SUPPORTING INFORMATION

Cinchona alkaloid catalyzed enantioselective sulfa-Michael/aldol cascade reaction of isoindigos: construction of chial bispirooxindole tetrahydrothiophenes with vicinal quaternary spirocenters

Yong-Yuan Gui,^{a, b} Jian Yang,^{a, b} Liang-Wen Qi,^{a, b} Xiao Wang,^{a, b} Fang Tian,^a Xiao-Nian Li,^c Lin

Peng,^{a,*} and Li-Xin Wang^{a,*}

^a Key Laboratory of Asymmetric Synthesis & Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P.R. China, and ^b University of Chinese Academy of Sciences, Beijing 100039, P.R. China. ^c State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.

Contents

- 1. Genreal Information
- 2. Preparation and Spectral Data of Substrates
- 3. Optimization Studies
- 4. Single-Crystal X-ray Crystallography of Products of 3k
- 5. HPLC Spectra
- 6. Copies of NMR Spectra

1. General Information

Commercial grade solvent was dried and purified by standard procedures as specified in Purification of Laboratory Chemicals, 4th Ed (Armarego, W. L. F.; Perrin, D. D. Butterworth Heinemann: 1997). NMR spectra are recorded with tetramethylsilane as the internal standard. ¹H NMR spectra are recorded at 300 MHz, and ¹³C NMR spectra were recorded at 75 MHz (Bruker Avance). ¹H NMR chemical shifts (δ) were reported in ppm relative to tetramethylsilane (TMS) with the solvent signal as the internal standard (CDCl₃ at 7.26 ppm, (CD₃)₂SO at 2.50 ppm). ¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃ at 77.00 ppm, (CD₃)₂SO at 39.52 ppm). Data are given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (double of doublet) or m (multiplets), coupling constants (Hz) and integration. Flash column chromatography was carried out using silica gel eluting with ethyl acetate and petroleum ether. High resolution mass spectra were obtained with the Q-TOF-Premier mass spectrometer. Reactions were monitored by TLC and visualized with ultraviolet light. Enantiomeric excess was determined by HPLC analysis on chiralpak AD-H, or IC columns. Optical rotations are reported as follows: [α]_D²⁵ (C in g/100 mL, CHCl₃).

2. Preparation and Spectral Data of Substrates

To a solution of chloral hydrate (9.55 g, 57.89 mmol) in deionized water (150 mL), Na₂SO₄ (100 g, 684.19 mmol), 4-methylaniline (5.64 g, 52.63 mmol), H₂SO₄ (40 mL, 1 M) and hydroxylamine hydrochloride (10.97 g, 157.89 mmol) was added. The mixture was heated to 130 $^{\circ}$ C and refluxed for 30 min. The mixture was then cooled to 80 $^{\circ}$ C and filtered to collect the product. The product was washed with deionized water and dried under reduced pressure to afford **a** as a

yellowish solid, which was directly used for the next step without further purification.

To a concentrated H₂SO₄ (100 mL) in 250 mL round-bottom flask kept at 50 °C, compound **a** was added portionwise with stirring. The mixture was heated to 70 °C for 1 h before pouring into ice water. The precipitate was collected by filtration and the filtrate was extract with ethyl acetate (EA). The precipitate and the extraction were combined and subject to column chromatography (silica gel; eluent: PE:EA = 8:1) to afforded **b** as an orange solid (7.3 g, 86%).

To a solution of **b** (1.85 g, 11.48 mmol) in ethanol (50 mL), hydrazine hydrate (85%, 0.5 mL) was added under nitrogen. After the mixture was refluxed for 30 min, a yellow participate was formed and collected by filtration. The yellow precipitate was then dissolved in anhydrous ethanol (50 mL), and t-BuOK (4.03 g, 35.90 mmol) was added. The mixture was refluxed under nitrogen for 2 h before pouring into water. The mixture was acidified with dilute HCl to pH = 2 and extracted with EA. The combined organic phase was washed with water, brine, dried with Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel; eluent: PE:EA = 5:1) to provide **c** as a light-yellow solid (1.13 g, 67%).

