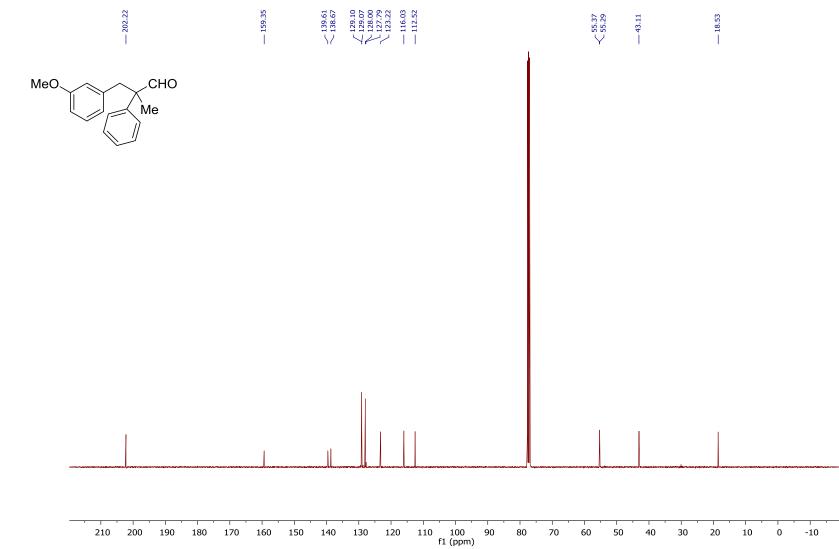


3-(4-methoxyphenyl)-2-methyl-2-phenylpropanal (7aa)

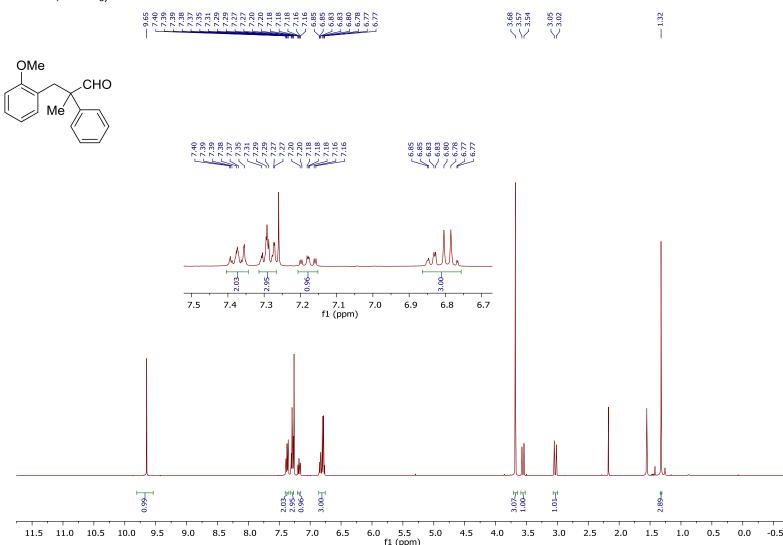


3-(4-methoxyphenyl)-2-methyl-2-phenylpropanal (7aa)

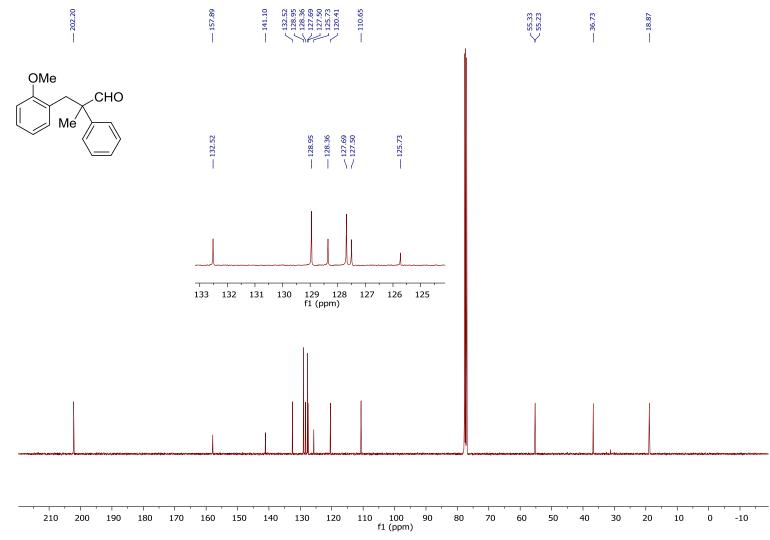




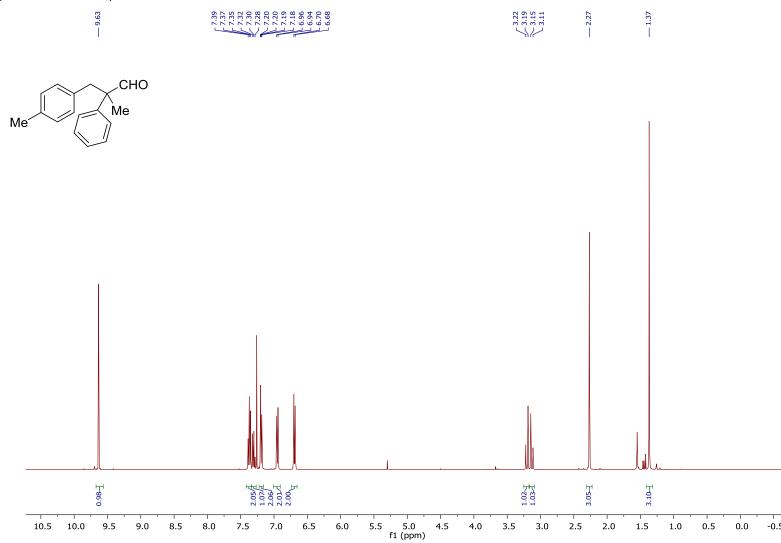
3-(3-methoxyphenyl)-2-methyl-2-phenylpropanal (7ab)



3-(3-methoxyphenyl)-2-methyl-2-phenylpropanal (7ab)

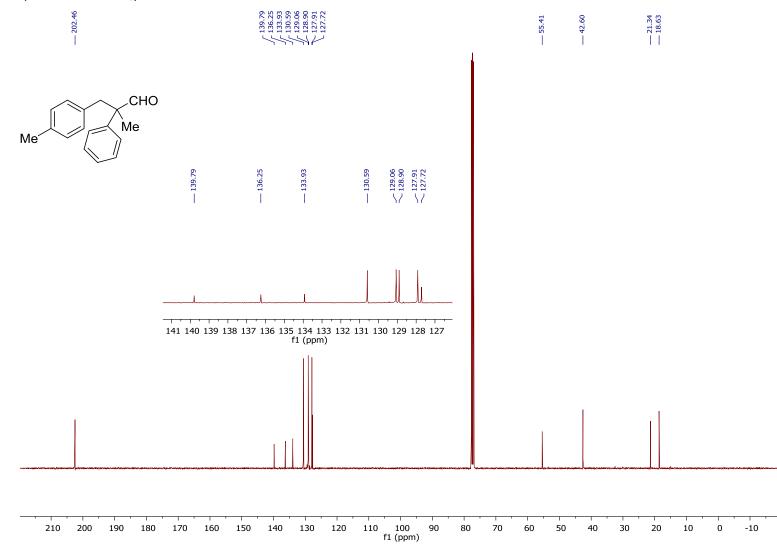


3-(2-methoxyphenyl)-2-methyl-2-phenylpropanal (7ac)

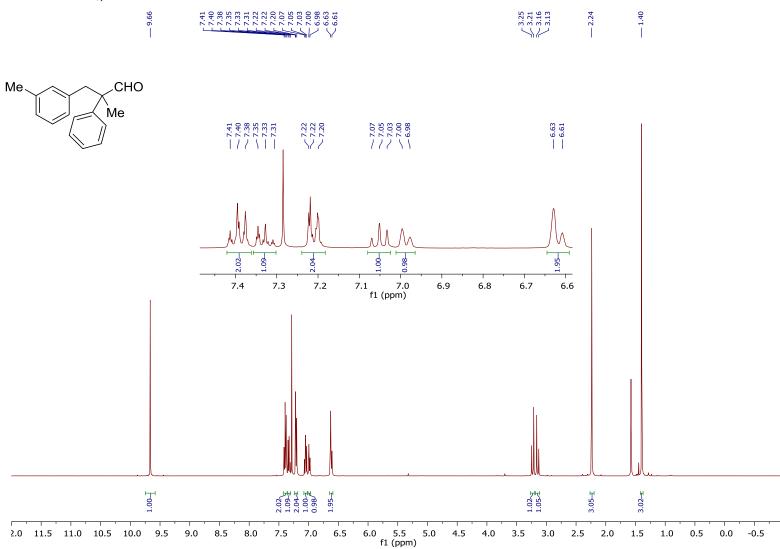


3-(2-methoxyphenyl)-2-methyl-2-phenylpropanal (7ac)

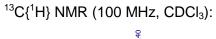


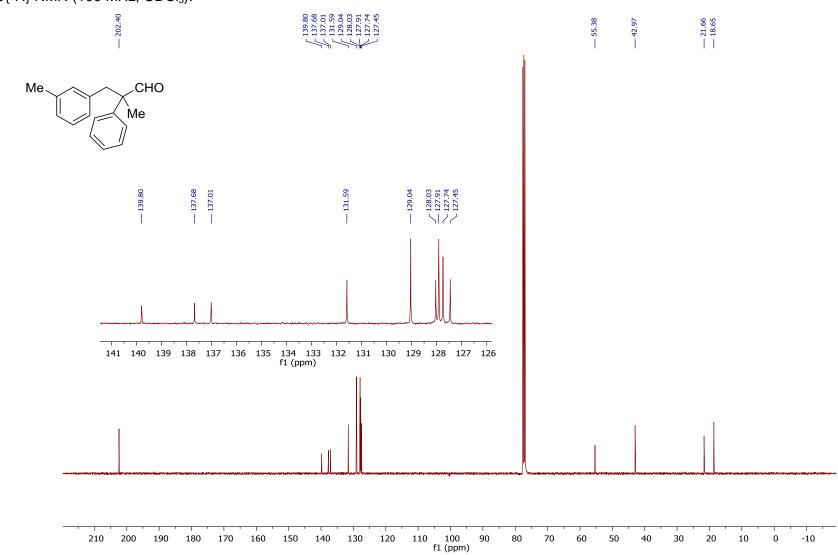


2-methyl-2-phenyl-3-(p-tolyl)propanal (7ad)

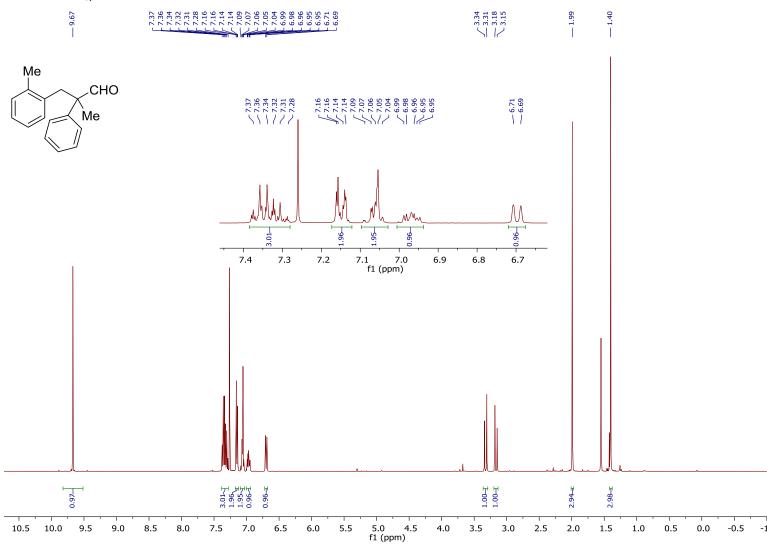


2-methyl-2-phenyl-3-(p-tolyl)propanal (7ad)

