Electronic Supplementary Information, Part I: 3 Compounds of Haloperidol type.

Note: In all Tables the non-revised output of the XD program (ref. 9) was used. With respect to the significance of the given data we refer to Grabowsky et al., Acta Cryst. 2009, B65, 488, where transferability indices were derived as 0.09 e Å⁻³ and 2.8 e Å⁻⁵ for the ED's and Laplacians at the bond critical points and 0.7 Å³ and 0.11 e for the atomic volumes and charges. These quantities can serve as an estimate of the significance of the listed data.

Table S1. CRITICAL POINT SEARCH FOR **1a-**HCl

Quantities are in e/Ang^x Using ANALYTICAL derivatives

Searching internuclear distances between 1.200 and 1.750 Angstroms

	Bond	ρ	Δρ	Rij d1 d2
				Hessian Eigenvalues ellip
CL(2)	-C(10)	1.316	-2.217	1.7351 0.9614 0.7737
				-7.75 -7.33 12.86 0.06
F(1)	-C(24)	1.913	-16.513	1.3409 0.8326 0.5083
				-15.43 -15.36 14.28 0.00
0(1)	-C(1)	1.807	-12.673	1.4272 0.8255 0.6017
				-14.25 -13.67 15.25 0.04
0(2)	-C(20)	2.951	-32.901	1.2130 0.7619 0.4511
				-27.76 -25.42 20.28 0.09
N(1)	-C(14)	1.819	-11.979	1.4961 0.8358 0.6604
				-13.59 -13.43 15.05 0.01
N(1)	-C(15)	1.813	-11.826	1.4982 0.8364 0.6619
				-13.53 -13.38 15.08 0.01
N(1)	-C(17)	1.801	-11.549	1.5023 0.8374 0.6649
				-13.45 -13.24 15.14 0.02
C(1)	-C(7)	1.730	-11.883	1.5233 0.7625 0.7608
				-12.52 -11.87 12.51 0.05
C(1)	-C(13)	1.706	-11.821	1.5342 0.7801 0.7541
				-12.25 -11.69 12.12 0.05
C(1)	-C(16)	1.713	-11.996	1.5327 0.7793 0.7534
				-12.33 -11.77 12.10 0.05
C(7)	-C(8)	2.140	-17.617	1.3902 0.6968 0.6934
				-16.69 -13.82 12.89 0.21
C(7)	-C(12)	2.145	-17.987	1.3872 0.6953 0.6919
				-16.75 -13.98 12.74 0.20
C(8)	-C(9)	2.098	-17.635	1.3856 0.7036 0.6820
				-16.29 -13.80 12.45 0.18
C(9)	-C(10)	2.181	-18.640	1.3877 0.6812 0.7065
- (1	- (1 1)	0 001	10 015	-17.32 -13.96 12.64 0.24
C(10)	-C(11)	2.201	-19.917	1.3729 0.7091 0.6638
				-17.48 -14.40 11.97 0.21
C(11)	-C(12)	2.115	-17.200	1.3906 0.6924 0.6982
~ (1)	~ (1.4)	1 600	11 000	-16.41 -13.69 12.90 0.20
C(13)	-C(14)	1.682	-11.388	1.52/4 0.7589 0.7685
	Q (1 C)	1 700	11 045	-11.93 -11.53 12.06 0.03
C(15)	-0(16)	1./Ub	-11.845	1.3184 U./64U U./543
α (17)	0 (1 0)	1 710	11 000	-12.14 -11.74 12.03 0.03
$C(\perp /)$	-C(I8)	1./13	-11.990	1.5149 U./621 U./528

				-12.27	-11.74	12.02	0.04
C(18)	-C(19)	1.666	-10.997	1.5243	0.7621	0.7622	
				-11.60	-11.43	12.03	0.01
C(19)	-C(20)	1.799	-13.343	1.4953	0.7289	0.7663	
				-13.30	-12.50	12.45	0.06
C(20)	-C(21)	1.821	-13.110	1.4891	0.7528	0.7363	
				-13.71	-12.43	13.03	0.10
C(21)	-C(22)	2.122	-17.337	1.3949	0.6979	0.6970	
				-16.48	-13.79	12.93	0.20
C(21)	-C(26)	2.109	-16.922	1.3994	0.7014	0.6980	
-	- (0.0)	0 1 5 1	10.100	-16.40	-13.57	13.05	0.21
C(22)	-C(23)	2.154	-18.120	1.3789	0.6897	0.6892	0 01
~ ()))	~ () ()	0 010	10 600	-16.8/	-13.97	12./1	0.21
C(23)	-C(24)	2.210	-19.629	1.3//4	0.6656	0./119	0 05
C () ()		0 100	10 000	-1/.88	-14.34	12.59	0.25
C(24)	-0(25)	2.196	-19.290	17 72	14 22	0.6675	0 25
C (25)	C(2C)	2 1 0 1	16 011	-1/./3	-14.23	12.07	0.25
C(2)	-0(20)	2.101	-10.044	16 22	12 50	12 01	0 21
				-10.33	-13.52	13.01	0.21

TABLE S2. BOND CRITICAL POINT SEARCH FOR **1a-**HPic

Quantities are in e/Ang^x Using ANALYTICAL derivatives

Searching internuclear distances between 1.200 and 1.750 Angstroms

E	Bond	ρ	Δρ	Rij dl d2
				Hessian Eigenvalues ellip
CL(1A)	-C(19A)	1.302	-2.038	1.7414 0.9640 0.7774
				-7.65 -7.23 12.84 0.06
F(1A)	-C(4A)	1.915	-16.630	1.3397 0.8331 0.5066
				-15.46 -15.39 14.22 0.00
0(2A)	-C(13A)	1.828	-13.435	1.4196 0.8251 0.5945
		0 110	0 115	-14.44 -13.90 14.90 0.04
O(11A)	-C (7A)	3.413	-0.115	1.2455 0.8550 0.3905
O (11D)	α (73)	2 412	0 115	-35.48 -31.19 66.55 0.14
O(IIB)	-C (/A)	3.413	-0.115	$1.2240 \ 0.8335 \ 0.3905$
O(1D)	-C(1P)	2 706	-21 677	1 2422 0 7649 0 4775
O(ID)	-C(IB)	2.790	-31.077	
O(1B)	-H(1N)	0 236	3 854	17258 1 1229 0 6029
0(10)	11(11)	0.250	5.054	
O(21B)	-N(2B)	3.499	-14.020	1.2205 0.6438 0.5767
0 (222)		0.155	11,010	-33.54 -30.69 50.21 0.09
O(22B)	-N(2B)	3.489	-14.093	1.2223 0.6446 0.5777
- ()				-33.56 -30.63 50.09 0.10
O(41B)	-N(4B)	3.299	-8.176	1.2190 0.6223 0.5967
				-29.48 -27.39 48.70 0.08
O(42B)	-N(4B)	3.507	-14.773	1.2181 0.6444 0.5737
				-33.72 -30.81 49.76 0.09
O(61B)	-N(6B)	3.196	-6.365	1.2343 0.6277 0.6066
				-28.35 -26.31 48.30 0.08
O(62B)	-N(6B)	3.542	-15.684	1.2128 0.6430 0.5698
				-34.15 -31.23 49.69 0.09
N(1A)	-C(10A)	1.809	-10.991	1.5052 0.8340 0.6713
				-13.39 -13.22 15.62 0.01
N(1A)	-C(11A)	1.852	-11.913	1.4912 0.8303 0.6609
	~ (1 = =)	1 000	10 050	-13.79 -13.59 15.46 0.01
N(IA)	-C(15A)	1.808	-10.953	1.5061 0.8343 0.6718
	C (2D)	1 700	12 027	
N(ZB)	-C (2B)	1./82	-13.037	1.4588 0.8671 0.5917
N(AD)	-C(AR)	2 077	-16 624	1 1513 0 8225 0 6318
N(4D)	-C(4D)	2.077	-10.024	
N(6B)	-C (6B)	1 840	-14 424	1 4383 0 8662 0 5720
м (ОД)	C(OD)	1.040	11.121	$-14\ 20\ -11\ 82\ 11\ 59\ 0\ 20$
C(1A)	-C(2A)	2.125	-17.070	1.3969 0.6976 0.6993
0 (111)	0 (211)	2.120	1,.0,0	-16.49 -13.67 13.10 0.21
C(1A)	-C(6A)	2.139	-17.475	1.3926 0.6946 0.6980
	. ,			-16.56 -13.89 12.97 0.19
C(1A)	-C(7A)	1.777	-11.925	1.5013 0.7422 0.7591
				-13.04 -12.11 13.22 0.08
C(2A)	-C(3A)	2.149	-18.071	1.3797 0.6965 0.6832

				-16.68	-14.06	12.67	0.19
C(3A)	-C(4A)	2.191	-18.255	1.3916	0.6818	0.7099	
				-17.62	-13.91	13.28	0.27
C(4A)	-C(5A)	2.203	-19.159	1.3821	0.7115	0.6706	
				-17.73	-14.24	12.81	0.25
C(5A)	-C(6A)	2.170	-18.015	1.3791	0.6892	0.6899	
				-16.88	-14.03	12.89	0.20
C(7A)	-C(8A)	1.739	-11.516	1.5130	0.7696	0.7434	
				-12.59	-11.83	12.90	0.06
C(8A)	-C(9A)	1.696	-10.989	1.5216	0.7610	0.7606	
				-11.65	-11.61	12.27	0.00
C(9A)	-C(10A)	1.720	-11.512	1.5212	0.7556	0.7656	
				-12.19	-11.64	12.32	0.05
C(11A)	-C(12A)	1.732	-11.714	1.5178	0.7642	0.7536	
				-12.22	-11.80	12.31	0.04
C(12A)	-C(13A)	1.704	-11.515	1.5406	0.7606	0.7800	
				-12.17	-11.62	12.27	0.05
C(13A)	-C(14A)	1.733	-12.059	1.5282	0.7734	0.7548	
				-12.43	-11.86	12.23	0.05
C(13A)	-C(16A)	1.716	-11.607	1.5285	0.7654	0.7631	
				-12.53	-11.61	12.53	0.08
C(14A)	-C(15A)	1.724	-11.585	1.5206	0.7551	0.7655	
				-12.16	-11.74	12.32	0.04
C(16A)	-C(17A)	2.136	-17.439	1.3931	0.6950	0.6981	
				-16.54	-13.87	12.97	0.19
C(16A)	-C(21A)	2.119	-16.917	1.3986	0.6988	0.6999	
				-16.42	-13.62	13.12	0.21
C(17A)	-C(18A)	2.128	-17.161	1.3904	0.6972	0.6933	
				-16.45	-13.73	13.02	0.20
C(18A)	-C(19A)	2.178	-19.023	1.3828	0.6715	0.7113	
				-17.17	-14.17	12.31	0.21
C(19A)	-C(20A)	2.171	-18.881	1.3840	0.7112	0.6728	
				-17.12	-14.10	12.34	0.21
C(20A)	-C(21A)	2.110	-16.757	1.3958	0.6960	0.6998	
				-16.28	-13.58	13.11	0.20
C(1B)	-C(2B)	1.893	-14.011	1.4554	0.7169	0.7385	
				-15.04	-12.05	13.08	0.25
C(1B)	-C(6B)	1.908	-14.449	1.4493	0.7138	0.7355	
				-15.30	-12.18	13.03	0.26
C(2B)	-C(3B)	2.165	-18.606	1.3565	0.6798	0.6767	
				-16.99	-13.83	12.21	0.23
C(3B)	-C(4B)	2.079	-15.790	1.4030	0.6867	0.7163	
				-15.95	-13.08	13.24	0.22
C(4B)	-C(5B)	2.177	-18.226	1.3723	0.7015	0.6708	
				-16.96	-13.89	12.62	0.22
C(5B)	-C(6B)	2.068	-16.238	1.3867	0.6920	0.6947	
				-16.04	-13.05	12.85	0.23

TABLE S3. BOND CRITICAL POINT SEARCH FOR **1b-**HCl

Quantities are in e/Ang^x Using ANALYTICAL derivatives

Searching internuclear distances between 1.200 and 1.900 Angstroms

	Bond	ρ	Δρ	Rij dl d2
				Hessian Eigenvalues ellip
CL(2)	-C(10)	1.350	-2.631	1.7208 0.9553 0.7655
				-7.99 -7.55 12.91 0.06
SI	-0(1)	1.011	17.252	1.6232 0.6760 0.9472
				-7.23 -6.74 31.22 0.07
SI	-C(7)	0.878	4.095	1.8575 0.7198 1.1377
	- (1.0)	0.046		-4.98 -4.61 13.68 0.08
SI	-C(13)	0.846	3.982	1.8616 0.7237 1.1379
0.7	α (1.C)	0 070		-4.70 -4.37 13.05 0.08
SI	-0(10)	0.870	3.388	1.8/32 0.7229 1.1503
F	-C(24)	1 0 2 2	_16 012	-4.71 -4.61 12.91 0.02
Г	-C(24)	1.955	-10.012	-15 63 -15 /9 1/ 31 0 01
O(2)	-C(20)	2 954	-32 858	1 2124 0 7619 0 4505
0(2)	0(20)	2.551	52.000	
N	-C(14)	1.829	-11,407	1.4984 0.8321 0.6663
	- ()			-13.59 -13.37 15.56 0.02
Ν	-C(15)	1.818	-11.178	1.5019 0.8330 0.6689
				-13.49 -13.28 15.58 0.02
Ν	-C(17)	1.836	-11.550	1.4967 0.8317 0.6650
				-13.66 -13.42 15.53 0.02
C(7)	-C(8)	2.143	-17.662	1.3823 0.6825 0.6998
				-16.22 -13.97 12.53 0.16
C(7)	-C(12)	2.125	-17.391	1.3869 0.6858 0.7011
				-16.09 -13.88 12.58 0.16
C(8)	-C(9)	2.125	-17.913	1.3832 0.7016 0.6816
				-16.39 -14.01 12.49 0.17
C(9)	-C(10)	2.213	-19.140	1.3812 0.6801 0.7011
α (1.0)	0 (11)	0 010	10 100	-17.56 -14.18 12.60 0.24
C(10)	-0(11)	2.213	-19.126	1.3814 0.7012 0.6802
C(11)	-C(12)	2 1 2 0	_10 005	-17.55 - 14.19 12.61 0.24
C(II)	-C(12)	2.130	-10.000	-16 47 -14 07 12 45 0.17
C(13)	-C(14)	1 709	-10 904	1 5105 0 7429 0 7677
0(10)	0(11)	1.705	10.901	$-11 \ 93 \ -11 \ 24 \ 12 \ 27 \ 0 \ 06$
C(15)	-C(16)	1.690	-10.473	1.5191 0.7714 0.7476
- ()	- (,			-11.74 -11.04 12.31 0.06
C(17)	-C(18)	1.745	-11.983	1.5116 0.7609 0.7507
				-12.42 -11.85 12.29 0.05
C(18)	-C(19)	1.704	-11.157	1.5183 0.7592 0.7591
				-11.75 -11.67 12.27 0.01
C(19)	-C(20)	1.779	-12.590	1.5067 0.7385 0.7682
				-13.04 -12.23 12.68 0.07
C(20)	-C(21)	1.831	-13.334	1.4857 0.7507 0.7350
				-13.81 -12.54 13.01 0.10
C(21)	-C(22)	2.175	-18.456	1.3807 0.6899 0.6909

				-16.97	-14.19	12.70	0.20
C(21)	-C(26)	2.153	-17.649	1.3892	0.6940	0.6952	
				-16.74	-13.89	12.98	0.21
C(22)	-C(23)	2.137	-17.097	1.3900	0.6963	0.6938	
				-16.51	-13.75	13.16	0.20
C(23)	-C(24)	2.271	-20.873	1.3624	0.6592	0.7032	
				-18.43	-14.80	12.36	0.24
C(24)	-C(25)	2.263	-20.602	1.3653	0.7043	0.6611	
				-18.32	-14.72	12.45	0.24
C(25)	-C(26)	2.197	-18.632	1.3714	0.6856	0.6858	
				-17.14	-14.24	12.75	0.20

Table S8. Atomic charges q [e] and volumes V $[{\rm \AA^3}]$ for ${\bf 1a}\text{-}\text{HCl}$

Atom	q	V_{tot}
CL(2)	-0.22308093	33.13906219
CL(1)	-1.18457530	35.40431444
F(1)	-0.58011751	17.51093358
O(1)	-0.92790504	15,93699935
O(2)	-0 91477987	16 75010101
N(1)	-0 90896941	8 36858255
C(1)	0.31279039	5 77583634
C(T)	-0 05808697	10 35175528
C(8)	-0 07986192	13 78676560
C(0)	0.007/738/	11 955/8860
C(3)	-0 00641145	10 25221686
C(10)	0.00041140	11 50887056
C(11)	-0.07050013	12 01023867
C(12)	-0.05327866	8 64707395
C(13)	0.05527000	7 85184284
C(14)	0.17672020	7.64926396
C(15)	-0 05511991	7.04020300
C(10)	0 15005570	0 00150501
C(17)	-0.04732827	8 24476956
C(10)	-0.04732827	8 7/6/5283
C(19)	0.78093319	7 93970371
C(20)	-0 0/360210	11 /2616325
C(21)	-0.04309219	12 18834721
C(22)	-0 03072293	13 98820756
C(23)	0.03072293	8 88238026
C(24)	-0 03139200	11 82193572
C(25)	-0.06450641	12 50199003
С(20) Н(1)	0.61619475	1 62798706
H(N)	0 60329291	1 37267409
H(8)	0.13359359	6 80662220
H(9)	0 13354332	7 59847087
H(11)	0 13384068	6 83029345
H(12)	0.12815539	5.48448581
H(13A)	0 08655756	6 62271130
H (13B)	0.08417040	9.58884503
H(14A)	0.06869291	6.92414156
H (14B)	0.07090974	7.16880245
H(15A)	0.06537592	7.86691406
H(15B)	0.07195823	5.84507280
H(16A)	0.08504294	6.60549708
H(16B)	0.08200500	6.54186941
(17A)	0.06652586	6.47613104
H(17B)	0.07760306	6.15672894
H(18A)	0.09037167	6.62209334
H(18B)	0.08683581	6.88840329
н(19А)	0.08468391	6.82210113
, Н(19В)	0.08573112	6.32211535
Н(22)	0.13125165	5.95086514
Н(23)	0.13623041	6.77276620

Н(25)	0.13481622	7.10505547
Н(26)	0.12859188	7.77562375
======================================	0.02436796	492.47014021
Sum.	0.02-00/00	

 $V_{\rm tot}$ values calculated by integration over the basins enclosed by the zero-flux surfaces of the ED gradient vector field in the crystal according to Bader's formalism.