To a suspension of **b** (1.04 g, 6.48 mmol) and **c** (0.95 g, 6.48 mmol) in AcOH (75 mL) was added conc. HCl solution (0.4 mL). The mixture was refluxed for 24 h. The mixture was allowed to cool and filtered. The solid material was washed with water, ethanol and ether. After drying under vacuum, deep red 5,5'-dimethylisoindigo **d** (1.51 g, 80%) was obtained.

To a solution of 5,5'-dimethylisoindigo **d** (95 mg, 0.33 mmol) and freshly powered KOH (1.68 g, 12.1 mmol) in dimethyl sulfoxide (DMSO) (20 mL), 1-Bromopropane (102 mg, 0.83 mmol) in THF (20 mL) was added under nitrogen. The mixture was stirred for 24 h at 25 °C before pouring into water. The residues were dissolved in CHCl₃ (100 mL) and washed with water (3×50 mL). The combined organic phase was washed with brine and dired (Na₂SO₄) and concentrated under reduced pressure. The residue was purified by silica gel chromatography with eluting (PE: CH₂Cl₂ = 5:1) to give **2i** as a deep-red solid. (85 mg, 69 %).

The other N-alkyl isoindigos were prepared according to the above procedure.

(*E*)-1,1'-dimethyl-[3,3'-biindolinylidene]-2,2'-dione (2a)

¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.21 (d, *J*=8 Hz, 2H), 7.36 (t, *J*=8 Hz, 2H), 7.06 (t, *J*=8 Hz, 2H), 6.77 (d, *J*=8 Hz, 2H), 3.27 (s, 6H)

(E)-1,1'-diethyl-[3,3'-biindolinylidene]-2,2'-dione (2b)

¹H NMR (300 MHz, DMSO) δ (ppm): 9.12 (d, *J*=8 Hz, 2H), 7.43 (td, *J*₁=8 Hz, *J*₂=1 Hz, 2H), 7.00-7.09 (m, 4H), 3.80 (q, *J*=7 Hz, 4H), 1.19 (t, *J*=7 Hz, 6H)

(E)-1,1'-dipropyl-[3,3'-biindolinylidene]-2,2'-dione(2c)

¹H NMR (300 MHz, DMSO) δ (ppm): 9.10 (d, *J*=8 Hz, 2H), 7.42 (t, *J*=7 Hz, 2H), 7.00-7.08 (m, 4H), 3.72 (t, *J*=7 Hz, 4H), 1.58-1.70 (m, 4H), 0.90 (t, *J*=7 Hz, 6H);

(*E*)-1,1'-diallyl-[3,3'-biindolinylidene]-2,2'-dione (2d)

¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.20 (d, *J*=8 Hz, 2H), 7.33 (t, *J*=8 Hz, 2H), 7.06 (t, *J*=8 Hz, 2H), 6.78 (d, *J*=8 Hz, 2H), 5.82-5.95 (m, 2H), 5.22-5.30 (m, 4H), 4.42-4.44 (m, 4H);

(*E*)-1,1'-diisopropyl-[3,3'-biindolinylidene]-2,2'-dione (2e)

Red solid, mp:269-270°C; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.12 (dd, $J_1=8$ Hz, $J_2=1$ Hz, 2H), 7.31 (td, $J_1=8$ Hz, $J_2=1$ Hz, 2H), 7.02 (td, $J_1=8$ Hz, $J_2=1$ Hz, 2H), 6.94 (d, J=8 Hz, 2H), 4.64-4.73 (m, 2H), 1.54 (d, J=7 Hz, 12H).

(E)-1,1'-dibutyl-[3,3'-biindolinylidene]-2,2'-dione (2f)

¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.18 (d, *J*=8 Hz, 2H), 7.32-7.37 (m, 2H), 7.04 (t, *J*=8 Hz, 2H), 6.78 (d, *J*=8 Hz, 2H), 3.77 (t, *J*=7 Hz, 4H), 1.60-1.74 (m, 4H), 1.39-1.46 (m, 4H), 0.96 (t, *J*=7 Hz, 6H);

(E)-1,1'-dioctyl-[3,3'-biindolinylidene]-2,2'-dione (2g)

¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.18 (d, *J*=8 Hz, 2H), 7.35 (t, *J*=8 Hz, 2H), 7.04 (t, *J*=8 Hz, 2H), 6.80 (d, *J*=8 Hz, 2H), 3.77 (t, *J*=7 Hz, 4H), 1.65-1.75 (m, 4H), 1.26-1.35 (m, 20H), 0.87 (t, *J*=6 Hz, 6H),