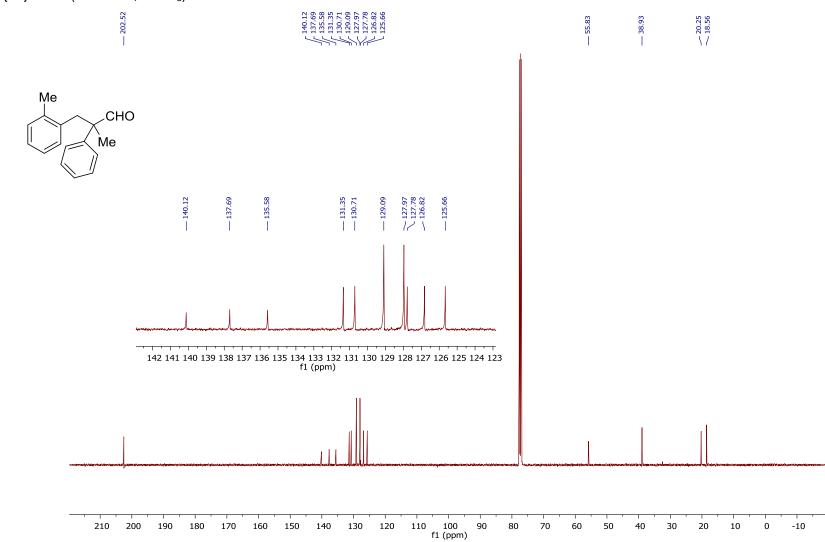




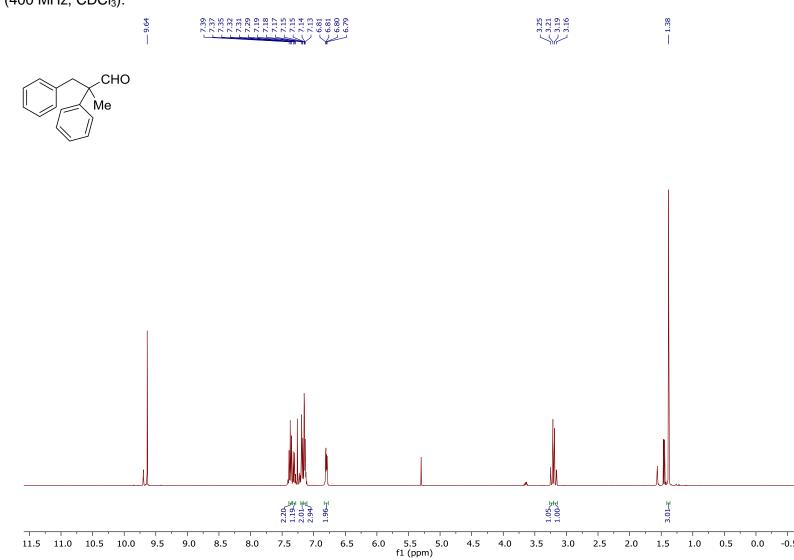
2-methyl-2-phenyl-3-(m-tolyl)propanal (7ae)



2-methyl-2-phenyl-3-(m-tolyl)propanal (7ae)

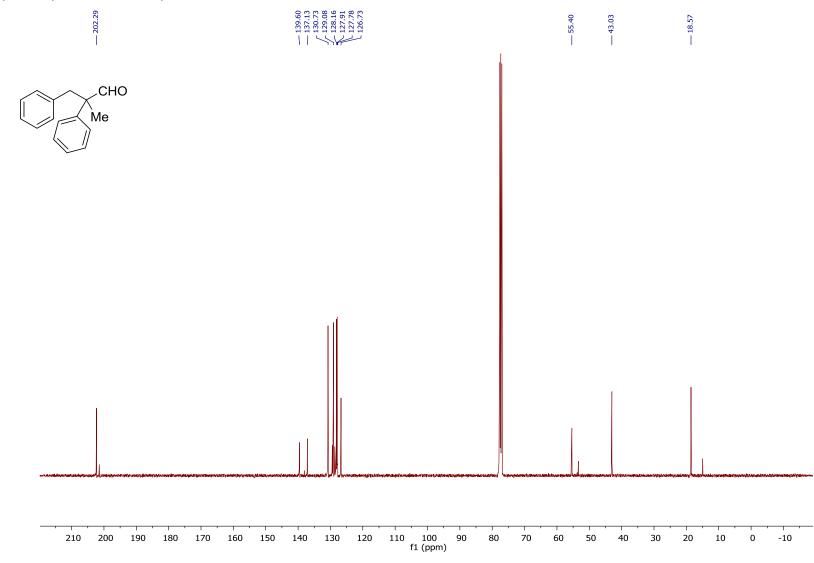


2-methyl-2-phenyl-3-(o-tolyl)propanal (7af)

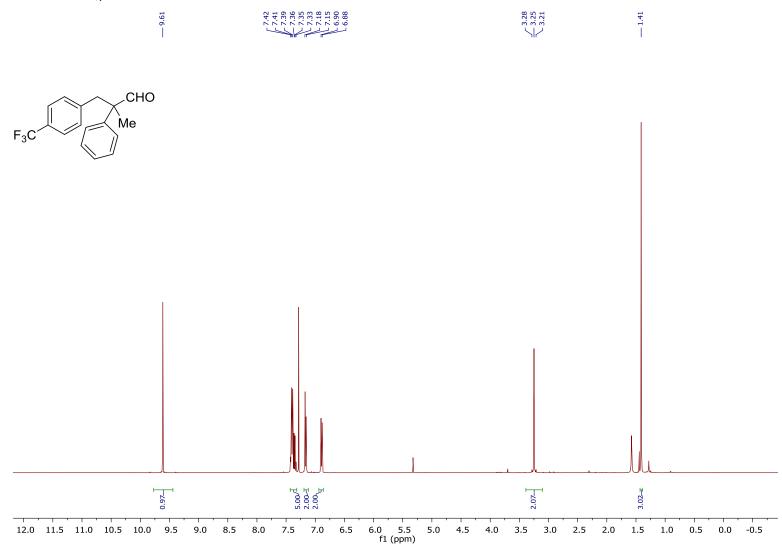


2-methyl-2-phenyl-3-(o-tolyl)propanal (7af)

¹³C{¹H} NMR (100 MHz, CDCl₃):

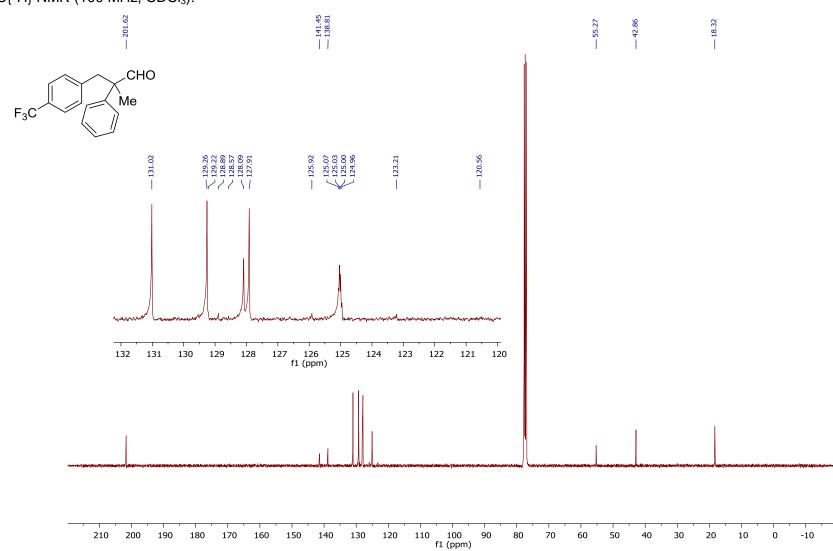


2-methyl-2,3-diphenylpropanal (7ag)



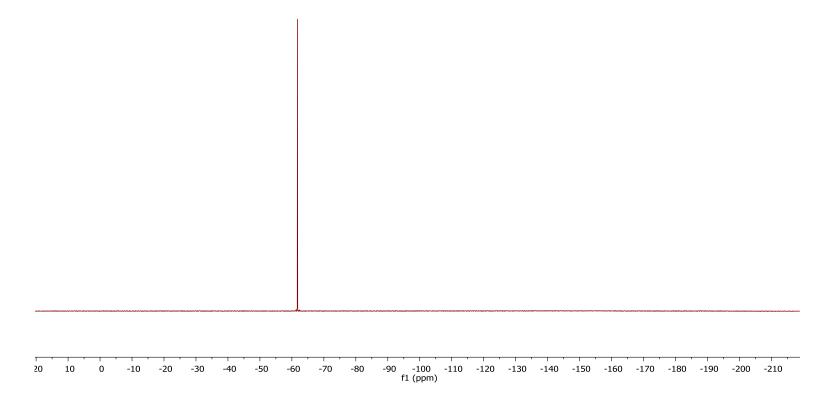
2-methyl-2,3-diphenylpropanal (7ag)

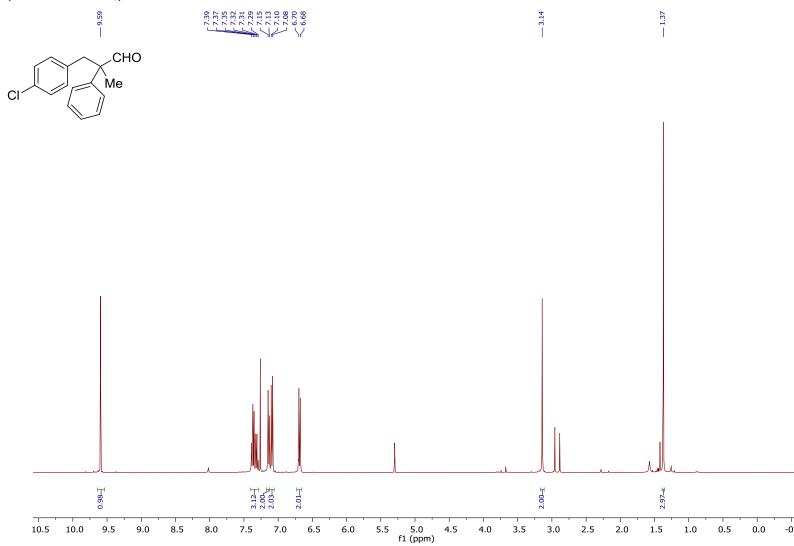
 $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl₃):



2-methyl-2-phenyl-3-(4-(trifluoromethyl)phenyl)propanal (7ah)

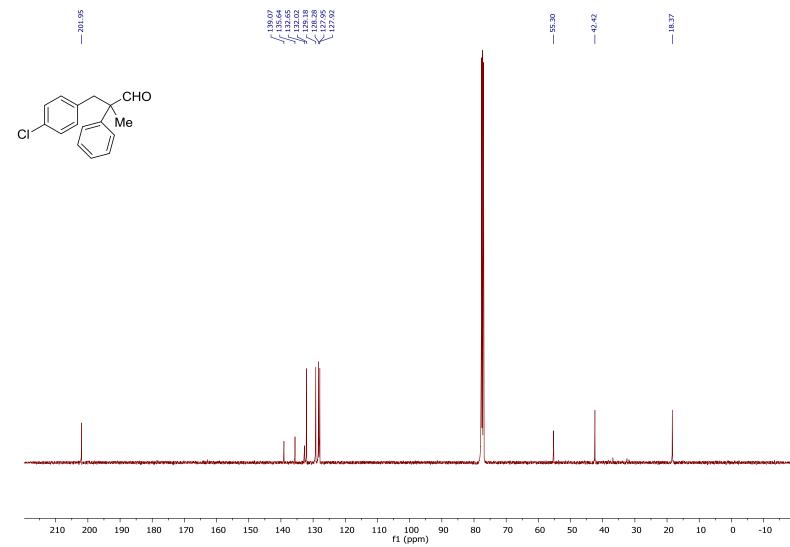
2-methyl-2-phenyl-3-(4-(trifluoromethyl)phenyl)propanal (7ah)