Table S9. Atomic charges q [e] and volumes V $[{\rm \AA^3}]$ for ${\bf 1a}\text{-HPic}$

Atom	q	Vtot
(1, 1, 1, 1)	0 01776140	24 02107201
CL(IA) E(1A)	-0.21//0140	34.UZI0/ZUI 10 /0217202
F(IA)	-0.37003303	16 72021047
O(2A)	-0.93402037	12 00001201
O(IIA)	-0.52112655	0 17045620
N(IA)	-0.89023167	8.1/243638
C(1A)	-0.01521054	9.010//000
C(2A)	-0.04410695	11.0/420924
C(3A)	-0.00291316	10.90961069
C(4A)	-0.00625119	1.09/40201 10.00700701
C(SA)	-0.02020504	12.20/32/01
C(0A)	-0.03629504	LI.94000910 6 66624165
C(7A)	1.0031/994	0.000034100
C(OA)	-0.01037655	0.JUI0J095 7 67204061
C(9A)	-0.00749100	7.57504051
C(10A)	0.19920156	6 01020770
C(11A)	-0 02565201	0.91020779
C(12A)	-0.02303301	6 12227006
C(13A)	-0.01613784	7 55015034
C(14A)	0 10307550	7.55915954
C(15A)	-0 04002022	0 00542222
C(10A)	-0.04902925	9.00J42J22
C(17A)	-0.04387293	10 35651302
C(10A)	-0.01117197	0 765/03/2
C(19A)	-0.01117197	9.70J49J42 12 70147041
C(20A)		12./914/041
U(20)	0.58010308	2 10/01631
H(1N)	0.30010300	1 99/75868
н(2д)	0.10091634	7 36242121
н (ЗЛ)	0.11693592	6 759272727
н (5д) н (5д)	0.10887735	8 28549076
н (бд)	0.10388369	6 29524042
н (81 д)	0.10500505	6 71780172
H(81B)	0.06919834	6 80276166
н(91д)	0.06709861	6 36504599
H(91B)	0.06477823	7 85255123
H(10A)	0.05068597	7 12242004
H(10B)	0.04970871	6 58244990
H(11A)	0.04896396	5 64547290
H(11B)	0.04650239	7 89273177
н(12д)	0.06699682	7 71962300
H(12R)	0 06450155	6 85386669
н(14д)	0.07010317	6,19739190
H(14R)	0.07024859	5,93820947
H(15A)	0.05099945	7.03388395
н (15в)	0 04803332	6 70122783
H(17A)	0.10579151	7,91164062
H(18A)	0.10493665	6.52108700
. ,		

H(20A)	0.10355331	8.21320611
H(21A)	0.09906689	6.81654750
O(1B)	-0.86282506	17.75114362
O(21B)	-0.40661362	18.56071294
O(22B)	-0.40747408	18.13190237
O(41B)	-0.41092857	18.66184334
O(42B)	-0.40465856	19.73022463
O(61B)	-0.41210601	16.35204133
O(62B)	-0.41558789	15.92335533
N(2B)	0.37744944	7.84748954
N(4B)	0.29726467	7.30082450
N(6B)	0.31673020	8.36610147
C(1B)	0.81874590	8.65127921
C(2B)	0.25832718	10.00644161
C(3B)	0.08605709	10.14040516
C(4B)	0.15317361	8.16657881
C(5B)	0.08929724	9.38576216
C(6B)	0.26620172	9.89980072
Н(ЗВ)	-0.20470264	7.84461546
Н(5В)	-0.19871572	6.94698253
	=================	
sum:	0.74437259	666.24225838

 V_{tot} values calculated by integration over the basins enclosed by the zero-flux surfaces of the ED gradient vector field in the crystal according to Bader's formalism.

Table S10. Atomic charges q [e] and volumes V $[{\rm \AA}^3]$ for ${\rm 1b}{\rm -HCl}$

Atom	q	V _{tot}
CL(2)	-0 22879194	41 72557135
CL(1)	-1 00900319	34 94734925
ST	2 98708812	3 97145414
т Ч	-0 58504423	19 77133019
0(1)	-1 35631238	20 46618978
O(2)	-0 91363099	18 44353758
0 (2) N	-0.90700237	8.56683211
C(7)	-0.83311405	15.96885713
C (8)	-0.03957503	13.18635304
C(9)	0.02563726	12.17073957
C(10)	0.02181306	11.98771465
C(11)	0.02338508	12.68048071
C(12)	-0.03584337	12.69037696
C(13)	-0.70099112	11.44654986
C(14)	0.18483682	7.41777234
C(15)	0.19623189	7.35538071
C(16)	-0.80355796	12.57552153
C(17)	0.20773876	7.20951467
C(18)	-0.01436849	8.10412683
C(19)	-0.01652465	8.35025110
C(20)	0.79055686	7.95110352
C(21)	-0.03679711	10.45300672
C(22)	-0.03721426	13.12006638
C(23)	-0.00974326	14.01283619
C(24)	0.42501617	10.31249504
C(25)	-0.00767501	14.13364077
C(26)	-0.03836692	12.27464532
H(1)	0.59106890	2.08293112
H(N)	0.48487242	2.29050472
H(8)	0.09386629	8.54682143
Н(9)	0.10375810	8.64985181
H(11)	0.09840860	7.70583413
H(12)	0.09786470	6.77986488
H(13A)	0.06801466	7.49099476
H(13B)	0.07419131	6.54261403
H(14A)	0.04407943	5.62010444
H(14B)	0.04718550	5.81963845
H(15A)	0.04475857	8.36848350
H(15B)	0.04527482	6.18508853
H(16A)	0.06914446	6.42233211
H(16B)	0.06405771	7.34457290
H(17A)	0.04671421	6.89555422
H(17B)	0.04705630	6.44004619
H(18A)	0.06630382	/.20105948
H(18B)	0.06290749	6.77075843
H(19A)	0.06200352	8.70727633
н(тав)	0.00183908	5.85558264
H(ZZ)	0.09803//9	8.06933004
п(∠З)	U.IU/84006	0.0/100/29

Н(25)	0.10923946	9.87157333	
Н(26)	0.09872684	7.96466538	
======================================	-0.02403823	537.79018759	

 $V_{\rm tot}$ values calculated by integration over the basins enclosed by the zero-flux surfaces of the ED gradient vector field in the crystal according to Bader's formalism.

Tables S15 - S17 for la-HCl

Table	S15. A	tomic coordina	ates for 1a- HCl				
loop_							
_2	atom_si	te_label					
_2	atom_si	te_type_symbol	L				
_ā	atom_si	te_fract_x					
_6	atom_si	te_fract_y					
_6	atom_si	te_fract_z					
_6	atom_si	te_U_iso_or_ed	quiv				
_6	atom_si	te_occupancy					
_2	atom_si	te_symmetry_mu	ultiplicity				
Cl(2)	Cl	1.09649(3)	1.52858(5)	-0.16167(3)	0.039	1	4
Cl(1)	Cl	0.32642(2)	0.90799(4)	0.38060(2)	0.026	1	4
F(1)	F	0.01711(7)	1.11928(12)	0.04620(10)	0.063	1	4
0(1)	0	0.66000(6)	1.39695(10)	-0.30969(6)	0.025	1	4
0(2)	0	0.41881(7)	1.09674(14)	0.09491(8)	0.047	1	4
N(1)	N	0.57344(7)	1.35310(11)	-0.11753(8)	0.02	1	4
C(1)	С	0./1633(9)	1.40969(14)	-0.19935(9)	0.02	Ţ	4
C (7)	С	0.81195(9)	1.44285(13)	-0.18901(10)	0.022	1	4
C(8)	C	0.85052(10)	1.36880(16)	-0.24844(11)	0.032	1	4
C(9)	С	0.93/18(10)	1.39498(1/)	-0.24221(11)	0.034	1	4
C(10)	C	0.986/3(9)	1.49608(16)	-0.1/41/(11)	0.029	1	4
C(11)	C	0.95013(10)	1.5/0/2(1/)	-0.114/0(13)	0.039	1	4
C(12)	C	0.862/9(10)	1.54416(1/)	-0.1224/(12)	0.035	1	4
C(13)	C	0.71473(9)	1.2/944(14)	-0.13822(10)	0.022	1	4
C(14)	C	0.61859(9)	1.24109(14) 1.40425(14)	-0.15297(11)	0.023	1	4
C(15)	C	0.57747(9)	1.48435(14)	-0.1/114(10)	0.023	1	4
C(10)	C	0.67370(9)	1.32081(14)	-0.13434(10)	0.022	1	4
C(17)	C	0.4718(9)	1.32098(15) 1.21792(16)	-0.13030(10)	0.024	⊥ 1	4
C(10)	C	0.40092(9) 0.26951(0)	1.21/02(10) 1.21014(15)	-0.03062(11)	0.020	⊥ 1	4
C(19)	C	0.30001(9)	1.21014(13) 1.14126(14)	-0.07152(9)	0.023	⊥ 1	4
C(20)	C	0.33343(9)	1.14130(14) 1.13105(17)	0.02040(10) 0.02187(10)	0.024	⊥ 1	4
C(21)	C	0.20552(9) 0.25507(11)	1.13193(14) 1.00002(16)	0.02107(10) 0.11612(12)	0.023	⊥ 1	-
C(22)	C	0.23307(11) 0.17232(12)	1.08200(18)	0.11012(12) 0.12508(14)	0.032	⊥ 1	4
C(23)	C	0.17232(12) 0.09786(11)	1,00200(10) 1,12030(18)	0.12300(14) 0.03801(15)	0.043	⊥ 1	4
C(24)	C	0.09700(11) 0.10218(10)	1,12030(10) 1,16137(18)	-0.05794(14)	0.042	⊥ 1	- 4
C(25)	C	0.10210(10)	1,10137(10) 1,168/18(17)	-0.06579(11)	0.042	⊥ 1	- /
С(20) Ч(1)	ц	0.10000(0)	1,10040(17) 1,30702(10)	-0.33226(6)	0.033	⊥ 1	- /
н (N)	и П	0.00720(0) 0.60709(7)	1,36590(11)	-0.03716(8)	0.020(5)	⊥ 1	- /
H(8)	н	0.81202(10)	1,28924(16)	-0.30080(11)	0.051(5)	1	4
н(9)	н	0.01202(10) 0.96587(10)	1,20021(10) 1,33716(17)	-0.28979(11)	0.007(0)	1	4
н(J) н(11)	н	0.90307(10) 0.98891(10)	1,00,10(17) 1,65015(17)	-0.06243(13)	0.040(5)	1	4
H(12)	Н	0.83407(10)	1,60337(17)	-0 07565(12)	0.061(6)	1	4
H(13A)	н	0.74515(9)	1,000007(17) 1,19711(14)	-0.16723(10)	0.037(4)	1	4
H(13B)	Н	0.75456(9)	1.29395(14)	-0.05308(10)	0.036(4)	1	4
H(14A)	н	0.58008(9)	1 21802(14)	-0.23767(11)	0 031(4)	1	4
H(14B)	н	0.61984(9)	1 14967(14)	-0.10599(11)	0.031(1) 0.042(5)	1	4
H(15A)	H	0.54835(9)	1.56515(14)	-0.13822(10)	0.038(4)	1	4
H(15B)	H	0.53745(9)	1.47650(14)	-0.25733(10)	0.036(4)	1	4
H(16A)	Н	0.71283(9)	1.53366(14)	-0.06903(10)	0.028(4)	1	4
H(16B)	H	0.67484(9)	1.61662(14)	-0.19460(10)	0.039(4)	1	4
H(17A)	H	0.44389(9)	1.28256(15)	-0.21837(10)	0.035(4)	1	4

Н(17В)	Н	0.44283(9)	1.41475(15)	-0.12965(10)	0.043(5)	1	4
H(18A)	Н	0.50828(9)	1.24696(16)	0.02343(11)	0.046(5)	1	4
H(18B)	Н	0.48960(9)	1.11870(16)	-0.07447(11)	0.063(6)	1	4
H(19A)	Н	0.34106(9)	1.31264(15)	-0.07970(9)	0.041(5)	1	4
H(19B)	Н	0.33084(9)	1.15500(15)	-0.14508(9)	0.054(6)	1	4
Н(22)	Н	0.31460(11)	1.05829(16)	0.18336(12)	0.066(7)	1	4
Н(23)	Н	0.16609(12)	1.04838(18)	0.19840(14)	0.077(7)	1	4
Н(25)	Н	0.04177(10)	1.18749(18)	-0.12533(14)	0.069(7)	1	4
Н(26)	Н	0.19212(9)	1.20205(17)	-0.13936(11)	0.031(4)	1	4

Table S16. Anisotropic displacement parameters for **1a-**HCl

loop_

_atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 atom site aniso U 12 atom site aniso U 13 atom site aniso U 23 C1(2) 0.02908(19) 0.0411(2) 0.0547(2) -0.00679(17) 0.02596(17) -0.00306(18)Cl(1) 0.03089(18) 0.02503(18) 0.02197(15)-0.00076(15) 0.00819(12) -0.00138(13) F(1) 0.0440(6) 0.0483(7) 0.1206(9) -0.0142(5) 0.0576(6) -0.0240(6)O(1) 0.0264(5) 0.0269(5) 0.0211(4) -0.0008(4) 0.0096(4) -0.0007(4)0(2) 0.0236(6) 0.0775(9) 0.0397(6) 0.0054(6) 0.0103(4) 0.0301(6) N(1) 0.0199(5) 0.0212(6) 0.0201(5) 0.0006(5) 0.0102(4) 0.0013(4)C(1) 0.0229(6) 0.0187(7) 0.0207(6) -0.0013(6) 0.0106(5) -0.0011(5)C(7) 0.0228(7) 0.0207(7) 0.0262(6) -0.0043(6) 0.0140(5) -0.0033(5) C(8) 0.0278(8) 0.0366(9) 0.0358(7) -0.0065(7) 0.0183(6) -0.0144(6) C(9) 0.0295(8) 0.0408(9) 0.0395(8) -0.0045(7) 0.0216(6) -0.0121(7)C(10) 0.0270(7) 0.0283(8) 0.0386(8) -0.0032(6) 0.0187(6) -0.0009(6)C(11) 0.0288(8) 0.0364(10) 0.0609(10) -0.0128(7) 0.0263(7) -0.0213(7) $C(12) \quad 0.0276(8) \quad 0.0351(9) \quad 0.0499(9) \quad -0.0096(7) \quad 0.0223(7) \quad -0.0201(7)$ C(13) 0.0222(6) 0.0201(7) 0.0263(6) 0.0012(6) 0.0130(5) 0.0024(5) C(14) 0.0243(7) 0.0183(7) 0.0314(7) 0.0006(6) 0.0160(5) -0.0004(5)C(15) 0.0244(7) 0.0193(7) 0.0269(6) 0.0020(6) 0.0129(5) 0.0032(5) C(16) 0.0235(7) 0.0193(7) 0.0257(6) -0.0009(6) 0.0128(5) -0.0018(5) C(17) 0.0185(6) 0.0287(8) 0.0268(6) -0.0001(6) 0.0114(5) 0.0028(5) C(18) 0.0216(7) 0.0290(8) 0.0327(7) 0.0016(6) 0.0147(5) 0.0075(6) C(19) 0.0215(7) 0.0260(8) 0.0231(6) -0.0009(6) 0.0118(5) 0.0016(5)C(20) 0.0199(7) 0.0286(8) 0.0244(6) 0.0004(6) 0.0083(5) 0.0051(5)C(21) 0.0211(7) 0.0250(7) 0.0276(7) -0.0023(6) 0.0127(5) 0.0010(5) C(22) 0.0373(8) 0.0307(8) 0.0385(8) -0.0027(7) 0.0251(6) 0.0041(6)C(23) 0.0458(10) 0.0373(10) 0.0615(10) -0.0044(8) 0.0388(8) 0.0011(8)C(24) 0.0375(9) 0.0316(9) 0.0733(12) -0.0115(8) 0.0389(9) -0.0132(8)C(25) 0.0206(8) 0.0452(10) 0.0571(10) -0.0027(7) 0.0110(7) -0.0121(8) C(26) 0.0212(7) 0.0412(9) 0.0347(8) -0.0003(6) 0.0098(6) -0.0016(6)

Table S17. Multipole parameters for 1a-HCl

loop_

_atom_rho_multipole_atom_label _atom_rho_multipole_coeff_Pv _atom_rho_multipole_coeff_P00 _atom_rho_multipole_coeff_P11 _atom_rho_multipole_coeff_P1-1

```
atom rho multipole coeff P10
    atom rho multipole coeff P20
    _atom_rho_multipole coeff P21
    _atom_rho_multipole coeff P2-1
    _atom_rho_multipole_coeff P22
    atom rho multipole coeff P2-2
    atom rho multipole coeff P30
    atom rho multipole coeff P31
    _atom_rho_multipole_coeff P3-1
    _atom_rho_multipole coeff P32
    _atom_rho_multipole_coeff P3-2
    _atom_rho_multipole_coeff P33
    atom rho multipole coeff P3-3
    _atom_rho_multipole coeff P40
    _atom_rho_multipole_coeff_P41
    _atom_rho_multipole coeff P4-1
    _atom_rho_multipole coeff P42
    _atom_rho_multipole_coeff_P4-2
    atom rho multipole coeff P43
    atom rho multipole coeff P4-3
    atom rho multipole coeff P44
    atom rho multipole coeff P4-4
    _atom_rho_multipole_kappa
    _atom_rho_multipole_kappa prime0
    _atom_rho_multipole_kappa_prime1
    _atom_rho_multipole_kappa_prime2
    atom rho multipole kappa prime3
    atom rho multipole kappa prime4
Cl(2) 7.1278 0
0 0 -0.0316
-0.142 0 0 0 0
0.1018 0 0 0 0 0 0
0.0311 0 0 0 0 0 0 0 0
1.003934 0.98084 0.98084 0.98084 0.98084 0.98084
Cl(1) 8 0
0 0 0
0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1.010613 1 1 1 1 1
F(1) 7.1283 0
0 0 -0.0492
-0.0902 0 0 0 0
0.0342 0 0 0 0 0 0
0.0065 0 0 0 0 0 0 0 0
1.002244 1.3624 1.3624 1.3624 1.3624 1.3624
0(1) 6.0788 0
-0.0536 -0.0866 0
0.1041 0 0 -0.028 0.042
0 -0.0147 -0.0263 0 0 0.065 -0.0215
0.0106 0 0 0.0042 0.0027 0 0 0.0149 0.0153
1.001632 1.113461 1.113461 1.113461 1.113461 1.113461
```

0(2) 6.1166 0 0 0 -0.0675 0.0293 0 0 -0.1531 0 0.0283 0 0 0.0172 0 0 0 -0.0118 0 0 0.0113 0 0 0 -0.0026 0 1.003017 1.109004 1.109004 1.109004 1.109004 1.109004 N(1) 5.0916 0 0 0 -0.005 0.0107 0 0 0 0 0.2234 0 0 0 0 0.176 0 0.066 0 0 0 0 -0.0509 0 0 0 0.997716 0.890138 0.890138 0.890138 0.890138 0.890138 C(1) 4.0474 0 -0.0538 -0.007 0 0.0477 0 0 -0.064 -0.0005 0 -0.1435 -0.1945 0 0 0.194 -0.0361 0.0369 0 0 -0.0505 0.0714 0 0 0.0428 0.0297 1.004815 1 1 1 1 1 C(7) 4.0553 0 0.0153 0.0288 0 -0.1768 0 0 0.0102 -0.0228 0 0.0129 0.0248 0 0 0.2306 -0.0085 0.011 0 0 0.0011 -0.0102 0 0 0.0008 0.0036 1.014566 1 1 1 1 1 C(8) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(9) 3.9213 0 0.001 0.0319 0 -0.1622 0 0 -0.0042 -0.0155 0 0.0084 0.0245 0 0 0.2229 -0.0076 0.0242 0 0 0.0013 -0.0129 0 0 -0.0003 -0.001 1.017714 1 1 1 1 1 C(10) 4.1025 0 0 0 -0.0872 -0.0375 0 0 -0.1635 0 0.2348 0 0 0.1308 0 0 0 0.0148 0 0 -0.0125 0 0 0 0.0021 0 1.005708 1 1 1 1 1

C(11) 3.9213 0 0.001 0.0319 0 -0.1622 0 0 -0.0042 -0.0155 0 0.0084 0.0245 0 0 0.2229 -0.0076 0.0242 0 0 0.0013 -0.0129 0 0 -0.0003 -0.001 1.017714 1 1 1 1 1 C(12) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(13) 3.9428 0 0 0 0.0068 -0.0023 0 0 0.0044 0 -0.0061 0 0 -0.2812 0 0 0 -0.0696 0 0 0.0156 0 0 0.048 0 1.01237 1 1 1 1 1 C(14) 3.8671 0 -0.0199 0.011 0 0.0163 0 0 -0.0337 -0.0059 0 -0.1339 -0.172 0 0 0.1776 -0.0445 0.0086 0 0 -0.0279 0.0714 0 0 0.0321 0.023 1.009768 1 1 1 1 1 C(15) 3.8671 0 -0.0199 0.011 0 0.0163 0 0 -0.0337 -0.0059 0 -0.1339 -0.172 0 0 0.1776 -0.0445 0.0086 0 0 -0.0279 0.0714 0 0 0.0321 0.023 1.009768 1 1 1 1 1 C(16) 3.9428 0 0 0 0.0068 -0.0023 0 0 0.0044 0 -0.0061 0 0 -0.2812 0 0 0 -0.0696 0 0 0.0156 0 0 0 0.048 0 1.01237 1 1 1 1 1 C(17) 3.8671 0 -0.0199 0.011 0 0.0163 0 0 -0.0337 -0.0059 0 -0.1339 -0.172 0 0 0.1776 -0.0445 0.0086 0 0 -0.0279 0.0714 0 0 0.0321 0.023 1.009768 1 1 1 1 1 C(18) 3.9428 0 0 0 0.0068