(*E*)-1,1'-dibenzyl-[3,3'-biindolinylidene]-2,2'-dione (2h)

¹H NMR (300 MHz, DMSO) δ (ppm): 9.15 (d, *J*=7 Hz, 2H), 7.28-7.40 (m, 12H), 7.05 (t, *J*=8 Hz, 2H), 7.00 (t, *J*=8 Hz, 2H), 5.03 (s, 4H);

(E)-5,5'-dimethyl-1,1'-dipropyl-[3,3'-biindolinylidene]-2,2'-dione (2i)

Red solid, mp:284-285°C; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.99 (s, 2H), 7.15 (d, *J*=8 Hz, 2H), 6.68 (d, *J*=8 Hz, 2H), 3.73 (t, *J*=7 Hz, 4H), 2.38 (s, 6H), 1.70-1.77 (m, 4H), 0.99 (t, *J*=7 Hz, 6H).

(E)-5,5'-dibromo-1,1'-dipropyl-[3,3'-biindolinylidene]-2,2'-dione (2j)

Red solid, mp:233-235°C; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.40 (d, *J*=2 Hz, 2H), 7.47 (dd, *J*₁=8 Hz, *J*₂=2 Hz, 2H), 6.68 (d, *J*=8 Hz, 2H), 3.73 (t, *J*=7 Hz, 4H), 1.66-1.78 (m, 4H), 0.99 (t, *J*=7 Hz, 6H);

(*E*)-6,6'-dibromo-1,1'-dipropyl-[3,3'-biindolinylidene]-2,2'-dione (2k)

Red solid, mp: 181-182°C;¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.28 (d, *J*=2 Hz, 2H), 7.33 (dd, *J*₁=8 Hz, *J*₂=2 Hz, 2H), 6.72 (d, *J*=8 Hz, 2H), 3.74 (t, *J*=7 Hz, 4H), 1.70-1.77 (m, 4H), 1.00 (t, *J*=7 Hz, 6H);

(E)-7,7'-difluoro-1,1'-dipropyl-[3,3'-biindolinylidene]-2,2'-dione (2l)

Red solid, mp: 142-143°C;¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.96 (dd, *J*₁=8 Hz, *J*₂=1 Hz, 2H), 7.11 (m, 2H), 6.95 (m, 2H), 3.91 (td, *J*₁=7 Hz, *J*₂=2 Hz, 4H), 1.75 (m, 4H), 0.98 (t, *J*=7 Hz, 6H);

(E)-5,5'-difluoro-1,1'-dipropyl-[3,3'-biindolinylidene]-2,2'-dione (2m)

Red solid, mp: 160-161 °C;¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.10 (dd, *J*₁=8 Hz, *J*₂=1 Hz, 2H), 7.07-7.14 (m, 2H), 6.93-7.00 (m, 2H), 3.72 (t, *J*=7 Hz 4H), 1.72-1.79 (m, 4H), 0.99 (t, *J*=7 Hz, 6H);

(E)-5,5'-dimethoxy-1,1'-dipropyl-[3,3'-biindolinylidene]-2,2'-dione (2n)

Red solid, mp:273-274°C; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 8.97 (d, *J*= 3 Hz, 2H), 6.90 (dd, *J*=8 Hz, *J*₂=3 Hz, 2H), 6.68 (d, *J*=8 Hz, 2H), 3.85 (s, 6H), 3.70 (t, *J*=7 Hz, 4H), 1.67-1.75 (m, 4H), 0.98 (t, *J*=7 Hz, 6H).

(E)-5,5'-dichloro-1,1'-dipropyl-[3,3'-biindolinylidene]-2,2'-dione (20)

Red solid, mp:287-288°C; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.27 (d, *J*= 2 Hz, 2H), 7.33 (dd, *J*=8 Hz, *J*₂=2 Hz, 2H), 6.70 (d, *J*=8 Hz, 2H), 3.74 (t, *J*=7 Hz, 4H), 1.67-1.79 (m, 4H), 0.99 (t, *J*=7 Hz, 6H).