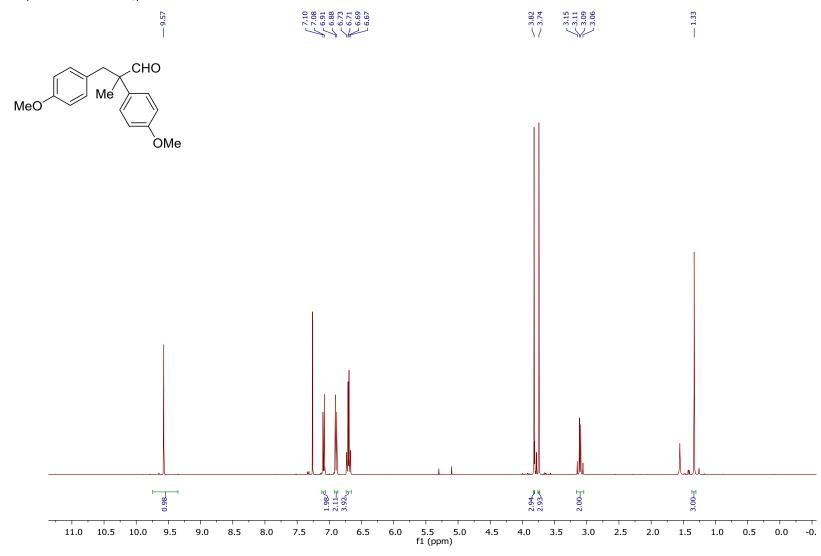

2-methyl-2-phenyl-3-(4-(trifluoromethyl)phenyl)propanal (7ah)

¹⁹F{¹H} NMR (282 MHz, CDCl₃):

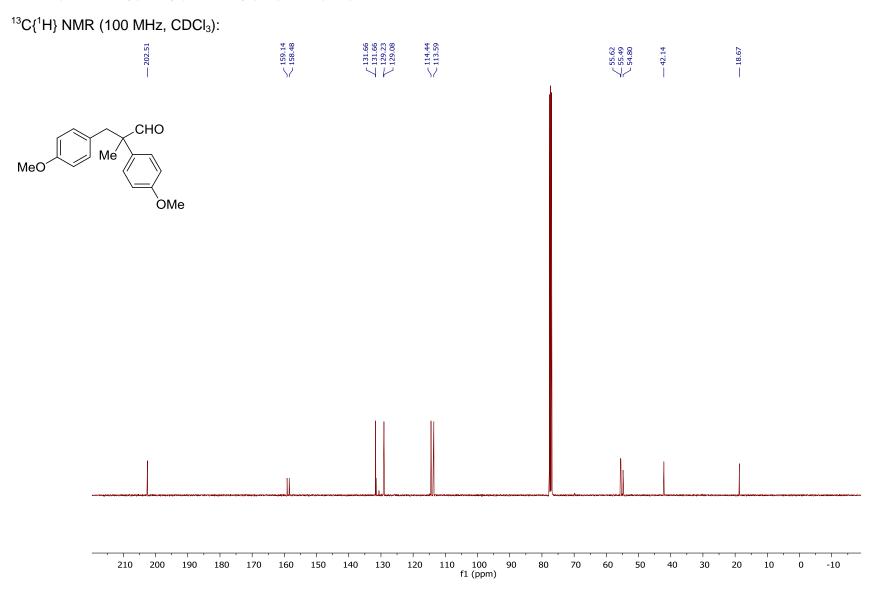
IF973 -2-methyl-2-phenyl-3-(4-(trifluoromethyl)phenyl)propanat/Fluorine F19CPD $\vec{\phi}$

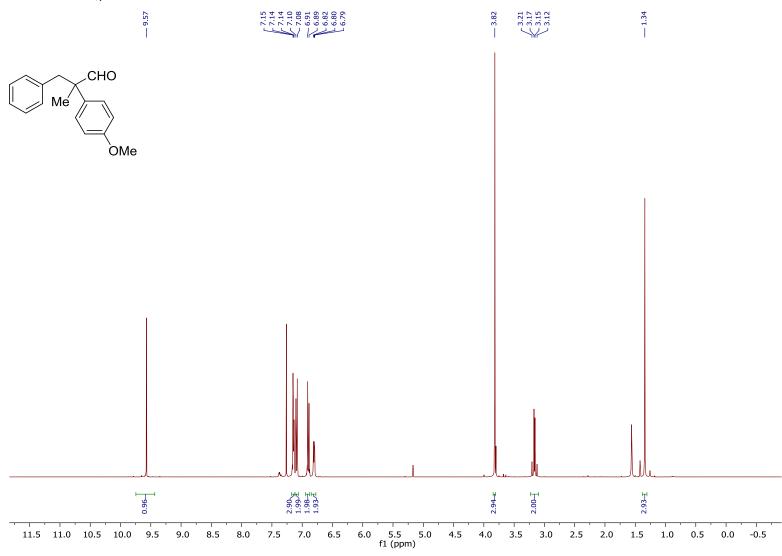


3-(4-chlorophenyl)-2-methyl-2-phenylpropanal (7ai)

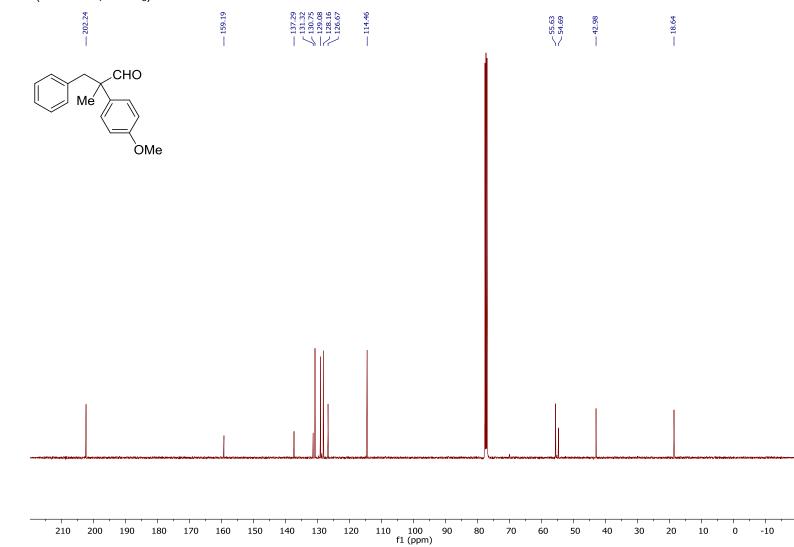


3-(4-chlorophenyl)-2-methyl-2-phenylpropanal (7ai)

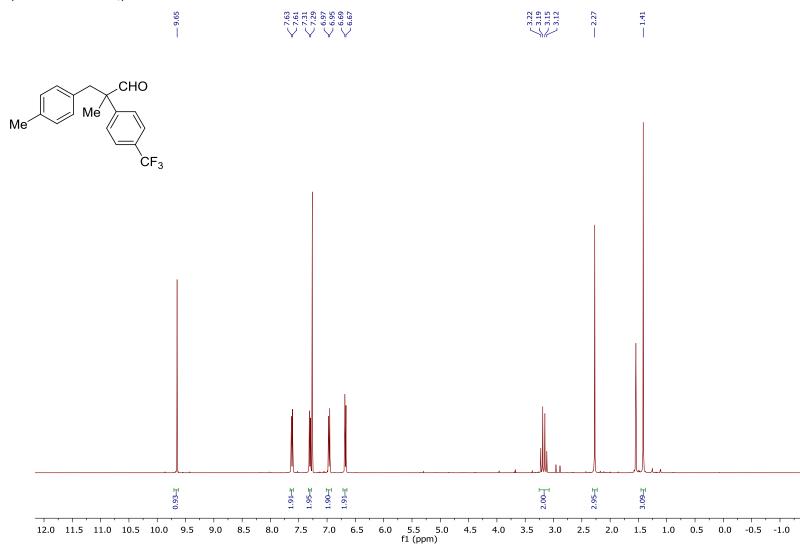



2,3-bis(4-methoxyphenyl)-2-methylpropanal (7ba)

2,3-bis(4-methoxyphenyl)-2-methylpropanal (7ba)

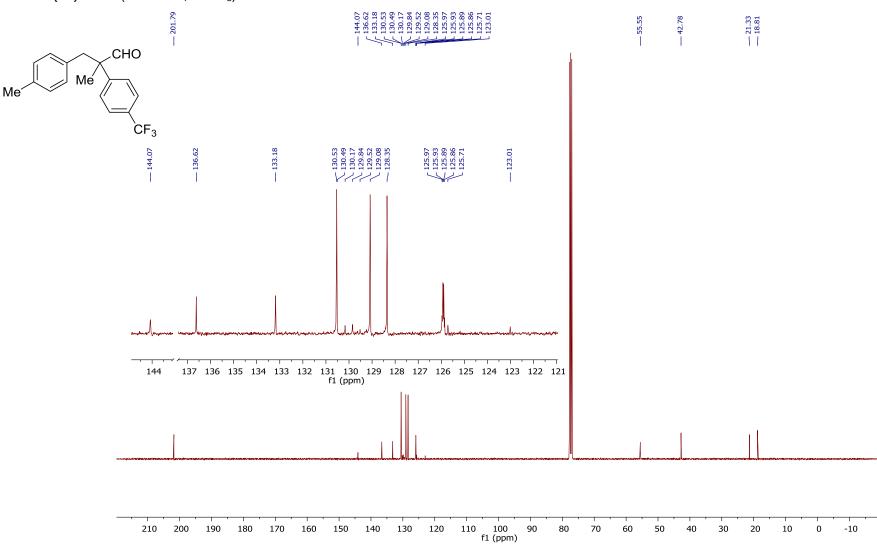


2-(4-methoxyphenyl)-2-methyl-3-phenylpropanal (7bg)

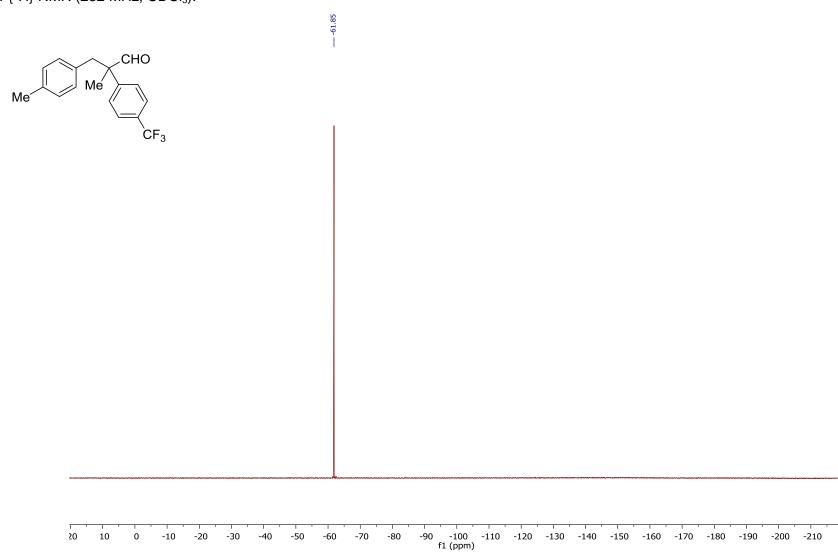


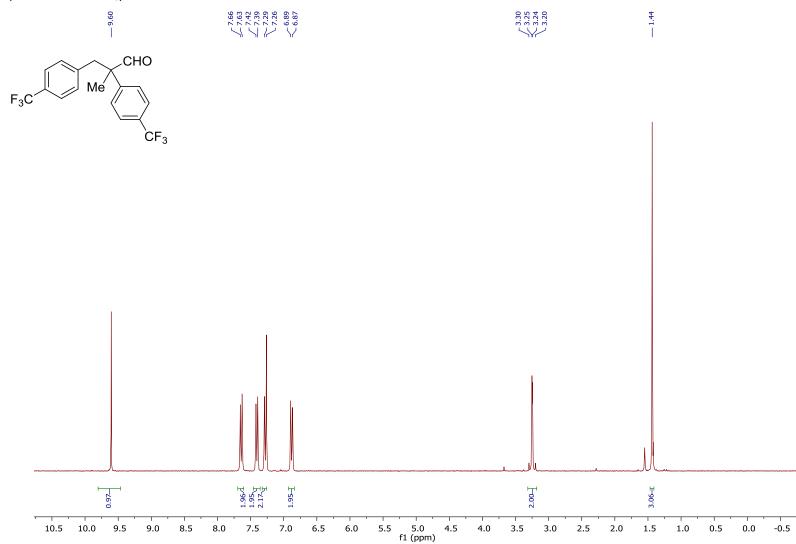
2-(4-methoxyphenyl)-2-methyl-3-phenylpropanal (7bg)