-0.0023 0 0 0.0044 0 -0.0061 0 0 -0.2812 0 0 0 -0.0696 0 0 0.0156 0 0 0 0.048 0 1.01237 1 1 1 1 1 C(19) 3.9428 0 0 0 0.0068 -0.0023 0 0 0.0044 0 -0.0061 0 0 -0.2812 0 0 0 -0.0696 0 0 0.0156 0 0 0 0.048 0 1.01237 1 1 1 1 1 C(20) 3.9937 0 0.0588 -0.0014 0 -0.2542 0 0 0.066 0.0001 0 0.0173 0.0063 0 0 0.2777 0.0024 0.0152 0 0 0.0131 0.0001 0 0 -0.0174 0.0025 1.016945 1 1 1 1 1 C(21) 4.0553 0 0.0153 0.0288 0 -0.1768 0 0 0.0102 -0.0228 0 0.0129 0.0248 0 0 0.2306 -0.0085 0.011 0 0 0.0011 -0.0102 0 0 0.0008 0.0036 1.014566 1 1 1 1 1 C(22) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(23) 3.9654 0 0.0094 0.0348 0 -0.1568 0 0 -0.0015 -0.0186 0 0.0079 0.0255 0 0 0.222 -0.0068 0.0211 0 0 0.0022 -0.0107 0 0 0.0035 0.0023 1.018878 1 1 1 1 1 C(24) 3.9709 0 0 0 -0.1242 -0.0582 0 0 -0.1752 0 0.2702 0 0 0.1226 0 0 0 0.0391 0 0 -0.007 0 0 0 -0.0002 0 1.016611 1 1 1 1 1 C(25) 3.9654 0 0.0094 0.0348 0 -0.1568 0 0 -0.0015 -0.0186 0 0.0079 0.0255 0 0 0.222 -0.0068

1.13642 1.2 1.2 1.2 1.2 1.2

Tables S18 - S20 for la-HPic

Table S18. Atomic coordinates for **1a-**HPic

loop_

_at	com_si	te_label					
_at	com_si	te_type_symbol					
at	com si	te fract x					
at	com si	te fract y					
at	com si	te fract z					
at	com si	te [_] U iso [_] or eq	uiv				
at	com si	te occupancy					
at	com si	te symmetry mu	ltiplicity				
Cl(1Ā)	Ēl	1.34760(3)	0.42143(3)	0.45279	0.03	1	4
F(1A)	F	0.37133(6)	0.23186(7)	1.20783(8)	0.047	1	4
O(2A)	0	1.06234(7)	0.08932(7)	0.66086(8)	0.024	1	4
O(11A)	0	0.7338(5)	0.3306(7)	0.9985(6)	0.052	0.72	4
O(11B)	0	0.7082(13)	0.3273(18)	0.9763(15)	0.041	0.28	4
O(1B)	0	0.94476(6)	0.41259(7)	0.84643(8)	0.027	1	4
O(21B)	0	1.11754(7)	0.49130(8)	0.85856(10)	0.039	1	4
O(22B)	0	1.09787(8)	0.58465(8)	0.98204(9)	0.04	1	4
O(41B)	0	0.93163(7)	0.90438(7)	0.86420(9)	0.035	1	4
O(42B)	0	0.80483(7)	0.87696(7)	0.79756(10)	0.038	1	4
O(61B)	0	0.71033(7)	0.52970(7)	0.72826(9)	0.029	1	4
O(62B)	0	0.78684(7)	0.39134(7)	0.76247(9)	0.033	1	4
N(1A)	Ν	0.90797(8)	0.20736(8)	0.80697(9)	0.018	1	4
N(2B)	Ν	1.07407(9)	0.55203(9)	0.90655(12)	0.027	1	4
N(4B)	Ν	0.87480(9)	0.84587(9)	0.83149(10)	0.025	1	4
N(6B)	Ν	0.77735(8)	0.48697(8)	0.76171(10)	0.018	1	4
C(1A)	С	0.61168(11)	0.24008(11)	1.07123(12)	0.026	1	4
C(2A)	С	0.57169(12)	0.33400(12)	1.10181(13)	0.03	1	4
C(3A)	С	0.49102(12)	0.33232(12)	1.14838(13)	0.032	1	4
C(4A)	С	0.44972(12)	0.23463(12)	1.16274(13)	0.031	1	4
C(5A)	С	0.48691(12)	0.14053(12)	1.13209(13)	0.031	1	4
C(6A)	С	0.56872(11)	0.14378(11)	1.08784(12)	0.028	1	4
C(7A)	С	0.70029(12)	0.24689(12)	1.02264(13)	0.033	1	4
C(8A)	С	0.75691(11)	0.14769(11)	1.01574(13)	0.028	1	4
C(9A)	С	0.84449(11)	0.16554(12)	0.96416(13)	0.03	1	4
C(10A)	С	0.83107(10)	0.16023(11)	0.86033(11)	0.021	1	4
C(11A)	С	0.89472(10)	0.18708(11)	0.70662(12)	0.021	1	4
C(12A)	С	0.96800(10)	0.23886(10)	0.64958(12)	0.022	1	4
C(13A)	С	1.06166(10)	0.20004(10)	0.67922(12)	0.019	1	4
C(14A)	С	1.07280(10)	0.21909(10)	0.78260(12)	0.023	1	4
C(15A)	С	0.99818(9)	0.16711(11)	0.83799(13)	0.022	1	4
C(16A)	С	1.13360(9)	0.25728(10)	0.62297(11)	0.019	1	4
C(17A)	С	1.18430(10)	0.20206(11)	0.55810(12)	0.024	1	4
C(18A)	С	1.24958(10)	0.25302(11)	0.50586(13)	0.025	1	4
C(19A)	С	1.26338(10)	0.36080(11)	0.51719(12)	0.023	1	4
C(20A)	С	1.21369(10)	0.41852(12)	0.58028(12)	0.026	1	4
C(21A)	С	1.14957(11)	0.36604(11)	0.63357(13)	0.026	1	4
C(1B)	С	0.92641(10)	0.50837(10)	0.83841(11)	0.018	1	4
C(2B)	С	0.98816(10)	0.58953(10)	0.87110(11)	0.02	1	4
C(3B)	С	0.97231(10)	0.69558(11)	0.87241(11)	0.022	1	4
C(4B)	С	0.89194(10)	0.73220(10)	0.83346(12)	0.02	1	4
C(5B)	С	0.82955(10)	0.66298(10)	0.79848(12)	0.019	1	4
C(6B)	С	0.84532(10)	0.55450(10)	0.80060(11)	0.017	1	4

Н(20)	Н	1.11717(7)	0.05886(7)	0.68348(8)	0.020(5)	1	4
H(1N)	Н	0.90698(8)	0.28759(8)	0.81705(9)	0.035(6)	1	4
H(2A)	Н	0.59967(12)	0.39868(12)	1.09038(13)	0.037(5)	1	4
H(3A)	Н	0.46485(12)	0.39470(12)	1.16970(13)	0.049(6)	1	4
H(5A)	Н	0.45719(12)	0.07642(12)	1.14103(13)	0.039(6)	1	4
H(6A)	Н	0.59568(11)	0.08082(11)	1.06898(12)	0.034(5)	1	4
H(81A)	Н	0.72275(11)	0.09313(11)	0.98421(13)	0.040(5)	1	4
H(81B)	Н	0.77012(11)	0.12210(11)	1.07733(13)	0.078(8)	1	4
H(91A)	Н	0.86864(11)	0.23453(12)	0.98053(13)	0.034(5)	1	4
H(91B)	Н	0.88768(11)	0.11196(12)	0.98255(13)	0.066(7)	1	4
H(10A)	Н	0.82340(10)	0.08666(11)	0.84218(11)	0.027(4)	1	4
H(10B)	Н	0.77651(10)	0.19805(11)	0.84455(11)	0.037(5)	1	4
H(11A)	Н	0.83688(10)	0.21483(11)	0.68773(12)	0.037(5)	1	4
H(11B)	Н	0.89485(10)	0.11117(11)	0.69527(12)	0.030(5)	1	4
H(12A)	Н	0.96462(10)	0.31531(10)	0.65692(12)	0.035(5)	1	4
H(12B)	Н	0.95878(10)	0.22256(10)	0.58493(12)	0.030(5)	1	4
H(14A)	Н	1.13022(10)	0.19082(10)	0.80225(12)	0.038(5)	1	4
H(14B)	Н	1.07279(10)	0.29485(10)	0.79469(12)	0.020(4)	1	4
H(15A)	Н	1.00096(9)	0.09071(11)	0.82997(13)	0.022(4)	1	4
H(15B)	Η	1.00631(9)	0.18262(11)	0.90295(13)	0.043(6)	1	4
H(17A)	Н	1.17451(10)	0.12977(11)	0.54968(12)	0.040(5)	1	4
H(18A)	Н	1.28360(10)	0.21504(11)	0.46344(13)	0.035(5)	1	4
H(20A)	Н	1.22291(10)	0.49114(12)	0.58701(12)	0.031(5)	1	4
H(21A)	Н	1.11654(11)	0.40423(11)	0.67667(13)	0.031(5)	1	4
Н(ЗВ)	Н	1.01341(10)	0.74243(11)	0.89830(11)	0.070(6)	1	4
Н(5В)	Н	0.77665(10)	0.68885(10)	0.77298(12)	0.065(6)	1	4

Table S19. Anisotropic displacement parameters for **1a-**HPic

loop_

_atom_site_aniso_label _atom_site_aniso_U_11 atom site aniso U 22 _atom_site_aniso_U_33 _atom_site_aniso_U_12 _atom_site_aniso_U_13 atom site aniso U 23 Cl(1A) 0.0239(2) 0.0344(2) 0.0324(2) -0.00286(17) 0.0034(2) 0.0033(2) F(1A) 0.0311(6) 0.0462(6) 0.0635(8) 0.0092(4) 0.0082(6) 0.0030(6) O(2A) 0.0212(6) 0.0150(4) 0.0366(7) 0.0010(4) -0.0036(5) -0.0024(5) $O(11A) \quad 0.060(4) \quad 0.0231(14) \quad 0.073(5) \quad -0.012(2) \quad 0.027(3) \quad -0.000(2)$ O(11B) 0.057(9) 0.022(5) 0.044(8) -0.002(5) 0.022(6) 0.020(5) O(1B) 0.0270(6) 0.0118(5) 0.0433(8) -0.0016(4) -0.0153(6) -0.0000(5) 0(21B) 0.0250(7) 0.0365(6) 0.0561(10) 0.0061(5) -0.0144(7) -0.0067(7) 0(22B) 0.0495(8) 0.0250(5) 0.0454(9) -0.0037(5) -0.0305(7) 0.0011(6) O(41B) 0.0392(7) 0.0132(5) 0.0525(9) -0.0048(5) -0.0048(7) -0.0035(6) O(42B) 0.0315(7) 0.0146(5) 0.0685(10) 0.0052(5) -0.0079(7) 0.0002(6) O(61B) 0.0276(7) 0.0205(5) 0.0383(8) -0.0020(5) -0.0150(6) 0.0004(5) 0(62B) 0.0224(6) 0.0131(5) 0.0621(9) -0.0034(4) -0.0134(6) -0.0041(5) N(1A) 0.0180(7) 0.0140(6) 0.0212(8) -0.0013(5) -0.0044(6) 0.0014(6) N(2B) 0.0292(9) 0.0158(6) 0.0368(10) -0.0057(6) -0.0164(8) 0.0029(6) N(4B) 0.0276(8) 0.0118(6) 0.0343(9) -0.0014(6) 0.0021(7) -0.0017(6) N(6B) 0.0179(7) 0.0141(6) 0.0225(7) -0.0017(5) -0.0016(6) -0.0014(6) C(1A) 0.0394(11) 0.0176(8) 0.0212(10) -0.0018(7) 0.0032(8) -0.0010(7) C(2A) 0.0440(12) 0.0196(8) 0.0278(11) 0.0006(8) -0.0002(9) 0.0003(8) C(3A) 0.0408(12) 0.0249(9) 0.0316(12) 0.0098(8) -0.0043(10) 0.0008(8) C(4A) 0.0324(11) 0.0279(9) 0.0315(11) 0.0050(8) -0.0056(9) 0.0019(8)

C(5A) 0.0318(11) 0.0255(8) 0.0368(12) -0.0053(8) -0.0012(10) -0.0000(8) C(6A) 0.0382(11) 0.0201(8) 0.0267(11) 0.0001(8) -0.0000(9) -0.0035(8) C(7A) 0.0502(12) 0.0209(8) 0.0294(11) -0.0055(8) 0.0122(10) 0.0001(8) C(8A) 0.0320(10) 0.0285(8) 0.0249(11) -0.0078(7) 0.0005(9) 0.0022(8) C(9A) 0.0285(9) 0.0357(9) 0.0267(11) -0.0098(8) -0.0039(9) 0.0013(9)C(10A) 0.0209(9) 0.0204(8) 0.0222(10) -0.0032(6) -0.0035(8) 0.0015(7) C(11A) 0.0192(9) 0.0215(8) 0.0231(10) -0.0005(6) -0.0058(8) -0.0004(7)C(12A) 0.0210(9) 0.0220(8) 0.0235(11) 0.0036(6) -0.0021(8) 0.0021(7) C(13A) 0.0168(9) 0.0171(7) 0.0238(10) 0.0022(6) -0.0029(7) 0.0008(7) C(14A) 0.0190(9) 0.0179(8) 0.0320(11) -0.0008(6) -0.0055(8) 0.0020(7) C(15A) 0.0172(9) 0.0197(8) 0.0284(11) -0.0003(6) -0.0071(8) 0.0055(7) C(16A) 0.0161(8) 0.0139(7) 0.0283(10) 0.0015(6) -0.0023(7) 0.0005(7) C(17A) 0.0263(10) 0.0186(8) 0.0268(10) 0.0013(6) -0.0020(8) -0.0016(7) C(18A) 0.0231(9) 0.0258(8) 0.0266(11) 0.0048(7) 0.0011(8) -0.0018(8) C(19A) 0.0186(9) 0.0255(8) 0.0249(10) 0.0027(6) -0.0027(8) -0.0003(8)C(20A) 0.0261(9) 0.0166(8) 0.0360(11) 0.0004(7) 0.0067(9) 0.0017(8) C(21A) 0.0257(9) 0.0176(7) 0.0345(11) 0.0036(7) 0.0075(9) 0.0006(8) C(1B) 0.0220(9) 0.0125(7) 0.0204(9) -0.0021(6) -0.0041(7) 0.0002(7) C(2B) 0.0234(9) 0.0124(7) 0.0233(9) -0.0034(6) -0.0049(7) 0.0002(7) C(3B) 0.0242(9) 0.0178(7) 0.0229(10) -0.0047(6) -0.0026(8) -0.0011(7) C(4B) 0.0208(9) 0.0102(7) 0.0290(10) -0.0005(6) -0.0004(8) -0.0027(7) C(5B) 0.0224(9) 0.0145(7) 0.0214(9) -0.0007(6) 0.0021(8) -0.0001(7) C(6B) 0.0191(8) 0.0132(7) 0.0195(8) -0.0012(6) 0.0013(7) 0.0005(6)

Table S20. Multipole parameters for 1a-HPic

loop

```
atom rho multipole atom label
_atom_rho_multipole_coeff Pv
_atom_rho_multipole coeff P00
_atom_rho_multipole_coeff P11
atom rho multipole coeff P1-1
atom rho multipole coeff P10
atom rho multipole coeff P20
_atom_rho_multipole_coeff_P21
_atom_rho_multipole coeff P2-1
_atom_rho_multipole_coeff_P22
_atom_rho_multipole coeff P2-2
atom rho multipole coeff P30
atom rho multipole coeff P31
atom rho multipole coeff P3-1
atom rho multipole coeff P32
atom rho multipole coeff P3-2
_atom_rho_multipole_coeff_P33
_atom_rho_multipole_coeff_P3-3
atom rho multipole coeff P40
atom rho multipole coeff P41
atom rho multipole coeff P4-1
atom rho multipole coeff P42
_atom_rho_multipole_coeff_P4-2
_atom_rho_multipole_coeff_P43
_atom_rho_multipole_coeff P4-3
atom rho multipole coeff P44
atom rho multipole coeff P4-4
atom rho multipole kappa
atom rho multipole kappa prime0
atom rho multipole kappa prime1
```

atom rho multipole kappa prime2 atom rho multipole kappa prime3 atom rho multipole kappa prime4 Cl(1A) 7.1278 0 0 0 -0.0316 -0.142 0 0 0 0 0.1018 0 0 0 0 0 0 0.0311 0 0 0 0 0 0 0 0 1.003934 0.98084 0.98084 0.98084 0.98084 0.98084 F(1A) 7.1283 0 0 0 -0.0492 -0.0902 0 0 0 0 0.0342 0 0 0 0 0 0 0.0065 0 0 0 0 0 0 0 0 1.002244 1.3624 1.3624 1.3624 1.3624 1.3624 O(2A) 6.0788 0 -0.0536 -0.0866 0 0.1041 0 0 -0.028 0.042 0 -0.0147 -0.0263 0 0 0.065 -0.0215 0.0106 0 0 0.0042 0.0027 0 0 0.0149 0.0153 1.001632 1.113461 1.113461 1.113461 1.113461 1.113461 O(11A) 4.404 0 0 0 -0.0486 0.0211 0 0 -0.1102 0 0.0204 0 0 0.0124 0 0 0 -0.0085 0 0 0.0081 0 0 0 -0.0019 0 1.003017 1.109004 1.109004 1.109004 1.109004 1.109004 O(11B) 1.7126 0 0 0 -0.0189 0.0082 0 0 -0.0429 0 0.0079 0 0 0.0048 0 0 0 -0.0033 0 0 0.0032 0 0 0 -0.0007 0 1.003017 1.109004 1.109004 1.109004 1.109004 1.109004 O(1B) 6.1783 0 -0.0681 -0.0001 0 -0.0983 0 0 -0.0621 -0.0011 0 -0.0091 0.0004 0 0 0.034 0.0016 -0.0066 0 0 0.0027 -0.0002 0 0 0.0103 0.005 0.999014 1.147181 1.147181 1.147181 1.147181 1.147181 O(21B) 6.1187 0 -0.0977 -0.0056 0 -0.193 0 0 -0.112 -0.007 0 -0.0143 0.0015 0 0 0.0647 0.0035 -0.0159 0 0 0.0077 0.0024 0 0 0.0066 -0.0035 1.003886 1.086474 1.086474 1.086474 1.086474 1.086474

O(22B) 6.1187 0 -0.0977 -0.0056 0 -0.193 0 0 -0.112 -0.007 0 -0.0143 0.0015 0 0 0.0647 0.0035 -0.0159 0 0 0.0077 0.0024 0 0 0.0066 -0.0035 1.003886 1.086474 1.086474 1.086474 1.086474 1.086474 O(41B) 6.1471 0 0 0 -0.1094 -0.1112 0 0 -0.1097 0 0.0375 0 0 0.0102 0 0 0 -0.0019 0 0 0.0043 0 0 0 -0.0014 0 1.000254 1.037783 1.037783 1.037783 1.037783 1.037783 O(42B) 6.1187 0 -0.0977 -0.0056 0 -0.193 0 0 -0.112 -0.007 0 -0.0143 0.0015 0 0 0.0647 0.0035 -0.0159 0 0 0.0077 0.0024 0 0 0.0066 -0.0035 1.003886 1.086474 1.086474 1.086474 1.086474 1.086474 O(61B) 6.1471 0 0 0 -0.1094 -0.1112 0 0 -0.1097 0 0.0375 0 0 0.0102 0 0 0 -0.0019 0 0 0.0043 0 0 0 -0.0014 0 1.000254 1.037783 1.037783 1.037783 1.037783 1.037783 O(62B) 6.1187 0 -0.0977 -0.0056 0 -0.193 0 0 -0.112 -0.007 0 -0.0143 0.0015 0 0 0.0647 0.0035 -0.0159 0 0 0.0077 0.0024 0 0 0.0066 -0.0035 1.003886 1.086474 1.086474 1.086474 1.086474 1.086474 N(1A) 5.0916 0 0 0 -0.005 0.0107 0 0 0 0 0.2234 0 0 0 0 0.176 0 0.066 0 0 0 0 -0.0509 0 0 0 0.997716 0.890138 0.890138 0.890138 0.890138 0.890138 N(2B) 4.9998 0 -0.008 -0.0145 0 -0.2057 0 0 0.0224 -0.0298 0 -0.0003 -0.0013 0 0 0.3358 0.0423 $0.017 \ 0 \ 0.0081 \ -0.0093 \ 0 \ 0 \ -0.0172 \ -0.0362$ 0.999556 0.842726 0.842726 0.842726 0.842726 0.842726