(E)-6,6'-dichloro-1,1'-dipropyl-[3,3'-biindolinylidene]-2,2'-dione (2p)

Red solid, mp:282-283°C; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.16 (d, *J*= 8 Hz, 2H), 6.99 (dd, *J*=8 Hz, *J*₂=2 Hz, 2H), 6.78 (d, *J*=2 Hz, 2H), 3.72 (t, *J*=7 Hz, 4H), 1.56-1.77 (m, 4H), 1.00 (t, *J*=7 Hz, 6H).

3. Optimization Studies

	HO S +		QD (10 mol%)	OH S (R) (R) S S S A	_
entry	Х	Time(h)	Yield(%) ^b	dr ^c	ee(%) ^d
1	4	12	75	79/21	81
2	2	6	80	84/16	80
3	1.0	3	78	83/17	80
4	0.5	3	77	89/11	80

Table S1 Screening of concentrations ^a

^a Unless otherwise specified, the reaction was performed on a scale of 0.06 mmol **1** and 0.1 mmol **2a** in 1 mL solvent at 30 °C. ^b Isolated yield. ^c Determined by isolated yields of two diastereomers. ^d Enantiomeric excess of the major diastereoisomer determined by chiral HPLC analysis.

Table S2 Screening of catalyst loadings^a

	HO S +		QD (X mol%) mesitylene (2 mL) 30 °C	OH S (R) (R) N (S) 3a	_
entry	Х	Time(h)	Yield(%) ^b	dr ^c	ee(%) ^d
1	40	3	78	78/22	80
2	20	3	76	81/19	80
3	10	3	78	80/20	86
4	5	72	72	80/20	78

^a Unless otherwise specified, the reaction was performed on a scale of 0.06 mmol **1** and 0.1 mmol **2a** in 2 mL solvent at 30 °C. ^b Isolated yield. ^c Determined by isolated yields of two diastereomers. ^d Enantiomeric excess of the major diastereoisomer determined by chiral HPLC analysis.

Table S3 Screening of substrate ratios^a

entry	Х	Y	Time(h)	Yield(%) ^c	dr ^d	ee(%) ^e
1	0.05	0.1	48	78	75/25	80
2	0.075	0.1	3	80	80/20	86
3	0.10	0.1	3	78	80/20	87
4	0.15	0.1	3	82	74/26	87

^a Unless otherwise specified, the reaction was performed with the substrate ratio outlined in the table in 2 mL solvent at 30 $\,^{\circ}$ C. ^b Isolated yield. ^c Determined by isolated yields of two diastereomers.. ^d Enantiomeric excess of the major diastereoisomer determined by chiral HPLC analysis.

Table S4 Screening of additive ^a

	HOSOH + [QD (10 mol%) mesitylene (2 mL) 3 add. (20 mol%)		OH N N
entry	Add.	Time(h)	Yield(%) ^b	dr ^c	ee(%) ^d
1	5A MS(50 mg)	3	82	81/19	87
2	4A MS(50 mg)	3	80	82/18	86
3	3A MS(50 mg)	3	78	82/28	86
4	MgSO ₄ (50 mg)	3	90	82/18	86
5	Et ₃ N (20mol %)	3	80	75/25	86
6	DABCO (20mol %)	3	67	70/30	82
7	DIPEA (20mol %)	3	86	75/25	86
8	DBU (20mol %)	1	68	68/32	8

^a Unless otherwise specified, the reaction was performed on a scale of 0.06 mmol **1** and 0.1 mmol **2a** in 2 mL solvent at 30 °C. ^b Isolated yield. ^c Determined by isolated yields of two diastereomers.^d Enantiomeric excess of the major diastereoisomer determined by chiral HPLC analysis.

4. Single-Crystal X-ray Crystallography of Products of 3k

Crystal data for 3k: C₂₄H₂₄Br₂N₂O₃S, M = 580.33, orthorhombic, a = 9.181(4) Å, b = 9.395(4) Å, c = 27.281(11) Å, a = 90.00 °, $\beta = 90.00$ °, $\gamma = 90.00$ °, V = 2353.1(17) Å³, T = 293(2) K, space group $P212121, Z = 4, \mu(MoK\alpha) = 3.563 \text{ mm}^{-1}$, 13144 reflections measured, 4084 independent reflections ($R_{int} = 0.1756$). The final R_1 values were 0.1472 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.3251 ($I > 2\sigma(I)$). The final R_1 values were 0.1828 (all data). The final $wR(F^2)$ values were 0.3460 (all data). The goodness of fit on F^2 was 1.094. Flack parameter = 0.159(19). The Hooft parameter is 0.140(15) for 1710 Bijvoet pairs.