¹³C{¹H} NMR (100 MHz, CDCl₃):



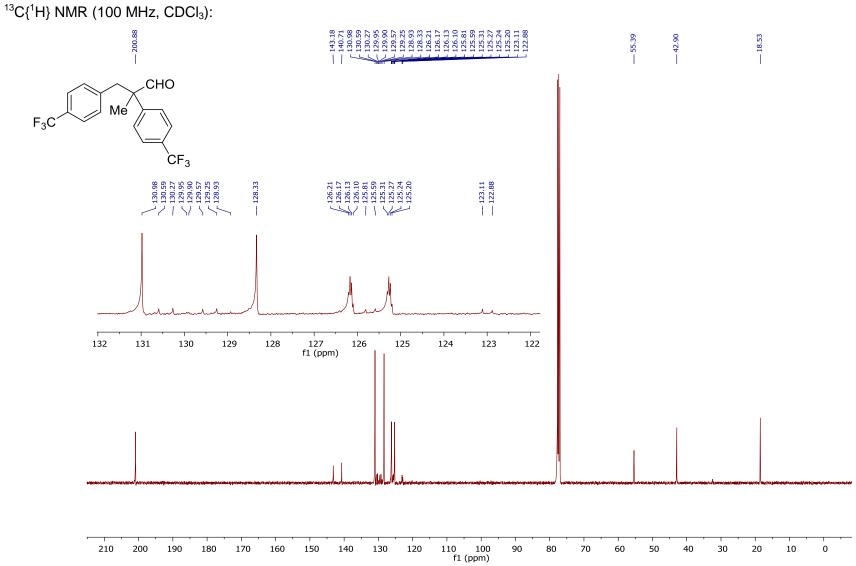
2-methyl-3-(p-tolyl)-2-(4-(trifluoromethyl)phenyl)propanal (7cd)


2-methyl-3-(p-tolyl)-2-(4-(trifluoromethyl)phenyl)propanal (7cd)



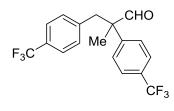
2-methyl-3-(p-tolyl)-2-(4-(trifluoromethyl)phenyl)propanal (7cd)

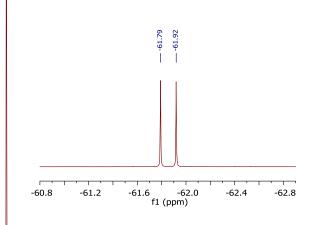
 $^{19}\text{F}\{^1\text{H}\}$ NMR (282 MHz, CDCl₃):

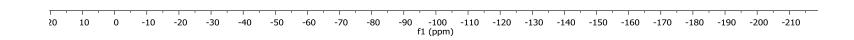


2-methyl-2,3-bis(4-(trifluoromethyl)phenyl)propanal (7ch)

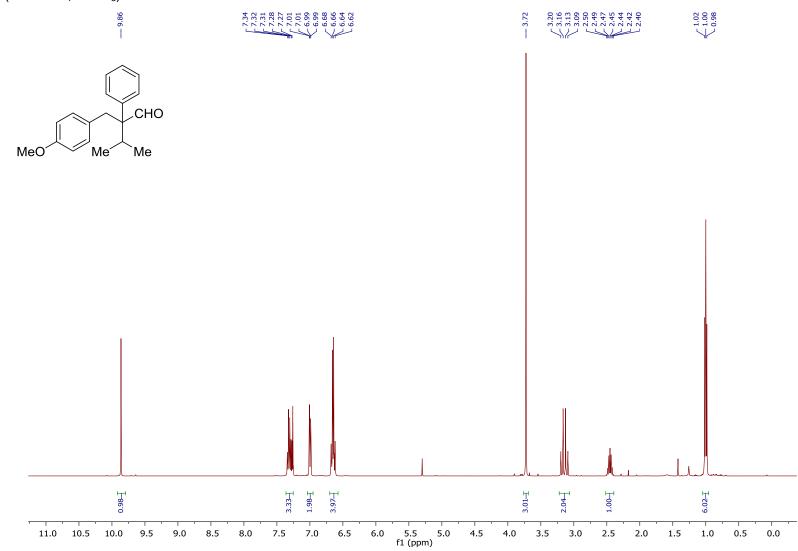
2-methyl-2,3-bis(4-(trifluoromethyl)phenyl)propanal (7ch)

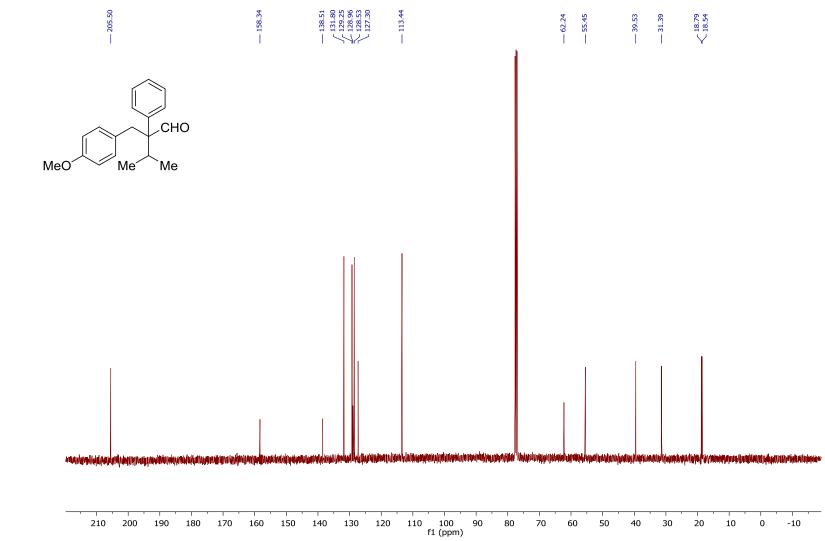





2-methyl-2,3-bis(4-(trifluoromethyl)phenyl)propanal (7ch)

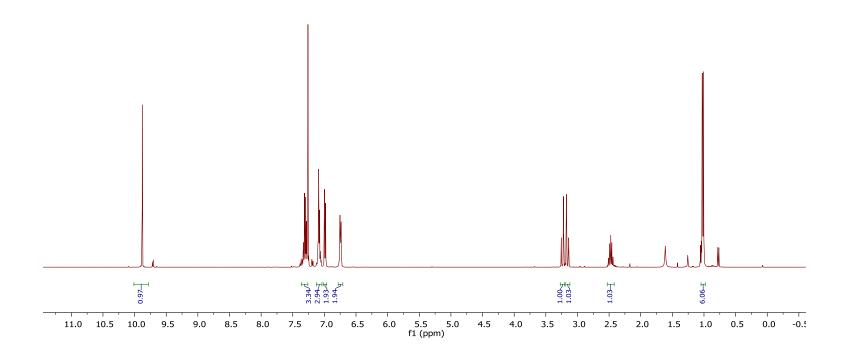
¹⁹F{¹H} NMR (282 MHz, CDCl₃):

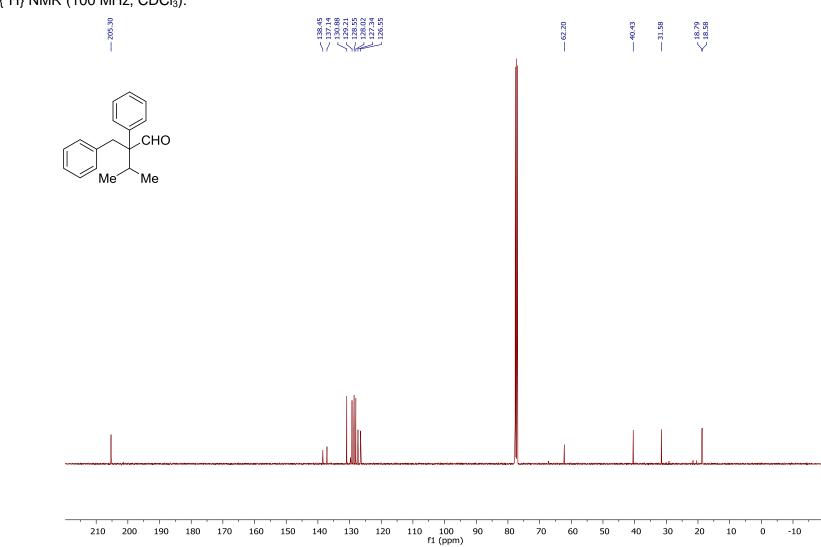


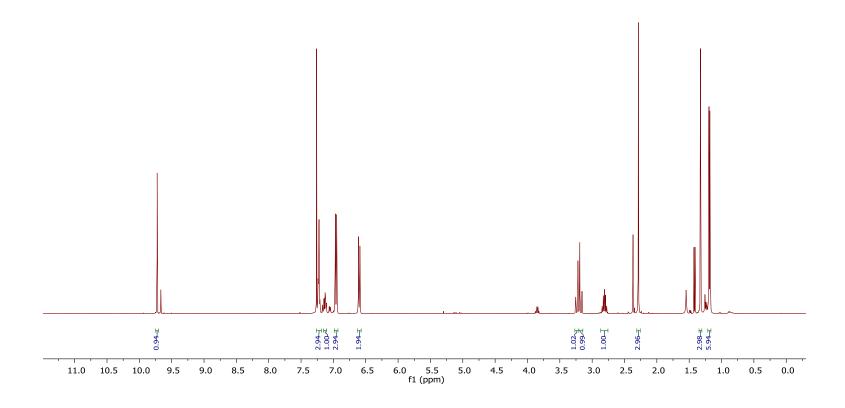


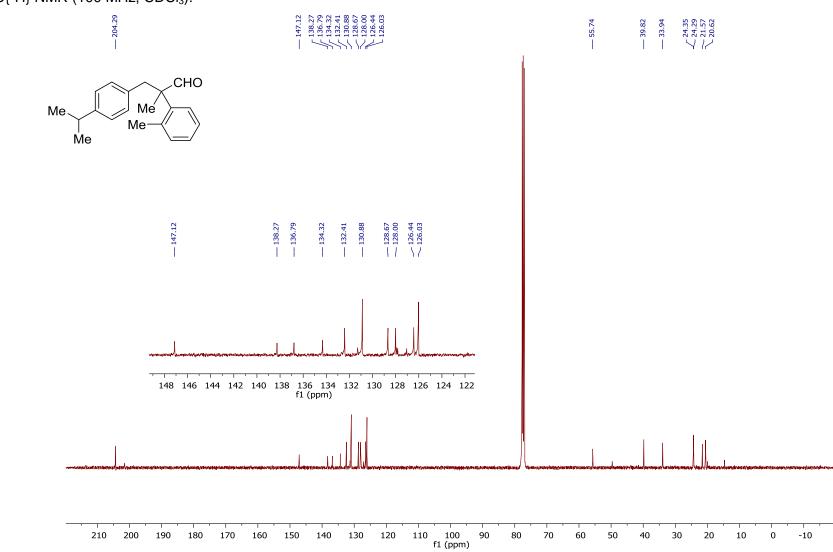
2-(4-methoxybenzyl)-3-methyl-2-phenylbutanal (7da)



