Supplementary information

A ratiometric fluorescent probe for rapid, sensitive and selective detection of sulfur dioxide with large Stokes shifts by single wavelength excitation

Xingjiang Liu,[‡]^a Qinwei Yang,[‡]^a Wenqiang Chen,^a Lingna Mo,^a Song Chen,^a Jiang Kang^b and Xiangzhi Song^{acd*}

^{*a*}College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan Province, P. R. China, 410083.

^bThe Third Xiangya Hospital, Central South University, 410013 Changsha, Hunan Province, P. R. China.

^cState Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan province, P. R. China, 410083.

^dState Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning Province, P. R. China, 116024.

E-mail: song@rowland.harvard.edu; Fax: +86-731-88836954; Tel: +86-731-88836954.

Contents

Table S1	
Fluorescence properties of Probe 1 and dye 2	4
Scheme S1	5
Fig. S1	5
Fig. S2	6
Fig. S3	6
Reaction reversibility study	6
Scheme S2	7
Fig. S4	8
Fig. S5	8
Fig. S6	9
Fig. S7	9
Fig. S8	10
Fig. S9	10
Fig. S10	
Fig. S11	11
Fig. S12	12
Fig. S13	12
Fig. S14	
Fig. S15	
Fig. S16	14
Fig. S17	14
Fig. S18	15
Fig. S19	15

Fig. S20	16
Fig. S21	16
Fig. S22	17
Fig. S23	17
Fig. S24	18
Fig. S25	18
Fig. S26	19
Fig. S27	19
Fig. S28	20
Fig. S29	20

Probe structure	Response time	Туре	Reference
	< 10 s	Ratiometric	RSC Adv., 2015,5, 25409- 25415
	< 15 s	Off-on	Anal. Chem., 2015, 87, 609-616
Et ₂ N CN CN	30 s	Ratiometric	Analyst, 2013, 138, 3018- 3025
	90 s	Ratiometric	Chem. Commun. 2014, 50, 183-185
CF3	90 s	Ratiometric	J. Agric. Food Chem. 2014, 62, 3405-3409
N COO	5 min	Ratiometric	Chem. Commun. 2013, 49, 2637-2639
HO	5 min	Ratiometric	Sensor. Actuat. B-Chem., 2015, 206, 268-275
N CHO	6 min	Off-on	J. Mater. Chem. B, 2013, 1, 4110-4114
Н СНО	10 min	Ratiometric	Sensor. Actuat. B-Chem., 2013, 184, 274-280
N C C N N N N N N N N N N N N N N N N N	10 min	Ratiometric	Analyst, 2014, 139, 3373- 3377
	15 min	Ratiometric	Org. Biomol. Chem., 2014, 12, 4637-4643

Table S1 The chemical structures and response times of the representative fluorescent probes for SO_3^{2-}/HSO_3^{-} .

	20 min	Ratiometric	J. Agric. Food Chem., 2011, 59, 11935-11939
	20 min	Off-on	Org. Lett., 2010, 12, 5624- 5627
	25 min	Off-on	Sensor. Actuat. B-Chem., 188 (2013) 1196-1200
	60 min	Ratiometric	RSC Adv., 2012, 2, 10869-10873
R = F, H, OMe	60 min	Ratiometric	Anal. Chim. Acta., 2013, 788, 165-170

Fluorescence properties of Probe 1 and dye 2

We thoroughly studied the fluorescence properties of Probe 1 and its analogue dye 2. Toluene, acetonitrile, dichloromethane and ethanol were used as solvents for the fluorescence spectrum measurements. As seen in Fig. S1, dye 2 exhibit the fluorescence at shorter wavelength in polar solvents (acetonitrile and ethanol) which is from local excited states whereas the Keto emission at longer wavelength from ESIPT state was observed in less polar solvents (dichloromethane and toluene). With regard to Probe 1, the Keto emission dominated in all the solvents (Fig. S2), which is attributed to the electron-withdrawing effect by the aldehyde group.

Scheme S1 Schematic representation of the excitation and emission mechanism with the ESIPT photocycle.

Fig. S1 Normalized fluorescence spectra of dye 2 in toluene, DCM, EtOH and CH₃CN.