N(4B) 5.0066 0

0 0 0.0263 0.0813 0 0 -0.1755 0 0.2912 0 0 0.226 0 0 0 0.0354 0 0 0.0098 0 0 0 0.0094 0 0.998662 0.839998 0.839998 0.839998 0.839998 0.839998 N(6B) 5.0066 0 0 0 0.0263 0.0813 0 0 -0.1755 0 0.2912 0 0 0.226 0 0 0 0.0354 0 0 0.0098 0 0 0 0.0094 0 0.998662 0.839998 0.839998 0.839998 0.839998 0.839998 C(1A) 4.0553 0 0.0153 0.0288 0 -0.1768 0 0 0.0102 -0.0228 0 0.0129 0.0248 0 0 0.2306 -0.0085 0.011 0 0 0.0011 -0.0102 0 0 0.0008 0.0036 1.014566 1 1 1 1 1 C(2A) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(3A) 3.9654 0 0.0094 0.0348 0 -0.1568 0 0 -0.0015 -0.0186 0 0.0079 0.0255 0 0 0.222 -0.0068 0.0211 0 0 0.0022 -0.0107 0 0 0.0035 0.0023 1.018878 1 1 1 1 1 C(4A) 3.9709 0 0 0 -0.1242 -0.0582 0 0 -0.1752 0 0.2702 0 0 0.1226 0 0 0 0.0391 0 0 -0.007 0 0 0 -0.0002 0 1.016611 1 1 1 1 1 C(5A) 3.9654 0 0.0094 0.0348 0 -0.1568 0 0 -0.0015 -0.0186 0 0.0079 0.0255 0 0 0.222 -0.0068 0.0211 0 0 0.0022 -0.0107 0 0 0.0035 0.0023 1.018878 1 1 1 1 1 C(6A) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246

0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(7A) 3.9937 0 0.0588 -0.0014 0 -0.2542 0 0 0.066 0.0001 0 0.0173 0.0063 0 0 0.2777 0.0024 0.0152 0 0 0.0131 0.0001 0 0 -0.0174 0.0025 1.016945 1 1 1 1 1 C(8A) 3.9428 0 0 0 0.0068 -0.0023 0 0 0.0044 0 -0.0061 0 0 -0.2812 0 0 0 -0.0696 0 0 0.0156 0 0 0 0.048 0 1.01237 1 1 1 1 1 C(9A) 3.9428 0 0 0 0.0068 -0.0023 0 0 0.0044 0 -0.0061 0 0 -0.2812 0 0 0 -0.0696 0 0 0.0156 0 0 0 0.048 0 1.01237 1 1 1 1 1 C(10A) 3.8671 0 -0.0199 0.011 0 0.0163 0 0 -0.0337 -0.0059 0 -0.1339 -0.172 0 0 0.1776 -0.0445 0.0086 0 0 -0.0279 0.0714 0 0 0.0321 0.023 1.009768 1 1 1 1 1 C(11A) 3.8671 0 -0.0199 0.011 0 0.0163 0 0 -0.0337 -0.0059 0 -0.1339 -0.172 0 0 0.1776 -0.0445 0.0086 0 0 -0.0279 0.0714 0 0 0.0321 0.023 1.009768 1 1 1 1 1 C(12A) 3.9428 0 0 0 0.0068 -0.0023 0 0 0.0044 0 -0.0061 0 0 -0.2812 0 0 0 -0.0696 0 0 0.0156 0 0 0 0.048 0 1.01237 1 1 1 1 1 C(13A) 4.0474 0 -0.0538 -0.007 0 0.0477 0 0 -0.064 -0.0005 0 -0.1435 -0.1945 0 0 0.194 -0.0361 0.0369 0 0 -0.0505 0.0714 0 0 0.0428 0.0297

1.004815 1 1 1 1 1 C(14A) 3.9428 0 0 0 0.0068 -0.0023 0 0 0.0044 0 -0.0061 0 0 -0.2812 0 0 0 -0.0696 0 0 0.0156 0 0 0 0.048 0 1.01237 1 1 1 1 1 C(15A) 3.8671 0 -0.0199 0.011 0 0.0163 0 0 -0.0337 -0.0059 0 -0.1339 -0.172 0 0 0.1776 -0.0445 0.0086 0 0 -0.0279 0.0714 0 0 0.0321 0.023 1.009768 1 1 1 1 1 C(16A) 4.0553 0 0.0153 0.0288 0 -0.1768 0 0 0.0102 -0.0228 0 0.0129 0.0248 0 0 0.2306 -0.0085 0.011 0 0 0.0011 -0.0102 0 0 0.0008 0.0036 1.014566 1 1 1 1 1 C(17A) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(18A) 3.9213 0 0.001 0.0319 0 -0.1622 0 0 -0.0042 -0.0155 0 0.0084 0.0245 0 0 0.2229 -0.0076 0.0242 0 0 0.0013 -0.0129 0 0 -0.0003 -0.001 1.017714 1 1 1 1 1 C(19A) 4.1025 0 0 0 -0.0872 -0.0375 0 0 -0.1635 0 0.2348 0 0 0.1308 0 0 0 0.0148 0 0 -0.0125 0 0 0 0.0021 0 1.005708 1 1 1 1 1 C(20A) 3.9213 0 0.001 0.0319 0 -0.1622 0 0 -0.0042 -0.0155 0 0.0084 0.0245 0 0 0.2229 -0.0076 0.0242 0 0 0.0013 -0.0129 0 0 -0.0003 -0.001 1.017714 1 1 1 1 1

C(21A) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(1B) 3.9458 0 0 0 0.0569 0.1723 0 0 -0.1358 0 0.2321 0 0 0.1649 0 0 0 -0.0303 0 0 -0.0335 0 0 0 0.009 0 1.014762 1 1 1 1 1 C(2B) 3.8847 0 0.0434 0.1 0 -0.0592 0 0 0.0514 -0.0979 0 -0.0048 0.0191 0 0 0.2028 0.0145 0.021 0 0 -0.0004 -0.0068 0 0 -0.0049 -0.0002 1.021809 1 1 1 1 1 C(3B) 3.9673 0 0 0 0.0363 0.0263 0 0 -0.0964 0 -0.2017 0 0 -0.1155 0 0 0 0.0163 0 0 -0.0147 0 0 0 0.0092 0 1.019947 1 1 1 1 1 C(4B) 4.0611 0 0 0 -0.0578 0.0419 0 0 -0.1762 0 0.2267 0 0 0.1248 0 0 0 0.0212 0 0 0.0043 0 0 0 0.0002 0 1.01374 1 1 1 1 1 C(5B) 3.9673 0 0 0 0.0363 0.0263 0 0 -0.0964 0 -0.2017 0 0 -0.1155 0 0 0 0.0163 0 0 -0.0147 0 0 0 0.0092 0 1.019947 1 1 1 1 1 C(6B) 3.8847 0 0.0434 0.1 0 -0.0592 0 0 0.0514 -0.0979 0 -0.0048 0.0191 0 0 0.2028 0.0145 0.021 0 0 -0.0004 -0.0068 0 0 -0.0049 -0.0002 1.021809 1 1 1 1 1

H(20) 0.9197 0

1.13642 1.2 1.2 1.2 1.2 1.2

Tables S21 - S23 for 1b-HCl

Table S	521. <i>P</i>	Atomic coordina	tes for 1b- HCl				
loop_							
_at	com_si	te_label					
at	com si	te type symbol.					
at	om si	te fract x					
at	om si	te fract y					
at		te fract z					
	om si	te Uliso or eq	uiv				
		te occupancy	ai v				
		to symmetry mu	ltiplicity				
C1 (2)		0 61468(18)	1 21664(15)	0 16115(5)	0 1 /	1	2
$C_{1}(2)$		0.01400(10)	1.21004(13)	0.40445(3)	0 030	⊥ 1	2
		0.09192(0)	0.77111(7)	0.07070(3)	0.038	1	2
51	51	0.16229(7)	0.88/5/(7)	0.19608(3)	0.033	1	2
E'	E.	0.0634(3)	0.2997(3)	-0.46/66(9)	0.131	1	2
O(1)	0	-0.06255(18)	0.891/0(19)	0.21316(8)	0.048	1	2
0(2)	0	0.0149(2)	0.6921(2)	-0.17651(8)	0.056	1	2
Ν	Ν	0.26493(18)	0.73267(18)	0.04038(8)	0.025	1	2
C(7)	С	0.2921(3)	0.9774(3)	0.27654(11)	0.041	1	2
C(8)	С	0.2018(4)	1.0219(3)	0.33976(13)	0.063	1	2
C(9)	С	0.2991(5)	1.0937(4)	0.39842(15)	0.082	1	2
C(10)	С	0.4913(5)	1.1237(4)	0.39296(16)	0.079	1	2
C(11)	С	0.5873(4)	1.0786(4)	0.33117(17)	0.076	1	2
C(12)	С	0.4862(3)	1.0055(3)	0.27405(14)	0.056	1	2
C(13)	С	0.2246(3)	0.9919(2)	0.11160(11)	0.037	1	2
C(14)	С	0.1758(2)	0.8954(2)	0.04283(10)	0.029	1	2
C(15)	С	0.1936(2)	0.6234(2)	0.09757(10)	0.031	1	2
C(16)	C	0.2493(3)	0.6802(3)	0.17440(11)	0.036	1	2
C(17)	C	0.2356(3)	0.6546(3)	-0 03334(10)	0 034	1	2
C(18)	C	0.2330(3) 0.3441(3)	0.0310(3) 0.7364(3)	-0.09206(10)	0.042	1	2
C(10)	C	0.3432(3)	0.7304(3) 0.6371(3)	-0.16253(11)	0.042	1	2
C(10)	C	0.3432(3) 0.1543(3)	0.0371(3)	-0.20277(11)	0.042	⊥ 1	2
C(20)	C	0.1345(3) 0.1205(2)	0.0313(3)	-0.20277(11)	0.04	⊥ 1	2
C(21)	C	0.1303(3)	0.3433(3)	-0.274J2(11)	0.043	1	2
C(22)	C	0.2801(4)	0.44/3(3)	-0.30043(13)	0.064	1	2
C(23)	C	0.2548(5)	0.3627(4)	-0.36619(15)	0.085	1	2
C(24)	C	0.0892(6)	0.3813(4)	-0.40467(15)	0.087	1	2
C(25)	С	-0.0516(5)	0.4806(4)	-0.3815/(15)	0.085	Ţ	2
C(26)	С	-0.0266(4)	0.5626(4)	-0.31630(13)	0.061	1	2
H(1)	Н	-0.14460(18)	0.85490(19)	0.17371(8)	0.036(7)	1	2
H(N)	Η	0.40833(18)	0.74377(18)	0.04871(8)	0.034(6)	1	2
H(8)	Н	0.0721(4)	1.0020(3)	0.34283(13)	0.085(10)	1	2
Н(9)	Н	0.2359(5)	1.1212(4)	0.44073(15)	0.104(12)	1	2
H(11)	Н	0.7171(4)	1.0975(4)	0.32811(17)	0.103(12)	1	2
H(12)	Н	0.5497(3)	0.9741(3)	0.23232(14)	0.088(10)	1	2
H(13A)	Н	0.1584(3)	1.0935(2)	0.11035(11)	0.050(7)	1	2
H(13B)	Н	0.3599(3)	1.0151(2)	0.11301(11)	0.042(6)	1	2
H(14A)	Н	0.0390(2)	0.8825(2)	0.03865(10)	0.050(6)	1	2
н (14в)	н	$0\ 2169(2)$	0 9547(2)	0 00121(10)	0 037(6)	1	2
H(15A)	н	0.2435(2)	0.5166(2)	0.08885(10)	0.048(6)	1	2
H(15R)	н	0 0562(2)	0.6164(2)	0 09336(10)	0 042(6)	1	2
н (16д)	ч	0 3866(3)	0.6796(3)	0.17976(11)	0.012(0)	1	2
ц (16D)	ц Ц	0.1983(3)	0 6061(3)	0.1.0.0(11) 0.20803(11)	0.051(7)	⊥ 1	2
11 (エロD) 11 (ユロD)	п	0.1903(3) 0.1012(3)	0.0001(3)	-0.04620(10)	0.003(0)	⊥ 1	2
п(т/А)	н	$\cup \cdot \bot \cup \bot \angle ()$	$\cup \cdot \cup \cup 4 \circ ()$	-U.U40ZU(IU)	0.034(/)	T	2
H(17B)	Н	0.2755(3)	0.5435(3)	-0.03131(10)	0.060(8)	1	2
--------	---	------------	-----------	--------------	-----------	---	---
H(18A)	Н	0.4741(3)	0.7552(3)	-0.07521(10)	0.059(7)	1	2
H(18B)	Н	0.2872(3)	0.8398(3)	-0.10122(10)	0.058(8)	1	2
H(19A)	Н	0.4377(3)	0.6807(3)	-0.19429(11)	0.074(9)	1	2
H(19B)	Н	0.3800(3)	0.5282(3)	-0.15152(11)	0.077(9)	1	2
H(22)	Н	0.3928(4)	0.4379(3)	-0.27356(13)	0.083(11)	1	2
Н(23)	Н	0.3489(5)	0.2949(4)	-0.38343(15)	0.100(12)	1	2
H(25)	Н	-0.1616(5)	0.4927(4)	-0.40981(15)	0.124(15)	1	2
H(26)	Н	-0.1214(4)	0.6302(4)	-0.29955(13)	0.095(12)	1	2

Table S22. Anisotropic displacement parameters for **1b-**HCl

loop_

_atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_12 _atom_site_aniso_U_13 _atom_site_aniso_U_23

C1(2) 0.2038(12) 0.1238(10) 0.0882(6) -0.0566(8) -0.0790(7) -0.0070(6) Cl(1) 0.0179(2) 0.0362(3) 0.0582(3) -0.00159(19) -0.0037(2) 0.0025(3) si 0.0249(3) 0.0377(4) 0.0370(3) -0.0005(2) 0.0042(2) -0.0045(3) F 0.183(2) 0.153(2) 0.0528(11) -0.0162(16) -0.0097(11) -0.0456(13) $O(1) \quad 0.0292(7) \quad 0.0648(11) \quad 0.0494(9) \quad -0.0007(7) \quad 0.0095(7) \quad -0.0092(8)$ $O(2) \quad 0.0568(9) \quad 0.0621(12) \quad 0.0491(9) \quad 0.0214(8) \quad -0.0085(7) \quad -0.0137(9)$ N 0.0182(7) 0.0201(9) 0.0351(8) -0.0008(6) -0.0017(6) -0.0003(7)C(7) 0.0349(10) 0.0453(14) 0.0423(12) -0.0003(9) 0.0004(9) -0.0047(11)C(8) 0.0558(16) 0.090(2) 0.0426(14) 0.0071(13) -0.0008(11) -0.0163(14)C(9) 0.106(2) 0.095(3) 0.0445(17) 0.0041(19) -0.0132(16) -0.0201(17)C(10) 0.105(2) 0.069(2) 0.0607(18) -0.0189(17) -0.0375(17) -0.0004(16) C(11) 0.0674(18) 0.080(2) 0.078(2) -0.0254(15) -0.0337(15) 0.0085(17) C(12) 0.0367(11) 0.0666(18) 0.0628(16) -0.0072(11) -0.0077(11) -0.0081(14) C(13) 0.0332(10) 0.0269(12) 0.0500(13) 0.0037(8) 0.0061(9) -0.0058(10) C(14) 0.0235(9) 0.0224(11) 0.0412(11) 0.0044(7) 0.0013(8) 0.0051(9) C(15) 0.0249(9) 0.0234(11) 0.0433(12) -0.0012(8) 0.0003(8) 0.0037(9) C(16) 0.0325(10) 0.0377(13) 0.0382(11) -0.0008(9) 0.0010(8) 0.0039(10) C(17) 0.0329(10) 0.0306(13) 0.0373(12) -0.0069(9) -0.0009(8) -0.0048(10)C(18) 0.0445(12) 0.0418(15) 0.0389(12) -0.0098(10) 0.0036(9) -0.0024(11) C(19) 0.0445(12) 0.0432(16) 0.0391(12) -0.0004(10) 0.0030(10) -0.0017(11)C(20) 0.0517(12) 0.0345(13) 0.0348(11) 0.0058(10) -0.0037(9) -0.0031(10)C(21) 0.0623(13) 0.0402(15) 0.0322(12) -0.0006(10) -0.0016(10) -0.0000(11) C(22) 0.095(2) 0.0597(19) 0.0369(13) 0.0182(15) -0.0012(14) -0.0114(13) C(23) 0.129(3) 0.079(2) 0.0450(17) 0.019(2) 0.0047(18) -0.0205(17)C(24) 0.128(3) 0.092(3) 0.0381(15) -0.008(2) -0.0050(18) -0.0163(17)C(25) 0.099(2) 0.115(3) 0.0395(16) -0.025(2) -0.0125(16) -0.0062(17) C(26) 0.0716(16) 0.076(2) 0.0352(13) -0.0067(15) -0.0075(12) 0.0046(13)

Table S23 Multipole parameters for 1b-HCl

loop_

_atom_rho_multipole_atom_label _atom_rho_multipole_coeff_Pv _atom_rho_multipole_coeff_P00 _atom_rho_multipole_coeff_P11 _atom_rho_multipole_coeff_P1-1

```
atom rho multipole coeff P10
    atom rho multipole coeff P20
    _atom_rho_multipole coeff<sup>_</sup>P21
    _atom_rho_multipole coeff P2-1
    _atom_rho_multipole_coeff P22
    atom rho multipole coeff P2-2
    atom rho multipole coeff P30
    atom rho multipole coeff P31
    _atom_rho_multipole_coeff P3-1
    _atom_rho_multipole coeff P32
    _atom_rho_multipole_coeff_P3-2
    _atom_rho_multipole_coeff P33
    atom rho multipole coeff P3-3
    atom rho multipole coeff P40
    _atom_rho_multipole_coeff_P41
    _atom_rho_multipole coeff P4-1
    _atom_rho_multipole coeff P42
    _atom_rho_multipole_coeff_P4-2
    atom rho multipole coeff P43
    atom rho multipole coeff P4-3
    atom rho multipole coeff P44
    atom rho multipole coeff P4-4
    _atom_rho_multipole_kappa
    _atom_rho_multipole_kappa prime0
    _atom_rho_multipole_kappa_prime1
    _atom_rho_multipole_kappa_prime2
    atom rho multipole kappa prime3
    atom rho multipole kappa prime4
Cl(2) 7.1278 0
0 0 -0.0316
-0.142 0 0 0 0
0.1018 0 0 0 0 0 0
0.0311 0 0 0 0 0 0 0 0
1.003934 0.98084 0.98084 0.98084 0.98084 0.98084
Cl(1) 8 0
0 0 0
0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1.010613 1 1 1 1 1
Si 4.6313 0
0.0422 0.0029 -0.0048
-0.0305 -0.0463 -0.0158 -0.034 -0.0192
0.717 0.0053 -0.0983 -0.0221 0.0244 0.0021 -0.5586
0.2182 0.003 -0.0309 0.0681 -0.0225 0.0185 0.2464 0.0102 -0.0052
0.940235 0.747749 0.747749 0.747749 0.747749 0.747749
F 7.1283 0
0 0 -0.0492
-0.0902 0 0 0 0
0.0342 0 0 0 0 0 0
0.0065 0 0 0 0 0 0 0 0
1.002244 1.3624 1.3624 1.3624 1.3624 1.3624
```