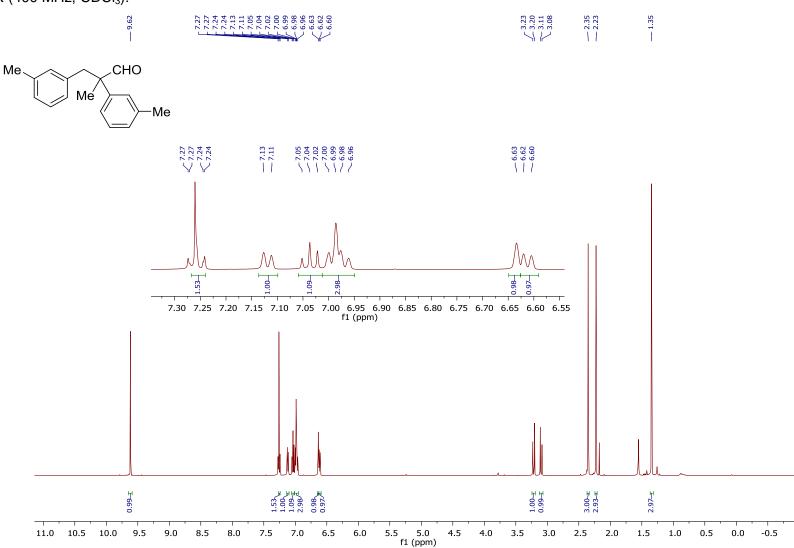

2-(4-methoxybenzyl)-3-methyl-2-phenylbutanal (7da)


2-benzyl-3-methyl-2-phenylbutanal (7dg)

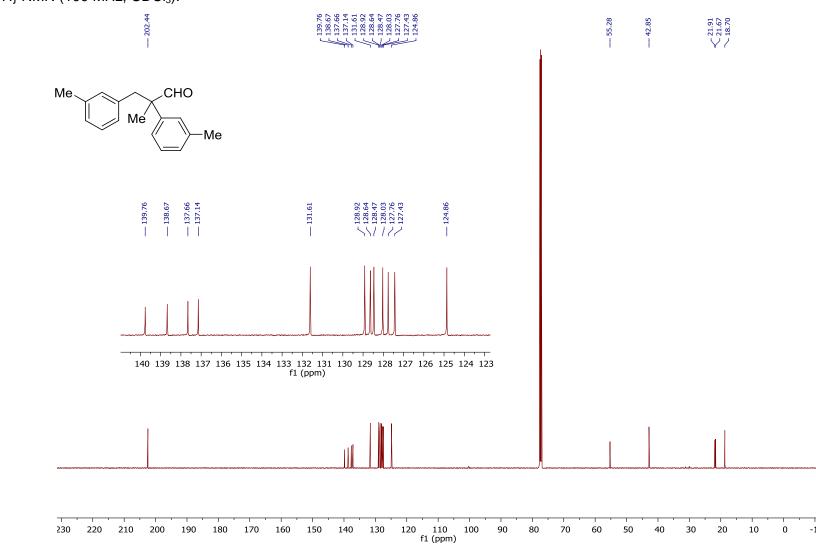

2-benzyl-3-methyl-2-phenylbutanal (7dg)



3-(4-isopropylphenyl)-2-methyl-2-(o-tolyl)propanal (7ej)

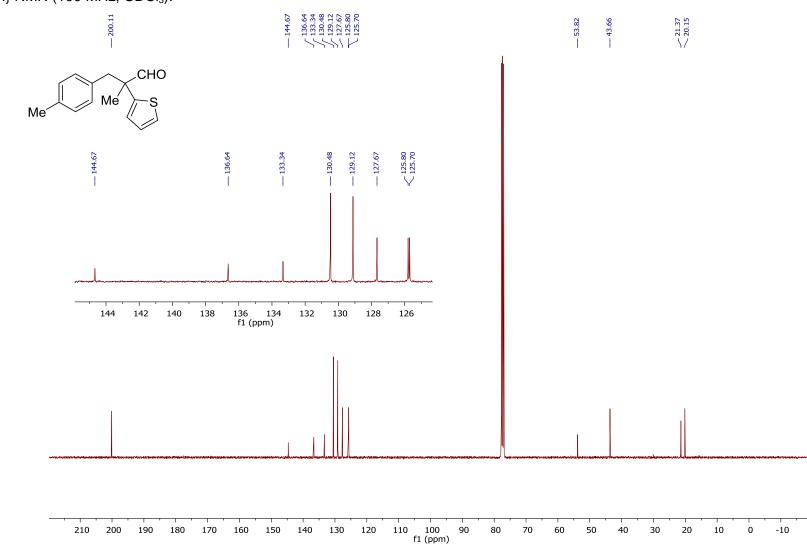


3-(4-isopropylphenyl)-2-methyl-2-(o-tolyl)propanal (7ej)

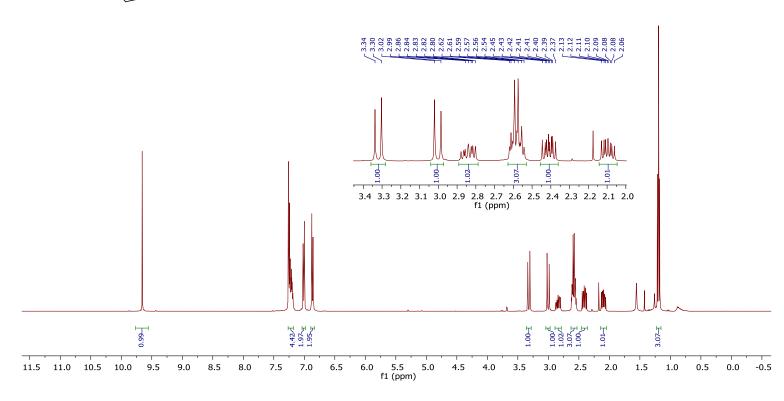


2-methyl-2,3-di-m-tolylpropanal (7fe)

2-methyl-2,3-di-m-tolylpropanal (7fe)

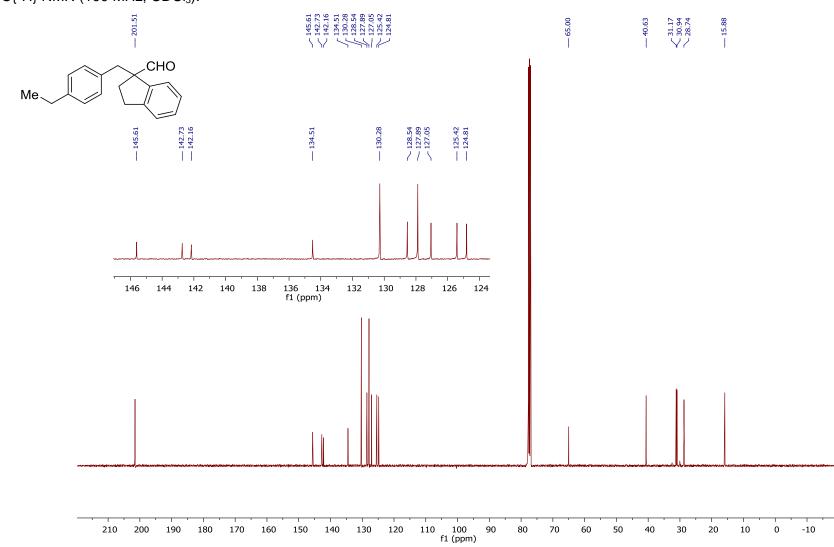


2-methyl-2-(thiophen-2-yl)-3-(p-tolyl)propanal (7ge)

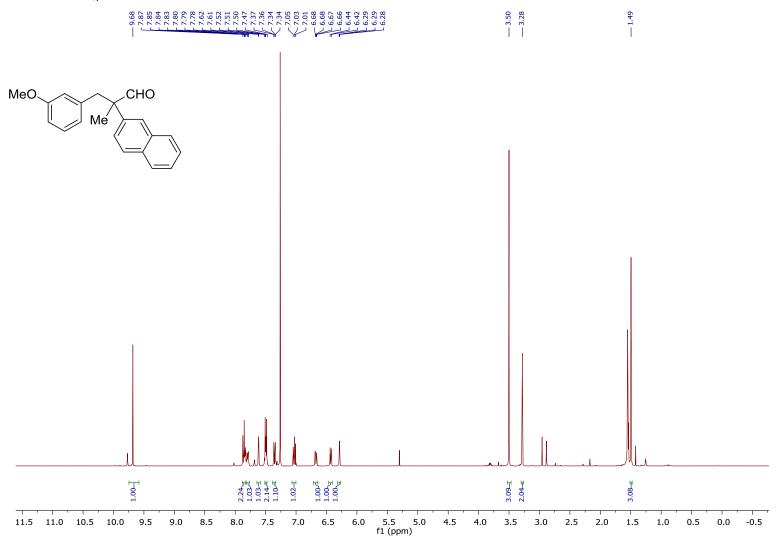


2-methyl-2-(thiophen-2-yl)-3-(p-tolyl)propanal (7ge)

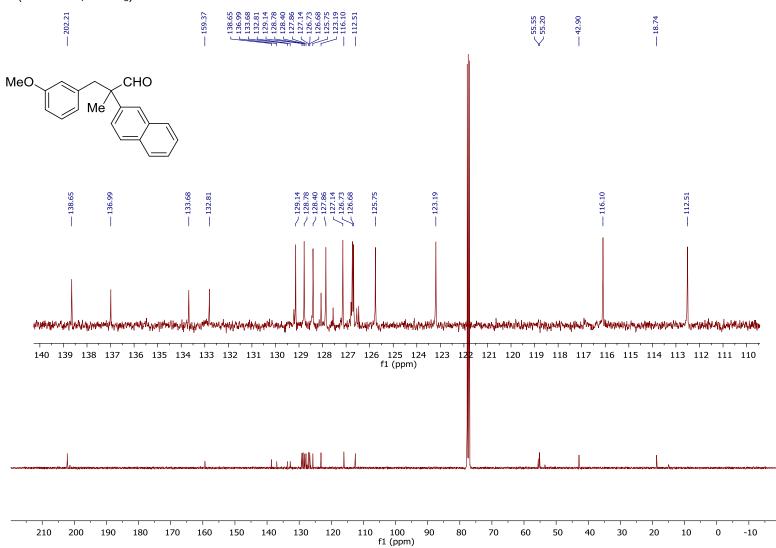


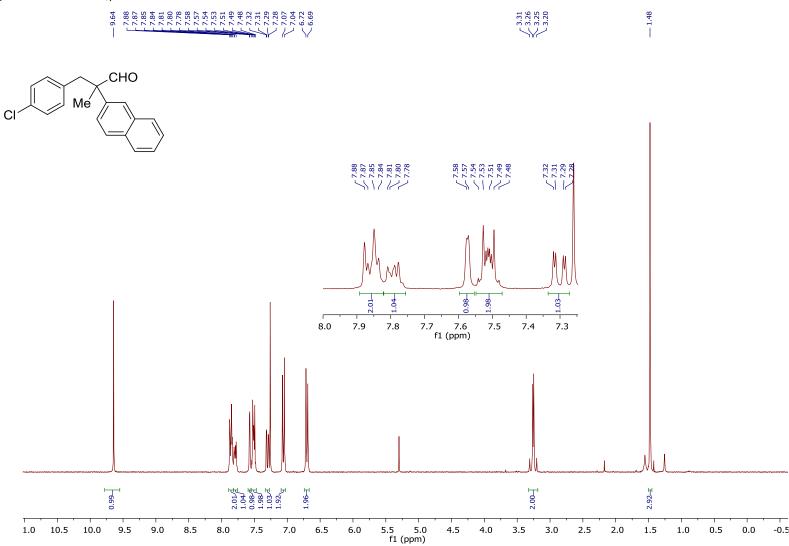


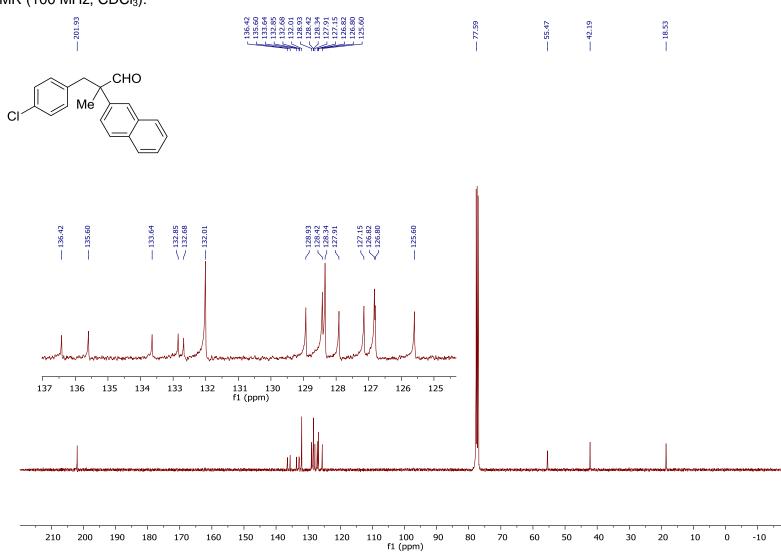
1-(4-ethylbenzyl)-2,3-dihydro-1H-indene-1-carbaldehyde (7hk)