Fig. S2. Normalized fluorescence spectra of Probe 1 in toluene, DCM, EtOH and CH₃CN.

Fig. S3 Absorption spectral change of Probe **1** (5.0 μ M) in the absence/presence of SO₃²⁻ (400.0 equiv.) in PBS buffer (pH 7.4, 10.0 mM, 1.0 mM CTAB).

Reaction reversibility study

It has been reported that the reaction of aldehyde group with SO_3^{2-}/HSO_3^{2-} is a reversible reaction, which is influenced by acid/alkali and is often used as an effective method to purify aldehydes by crystallization as their bisulfite adducts and then regeneration of the aldehyde.¹ The reversible process of the reaction between Probe 1 with SO_3^{2-} was shown in scheme S2. In order to further understand this reversible reaction, we investigate the fluorescence of this probe with SO_3^{2-} under acid and basic conditions. Upon the addition of hydrochloric acid to the solution of Probe 1 with SO_3^{2-} , the fluorescence at 467 nm gradually decreased. However, the fluorescence around 563 nm was not observed, which is probably ascribed the protonation of the nitrogen atom in benzothiazol moiety of the reaction product, **5**, in strong acidic condition. Then, the subsequent addition of NaOH aqueous solution to the fluorescence of Probe 1 appeared and the intensity was gradually enhanced. When the excess of base was added, the solution exhibit a fluorescence with a maximum at 467 nm which finally became the dominant signal, indicating the recovery

of the initial state (Probe **1** with SO_3^{2-}) (Fig. S13-S15). These above results clearly demonstrated the reversibility of the reaction of Probe **1** with SO_3^{2-} .

Scheme S2 The reversible process of the reaction of Probe 1 with SO_3^{2-} .

Fig. S4 Fluorescence spectra of Probe 1 (5.0 μ M) with SO₃²⁻ (400.0 equiv.) upon the addition of hydrochloric acid (12 mol/L, 0.0 – 90.0 μ L) in PBS buffer (pH 7.4, 10.0 mM) with 1.0 mM CTAB.

Fig. S5 Fluorescence spectra of Probe **1** (5.0 μ M) with SO₃²⁻ (400.0 equiv.) and hydrochloric acid (12 mol/L, 70.0 μ L) upon the addition of NaOH aqueous solution (6 mol/L, 0.0 – 180.0 μ L) in PBS buffer (pH 7.4, 10.0 mM) with 1.0 mM CTAB.

Fig. S6 The normalized absorption (dashed lines) and emission spectra (solid lines) of Probe **1** (black lines) and dye **2** (red lines) in HEPES buffer (pH 7.4, 20.0 mM, containing 30%CH₃CN).

Fig. S7 Absorption spectral change of Probe 1 (5.0 μ M) in the absence/presence of SO₃²⁻ (200.0 equiv.) in HEPES buffer (pH 7.4, 20.0 mM, containing 30% CH₃CN).

Fig. S8 Fluorescence spectra of Probe 1 (5.0 μ M) upon the addition of SO₃²⁻ (0.0 – 200.0 equiv.) in HEPES buffer (pH 7.4, 20.0 mM, containing 30% CH₃CN). Inset: Photograph of Probe 1 under the irradiation at 365 nm (left: Probe 1 only, right: Probe 1 with SO₃²⁻).

Fig. S9 The linear relationship between the ratio of $I_{460 \text{ nm}}/I_{539 \text{ nm}}$ for Probe 1 (5.0 μ M) upon the addition of SO₃²⁻ (0.0 – 0.5 mM).

Fig. S10 Fluorescence spectra of Probe 1 (5.0 μ M) upon the addition of various species in HEPES buffer (pH 7.4, 20.0 mM, containing 30% CH₃CN), including Na₂SO₃, NaF, NaCl, NaBr, NaI, NaNO₃, NaNO₂, CH₃COONa, NaN₃, Na₂SO₄, Na₂S₂O₃, NaSCN, Na₃PO₄, Na₂S, Na₂CO₃, Cys, Hcy, GSH, H₂O₂, NaClO (200.0 equiv. for each).