0(1) 5.9236 0 -0.0686 -0.0463 0 0.0485 0 0 -0.0489 0.0107 0 -0.024 -0.0061 0 0 0.0469 -0.0031 0.0033 0 0 -0.0089 -0.0055 0 0 0.0162 -0.0008 1.008424 1.095759 1.095759 1.095759 1.095759 1.095759 0(2) 6.1166 0 0 0 -0.0675 0.0293 0 0 -0.1531 0 0.0283 0 0 0.0172 0 0 0 -0.0118 0 0 0.0113 0 0 0 -0.0026 0 1.003017 1.109004 1.109004 1.109004 1.109004 1.109004 N 5.0916 0 0 0 -0.005 0.0107 0 0 0 0 0.2234 0 0 0 0 0.176 0 0.066 0 0 0 0 -0.0509 0 0 0 0.997716 0.890138 0.890138 0.890138 0.890138 0.890138 C(7) 3.9617 0 0 0 -0.0065 0.087 0 0 -0.147 0 0.1693 0 0 0.1248 0 0 0 -0.0075 0 0 -0.02 0 0 0 0.0002 0 1.015453 1 1 1 1 1 C(8) 3.9596 0 0.0166 0.0354 0 -0.1753 0 0 0.013 -0.0221 0 0.0108 0.022 0 0 0.2313 0.007 0.0164 0 0 0.008 -0.0146 0 0 0.0014 0 1.015464 1 1 1 1 1 C(9) 3.9213 0 0.001 0.0319 0 -0.1622 0 0 -0.0042 -0.0155 0 0.0084 0.0245 0 0 0.2229 -0.0076 0.0242 0 0 0.0013 -0.0129 0 0 -0.0003 -0.001 1.017714 1 1 1 1 1 C(10) 4.1025 0 0 0 -0.0872 -0.0375 0 0 -0.1635 0 0.2348 0 0 0.1308 0 0 0 0.0148 0 0 -0.0125 0 0 0 0.0021 0 1.005708 1 1 1 1 1

C(11) 3.9213 0 0.001 0.0319 0 -0.1622 0 0 -0.0042 -0.0155 0 0.0084 0.0245 0 0 0.2229 -0.0076 0.0242 0 0 0.0013 -0.0129 0 0 -0.0003 -0.001 1.017714 1 1 1 1 1 C(12) 3.9596 0 0.0166 0.0354 0 -0.1753 0 0 0.013 -0.0221 0 0.0108 0.022 0 0 0.2313 0.007 0.0164 0 0 0.008 -0.0146 0 0 0.0014 0 1.015464 1 1 1 1 1 C(13) 3.7949 0 0.0181 0.0134 0 -0.016 0 0 0.0247 0.0048 0 -0.0824 -0.1728 0 0 0.1346 -0.0198 0.0007 0 0 -0.0288 0.0575 0 0 0.0067 0.0155 1.01596 1 1 1 1 1 C(14) 3.8671 0 -0.0199 0.011 0 0.0163 0 0 -0.0337 -0.0059 0 -0.1339 -0.172 0 0 0.1776 -0.0445 0.0086 0 0 -0.0279 0.0714 0 0 0.0321 0.023 1.009768 1 1 1 1 1 C(15) 3.8671 0 -0.0199 0.011 0 0.0163 0 0 -0.0337 -0.0059 0 -0.1339 -0.172 0 0 0.1776 -0.0445 0.0086 0 0 -0.0279 0.0714 0 0 0.0321 0.023 1.009768 1 1 1 1 1 C(16) 3.7949 0 0.0181 0.0134 0 -0.016 0 0 0.0247 0.0048 0 -0.0824 -0.1728 0 0 0.1346 -0.0198 0.0007 0 0 -0.0288 0.0575 0 0 0.0067 0.0155 1.01596 1 1 1 1 1 C(17) 3.8671 0 -0.0199 0.011 0 0.0163 0 0 -0.0337 -0.0059 0 -0.1339 -0.172 0 0 0.1776 -0.0445 0.0086 0 0 -0.0279 0.0714 0 0 0.0321 0.023 1.009768 1 1 1 1 1 C(18) 3.9428 0 0 0 0.0068

-0.0023 0 0 0.0044 0 -0.0061 0 0 -0.2812 0 0 0 -0.0696 0 0 0.0156 0 0 0 0.048 0 1.01237 1 1 1 1 1 C(19) 3.9428 0 0 0 0.0068 -0.0023 0 0 0.0044 0 -0.0061 0 0 -0.2812 0 0 0 -0.0696 0 0 0.0156 0 0 0 0.048 0 1.01237 1 1 1 1 1 C(20) 3.9937 0 0.0588 -0.0014 0 -0.2542 0 0 0.066 0.0001 0 0.0173 0.0063 0 0 0.2777 0.0024 0.0152 0 0 0.0131 0.0001 0 0 -0.0174 0.0025 1.016945 1 1 1 1 1 C(21) 4.0553 0 0.0153 0.0288 0 -0.1768 0 0 0.0102 -0.0228 0 0.0129 0.0248 0 0 0.2306 -0.0085 0.011 0 0 0.0011 -0.0102 0 0 0.0008 0.0036 1.014566 1 1 1 1 1 C(22) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(23) 3.9654 0 0.0094 0.0348 0 -0.1568 0 0 -0.0015 -0.0186 0 0.0079 0.0255 0 0 0.222 -0.0068 0.0211 0 0 0.0022 -0.0107 0 0 0.0035 0.0023 1.018878 1 1 1 1 1 C(24) 3.9709 0 0 0 -0.1242 -0.0582 0 0 -0.1752 0 0.2702 0 0 0.1226 0 0 0 0.0391 0 0 -0.007 0 0 0 -0.0002 0 1.016611 1 1 1 1 1 C(25) 3.9654 0 0.0094 0.0348 0 -0.1568 0 0 -0.0015 -0.0186 0 0.0079 0.0255 0 0 0.222 -0.0068

Electronic Supplementary Information Part II: 4 Compounds of Venlafaxine type.

Note: In all Tables the non-revised output of the XD program (ref. 12) was used. With respect to the significance of the given data we refer to Grabowsky et al., Acta Cryst. 2009, B65, 488, where transferability indices were derived as 0.09 e Å⁻³ and 2.8 e Å⁻⁵ for the ED's and Laplacians at the bond critical points and 0.7 Å³ and 0.11 e for the atomic volumes and charges. These quantities can serve as an estimate of the significance of the listed data.

TABLE S4 BOND CRITICAL POINT SEARCH FOR **2a**

Quantities are in e/Ang^x Using ANALYTICAL derivatives

Searching internuclear distances between 1.200 and 1.600 Angstroms

	Bond	ρ	Δρ	Rij d1 d2
				Hessian Eigenvalues elli
0(1)	-C(5)	1.765	-11.853	1.4378 0.8296 0.6082
				-13.72 -13.31 15.17 0.0
0(2)	-C(14)	2.058	-17.791	1.3646 0.8107 0.5538
				-17.43 -15.92 15.56 0.1
0(2)	-C(17)	1.804	-11.986	1.4195 0.8279 0.5916
				-13.87 -13.65 15.54 0.03
N(1)	-C(1)	1.708	-6.280	1.4687 0.7999 0.6689
(4)		4 500	c	-12.36 -10.69 16.77 0.1
N(1)	-C(2)	1.709	-6.320	1.4684 0.7997 0.6687
NT (1)	a ())	1 604	C 007	-12.38 -10.70 16.76 0.1
N(1)	-0(3)	1.684	-6.08/	1.4/69 0.8030 0.6/40
a ())		1 600	10 411	-12.22 -10.54 16.68 0.1
C(3)	-C(4)	1.632	-10.411	1.5426 U.7759 U.7667
$\alpha(\Lambda)$		1 (20	10 450	
C(4)	-0(5)	1.630	-10.450	11 50 11 00 12 20 0.0
$\alpha(A)$	C(11)	1 (5)	10 000	
C(4)	-((11)	1.652	-10.222	-11 50 -11 22 12 51 0 0
C(5)	-C(6)	1 700	_11 83/	-11.50 -11.25 12.51 0.0
0(3)	0(0)	1.700	11.004	-12 17 -11 72 12 05 0 0
C(5)	-C(10)	1 711	-12 048	1 5337 0 7797 0 7540
0(0)	0(10)	+ • / + +	12.010	-12.27 -11.82 12.04 0.09
C(6)	-C(7)	1.637	-10.416	1.5365 0.7683 0.7681
- (-)				-11.28 -11.20 12.06 0.0
C(7)	-C(8)	1.668	-11.019	1.5240 0.7619 0.7621
- ()	- (-)			-11.56 -11.47 12.02 0.0
C(8)	-C(9)	1.657	-10.800	1.5285 0.7644 0.7641
				-11.46 -11.37 12.03 0.0
C(9)	-C(10)	1.637	-10.421	1.5365 0.7681 0.7684
				-11.28 -11.19 12.06 0.0
C(11)	-C(12)	2.086	-16.376	1.4059 0.7041 0.7018
				-16.17 -13.37 13.17 0.2
C(11)	-C(16)	2.119	-17.391	1.3949 0.6989 0.6960
				-16.49 -13.76 12.86 0.2
C(12)	-C(13)	2.100	-17.461	1.3920 0.7021 0.6899
				-16.46 -13.63 12.63 0.2

C(13)	-C(14)	2.136	-17.279	1.4013	0.6882	0.7130	
				-16.87	-13.59	13.19	0.24
C(14)	-C(15)	2.133	-17.834	1.3943	0.7142	0.6800	
				-16.93	-13.73	12.83	0.23
C(15)	-C(16)	2.091	-16.461	1.3985	0.6973	0.7012	
				-16.16	-13.37	13.07	0.21

TABLE S5 BOND CRITICAL POINT SEARCH FOR **2a**-HCl-ortho

Quantities are in e/Ang^x Using ANALYTICAL derivatives

Searching internuclear distances between 1.200 and 1.600 Angstroms

	Bond	ρ	Δρ	Rij d1 d2
				Hessian Eigenvalues ellip
0(1)	-C(4)	2.065	-17.915	1.3631 0.8105 0.5526
				-17.48 -15.98 15.54 0.09
0(1)	-C(17)	1.899	-12.909	1.3985 0.8194 0.5791
				-14.49 -14.27 15.85 0.02
0(2)	-C(8)	1.813	-13.515	1.4198 0.8280 0.5919
				-14.20 -13.76 14.45 0.03
N(1)	-C(14)	1.826	-11.398	1.4990 0.8323 0.6667
				-13.58 -13.37 15.55 0.02
N(1)	-C(15)	1.818	-10.529	1.5057 0.8310 0.6747
				-13.31 -13.22 16.00 0.01
N(1)	-C(16)	1.870	-11.642	1.4882 0.8258 0.6624
				-13.78 -13.72 15.85 0.00
C(1)	-C(2)	2.172	-18.393	1.3816 0.6903 0.6913
				-16.93 - 14.17 12.71 0.20
C(1)	-C(6)	2.143	-17.417	1.3916 0.6950 0.6967
				-16.63 -13.80 13.02 0.21
C(1)	-C(7)	1.706	-11.048	1.5066 0.7641 0.7425
- (0)	- (0)			-11.88 -11.70 12.53 0.02
C(2)	-C(3)	2.093	-16.049	1.4026 0.7034 0.6992
- (0)	- / / >	0.456	10 055	-16.04 -13.32 13.32 0.20
C(3)	-C(4)	2.156	-18.075	1.3888 0.6794 0.7094
<i>a (</i> 1)		0 1 0 0	10 000	-1/.0/ -13.8/ 12.8/ 0.23
C(4)	-C(5)	2.183	-18.830	1.38/1 0.7098 0.6773
	Q (C)	0 170	10 047	-17.44 -14.12 12.73 0.23
C(5)	-0(6)	2.1/6	-18.04/	1.3//1 0.6881 0.6890
C(7)	$C(\mathbf{Q})$	1 610	10 007	-10.87 - 13.99 12.82 0.21
C(7)	-0(0)	1.013	-10.007	1.5700 0.7759 0.7909 -11.24 -10.04 12.27 0.04
C(7)	-C(14)	1 6/1	_10 109	154700767107700
C(7)	-0(14)	1.041	-10.100	-11 42 -11 08 12 39 0.03
C(8)	-C(9)	1 758	-12 612	1 5210 0 7699 0 7511
C(0)	0())	1.750	12.012	
C(8)	-C(13)	1 7/5	-12 374	1 5250 0 7718 0 7532
C(0)	0(1)	1./45	12.574	-12 49 -12 03 12 15 0 04
C(9)	-C(10)	1 700	-11 008	1 5209 0 7607 0 7601
0())	0(10)	1.700	11.000	
C(10)	-C(11)	1 718	-11 348	1 5136 0 7574 0 7562
0(10)	0(11)	1.710	11.010	
C(11)	-C(12)	1,661	-10.290	1.5352 0.7679 0.7674
- (/	- (/			-11.35 -11.25 12.32 0.01
C(12)	-C(13)	1.693	-10.888	1.5234 0.7614 0.7620
. ,	. ,			-11.63 -11.53 12.28 0.01

TABLE S6. BOND CRITICAL POINT SEARCH FOR **2a**-HCl-mono

Quantities are in e/Ang^x Using ANALYTICAL derivatives

Searching internuclear distances between 1.200 and 1.600 Angstroms

	Bond	ρ	Δρ	Rij d1 d2
				Hessian Eigenvalues ellip
0(1)	-C(4)	2.112	-19.996	1.3479 0.8122 0.5357
				-17.98 -16.51 14.49 0.09
0(1)	-C(17)	1.840	-10.994	1.4188 0.8207 0.5980
a (a)	~ ())	1	10.000	-13.97 -13.74 16.71 0.02
0(2)	-C(8)	1.///	-12.228	1.432/ 0.8283 0.6043
NT / 1)	α (1.4)	1 0 0 0	11 200	-13.86 -13.42 15.06 0.03
N(1)	-C(14)	1.828	-11.389	1.4975 0.8316 $0.6659-1259$ -1227 1556 0.02
N(1)	-C(15)	1 868	-11 53/	1 4888 0 8260 0 6628
м(т)	-0(1)	1.000	-11.004	-13 73 -13 67 15 86 0 00
N(1)	-C(16)	1 882	-11 806	1 4822 0 8238 0 6584
N(1)	0(10)	1.002	11.000	
C(1)	-C(2)	2.124	-16,989	1.3975 0.6980 0.6995
- (-)	- (-)			-16.46 -13.65 13.12 0.21
C(1)	-C(6)	2.158	-17.944	1.3866 0.6914 0.6952
				-16.75 -14.05 12.85 0.19
C(1)	-C(7)	1.685	-10.658	1.5141 0.7673 0.7469
				-11.72 -11.50 12.56 0.02
C(2)	-C(3)	2.144	-18.029	1.3834 0.6980 0.6854
				-16.76 -13.92 12.65 0.20
C(3)	-C(4)	2.146	-17.194	1.4013 0.6902 0.7111
				-16.87 -13.63 13.31 0.24
C(4)	-C(5)	2.184	-18.742	1.3804 0.7052 0.6751
- (-)		0 1 1 5	15 050	-17.35 -14.10 12.70 0.23
C(5)	-C(6)	2.145	-17.352	1.3860 0.6921 0.6939
α (7)	G (0)	1 (10	10 500	-16.59 -13.75 12.99 0.21
C(7)	-0(8)	1.640	-10.509	1.5611 0.7691 0.7920
C(7)	-C(14)	1 662	-10 /8/	1 5386 0 7626 0 7760
C(7)	-0(14)	1.002	-10.404	$-11 \ 60 \ -11 \ 27 \ 12 \ 39 \ 0 \ 03$
C(8)	-C(9)	1 744	-12 374	1 5260 0 7724 0 7536
0(0)	0(3)	1.7.11	12.071	-12 49 -12 03 12 15 0 04
C(8)	-C(13)	1.730	-12.064	1.5308 0.7745 0.7563
- (-)	- (/			-12.35 -11.89 12.18 0.04
C(9)	-C(10)	1.668	-10.412	1.5334 0.7668 0.7666
				-11.41 -11.31 12.31 0.01
C(10)	-C(11)	1.725	-11.500	1.5112 0.7555 0.7557
				-11.92 -11.80 12.23 0.01
C(11)	-C(12)	1.688	-10.776	1.5256 0.7628 0.7627
				-11.58 -11.48 12.29 0.01
C(12)	-C(13)	1.715	-11.296	1.5151 0.7575 0.7577
				-11.83 -11.72 12.25 0.01

TABLE S7. BOND CRITICAL POINT SEARCH FOR **2b-**HCl

Quantities are in e/Ang^x Using ANALYTICAL derivatives

Searching internuclear distances between 1.200 and 1.990 Angstroms

	Bond	ρ	Δρ	Rij d1 d2
				Hessian Eigenvalues ellip
SI	-0(1)	0.995	16.810	1.6285 0.6775 0.9510
				-6.95 -6.84 30.60 0.02
SI	-C(1)	0.874	4.280	1.8574 0.7192 1.1381
				-4.88 -4.67 13.83 0.05
SI	-C(5)	0.865	3.987	1.8641 0.7214 1.1427
a -		0.000	0 445	-4.77 -4.55 13.31 0.05
SI	-C(6)	0.833	2.447	1.9082 0.7309 1.1773
0(2)	0(12)	2 0.7	10 450	-4.47 -4.30 11.22 0.04
0(2)	-0(13)	2.076	-18.456	1.3593 U.8110 U.5484
O(2)	-C(16)	1 0/0	_11 201	-17.60 -16.10 15.25 0.09
0(2)	-C(10)	1.049	-11.204	-14 05 -13 82 16 59 0 02
N	-C(7)	1 802	-10 715	15045 0 8328 0 6717
IN	$\mathcal{C}(7)$	1.002	10.715	
N	-C(8)	1 880	-11 858	1 4850 0 8250 0 6600
11	0(0)	1.000	11.000	-13.87 -13.80 15.81 0.01
Ν	-C(9)	1.852	-11.180	1.4937 0.8272 0.6665
	- (-)			-13.58 -13.52 15.92 0.00
C(1)	-C(2)	1.617	-9.086	1.5398 0.7628 0.7770
	. ,			-10.86 -10.46 12.23 0.04
C(2)	-C(3)	1.688	-10.845	1.5246 0.7622 0.7625
				-11.60 -11.51 12.27 0.01
C(3)	-C(4)	1.687	-10.845	1.5247 0.7626 0.7621
				-11.60 -11.51 12.26 0.01
C(4)	-C(5)	1.598	-8.840	1.5454 0.7802 0.7652
				-10.73 -10.35 12.24 0.04
C(6)	-C(7)	1.698	-10.764	1.5175 0.7469 0.7705
				-11.59 -11.39 12.22 0.02
C(6)	-C(10)	1.681	-10.168	1.5160 0.7464 0.7696
~ (1 0)	~ (1 1)	0 1 5 0	10.004	-11.80 -10.87 12.50 0.08
C(10)	-C(11)	2.159	-18.084	1.3855 0.6921 0.6934
α (10)	Q (1 E)	0 110	16 640	-16.81 -14.06 12.78 0.20
C(10)	-0(15)	2.110	-10.048	$1.4018 \ 0.7002 \ 0.7016$ $-16 \ 21 \ -12 \ 52 \ 12 \ 10 \ 0 \ 21$
C(11)	-C(12)	2 1 2 0	-16 673	-10.31 - 13.33 13.19 0.21
C(II)	-C(12)	2.120	-10.075	$-16\ 31\ -13\ 54\ 13\ 18\ 0\ 20$
C(12)	-C(13)	2 164	-18 263	1 3866 0 6784 0 7082
0(12)	0(10)	2.101	10.200	-17 15 -13 94 12 82 0 23
C(13)	-C(14)	2.159	-17.550	1.3970 0.7090 0.6881
- (/	/			-17.03 -13.75 13.22 0.24
C(14)	-C(15)	2.144	-18.028	1.3834 0.6856 0.6979
				-16.76 -13.92 12.65 0.20

Table S11. Atomic charges q [e] and volumes V $[{\rm \AA^3}]$ for ${\bf 2a}$

Atom	q	V _{tot}
O(1)	-0.92559837	14.52555795
O(2)	-0.91380486	16,49428144
N(1)	-0.81057091	9 87766316
C(1)	0 22385028	8 94395838
C(1)	0.22000020	8 93318125
C(2)	0.22011270	6 94027500
C(3)	0.22055904	6 77967001
C(4)	0.00091140	5 5070154C
C(3)	0.29249110	7 71410207
C(0)	-0.04434796	/./141030/
C(7)	-0.04480180	8.82240325
C(8)	-0.04415940	8.66977349
C(9)	-0.0331114/	8.42950047
C(10)	-0.05410476	8.29127915
C(11)	-0.041910/9	9.04513739
C(12)	-0.06770643	11.09/313/4
C(13)	-0.06312423	12.61931004
C(14)	0.36790682	8.65147560
C(15)	-0.05245304	12.10122338
C(16)	-0.06131412	11.91659261
C(17)	0.33836622	9.68322895
H(1)	0.53518518	2.16229824
H(1A)	0.02292403	8.22064180
H(1B)	0.02489771	7.09768108
H(1C)	0.02170372	8.52555166
H(2A)	0.02279507	6.55431310
H(2B)	0.02637248	8.98444643
H(2C)	0.02319805	7.38076357
H(3A)	0.01877950	5.46176652
Н(ЗВ)	0.01270497	6.80172647
H(4)	0.03176334	7.06210713
H(6A)	0.03150051	6.36312512
H(6B)	0.04031261	6.57942660
H(7A)	0.03362135	7.12324765
H(7B)	0.03474593	6.89773464
H(8A)	0.03532404	8.77581828
H(8B)	0.03377119	7.85595043
H(9A)	0.03575097	7.40460551
н (9В)	0.03714844	7.05888174
H(10A)	0.03269455	7.09398459
H(10B)	0.03609770	8.66087275
H(12)	0.08188354	5.72387551
H(13)	0 08444923	7 12376709
H(15)	0.08098308	7,34067221
H(16)	0 08042835	7 63882997
н (17д)	0 02072512	6 91880435
H(17R)	0 04136513	7 82159038
н (17с)	0 04225142	9 10183234
========	=================================	J.IUIUJZJ4
sum	: 0.06357678	388.86730077

 V_{tot} values calculated by integration over the basins enclosed by the zero-flux surfaces of the ED gradient vector field in the crystal according to Bader's formalism.