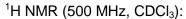


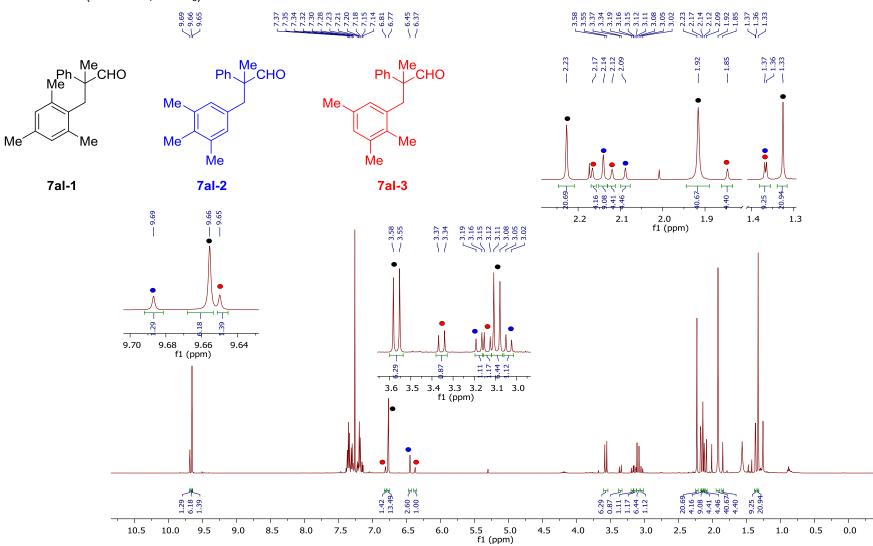
1-(4-ethylbenzyl)-2,3-dihydro-1H-indene-1-carbaldehyde (7hk)



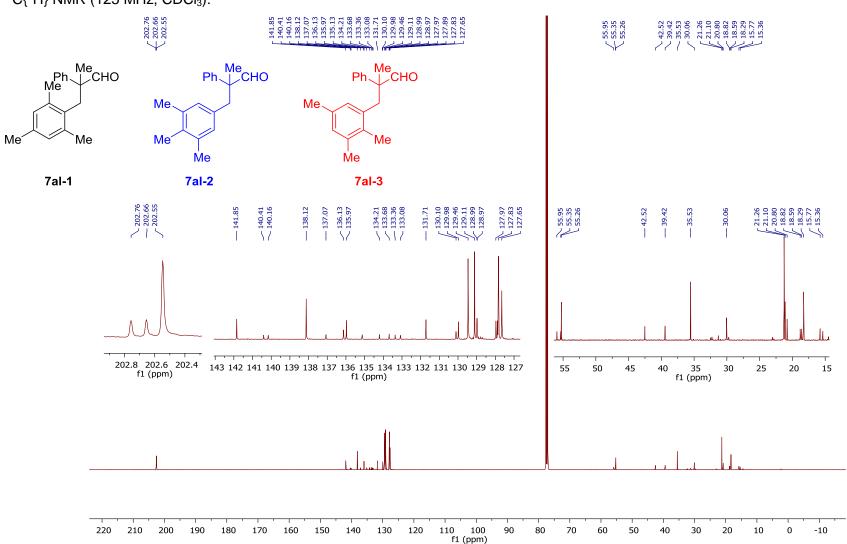

3-(3-methoxyphenyl)-2-methyl-2-(naphthalen-2-yl)propanal (7ib)

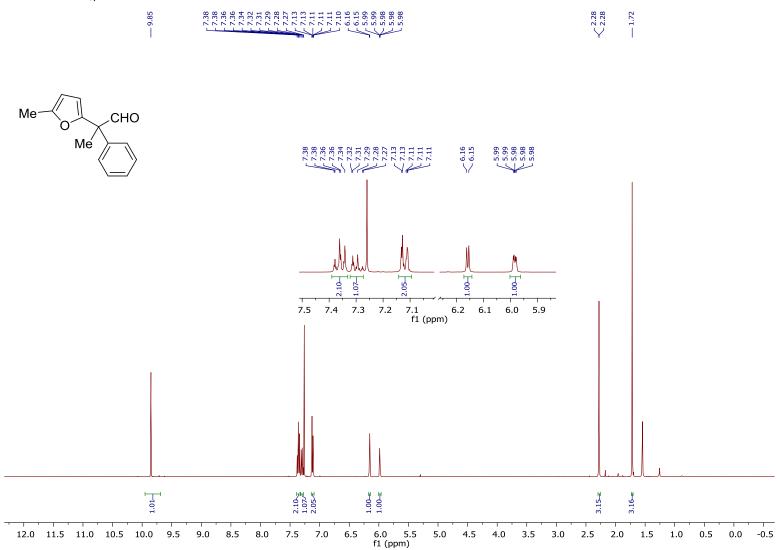

3-(3-methoxyphenyl)-2-methyl-2-(naphthalen-2-yl)propanal (7ib)


3-(4-chlorophenyl)-2-methyl-2-(naphthalen-2-yl)propanal (7ii)

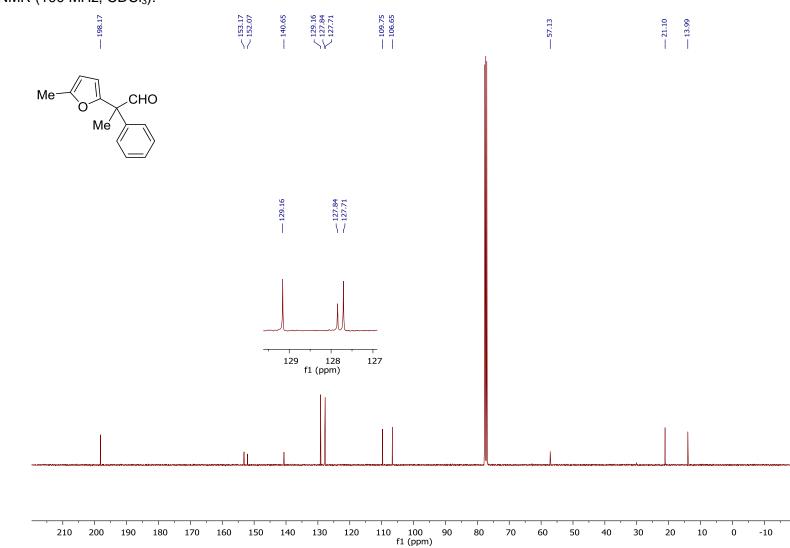


3-(4-chlorophenyl)-2-methyl-2-(naphthalen-2-yl)propanal (7ii)

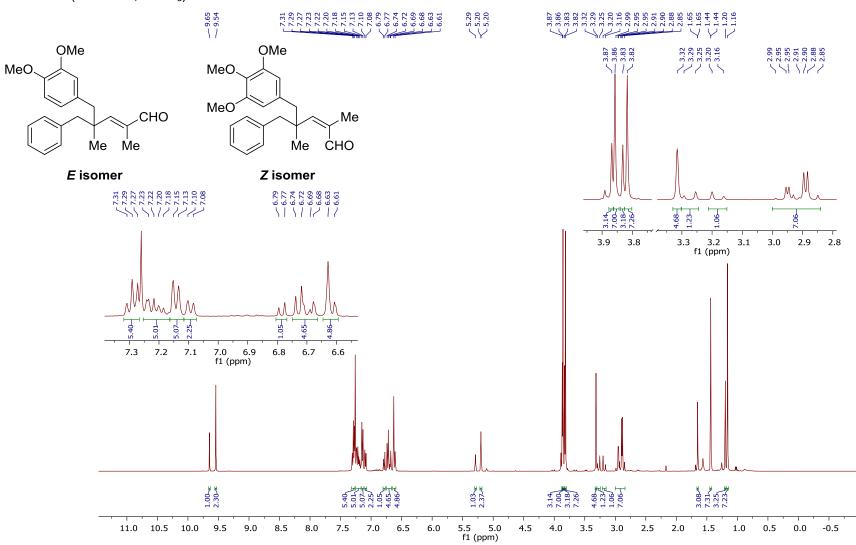

Mixture of isomers (7al-1, 7al-2, 7al-3)



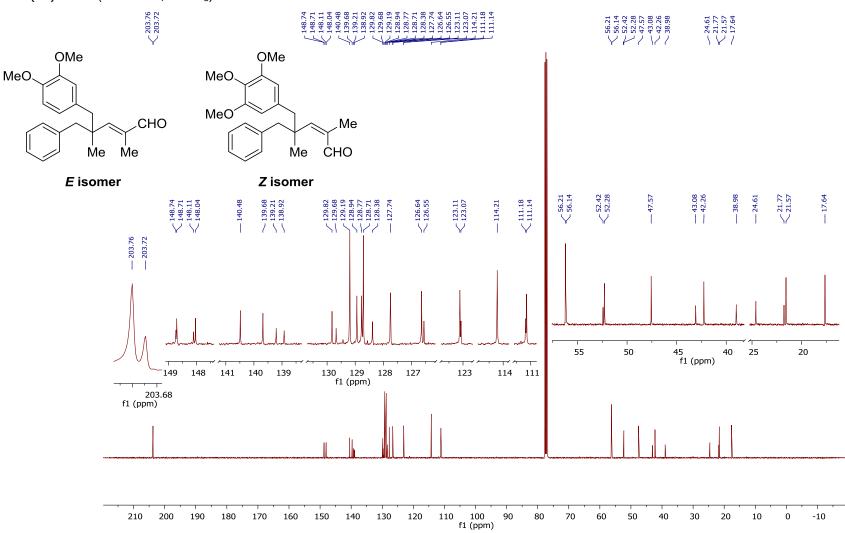
Mixture of isomers (7al-1, 7al-2, 7al-3)

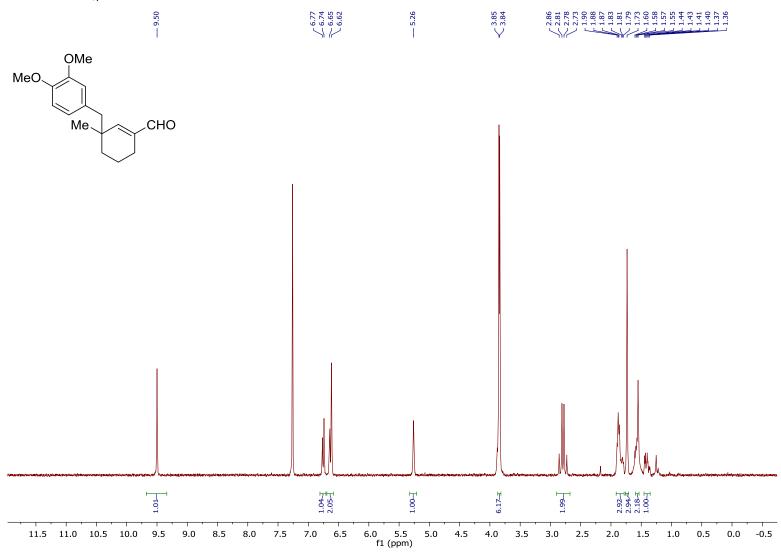


2-(5-methylfuran-2-yl)-2-phenylpropanal (7am)