View of a molecule of 3k with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

View of the hydrogen-bonded motif of 3k.

Hydrogen-bonds are shown as dashed lines.

Table 1. Crystal data and structure refinement for 3k.

Identification code	3k
Empirical formula	C24 H24 Br2 N2 O3 S
Formula weight	580.33
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Orthorhombic, P 21 21 21
Unit cell dimensions b = 9.395(4) A beta = 90 deg. c = 27.281(11) A gamma = 90 deg.	a = 9.181(4) A alpha = 90 deg. eg.
Volume	2353.1(17) A^3
Z, Calculated density	4, 1.638 Mg/m^3

Absorption coefficient	3.563 mm^-1
F(000)	1168
Crystal size	0.22 x 0.21 x 0.20 mm
Theta range for data collection	1.49 to 25.10 deg.
Limiting indices	-10<=h<=10, -11<=k<=10, -32<=l<=32
Reflections collected / unique	13144 / 4084 [R(int) = 0.1756]
Completeness to theta $= 25.10$	98.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.5360 and 0.5078
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4084 / 834 / 293
Goodness-of-fit on F ²	1.094
Final R indices [I>2sigma(I)]	R1 = 0.1472, $wR2 = 0.3251$
R indices (all data)	R1 = 0.1828, $wR2 = 0.3460$
Absolute structure parameter	0.159(19)
Largest diff. peak and hole	1.885 and -2.141 e.A^-3

5. HPLC Spectra

HPLC of 3a

HPLC of 3b

Peak	RT (min)	Height (mV*sec)	Area (mV)	Area (%)
1	14.533	17436.865	401236.375	6.5098
2	18.773	3972.233	118116.000	1.9164
3	27.530	113606.133	5352444.000	86.8403
4	30.622	5925.868	291751.750	4.7335

```
HPLC of ent-3b
```


Peak	RT (min)	Height (mV*	sec) Area (mV)	Area
		(%)		
1	14.863	52759.836	1276865.750	81.2043
2	19.177	3643.919	113640.500	7.2271
3	28.132	2274.823	111358.750	7.0820
4	31.778	1332.942	70546.453	4.4865

HPLC of 3d

1	11.683	119689.531	2170487.750	45.0283
2	18.983	7838.455	245859.781	5.1005
3	23.868	54998.371	2169290.750	45.0035
4	31.348	4556.082	234635.094	4.8677

Peak	RT (min)	Height (mV*s	ec) Area (mV)	Area
		(%)		
1	11.693	24087.305	440252.688	8.0490
2	19.008	3366.138	102280.297	1.8700
3	24.037	115324.656	4680024.500	85.5633
4	31.392	4810.941	247107.297	4.5178

HPLC of ent-3d

Peak	RT (min)	Height (mV*sec)	Area (mV)	Area (%)
1	11.693	24087.305	440252.688	8.0490
2	19.008	3366.138	102280.297	1.8700
3	24.037	115324.656	4680024.500	85.5633
4	31.392	4810.941	247107.297	4.5178

HPLC of 3e

Peak	RT (min)	Height (mV*	sec) Area (mV)	Area
		(%)		
1	23.732	16116.142	609016.313	6.6478
2	29.113	7256.782	343339.906	3.7478
3	30.350	2333.465	111834.133	1.2207
4	80.092	46810.156	8096981.000	88.3837

HPLC	of	ent-3e

Peak	RT (min)	Height (mV*	sec) Area (mV)	Area
		(%)		
1	23.752	30233.824	1158366.375	82.3087
2	29.395	854.220	37131.332	2.6384
3	30.368	1732.137	89272.664	6.3433
4	77.922	946.784	122572.594	8.7095

HPLC of 3f

HPLC of 3f (entry 6)