Table S12. Atomic charges q [e] and volumes V $[Å^3]$ for **2a-HCl-ortho**

Atom	q	V _{tot}
CT(1)	1 00007140	20 27744500
CL(1)	-1.00927143	30.27744390 14 EC200017
O(1)	-0.93115563	14.56300817
O(2)	-0.94141659	14.63618521
N(1)	-0.86/51035	8.42658566
C(1)	-0.03048425	8.61469555
C(2)	-0.030/5401	12.121462/1
C(3)	-0.02237320	13.36448462
C(4)	0.36765291	8.97905254
C (5)	-0.02758256	11.87329192
C(6)	-0.03262619	11.86567467
C (7)	0.02046041	6.66077763
C(8)	0.32311184	5.36868927
C (9)	-0.01442892	7.32613598
C(10)	-0.00536948	7.78325176
C(11)	-0.01734586	8.71895120
C(12)	-0.00623775	8.35060930
C(13)	-0.01583101	7.55195247
C(14)	0.20945850	7.18381017
C(15)	0.19964204	9.81641546
C(16)	0.19111133	9.52326537
C(17)	0.39232419	9.54556038
Н(2В)	0.55674063	2.23229504
H(1A)	0.47583083	2.25994480
H(2A)	0.07808446	7.37819243
H(3A)	0.07874756	7.05861127
H(5A)	0.07978735	9.58244844
H(6A)	0.07744182	6.73659436
H(7A)	0.04848126	5.90091332
H(9A)	0.04320289	7.76086752
Н(9В)	0.04215035	7.76097659
H(10A)	0.04403828	8.52627990
H(10B)	0.04422373	7.14329383
H(11A)	0.04425976	8.12540090
H(11B)	0.04326769	8.92279591
H(12A)	0.04665198	8.28566015
Н(12В)	0.04873484	8.15155808
H(15A)	0.04469330	6.52834566
H(15B)	0.04308511	8.96505316
H(14A)	0.02638945	6.07175822
H(14B)	0.03086253	5.95130916
H(15C)	0.04023759	8.00821362
H(15D)	0.04067909	9.97833835
H(15E)	0.03986016	9.13799589
H(16B)	0.04130524	8.37016332
H(16C)	0.04171796	7.36892740
H(16D)	0.04325695	6.51854667
H(17A)	0.05168273	8.89224861
Н(17В)	0.05378076	7.62159502

H(17C) 0.05292691 8.50844583

sum: 0.05349519 438.29807937

 V_{tot} values calculated by integration over the basins enclosed by the zero-flux surfaces of the ED gradient vector field in the crystal according to Bader's formalism.

Table S13. Atomic charges q [e] and volumes V $[Å^3]$ for **2a-**HCl-mono

Atom	q	Vtot
CL(1)	-1.00074280	37.36182124
O(1)	-0.93444914	16.18645069
O(2)	-0.92776924	14.89330236
N(1)	-0.89065670	8.6416/448
C(1)	-0.02936110	9.01931573
C(2)	-0.03701430	12.75505492
C(3)	-0.02832322	9 21671877
C(5)	-0 02506029	12 56072404
C(6)	-0.03638985	11,79351071
C(7)	0.02525801	6.46905737
C (8)	0.30933519	5.38807809
C(9)	-0.02325736	7.77939203
C(10)	0.00187100	7.86795038
C(11)	-0.02256638	8.94248573
C(12)	-0.01173806	8.09914596
C(13)	-0.01186010	7.52928292
C(14)	0.21308255	7.14084112
C(15)	0.20730398	9.65759403
C(16)	0.21353002	8.60592545
C(17)	0.37570856	8.36864437
H(27)	0.55677378	2.38733452
H(28)	0.46/8015/	2.455/932/
H(1)	0.07052007	7.52519956
п(2) н(3)	0.07953667	6 82132954
H(4)	0.07697926	6.75249219
H(5)	0.05006674	5.53500534
H(6)	0.04232906	9.94181336
Н(7)	0.04216773	6.76612664
H(8)	0.04377279	9.95645898
Н(9)	0.04284549	7.30664079
H(10)	0.04336334	8.22065902
H(11)	0.04632951	7.08563162
H(12)	0.04587548	6.98006206
H(13)	0.04466905	7.60055350
H(14)	0.04270294	8.10616524
H(15)	0.04513911	6.23423328 5.01603336
H(10) H(17)	0.02399247	5 7/0/7528
н(18)	0.03243003	8 32629708
H(19)	0.04167050	8.67522691
H(20)	0.04190679	7.75551098
Н(21)	0.04268692	7.00876347
Н(22)	0.04104703	8.77513867
Н(23)	0.03940025	7.21508336
H(24)	0.05273226	8.84347992

H(25)	0.05233252	8.20415203	
=========	==================	=======================================	
sum:	0.06572403	433.21936675	

 $V_{\rm tot}$ values calculated by integration over the basins enclosed by the zero-flux surfaces of the ED gradient vector field in the crystal according to Bader's formalism.

Table S14. Atomic charges q [e] and volumes V $[{\rm \AA^3}]$ for ${\bf 2b}\text{-HCl}$

Atom	q	V _{tot}
<u>a</u> t	1 00040000	27 10116400
CL	-1.00040029	37.10116422
SI	3.02088112	3.70498136
0(1)	-1.37228998	18.75588723
0(2)	-0.91901817	15.51565913
N	-0.88876333	8.41578079
C(1)	-0.80805684	12.11686933
C(2)	-0.02433874	8.52346546
C(3)	-0.02567017	8.45583946
C(4)	-0.01692102	8.93057514
C(5)	-0.81029741	12.29848426
C(6)	-0.78335385	10.25615878
C(7)	0.19044243	7.26050811
C(8)	0.20004786	9.78345358
C(9)	0.20080366	8.71750338
C(10)	-0.04940198	9.39256381
C(11)	-0.03501334	13.35708107
C(12)	-0 03000029	12 06332572
C(12)	0 38748250	8 63552579
C(14)	-0 03069236	11 56124067
C(15)	-0 04589295	11 49611096
C(15)	0.04303235	9 36852070
	0.57557605	2 00805100
$\Pi(\cup)$	0.00000410	2.000000000
$\Pi(N)$ $\Pi(1\lambda)$	0.47300310	2.01/01033
H(IA)	0.05447511	0.02049914
H(IB)	0.05032280	9.263/1113
H(2A)	0.04868650	9.30091072
H(2B)	0.05085463	0.8/028383
H(3A)	0.04/38/96	7.90014051
H(3B)	0.05039584	8.053/9302
H(4A)	0.05003333	8.69/55/82
H(4B)	0.04868552	7.26162580
H(5A)	0.05584081	6.89309850
H(5B)	0.04630016	8.05363086
H(6)	0.06191857	6.43914087
H(7A)	0.03536516	5.62695800
Н(7В)	0.02952236	6.46312960
H(8A)	0.04829271	7.45304467
H(8B)	0.04644026	8.89645559
H(8C)	0.04681274	7.08562135
H(9A)	0.04746094	6.20438163
Н(9В)	0.04691154	6.53702827
H(9C)	0.04904177	8.84994940
H(11)	0.08269932	8.07195150
H(12)	0.08618258	5.94971853
H(14)	0.08657388	7.80367675
H(15)	0.08478053	5.73072510
H(16A)	0.06006318	8.45258378
H(16B)	0.05885197	7.86587930

H(16C) 0.06036371 6.77047374

sum: 0.02975489 445.66353991

 V_{tot} values calculated by integration over the basins enclosed by the zero-flux surfaces of the ED gradient vector field in the crystal according to Bader's formalism.

Tables S24 - S26 for (2a)

Table S24. Atomic coordinates for 2a loop atom site label atom site type symbol _atom_site_fract_x atom site fract y atom site fract z atom site U iso or equiv atom site occupancy atom site symmetry multiplicity 0(1) 0 0.68504(8) -0.15161(6)0.18894(3)0.02 1 0(2) 0.35814(9)0.64131(6)0.05869(3)0.026 1 0 0.019 1 N(1)0.50199(9)-0.03989(8)0.28044(4)Ν 1 C(1) С 0.52132(13)-0.00093(10)0.34675(4)0.025 1 C(2) С 0.34708(12)-0.11875(11)0.26953(5)0.027 0.24397(4)0.019 1 C(3) С 0.50601(12)0.10181(9)С 0.018 1 C(4) 0.52295(11)0.07633(9)0.17355(4)C(5) С 0.68270(11)-0.00724(9)0.15791(4)0.016 1 C(6) С 0.83561(11)0.08207(9)0.17803(5)0.02 1 C(7) С 0.99031(12) -0.00102(10)0.16006(5)0.023 1 C(8) С 0.98969(13)-0.02974(11)0.09014(5)0.027 1 1 C(9) С 0.83966(12)-0.12018(10)0.06911(5)0.025 0.08792(4) 1 С 0.68341(12)-0.04098(10)0.021 C(10) С 1 C(11) 0.49167(11)0.22575(9)0.13970(4)0.018 С 1 C(12) 0.55407(11)0.36497(9)0.16151(4)0.019 С 0.50168(9)0.13333(4) 0.019 C(13) 0.51011(12) 1 C(14) С 0.50236(9)0.08177(4)0.019 1 0.40106(12)C(15) С 0.34190(12) 0.36555(9)0.05787(5)0.022 1 1 C(16) С 0.38694(12) 0.22976(9)0.08727(4) 0.022 C(17) С 0.24636(13)0.64560(10)0.00691(5)0.028 1 H(1) Η 0.63981(8)-0.13308(6)0.22873(3)0.032(3)1 1 H(1A) Η 0.42645(13)0.07886(10)0.35964(4)0.043(3)0.64055(13)0.05123(10)0.35553(4)0.052(4)1 H(1B) Η 0.51253(13)0.37466(4)1 H(1C) Η -0.10453(10)0.055(4)H(2A) Η 0.34181(12)-0.21643(11)0.30099(5)0.053(4)1 H(2B) Η 0.33820(12)-0.15810(11)0.22108(5)0.051(4)1 H(2C) Η 0.24616(12) -0.04173(11) 0.27819(5)0.048(3) 1 H(3A) Η 0.60867(12)0.17071(9)0.26159(4)0.042(3)1 H(3B) Η 0.39474(12)0.16669(9)0.25111(4)0.044(3)1 0.42396(11) 0.00062(9) 0.15880(4) 0.034(3) H(4) Η 1 H(6A) Η 0.83189(11) 0.19373(9)0.15594(5)0.030(3)1 0.83794(11)0.09875(9)0.22848(5)1 H(6B) Η 0.040(3)H(7A) 1.09610(12) 0.06717(10)0.17397(5)0.042(3)1 Η H(7B) Η 0.99898(12) -0.10912(10) 0.18486(5)0.041(3) 1 H(8A) Η 1.09863(13) -0.09260(11)0.07870(5)0.051(3)1 H(8B) Η 0.99087(13)0.07851(11)0.06538(5)0.044(3)1 -0.23310(10) H(9A) Η 0.84560(12)0.09005(5)0.040(3)1 H(9B) Η 0.83776(12)-0.13370(10)0.01851(5)0.049(3)1

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4 4

4

4

4

4

4

4

4

4 4

4

4

4

4

4

4

4

4

4

H(10A)	Η	0.66980(12)	0.06530(10)	0.06207(4)	0.039(3)	1	4
H(10B)	Η	0.57978(12)	-0.11307(10)	0.07510(4)	0.040(3)	1	4
H(12)	Η	0.63849(11)	0.36589(9)	0.20127(4)	0.034(3)	1	4
H(13)	Η	0.56000(12)	0.60715(9)	0.15118(4)	0.036(3)	1	4
H(15)	Η	0.26175(12)	0.36436(9)	0.01685(5)	0.040(3)	1	4
H(16)	Η	0.33891(12)	0.12425(9)	0.06872(4)	0.031(3)	1	4
H(17A)	Η	0.29859(13)	0.58799(10)	-0.03271(5)	0.058(4)	1	4
Н(17В)	Η	0.22005(13)	0.76361(10)	-0.00548(5)	0.052(3)	1	4
H(17C)	Η	0.13426(13)	0.58851(10)	0.01896(5)	0.048(3)	1	4

Table S25. Anisotropic displacement parameters for 2a

loop_

_atom_site_aniso_label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 atom site aniso U 12 atom site aniso U 13 atom site aniso U 23 0(1) 0.0239(4) 0.0138(3) 0.0226(4) 0.0028(3) 0.0024(3) 0.0034(3) 0(2) 0.0330(5) 0.0169(3) 0.0284(4) 0.0043(3) -0.0010(3) 0.0060(3) N(1) 0.0184(5) 0.0177(4) 0.0215(5) 0.0012(3) 0.0010(4) 0.0033(3) C(1) 0.0273(7) 0.0273(6) 0.0214(6) 0.0041(4) 0.0034(5) 0.0008(4)C(2) 0.0228(6) 0.0274(5) 0.0323(7) -0.0065(4) 0.0009(5) 0.0075(5)C(3) 0.0205(6) 0.0170(5) 0.0207(6) 0.0019(4) 0.0030(4) 0.0016(4)C(4) 0.0167(6) 0.0151(5) 0.0222(6) 0.0012(4) -0.0000(4) 0.0026(4)C(5) 0.0178(6) 0.0133(5) 0.0176(5) -0.0003(4) 0.0000(4) -0.0005(4)C(6) 0.0186(6) 0.0162(5) 0.0237(6) -0.0009(4) -0.0013(4) -0.0019(4)C(7) 0.0197(6) 0.0205(5) 0.0295(6) 0.0008(4) 0.0012(5) -0.0013(4) C(8) 0.0261(7) 0.0261(5) 0.0300(7) 0.0014(4) 0.0076(5) 0.0007(4) C(9) 0.0323(7) 0.0221(5) 0.0212(6) 0.0023(4) 0.0044(5) -0.0025(4) C(10) 0.0265(6) 0.0184(5) 0.0178(6) 0.0003(4) -0.0005(5) -0.0008(4) C(11) 0.0192(6) 0.0125(5) 0.0208(6) 0.0005(4) -0.0022(5) 0.0012(4)C(12) 0.0195(6) 0.0156(5) 0.0220(6) 0.0005(4) -0.0021(4) 0.0011(4)C(13) 0.0212(6) 0.0150(5) 0.0221(6) 0.0000(4) -0.0006(5) 0.0004(4) C(14) 0.0207(6) 0.0157(5) 0.0208(6) 0.0024(4) 0.0001(5) 0.0035(4) C(15) 0.0250(6) 0.0161(5) 0.0241(6) 0.0017(4) -0.0057(5) 0.0027(4) C(16) 0.0247(6) 0.0146(5) 0.0250(6) 0.0011(4) -0.0064(5) 0.0014(4) C(17) 0.0312(7) 0.0258(6) 0.0274(6) 0.0091(5) 0.0010(5) 0.0098(5)

Table S26 Multipole parameters for 2a

loop_

_atom_rho_multipole_atom_label _atom_rho_multipole_coeff_Pv _atom_rho_multipole_coeff_P10 _atom_rho_multipole_coeff_P1-1 _atom_rho_multipole_coeff_P10 _atom_rho_multipole_coeff_P20 _atom_rho_multipole_coeff_P21 _atom_rho_multipole_coeff_P2-1 _atom_rho_multipole_coeff_P22 _atom_rho_multipole_coeff_P22 _atom_rho_multipole_coeff_P2-2 _atom_rho_multipole_coeff_P30

atom rho multipole coeff P31 atom rho multipole coeff P3-1 _atom_rho_multipole coeff^{_}P32 _atom_rho_multipole coeff P3-2 _atom_rho_multipole_coeff P33 atom rho multipole coeff P3-3 atom rho multipole coeff P40 atom rho multipole coeff P41 _atom_rho_multipole_coeff P4-1 _atom_rho_multipole_coeff_P42 _atom_rho_multipole_coeff P4-2 _atom_rho_multipole_coeff P43 _atom_rho_multipole_coeff_P4-3 atom rho multipole coeff P44 _atom_rho_multipole_coeff_P4-4 _atom_rho_multipole_kappa _atom_rho_multipole kappa prime0 _atom_rho_multipole_kappa_prime1 atom rho multipole kappa prime2 atom rho multipole kappa prime3 atom rho multipole kappa prime4 0(1) 6.0788 0 -0.0536 -0.0866 0 0.1041 0 0 -0.028 0.042 0 -0.0147 -0.0263 0 0 0.065 -0.0215 0.0106 0 0 0.0042 0.0027 0 0 0.0149 0.0153 1.001632 1.113461 1.113461 1.113461 1.113461 1.113461 0(2) 6.1892 0 -0.0409 -0.0776 0 0.0709 0 0 -0.0249 0.0465 0 -0.0099 -0.023 0 0 0.0675 -0.0052 0.0027 0 0 0.0004 -0.0002 0 0 0.0118 0.0025 0.999544 1.195553 1.195553 1.195553 1.195553 1.195553 N(1) 5.1519 0 0 0 -0.0943 0.1166 0 0 0 0 -0.0742 0 0 0 0 0 0 -0.1282 -0.0124 0 0 0 0 0 -0.0427 0 0 0.998012 1.047518 1.047518 1.047518 1.047518 1.047518 C(1) 3.7963 0 0 0 -0.0134 -0.0353 0 0 0 0 0.2419 0 0 0 0 0 0 -0.1632 0.0404 0 0 0 0 0 0.0723 0 0 1.009611 1 1 1 1 1 C(2) 3.7963 0 0 0 -0.0134 -0.0353 0 0 0 0 0.2419 0 0 0 0 0 0 -0.1632 0.0404 0 0 0 0 0 0.0723 0 0

C(10) 3.9428 0 0 0 0.0068 -0.0023 0 0 0.0044 0 -0.0061 0 0 -0.2812 0 0 0 -0.0696 0 0 0.0156 0 0 0.048 0 1.01237 1 1 1 1 1 C(11) 4.0553 0 0.0153 0.0288 0 -0.1768 0 0 0.0102 -0.0228 0 0.0129 0.0248 0 0 0.2306 -0.0085 0.011 0 0 0.0011 -0.0102 0 0 0.0008 0.0036 1.014566 1 1 1 1 1 C(12) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(13) 3.9952 0 0.0117 0.0383 0 -0.1447 0 0 0.0015 -0.0224 0 0.0075 0.0255 0 0 0.2238 0.0024 0.0214 0 0 0.0044 -0.0117 0 0 0.0099 0.0005 1.016678 1 1 1 1 1 C(14) 4.0021 0 0 0 -0.0816 0.005 0 0 -0.1763 0 0.2647 0 0 0.1301 0 0 0 0.0371 0 0 0.0102 0 0 0 0.0041 0 1.01558 1 1 1 1 1 C(15) 3.9952 0 0.0117 0.0383 0 -0.1447 0 0 0.0015 -0.0224 0 0.0075 0.0255 0 0 0.2238 0.0024 0.0214 0 0 0.0044 -0.0117 0 0 0.0099 0.0005 1.016678 1 1 1 1 1 C(16) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1