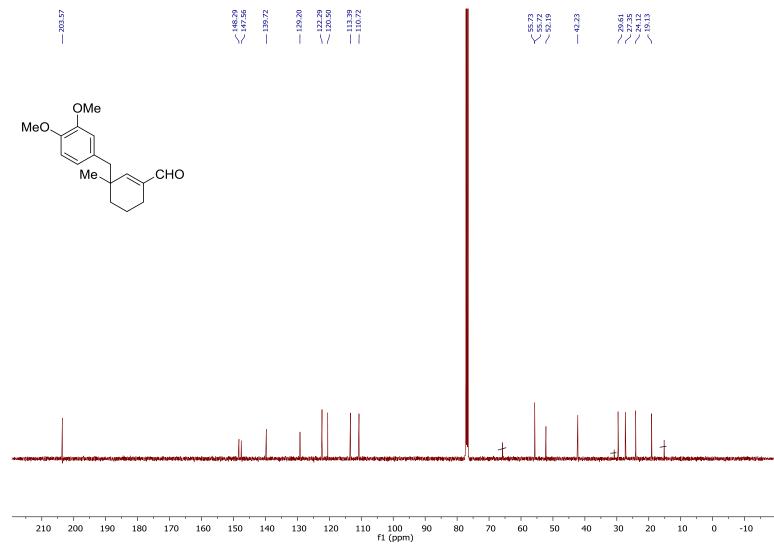


2-(5-methylfuran-2-yl)-2-phenylpropanal (7am)

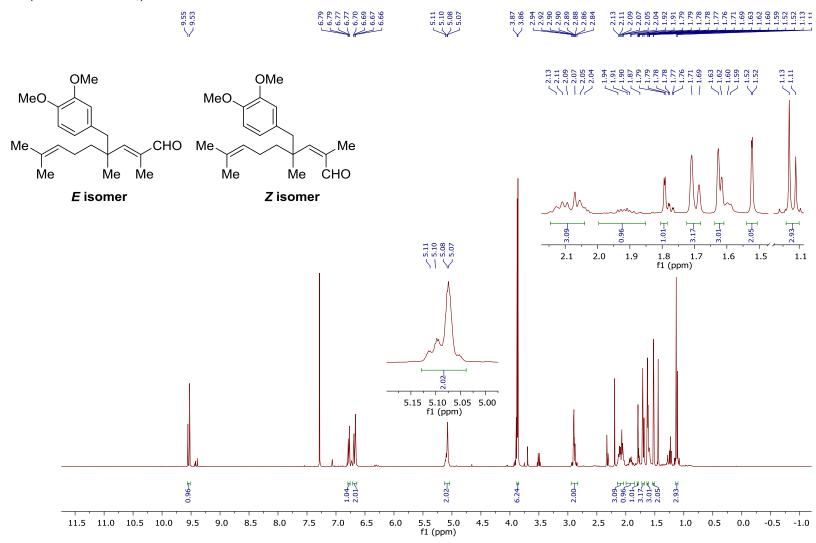



(E/Z)-4-benzyl-2,4-dimethyl-5-(3,4-dimethoxyphenyl)pent-2-enal (12an)

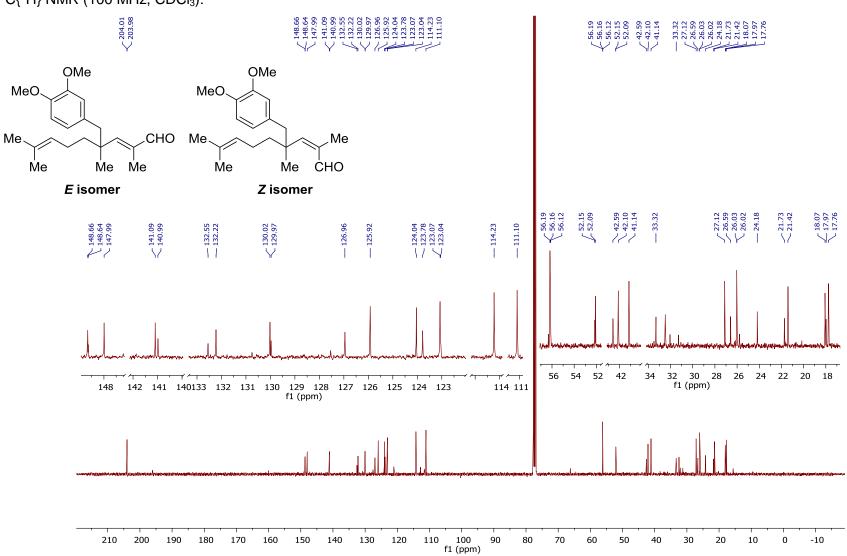
(E/Z)-4-benzyl-2,4-dimethyl-5-(3,4-dimethoxyphenyl)pent-2-enal (12an)

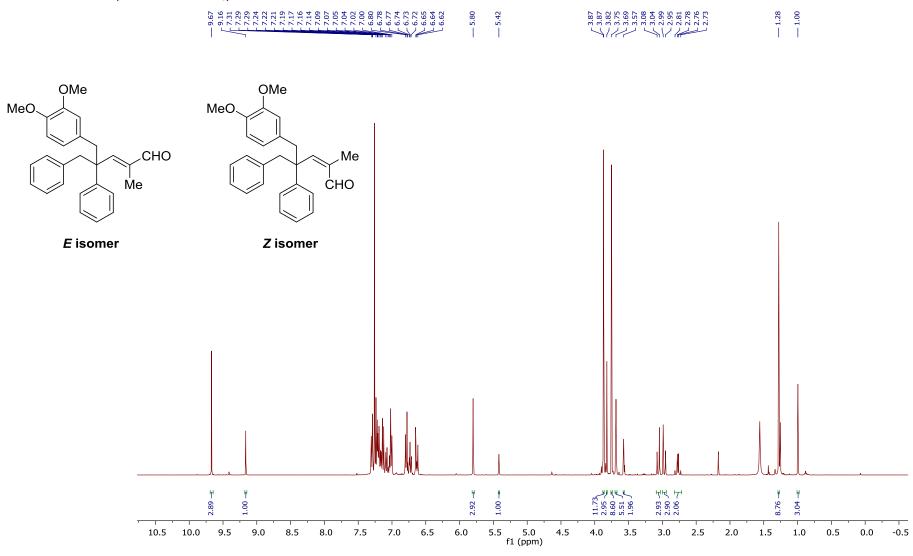


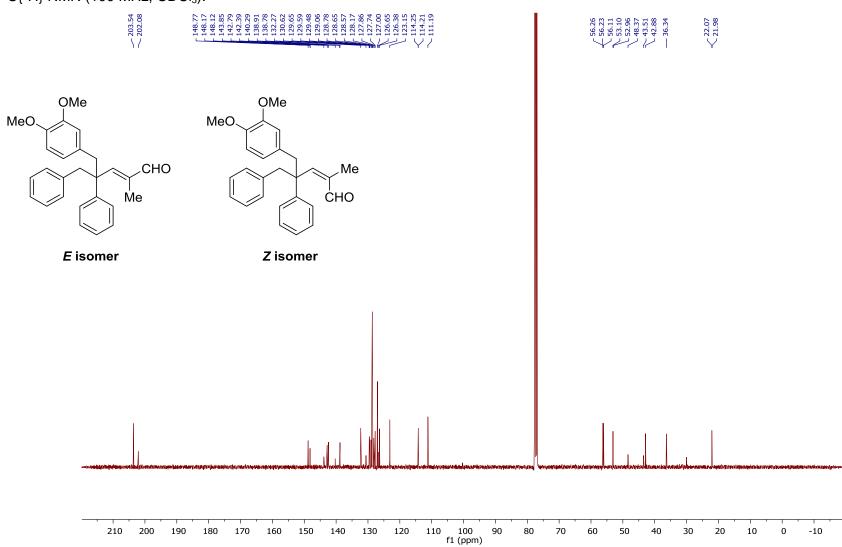
3-(3,4-dimethoxybenzyl)-3-methylcyclohex-1-enecarbaldehyde (12bn)



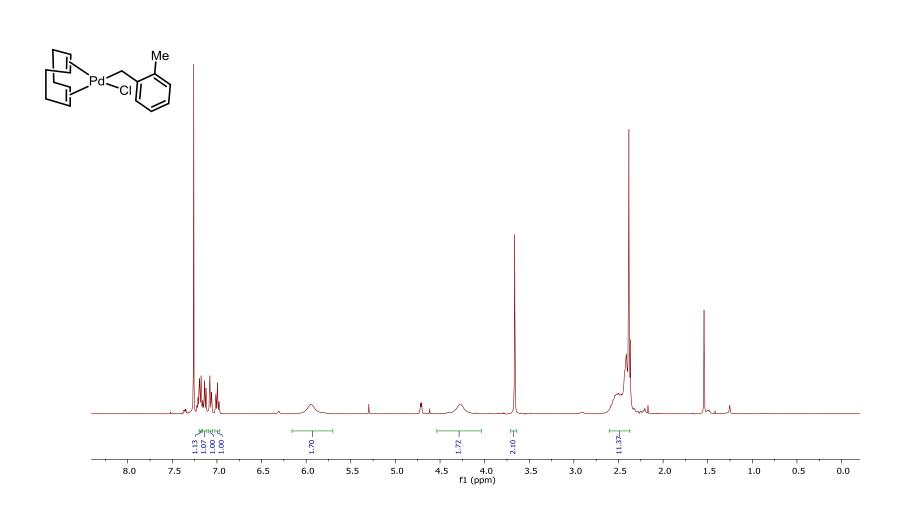
3-(3,4-dimethoxybenzyl)-3-methylcyclohex-1-enecarbaldehyde (12bn)



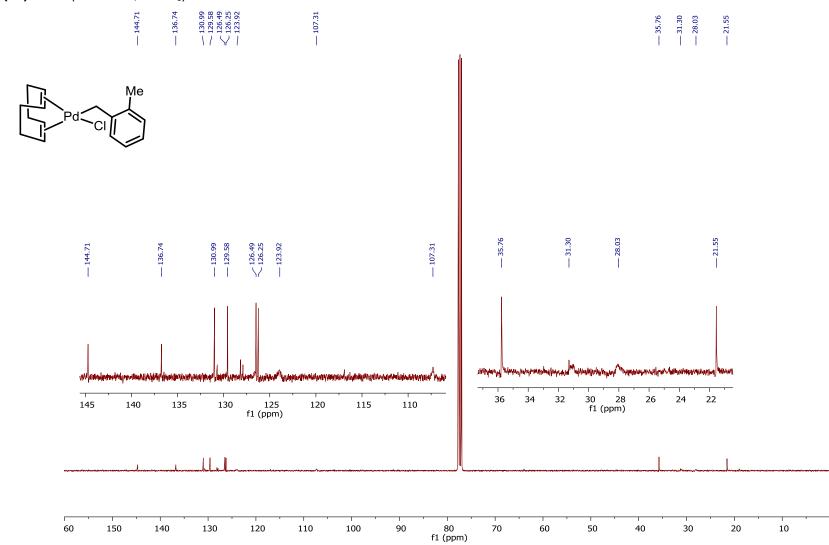

(E/Z)-4-(3,4-dimethoxybenzyl)-2,4,8-trimethylnona-2,7-dienal (12cn)


(E/Z)-4-(3,4-dimethoxybenzyl)-2,4,8-trimethylnona-2,7-dienal (12cn)