Fig. S11 Fluorescence intensity ratio ($I_{460 \text{ nm}}/I_{539 \text{ nm}}$) of Probe 1 (5.0 μ M) with SO₃²⁻ (200.0 equiv.) in the coexistence of 200.0 equiv. of various species in HEPES buffer (pH 7.4, 20.0 mM, containing 30% CH₃CN). 1, free; 2, NaF; 3, NaCl; 4, NaBr; 5, NaI; 6, NaNO₃; 7, NaNO₂; 8, CH₃COONa; 9, NaN₃; 10, Na₂SO₄; 11, Na₂S₂O₃; 12, NaSCN ; 13, Na₃PO₄; 14, Na₂S; 15, Na₂CO₃; 16, Cys; 17, Hcy; 18, GSH; 19, H₂O₂; 20, NaClO.

Fig. S12 Kinetics of $I_{460 \text{ nm}}/I_{539 \text{ nm}}$ for Probe 1 (5.0 μ M) in the absence/presence of SO₃²⁻.

Fig. S13 The fluorescence intensity ratio $I_{460 \text{ nm}}/I_{539 \text{ nm}}$ of Probe 1 (5.0 μ M) in the absence and presence of SO₃²⁻ (200.0 equiv.) at different pH values from 4.0 to 10.0.

Fig. S14 (a) Bright-field and (b) fluorescence images of living HNE-2 cells incubated with Probe 1 for 30 min at 37 °C (5.0 μ M) in PBS buffer (pH 7.4, 10.0 mM, containing 10% DMSO); (c) Bright-field and (d) fluorescence images of living HNE-2 cells firstly incubated with Probe 1 (5.0 μ M) at 37 °C for 30 min in PBS buffer (pH 7.4, 10.0 mM, containing 10% DMSO) and then treated with SO₃²⁻ (1.0 mM) at 37 °C for another 30 min in PBS buffer (pH 7.4, 10.0 mM).

Fig. S15 Fluorescence images of living HNE-2 cells. Bright-field (A1-A4) and fluorescence images (B1-B4) of living HNE-2 cells firstly incubated with PBS buffer (pH 7.4, 10.0 mM) containing different concentration of DMSO (from left to right: 0%(1), 2%(2), 5%(3), 10%(4)) at 37 C for 1 h and then treated with fluorescein diacetate (100 μ g/mL) at 37 °C for another 5 min.

Fig. S16 Normalized corrected and uncorrected fluorescence spectra of Probe 1 in HEPES buffer (pH 7.4, 20.0 mM, containing 30% CH₃CN).

Fig. S17 Fluorescence spectra of Probe 1 (5.0 μ M) upon the addition of SO₃²⁻ (200.0 – 700.0 equiv.) in HEPES buffer (pH 7.4, 20.0 mM, containing 30% CH₃CN).

Fig. S18 Fluorescence spectra of Probe 1 (5.0 μ M) with SO₃²⁻ (700.0 equiv.) upon addition of hydrochloric acid (12 mol/L, 0.0 – 70.0 μ L) in HEPES buffer (pH 7.4, 20.0 mM, containing 30% CH₃CN).

Fig. S19 Fluorescence spectra of Probe **1** (5.0 μ M) with SO₃²⁻ (700.0 equiv.) and hydrochloric acid (12 mol/L, 70.0 μ L) upon addition of NaOH aqueous solution (6 mol/L, 0.0 – 140.0 μ L) in HEPES buffer (pH 7.4, 20.0 mM, containing 30% CH₃CN).

Fig. S22 HRMS spectrum of compound 3.

Fig. S26 ¹H NMR spectrum of Probe 1.

Fig. S27 ¹³C NMR spectrum of Probe 1.

Fig. S28 HRMS spectrum of Probe 1.

Fig. S29 HRMS spectrum of the reaction product of Probe 1 with SO_3^{2-} , dye 5.

Reference:

 (a) E. A. Betterton, Y. Erel and M. R. Hoffmann, *Environ. Sci. Technol.*, **1988**, *22*, 92-9; (b) L. C. de Azevedo, M. M. Reis, L. F. Motta, G. O. da Rocha, L. A. Silva and J. B. de Andrade, *J. Agr. Food. Chem.*, **2007**, *55*, 8670-8680; (c) D. P. Kjell, B. J. Slattery and H. J. Semo, *J. Org. Chem.*, **1999**, *64*, 5722-5724.