C(17) 3.8259 0

Tables S27 - S29 for (2a-HCl-ortho)

Table S27. Atomic coordinates for 2a-HCl-ortho loop_ atom site label atom site type symbol atom site fract x _atom_site_fract_y atom site fract z atom site U iso or equiv atom site occupancy atom site symmetry multiplicity 1 Cl(1) Cl 0.47896(4) 0.33870(15)0.101798 0.055 4 0(1) 0.32126(10)0.9491(4)0.7728(2)0.059 1 4 0 0.5010(3)0.2544(2)0.039 1 4 0(2) \bigcirc 0.38451(9)1 4 0.49049(10)1.0328(5) 0.3149(3)0.041 N(1) Ν 1 C(1) С 0.37657(12)0.9123(6)0.4311(3)0.035 4 С 1 C(2) 0.34965(12)1.1020(6) 0.4665(3)0.04 4 С 0.32987(13) 0.5799(3) 1 4 C(3) 1.1227(6) 0.043 С 1 C(4) 0.33731(13)0.9479(6)0.6595(3)0.042 4 С 1 4 C(5) 0.36320(12)0.7546(6)0.6235(3)0.044 0.7376(6) 0.5119(3) С 0.041 1 4 C(6) 0.38250(14)1 4 С 0.39763(11)0.033 C(7) 0.8992(5)0.3088(3)С 0.36849(13)0.7260(5)0.2285(3)0.033 1 4 C(8) C(9) С 0.31143(12)0.7353(7)0.2517(4)0.048 1 4 С 1 4 C(10) 0.28121(16)0.5830(9)0.1696(4)0.061 0.29154(16)C(11) С 0.6413(10)0.0430(4)0.07 1 4 C(12) С 0.34890(14)0.6286(8)0.0173(4)0.058 1 4 С 0.37842(14) 0.7820(6)0.1004(3) 0.045 1 4 C(13) С 1 4 C(14) 0.45477(11)0.8342(6)0.3084(4)0.039 С 0.54467(13)0.9495(9)0.067 1 4 C(15) 0.3073(5)С 0.48233(18) 1 4 C(16) 1.1800(7)0.4190(4)0.058 С C(17) 0.3018(2) 1 4 1.1512(7) 0.8193(4)0.074 H(2B) Η 0.41300(9)0.4522(3)0.2081(2) 0.057(14) 1 4 H(1A) Η 0.48333(10)1.1322(5) 0.2437(3)0.09(2)1 4 4 Η 0.34506(12) 0.050(12) 1 H(2A) 1.2204(6) 0.4137(3) 4 H(3A) Η 0.31067(13)1.2493(6)0.6007(3)0.090(17) 1 H(5A) Η 0.36749(12)0.6356(6)0.6760(3)0.046(11) 1 4 0.39956(14) 0.4902(3)0.047(12) 1 4 H(6A) Η 0.6056(6)H(7A) Η 0.39444(11)1.0503(5)0.2735(3)0.046(11) 1 4 H(9A) Η 0.29964(12)0.8908(7)0.2434(4)0.067(14) 1 4 H(9B) Η 0.30492(12)0.6875(7)0.3314(4)0.065(14) 1 4 0.4256(9) H(10A) Η 0.29062(16)0.1830(4)0.072(15) 1 4 H(10B) Η 0.24500(16)0.5983(9)0.1848(4)0.053(12) 1 4 H(11A) Η 0.27967(16)0.7947(10)0.0277(4)0.13(3)1 4 0.27331(16) 0.5385(10) H(11B) Η -0.0084(4)0.13(2)1 4 H(12A) Η 0.36030(14)0.4725(8)0.0256(4)0.100(19) 1 4 H(12B) Η 0.35582(14)0.6773(8)-0.0621(4)0.065(14) 1 4 H(15A) Η 0.41468(14)0.7694(6)0.0851(3)0.057(12) 1 4 H(15B) 0.36864(14) 0.9387(6) 0.0864(3) 0.059(12) 1 4 Η H(14A) Η 0.46157(11)0.7368(6) 0.3750(4)0.078(16) 1 4 H(14B) Η 0.46211(11)0.7476(6)0.2383(4)0.078(15) 1 4 0.56761(13) 1.0767(9) 0.3090(5) 0.25(4) 4 H(15C) Η 1

H(15D)	Η	0.54923(13)	0.8670(9)	0.2358(5)	0.10(2)	1	4
H(15E)	Η	0.55168(13)	0.8513(9)	0.3723(5)	0.14(3)	1	4
Н(16В)	Η	0.50762(18)	1.2980(7)	0.4201(4)	0.082(16)	1	4
H(16C)	Η	0.48585(18)	1.0873(7)	0.4876(4)	0.069(15)	1	4
H(16D)	Η	0.44896(18)	1.2471(7)	0.4177(4)	0.33(5)	1	4
H(17A)	Η	0.2988(2)	1.1344(7)	0.9024(4)	0.088(18)	1	4
Н(17В)	Η	0.2689(2)	1.1827(7)	0.7864(4)	0.19(4)	1	4
H(17C)	Η	0.3246(2)	1.2744(7)	0.8020(4)	0.075(17)	1	4

Table S28. Anisotropic displacement parameters for **2a**-HCl-ortho

loop_

_atom_site aniso label _atom_site_aniso_U_11 _atom_site_aniso_U_22 _atom_site_aniso_U_33 _atom_site_aniso_U_12 _atom_site aniso_U_13 atom site aniso U 23 cl(1) 0.0615(6) 0.0535(5) 0.0494(5) 0.0176(5) 0.0164(6) 0.0079(6) 0(1) 0.075(2) 0.0580(16) 0.0441(16) 0.0024(16) 0.0116(14) 0.0004(14) 0(2) 0.0363(14) 0.0332(11) 0.0464(13) -0.0006(11) 0.0010(12) 0.0043(11) N(1) 0.0311(18) 0.0471(17) 0.0458(17) -0.0076(15) 0.0009(14) 0.0037(17) C(1) 0.034(2) 0.0329(17) 0.0383(18) 0.0005(16) 0.0007(16) 0.0026(16)C(2) 0.043(2) 0.0378(19) 0.0408(19) 0.0057(18) 0.0065(17) 0.0025(18) C(3) 0.046(2) 0.0412(19) 0.043(2) 0.0093(18) 0.0080(18) 0.0023(18)C(4) 0.040(2) 0.046(2) 0.040(2) 0.0012(19) 0.0010(17) -0.0021(19)C(5) 0.044(2) 0.043(2) 0.045(2) 0.0020(18) -0.0003(17) 0.0085(19)C(6) 0.042(2) 0.0371(19) 0.045(2) 0.0045(18) -0.0008(18) 0.0024(18)C(7) 0.0247(17) 0.0340(17) 0.0405(18) 0.0024(15) 0.0034(16) 0.0017(16) C(8) 0.0273(19) 0.0326(16) 0.0384(19) -0.0004(16) 0.0001(16) 0.0010(16) C(9) 0.024(2) 0.055(2) 0.064(3) 0.0019(19) -0.0001(19) -0.004(2) C(10) 0.036(3) 0.070(3) 0.077(3) -0.009(2) -0.004(2) -0.010(3) C(11) 0.048(3) 0.092(4) 0.071(3) 0.001(3) -0.023(3) -0.011(3)C(12) 0.065(3) 0.064(3) 0.046(2) -0.004(3) -0.015(2) -0.001(2)C(13) 0.045(2) 0.047(2) 0.042(2) -0.0016(18) -0.002(2) 0.010(2) C(14) 0.0265(18) 0.0399(18) 0.050(2) -0.0023(16) 0.0015(18) -0.004(2)C(15) 0.030(2) 0.086(3) 0.085(4) 0.003(3) 0.004(2) 0.009(4) C(16) 0.069(3) 0.048(2) 0.058(3) -0.016(2) -0.010(3) -0.009(2) $C(17) \quad 0.107(5) \quad 0.066(3) \quad 0.048(3) \quad 0.007(3) \quad 0.026(3) \quad -0.006(3)$

Table S29. Multipole parameters for 2a-HCl-ortho

loop_

_atom_rho_multipole_atom_label _atom_rho_multipole_coeff_Pv _atom_rho_multipole_coeff_P10 _atom_rho_multipole_coeff_P1-1 _atom_rho_multipole_coeff_P10 _atom_rho_multipole_coeff_P20 _atom_rho_multipole_coeff_P21 _atom_rho_multipole_coeff_P2-1 _atom_rho_multipole_coeff_P22 _atom_rho_multipole_coeff_P22 _atom_rho_multipole_coeff_P2-2 _atom_rho_multipole_coeff_P30

atom rho multipole coeff P31 atom rho multipole coeff P3-1 _atom_rho_multipole coeff P32 _atom_rho_multipole coeff P3-2 _atom_rho_multipole_coeff P33 atom rho multipole coeff P3-3 atom rho multipole coeff P40 atom rho multipole coeff P41 _atom_rho_multipole_coeff_P4-1 _atom_rho_multipole coeff P42 _atom_rho_multipole_coeff P4-2 _atom_rho_multipole_coeff P43 atom rho multipole coeff P4-3 _atom_rho_multipole coeff P44 _atom_rho_multipole_coeff_P4-4 _atom_rho_multipole_kappa _atom_rho_multipole_kappa_prime0 _atom_rho_multipole_kappa_prime1 atom rho multipole kappa prime2 atom rho multipole kappa prime3 atom rho multipole kappa prime4 Cl(1) 8 0 1.010613 1 1 1 1 1 0(1) 6.1892 0 -0.0409 -0.0776 0 0.0709 0 0 -0.0249 0.0465 0 -0.0099 -0.023 0 0 0.0675 -0.0052 0.0027 0 0 0.0004 -0.0002 0 0 0.0118 0.0025 0.999544 1.195553 1.195553 1.195553 1.195553 1.195553 0(2) 6.0788 0 -0.0536 -0.0866 0 0.1041 0 0 -0.028 0.042 0 -0.0147 -0.0263 0 0 0.065 -0.0215 0.0106 0 0 0.0042 0.0027 0 0 0.0149 0.0153 1.001632 1.113461 1.113461 1.113461 1.113461 1.113461 N(1) 5.0916 0 0 0 -0.005 0.0107 0 0 0 0 0.2234 0 0 0 0 0.176 0 0.066 0 0 0 0 -0.0509 0 0 0 0.997716 0.890138 0.890138 0.890138 0.890138 0.890138 C(1) 4.0553 0 0.0153 0.0288 0 -0.1768 0 0 0.0102 -0.0228 0 0.0129 0.0248 0 0 0.2306 -0.0085 0.011 0 0 0.0011 -0.0102 0 0 0.0008 0.0036

1.014566 1 1 1 1 1 C(2) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(3) 3.9952 0 0.0117 0.0383 0 -0.1447 0 0 0.0015 -0.0224 0 0.0075 0.0255 0 0 0.2238 0.0024 0.0214 0 0 0.0044 -0.0117 0 0 0.0099 0.0005 1.016678 1 1 1 1 1 C(4) 4.0021 0 0 0 -0.0816 0.005 0 0 -0.1763 0 0.2647 0 0 0.1301 0 0 0 0.0371 0 0 0.0102 0 0 0 0.0041 0 1.01558 1 1 1 1 1 C(5) 3.9952 0 0.0117 0.0383 0 -0.1447 0 0 0.0015 -0.0224 0 0.0075 0.0255 0 0 0.2238 0.0024 0.0214 0 0 0.0044 -0.0117 0 0 0.0099 0.0005 1.016678 1 1 1 1 1 C(6) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(7) 3.939 0 -0.0028 -0.0063 0 -0.0017 0 0 -0.0091 0.0044 0 -0.1364 -0.1687 0 0 0.1441 -0.0628 0.0216 0 0 -0.0135 0.06 0 0 0.0264 0.02 1.015244 1 1 1 1 1 C(8) 4.0663 0 0 0 -0.0564 -0.0884 0 0 0 0 0.2577 0 0 0 0 0.1963 0 0.083 0 0 0 0 -0.0794 0 0 0 1.002523 1 1 1 1 1
H(17C) 0.9889 0 0 0 0.1455 0.0684 0 0 0 0 0.0292 0 0 0 0 0 0 0.0155 0 0 0 0 0 0 0 1.123015 1.2 1.2 1.2 1.2 1.2 Table S30. Atomic coordinates for **2a-**HCl-mono

loop

Toob							
	atom_si	te_label					
_	atom sit	te type symbo	1				
_	atom sit	te fract x					
_	atom sit	te_fract_y					
_	atom sit	te fract z					
_	atom sit	te U iso or e	auiv				
_	atom sit	ce occupancy	1				
_	atom sit		ultiplicity				
C1(1)	- Cl	0.3865(2)	0.77715(5)	0.75688(11)	0.058	1	4
0(1)	0	0.4907(6)	0.93547(15)	0.0839(3)	0.065	1	4
O(2)	0	1.1457(5)	0.86869(13)	0.5936(3)	0.049	1	4
N(1)	N	0.6132(7)	0.75620(14)	0.5482(4)	0.048	1	4
C(1)	C	0.6675(8)	0.87039(17)	0.4127(4)	0 044	1	4
C(2)	C	0.0073(0)	0.898/8(19)	0.4127(4) 0.3777(4)	0.054	1	- Л
C(2)	C	0.4012(0)	0.00040(10) 0.01072(10)	0.2678(4)	0.054	1	- Л
C(3)	C	0.4071(9) 0.5583(8)	0.91317(19)	0.2070(4) 0.1885(4)	0.050	⊥ 1	т Л
$C(\underline{1})$	C	0.3503(0)	0.91317(19)	0.2210(4)	0.052	⊥ 1	т Л
C(3)	C	0.7392(9)	0.00441(10) 0.96254(10)	0.2219(4)	0.051	⊥ 1	4
C(0)	C	0.0120(9) 0.7200(7)	0.00334(10) 0.04007(16)	0.5324(4) 0.5255(4)	0.031	⊥ 1	4
C(7)	C	0.7200(7)	0.04997(10)	0.5555(4)	0.041	⊥ 1	4
C(0)	C	0.9109(0)	0.00230(10)	0.0130(4)	0.042	⊥ 1	4
C(9)	C	0.0077(10)	0.93962(10)	0.5905(4)	0.038	1	4
C(10)	C	1.0625(12)	0.9723(2)	0.6/4/(5)	0.073	1	4
C(11)	C	1.0496(15)	0.9611(2)	0.7998(5)	0.078	1	4
C(12)	C	1.0836(11)	0.90398(19)	0.8256(4)	0.062	1	4
C(13)	C	0.9064(9)	0.8/244(18)	0.7432(4)	0.049	1	4
C(14)	C	0.8063(8)	0.79350(16)	0.5408(4)	0.044	1	4
C(15)	C	0./133(12)	0./036(2)	0.5661(7)	0.077	1	4
C(16)	C	0.4222(10)	0./5/6(3)	0.4449(6)	0.076	1	4
C(1/)	С	0.6398(12)	0.9295(3)	0.0016(5)	0.0/4	1	4
H(Z/)	H	1.2304(5)	0.846/3(13)	0.6527(3)	0.042(15)	1	4
H(28)	H	0.558/(/)	0.76379(14)	0.6244(4)	0.11(3)	1	4
H(1)	H	0.358/(8)	0.90305(19)	0.4292(4)	0.09(2)	1	4
H(Z)	H	0.2693(9)	0.93844(19)	0.2462(4)	0.056(15)	1	4
H(3)	H	0.8596(9)	0.8/901(18)	0.1697(4)	0.09(2)	1	4
H(4)	H	0.9496(9)	0.84444(18)	0.3533(4)	0.063(1/)	1	4
H(5)	H	0.584/(/)	0.851/2(16)	0.5685(4)	0.0/5(1/)	1	4
H(6)	H	0.7292(10)	0.94965(18)	0.5964(4)	0.11(3)	1	4
H(7)	H	0.9085(10)	0.94628(18)	0.5116(4)	0.10(2)	1	4
H(8)	H	1.2201(12)	0.9654(2)	0.6619(5)	0.09(2)	1	4
H(9)	H	1.0295(12)	1.0083(2)	0.6587(5)	0.10(2)	1	4
H(10)	H	0.8987(15)	0.9721(2)	0.8156(5)	0.13(3)	1	4
H(11)	H	1.1711(15)	0.9803(2)	0.8503(5)	0.10(3)	1	4
H(12)	Н	1.2410(11)	0.89387(19)	0.8179(4)	0.10(2)	1	4
H(13)	H	1.0659(11)	0.89725(19)	0.9049(4)	0.066(16)	1	4
H(14)	Н	0.7498(9)	0.88064(18)	0.7558(4)	0.09(2)	1	4
H(15)	H	0.9341(9)	0.83631(18)	0.7602(4)	0.08(2)	1	4
H(16)	Н	0.8714(8)	0.78580(16)	0.4723(4)	0.09(2)	1	4
H(17)	Н	0.9301(8)	0.78880(16)	0.6081(4)	0.057(16)	1	4
H(18)	Н	0.5930(12)	0.6801(2)	0.5784(7)	0.13(3)	1	4
H(19)	Н	0.8378(12)	0.7035(2)	0.6327(7)	0.13(4)	1	4
H(20)	Н	0.7739(12)	0.6934(2)	0.4987(7)	0.12(3)	1	4
H(21)	Н	0.3428(10)	0.7900(3)	0.4416(6)	0.09(2)	1	4

Н(22)	Н	0.3127(10)	0.7305(3)	0.4502(6)	0.09(2)	1	4
H(23)	Н	0.4871(10)	0.7531(3)	0.3759(6)	0.15(4)	1	4
H(24)	Н	0.6457(12)	0.8939(3)	-0.0190(5)	0.13(3)	1	4
H(25)	Н	0.7949(12)	0.9411(3)	0.0349(5)	0.07(2)	1	4
H(26)	Н	0.5801(12)	0.9493(3)	-0.0665(5)	0.12(3)	1	4

Table S31. Anisotropic displacement parameters for **2a**-HCl-mono

```
loop_
    _atom_site_aniso label
    _atom_site_aniso_U_11
    atom site aniso U 22
    atom site aniso U 33
    _atom_site_aniso_U_12
    _atom_site_aniso U 13
    _atom_site aniso U 23
Cl(1) 0.0563(7) 0.0682(8) 0.0554(7) 0.0125(7) 0.0261(6) 0.0161(7)
0(1) 0.068(2) 0.078(3) 0.052(2) 0.012(2) 0.0145(17) 0.0116(19)
0(2) 0.0406(17) 0.058(2) 0.0528(19) -0.0056(16) 0.0222(15) 0.0007(18)
N(1) 0.054(2) 0.038(2) 0.057(2) -0.0085(18) 0.025(2) -0.0034(18)
C(1) 0.043(3) 0.045(3) 0.046(2) 0.009(2) 0.016(2) 0.004(2)
C(2) 0.051(3) 0.059(3) 0.056(3) 0.016(2) 0.020(2) 0.015(2)
C(3) 0.045(3) 0.065(3) 0.060(3) 0.021(3) 0.016(2) 0.013(3)
C(4) 0.053(3) 0.056(3) 0.043(3) 0.006(2) 0.014(2) 0.004(2)
C(5) 0.058(3) 0.057(3) 0.044(3) 0.008(2) 0.018(2) -0.002(2)
C(6) 0.050(3) 0.058(3) 0.049(3) 0.018(2) 0.022(2) 0.004(2)
C(7) 0.040(2) 0.039(3) 0.047(3) 0.0016(19) 0.017(2) 0.0056(19)
C(8) 0.050(3) 0.038(3) 0.041(3) 0.003(2) 0.017(2) 0.0031(19)
C(9) 0.080(4) 0.041(3) 0.054(3) -0.004(3) 0.019(3) 0.006(2)
C(10) 0.111(5) 0.045(3) 0.066(4) -0.015(3) 0.025(3) 0.003(3)
C(11) 0.121(6) 0.048(3) 0.065(4) -0.007(4) 0.018(4) -0.007(3)
C(12) 0.086(4) 0.054(3) 0.045(3) 0.001(3) 0.015(3) -0.002(2)
C(13) 0.065(3) 0.045(3) 0.041(3) 0.004(2) 0.023(2) 0.007(2)
C(14) 0.048(3) 0.034(2) 0.052(3) -0.000(2) 0.013(2) 0.002(2)
C(15) 0.087(5) 0.041(3) 0.112(6) -0.001(3) 0.043(5) 0.003(3)
C(16) 0.054(3) 0.088(5) 0.085(5) -0.015(4) 0.012(3) -0.025(3)
C(17) 0.087(5) 0.090(5) 0.046(3) -0.001(4) 0.014(3) 0.004(3)
```