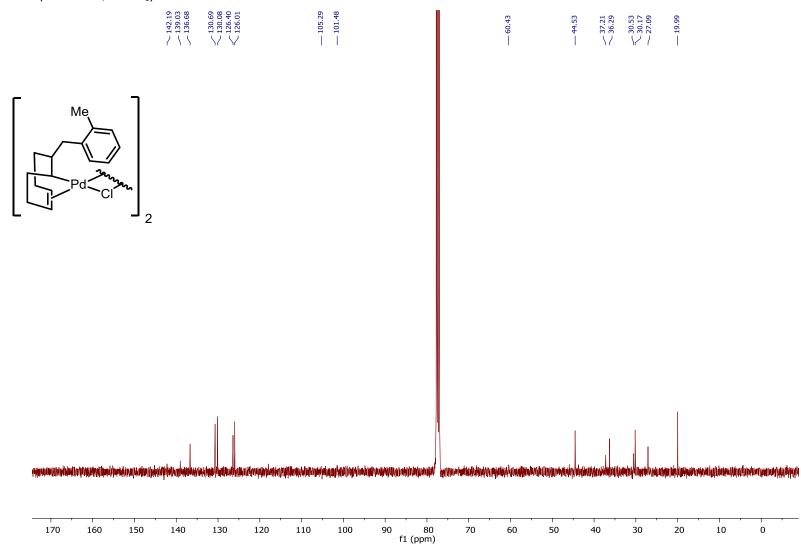
(E/Z)-4-benzyl-5-(3,4-dimethoxyphenyl)-2-methyl-4-phenylpent-2-enal (12dn)

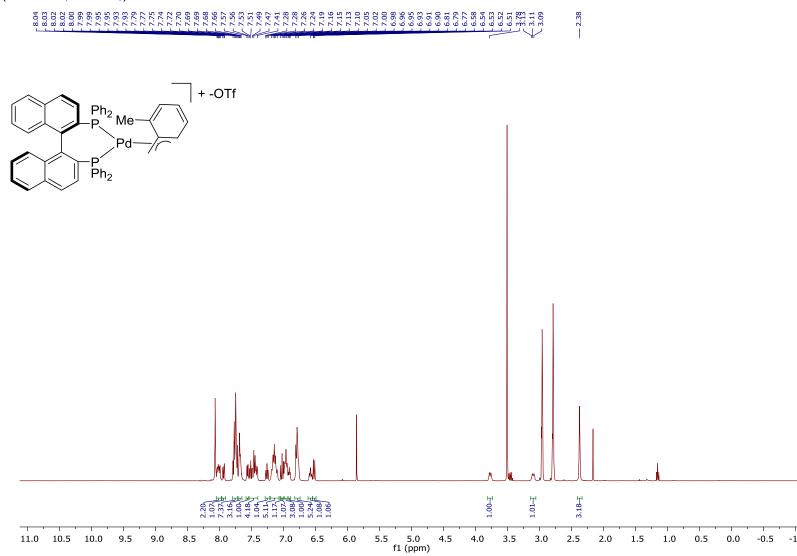


(E/Z)-4-benzyl-5-(3,4-dimethoxyphenyl)-2-methyl-4-phenylpent-2-enal (12dn)

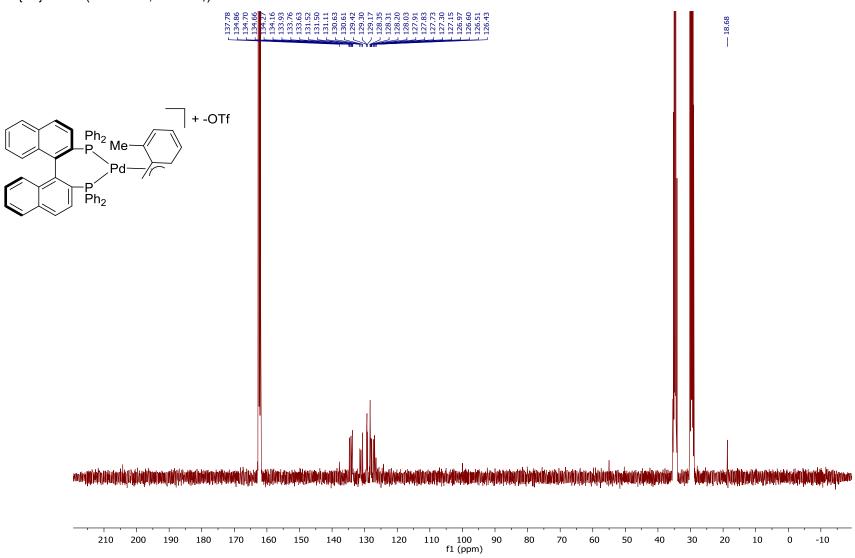


Chloro[(1,2,5,6-η)-1,5-cyclooctadiene][(2-methylphenyl)methyl]-palladium (9)

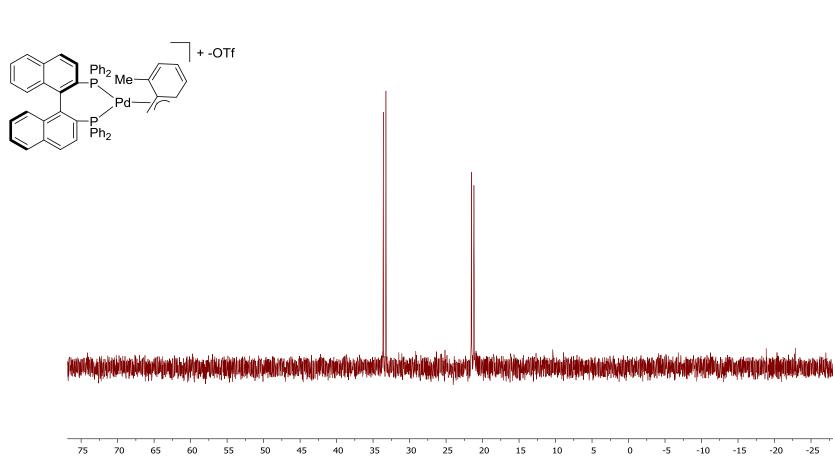

Chloro[(1,2,5,6-η)-1,5-cyclooctadiene][(2-methylphenyl)methyl]-palladium (9)

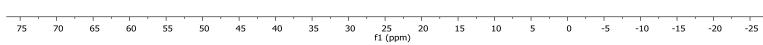


Di-μ-chloro[(1,4,5-η)-8-(2-methylbenzyl)-4-cycloocten-1-yl]dipalladium

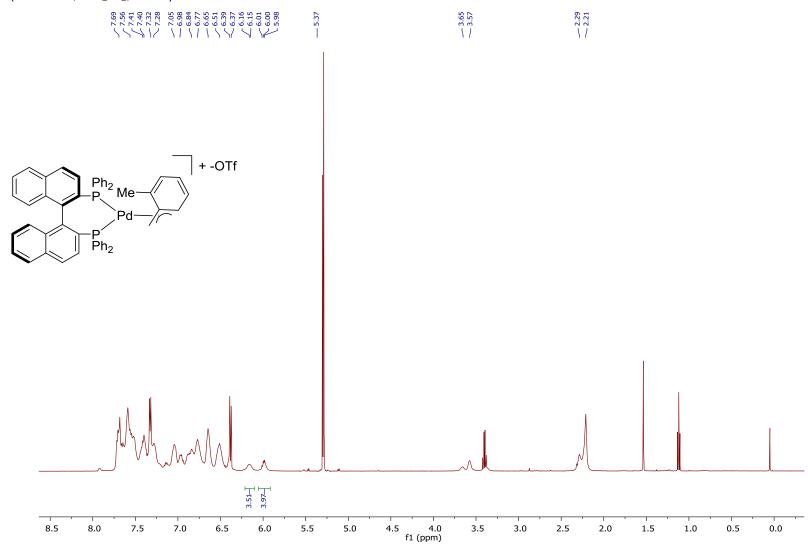


Di-μ-chloro[(1,4,5-η)-8-(2-methylbenzyl)-4-cycloocten-1-yl]dipalladium



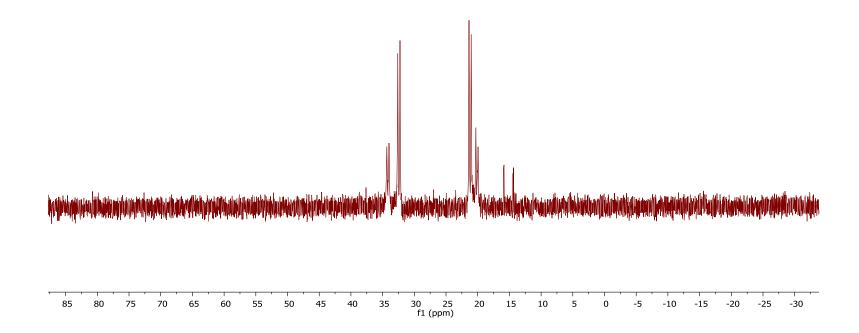

 $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, DMF- d_7):

 $^{31}P\{^{1}H\}$ NMR (162 MHz, DMF- d_{7}):

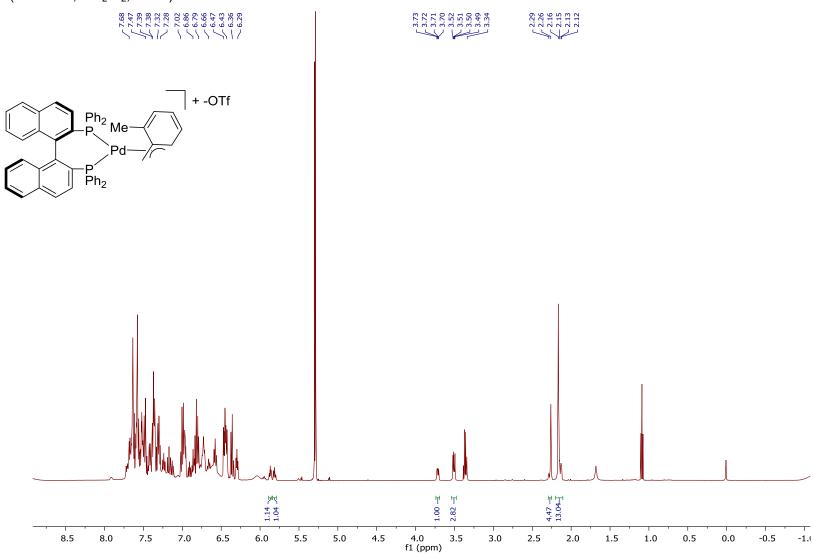

¹⁹F{¹H} NMR (282 MHz, CD₂Cl₂):

--78.09

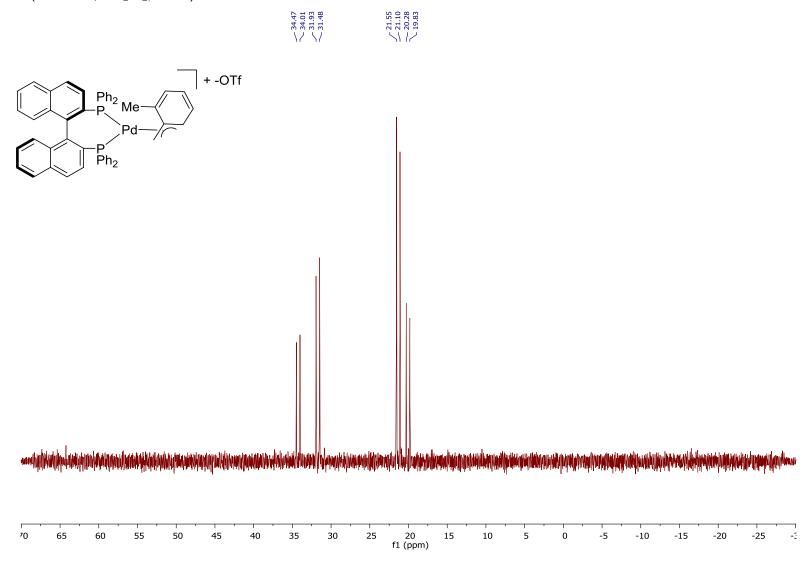
-70 -80


-90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹HNMR (500 MHz, CD₂Cl₂, 298K):



³¹P{¹H} NMR (121 MHz, CD₂Cl₂, 298K):



¹HNMR (500 MHz, CD₂Cl₂, 243K):

³¹P{¹H} NMR (121 MHz, CD₂Cl₂, 243K):