Table S32. Multipole parameters for 2a-HCl-mono

loop_

```
_atom_rho_multipole_atom_label
_atom_rho_multipole_coeff_Pv
_atom_rho_multipole_coeff_P10
_atom_rho_multipole_coeff_P11
_atom_rho_multipole_coeff_P10
_atom_rho_multipole_coeff_P20
_atom_rho_multipole_coeff_P21
_atom_rho_multipole_coeff_P21
_atom_rho_multipole_coeff_P22
_atom_rho_multipole_coeff_P22
_atom_rho_multipole_coeff_P30
_atom_rho_multipole_coeff_P31
_atom_rho_multipole_coeff_P31
_atom_rho_multipole_coeff_P32
```

```
atom rho multipole coeff P3-2
    atom rho multipole coeff P33
    _atom_rho_multipole_coeff_P3-3
    _atom_rho_multipole coeff P40
    _atom_rho_multipole_coeff P41
    _atom_rho_multipole_coeff P4-1
    atom rho multipole coeff P42
    atom rho multipole coeff P4-2
    _atom_rho_multipole_coeff P43
   _atom_rho_multipole_coeff_P4-3
    _atom_rho_multipole_coeff_P44
    _atom_rho_multipole_coeff P4-4
    atom rho multipole kappa
    _atom_rho_multipole kappa prime0
    _atom_rho_multipole_kappa_prime1
    _atom_rho_multipole_kappa_prime2
    _atom_rho_multipole kappa prime3
    _atom_rho_multipole_kappa prime4
Cl(1) 8 0
0 0 0
0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1.010613 1 1 1 1 1
0(1) 6.1892 0
-0.0409 -0.0776 0
0.0709 \ 0 \ 0 \ -0.0249 \ 0.0465
0 -0.0099 -0.023 0 0 0.0675 -0.0052
0.0027 0 0 0.0004 -0.0002 0 0 0.0118 0.0025
0.999544 1.195553 1.195553 1.195553 1.195553 1.195553
0(2) 6.0788 0
-0.0536 -0.0866 0
0.1041 0 0 -0.028 0.042
0 -0.0147 -0.0263 0 0 0.065 -0.0215
0.0106 0 0 0.0042 0.0027 0 0 0.0149 0.0153
1.001632 1.113461 1.113461 1.113461 1.113461 1.113461
N(1) 5.0916 0
0 0 -0.005
0.0107 0 0 0 0
0.2234 0 0 0 0 0.176 0
0.066 0 0 0 0 -0.0509 0 0 0
0.997716 0.890138 0.890138 0.890138 0.890138 0.890138
C(1) 4.0553 0
0.0153 0.0288 0
-0.1768 0 0 0.0102 -0.0228
0 0.0129 0.0248 0 0 0.2306 -0.0085
0.011 0 0 0.0011 -0.0102 0 0 0.0008 0.0036
1.014566 1 1 1 1 1
```

C(2) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(3) 3.9952 0 0.0117 0.0383 0 -0.1447 0 0 0.0015 -0.0224 0 0.0075 0.0255 0 0 0.2238 0.0024 0.0214 0 0 0.0044 -0.0117 0 0 0.0099 0.0005 1.016678 1 1 1 1 1 C(4) 4.0021 0 0 0 -0.0816 0.005 0 0 -0.1763 0 0.2647 0 0 0.1301 0 0 0 0.0371 0 0 0.0102 0 0 0 0.0041 0 1.01558 1 1 1 1 1 C(5) 3.9952 0 0.0117 0.0383 0 -0.1447 0 0 0.0015 -0.0224 0 0.0075 0.0255 0 0 0.2238 0.0024 0.0214 0 0 0.0044 -0.0117 0 0 0.0099 0.0005 1.016678 1 1 1 1 1 C(6) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(7) 3.939 0 -0.0028 -0.0063 0 -0.0017 0 0 -0.0091 0.0044 0 -0.1364 -0.1687 0 0 0.1441 -0.0628 0.0216 0 0 -0.0135 0.06 0 0 0.0264 0.02 1.015244 1 1 1 1 1 C(8) 4.0663 0 0 0 -0.0564 -0.0884 0 0 0 0 0.2577 0 0 0 0 0.1963 0 0.083 0 0 0 0 -0.0794 0 0 0 1.002523 1 1 1 1 1 C(9) 3.9428 0 0 0 0.0068

0.0155 0 0 0 0 0 0 0 0 0 1.123015 1.2 1.2 1.2 1.2 1.2 Table S33. Atomic coordinates for **2b-**HCl

loop

T00b ⁻	_						
_	_atom_s	ite_label					
-	_atom_s	ite_type_symbo	1				
-	_atom_s	ite_fract_x					
_	_atom_s	ite_fract_y					
_	_atom_s	ite_fract_z					
_	_atom_s	ite_U_iso_or_e	quiv				
_	_atom_s	ite_occupancy					
_	_atom_s	ite_symmetry_m	ultiplicity				
Cl	Cl	-0.10768(3)	-0.05727(3)	0.48119	0.032	1	4
Si	Si	0.14903(2)	0.30381(2)	0.22998(6)	0.017	1	4
0(1)	0	0.12525(8)	0.26619(8)	0.07623(13)	0.036	1	4
0(2)	0	-0.34737(6)	0.25833(7)	0.30479(13)	0.031	1	4
Ν	N	0.09731(8)	0.04944(8)	0.43940(11)	0.017	1	4
C(1)	С	0.09062(10)	0.42308(9)	0.24248(18)	0.028	1	4
C(2)	С	0.15527(11)	0.49427(11)	0.15968(19)	0.03	1	4
C(3)	С	0.26963(10)	0.49742(10)	0.20167(19)	0.033	1	4
C(4)	С	0.32951(10)	0.40706(11)	0.17174(18)	0.029	1	4
C(5)	С	0.29132(9)	0.32209(9)	0.25646(16)	0.023	1	4
C(6)	С	0.09140(9)	0.22077(9)	0.36292(16)	0.018	1	4
C(7)	С	0.13742(9)	0.12341(9)	0.34300(16)	0.018	1	4
C(8)	С	0.11580(11)	0.07247(11)	0.58513(16)	0.026	1	4
C(9)	С	0.14468(11)	-0.04321(10)	0.40293(18)	0.027	1	4
C(10)	C	-0.02646(9)	0.22559(8)	0.35527(15)	0.017	1	4
C(11)	C	-0.08310(9)	0.27765(10)	0.44898(16)	0.023	1	4
C(12)	C	-0.19049(10)	0.29022(10)	0.43705(16)	0.025	1	4
C(13)	C	-0.24353(10)	0.24945(9)	0.32908(16)	0.022	1	4
C(14)	C	-0.18839(9)	0.19425(9)	0.23583(18)	0.023	1	4
C(15)	C	-0.08177(9)	0.18285(9)	0.24868(15)	0.02	1	4
C(16)	C	-0.40779(11)	0.30975(14)	0.39982(19)	0.04	1	4
H(O)	Н	0.12481(8)	0.20033(8)	0.05510(13)	0.042(6)	1	4
H(N)	Н	0.01915(8)	0.03751(8)	0.43030(11)	0.027(4)	1	4
H(1A)) H	0.01964(10)	0.42174(9)	0.20847(18)	0.054(5)	1	4
H(1B)) H	0.08872(10)	0.44258(9)	0.33725(18)	0.054(6)	1	4
H(2A)) H	0.15109(11)	0.47749(11)	0.06395(19)	0.061(7)	1	4
Н(2В)	H	0.12508(11)	0.55643(11)	0.17020(19)	0.052(6)	1	4
H(3A)) H	0.27363(10)	0.51034(10)	0.29866(19)	0.066(7)	1	4
Н(ЗВ)) H	0.30315(10)	0.54908(10)	0.15417(19)	0.056(6)	1	4
H(4A)	H	0.40292(10)	0.41727(11)	0.19018(18)	0.042(5)	1	4
H(4B)	H	0.32241(10)	0.39221(11)	0.07563(18)	0.047(6)	1	4
H(5A)	H	0.30504(9)	0.33343(9)	0.35234(16)	0.049(6)	1	4
H(5B)	H	0.32899(9)	0.26593(9)	0.22940(16)	0.050(5)	1	4
H(6)	Н	0.11270(9)	0.24339(9)	0.45313(16)	0.027(4)	1	4
H(7A)) H	0.12312(9)	0.10326(9)	0.25036(16)	0.040(5)	1	4
Н(7В)	H	0.21249(9)	0.12743(9)	0.35312(16)	0.027(4)	1	4
H(8A)	H	0.09205(11)	0.02137(11)	0.64115(16)	0.079(8)	1	4
H(8B)) H	0.07835(11)	0.12868(11)	0.60858(16)	0.054(6)	1	4
H(8C)) H	0.18897(11)	0.08222(11)	0.59988(16)	0.050(5)	1	4
H(9A)	H	0.11482(11)	-0.09169(10)	0.45883(18)	0.056(6)	1	4
Н(9В)	H	0.21860(11)	-0.04085(10)	0.41768(18)	0.049(6)	1	4
H(9C)	H	0.13095(11)	-0.05668(10)	0.30869(18)	0.048(6)	1	4
H(11)	H	-0.04837(9)	0.30525(10)	0.52199(16)	0.035(5)	1	4
H(12)	H	-0.22653(10)	0.32562(10)	0.50139(16)	0.037(5)	1	4

H(14)	Н	-0.22356(9)	0.16531(9)	0.16428(18)	0.052(6)	1	4
H(15)	Н	-0.04600(9)	0.14592(9)	0.18589(15)	0.041(5)	1	4
H(16A)	Η	-0.47955(11)	0.30919(14)	0.37209(19)	0.065(7)	1	4
H(16B)	Η	-0.38319(11)	0.37351(14)	0.40333(19)	0.075(8)	1	4
H(16C)	Н	-0.40152(11)	0.28159(14)	0.48843(19)	0.073(7)	1	4

Table S34. Anisotropic displacement parameters for **2b-**HCl

loop_ _atom_site_aniso label _atom_site_aniso_U_11 atom site aniso U 22 atom site aniso U 33 _atom_site_aniso_U_12 _atom_site_aniso_U_13 _atom_site aniso U 23 Cl 0.02039(14) 0.0376(2) 0.0392(2) -0.00714(15) -0.00416(17) 0.01505(19) Si 0.01907(14) 0.01550(15) 0.01775(18) -0.00143(13) -0.00072(17) 0.00274(16) 0(1) 0.0549(7) 0.0323(7) 0.0205(6) -0.0150(5) -0.0030(5) 0.0026(5) 0(2) 0.0189(4) 0.0354(6) 0.0393(7) 0.0035(4) 0.0027(4) 0.0047(5) N 0.0168(5) 0.0144(6) 0.0205(7) -0.0008(4) 0.0004(5) 0.0013(4)C(1) 0.0268(7) 0.0215(7) 0.0356(11) 0.0047(5) 0.0032(7) 0.0084(7) C(2) 0.0368(8) 0.0192(8) 0.0339(10) 0.0034(6) 0.0022(7) 0.0087(6) C(3) 0.0385(9) 0.0194(7) 0.0401(12) -0.0072(6) 0.0013(8) 0.0040(7)C(4) 0.0255(7) 0.0261(8) 0.0360(10) -0.0056(6) 0.0043(6) 0.0053(7)C(5) 0.0210(6) 0.0203(7) 0.0287(10) -0.0002(5) 0.0014(6) 0.0037(6)C(6) 0.0193(6) 0.0182(7) 0.0176(7) 0.0005(5) 0.0002(5) 0.0009(5)C(7) 0.0180(6) 0.0184(7) 0.0188(8) 0.0005(5) 0.0024(5) 0.0038(6)C(8) 0.0304(7) 0.0268(8) 0.0210(8) -0.0015(6) 0.0010(7) 0.0030(6) C(9) 0.0268(7) 0.0171(7) 0.0364(10) 0.0018(6) 0.0033(7) -0.0009(6)C(10) 0.0177(6) 0.0157(6) 0.0189(7) 0.0003(5) 0.0008(6) 0.0003(5) C(11) 0.0214(6) 0.0262(7) 0.0228(9) 0.0016(5) 0.0018(6) -0.0060(6) C(12) 0.0230(6) 0.0264(8) 0.0269(8) 0.0034(6) 0.0057(6) -0.0036(6)C(13) 0.0186(5) 0.0196(7) 0.0267(8) 0.0021(5) 0.0044(6) 0.0036(6) C(14) 0.0202(5) 0.0249(6) 0.0231(7) -0.0012(5) 0.0001(7) -0.0015(7)C(15) 0.0189(5) 0.0195(7) 0.0227(9) 0.0003(5) 0.0031(6) -0.0042(6) C(16) 0.0230(7) 0.0508(12) 0.0468(12) 0.0141(7) 0.0125(7) 0.0158(9)

Table S35. Multipole parameters for 2b-HCl

loop_

```
_atom_rho_multipole_atom_label
_atom_rho_multipole_coeff_Pv
_atom_rho_multipole_coeff_P10
_atom_rho_multipole_coeff_P11
_atom_rho_multipole_coeff_P10
_atom_rho_multipole_coeff_P20
_atom_rho_multipole_coeff_P21
_atom_rho_multipole_coeff_P21
_atom_rho_multipole_coeff_P22
_atom_rho_multipole_coeff_P22
_atom_rho_multipole_coeff_P30
_atom_rho_multipole_coeff_P31
_atom_rho_multipole_coeff_P31
_atom_rho_multipole_coeff_P32
```

```
atom rho multipole coeff P3-2
    atom rho multipole coeff P33
    _atom_rho_multipole_coeff_P3-3
    _atom_rho_multipole coeff P40
    _atom_rho_multipole_coeff P41
    _atom_rho_multipole_coeff P4-1
    atom rho multipole coeff P42
    atom rho multipole coeff P4-2
    _atom_rho_multipole_coeff P43
   _atom_rho_multipole_coeff_P4-3
    _atom_rho_multipole_coeff_P44
    _atom_rho_multipole_coeff P4-4
    atom rho multipole kappa
    _atom_rho_multipole kappa prime0
    _atom_rho_multipole_kappa_prime1
    _atom_rho_multipole_kappa_prime2
    _atom_rho_multipole kappa prime3
    _atom_rho_multipole_kappa_prime4
Cl 8 0
0 0 0
0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1.010613 1 1 1 1 1
Si 4.6632 0
0 0 -0.0195
-0.0419 0 0 0 0
0.7059 \ 0 \ 0 \ 0 \ 0 \ -0.5532
0.2212 0 0 0 0 0 0.2505 0 0
0.936608 0.751918 0.751918 0.751918 0.751918 0.751918
0(1) 5.9426 0
-0.0643 -0.0436 0
0.0512 0 0 -0.0493 0.0123
0 -0.0269 -0.0073 0 0 0.0505 -0.0057
0.0049 0 0 -0.0088 -0.004 0 0 0.0154 0.0062
1.009092 1.099713 1.099713 1.099713 1.099713 1.099713
0(2) 6.1892 0
-0.0409 -0.0776 0
0.0709 0 0 -0.0249 0.0465
0 -0.0099 -0.023 0 0 0.0675 -0.0052
0.0027 0 0 0.0004 -0.0002 0 0 0.0118 0.0025
0.999544 1.195553 1.195553 1.195553 1.195553 1.195553
N 5.0916 0
0 0 -0.005
0.0107 0 0 0 0
0.2234 0 0 0 0 0.176 0
0.066 0 0 0 0 -0.0509 0 0 0
0.997716 0.890138 0.890138 0.890138 0.890138 0.890138
```

C(1) 3.8208 0 0.0233 0.0148 0 -0.0157 0 0 0.0274 0.0068 0 -0.0792 -0.1736 0 0 0.1338 -0.0115 -0.0001 0 0 -0.0274 0.0544 0 0 0.0037 0.021 1.013486 1 1 1 1 1 C(2) 3.9428 0 0 0 0.0068 -0.0023 0 0 0.0044 0 -0.0061 0 0 -0.2812 0 0 0 -0.0696 0 0 0.0156 0 0 0.048 0 1.01237 1 1 1 1 1 C(3) 3.9428 0 0 0 0.0068 -0.0023 0 0 0.0044 0 -0.0061 0 0 -0.2812 0 0 0 -0.0696 0 0 0.0156 0 0 0.048 0 1.01237 1 1 1 1 1 C(4) 3.9428 0 0 0 0.0068 -0.0023 0 0 0.0044 0 -0.0061 0 0 -0.2812 0 0 0 -0.0696 0 0 0.0156 0 0 0 0.048 0 1.01237 1 1 1 1 1 C(5) 3.8208 0 0.0233 0.0148 0 -0.0157 0 0 0.0274 0.0068 0 -0.0792 -0.1736 0 0 0.1338 -0.0115 -0.0001 0 0 -0.0274 0.0544 0 0 0.0037 0.021 1.013486 1 1 1 1 1 C(6) 3.8961 0 0.0056 0.0047 0.0139 0.0233 0.0057 0.0004 0.0029 -0.0041 0.1654 0.0267 0.0095 0.0156 0.0217 -0.0435 -0.1729 0.0216 0.0035 0.0019 -0.0056 -0.0121 0.0146 0.0524 0.0047 0.0164 1.013724 1 1 1 1 1 C(7) 3.8671 0 -0.0199 0.011 0 0.0163 0 0 -0.0337 -0.0059 0 -0.1339 -0.172 0 0 0.1776 -0.0445 0.0086 0 0 -0.0279 0.0714 0 0 0.0321 0.023 1.009768 1 1 1 1 1 C(8) 3.7963 0 0 0 -0.0134

-0.0353 0 0 0 0 0.2419 0 0 0 0 0 0 -0.1632 0.0404 0 0 0 0 0 0.0723 0 0 1.009611 1 1 1 1 1 C(9) 3.7963 0 0 0 -0.0134 -0.0353 0 0 0 0 0.2419 0 0 0 0 0 -0.1632 0.0404 0 0 0 0 0 0.0723 0 0 1.009611 1 1 1 1 1 C(10) 4.0553 0 0.0153 0.0288 0 -0.1768 0 0 0.0102 -0.0228 0 0.0129 0.0248 0 0 0.2306 -0.0085 0.011 0 0 0.0011 -0.0102 0 0 0.0008 0.0036 1.014566 1 1 1 1 1 C(11) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061 0.0181 0 0 0.0089 -0.0132 0 0 0.0019 -0.0008 1.018201 1 1 1 1 1 C(12) 3.9952 0 0.0117 0.0383 0 -0.1447 0 0 0.0015 -0.0224 0 0.0075 0.0255 0 0 0.2238 0.0024 0.0214 0 0 0.0044 -0.0117 0 0 0.0099 0.0005 1.016678 1 1 1 1 1 C(13) 4.0021 0 0 0 -0.0816 0.005 0 0 -0.1763 0 0.2647 0 0 0.1301 0 0 0 0.0371 0 0 0.0102 0 0 0 0.0041 0 1.01558 1 1 1 1 1 C(14) 3.9952 0 0.0117 0.0383 0 -0.1447 0 0 0.0015 -0.0224 0 0.0075 0.0255 0 0 0.2238 0.0024 0.0214 0 0 0.0044 -0.0117 0 0 0.0099 0.0005 1.016678 1 1 1 1 1 C(15) 3.984 0 0.0192 0.034 0 -0.1645 0 0 0.0111 -0.0246 0 0.0129 0.0243 0 0 0.2299 0.0061

0.0155 0 0 0 0 0 0 0 0 0 1.123015 1.2 1.2 1.2 1.2 1.2