Peak	RT (min)	Height (mV*sec)	Area (mV)	Area (%)
1	9.212	10184.611	147931.750	6.0959
2	10.903	2291.000	39321.801	1.6204
3	15.380	4345.109	109231.055	4.5011
4	20.912	56121.051	2130253.500	87.7826

HPLC of 3f (entry7)

HPLC of ent-3f

Peak	RT (min)	Height (mV*sec)	Area (mV)	Area (%)
1	9.365	206194.328	3175491.000	84.3919
2	11.065	12212.185	218973.797	5.8194
3	15.682	5157.175	135497.203	3.6010

HPLC of 3g

89.6708

HPLC of 3g (entry9)

Peak	RT (min)	Height (mV*sec)	Area (mV)	Area (%)
1	6.427	10767.232	126853.797	4.7886
2	8.045	3059.631	44932.512	1.6962
3	11.347	1831.983	39942.496	1.5078
4	12.458	96186.758	2437340.750	92.0074

HPLC of ent-3g

Peak	RT (min)	Height (mV*sec	c) Area (mV)	Area (%)
1	6.465	134569.594	1607247.750	87.2753
2	8.097	5322.147	80661.484	4.3800
3	11.428	2309.685	50658.809	2.7508
4	12.690	3984.293	103015.547	5.5939

HPLC of 3h

Peak	RT (min)	Height (mV*sec)	Area (mV)	Area (%)
1	13.572	92298.461	1827098.625	7.3517
2	15.545	80315.867	1822047.875	7.3313
3	24.503	251673.563	10596600.000	42.6373
4	56.950	102317.000	10607158.000	42.6798

HPLC of 3i

Peak	RT (min)	Height (mV*sec)	Area (mV)	Area (%)
1	15.550	35487.566	917553.938	26.8713
2	18.918	25290.893	799499.125	23.4140
3	20.432	24047.186	816979.500	23.9259
4	26.403	20166.824	880592.625	25.7889

HPLC of ent-3i

1	15.602	8753.476	221961.141	9.5108
2	19.008	56194.859	1808760.375	77.5036
3	20.548	5888.881	208466.984	8.9326
4	26.650	2138.827	94588.094	4.0530

HPLC of 3j

1	10.378	6759.042	122855.336	3.6300
2	11.263	135490.891	2547730.750	75.2776
3	16.162	7192.789	201007.750	5.9392
4	27.133	10059.570	512852.063	15.1532

HPLC of 3k

Peak	RT (min)	Height (mV*sec)	Area (mV)	Area (%)
1	7.497	108177.656	1390015.250	30.8556
2	8.025	66838.203	875236.563	19.4285
3	8.633	94033.227	1385637.000	30.7584
4	11.358	43561.902	854015.000	18.9575

Peak	RT (min)	Height (mV*sec)	Area (mV)	Area (%)
1	7.503	30307.955	374939.531	10.7577
2	8.038	15209.912	199138.984	5.7137
3	8.637	179655.703	2605048.250	74.7437
4	11.362	15756.313	306182.344	8.7849

HPLC of 31

Peak	RT (min)	Height (mV*sec)	Area (mV)	Area (%)
1	6.337	93209.953	870729.500	30.3308
2	9.578	36691.500	573911.688	19.9915
3	11.093	50006.441	879340.313	30.6307
4	23.320	13234.923	546797.688	19.0470

Peak	RT (min)	Height (mV*sec)	Area (mV)	Area (%)
1	6.335	22872.143	215660.406	8.2255
2	9.573	57669.719	854046.313	32.5740
3	11.090	63437.137	1115562.250	42.5484
4	23.292	10599.099	436595.938	16.6521

Peak	RT (min)	Height (mV*sec)	Area (mV)	Area (%)
1	6.777	81174.555	792822.875	20.9706
2	8.475	66077.695	899301.688	23.7870
3	11.067	58985.758	1056304.625	27.9398
4	20.958	27745.822	1032213.875	27.3026

Peak	RT (min)	Height (mV*sec)	Area (mV)	Area (%)
1	6.882	133073.234	1327281.125	11.2572
2	8.648	67775.313	857053.000	7.2690
3	11.173	456329.031	8399301.000	71.2381
4	21.273	32155.158	1206820.750	10.2356

Peak	RT (min)	Height (mV*sec)	Area (mV)	Area (%)
1	9.808	75052.148	1159748.750	21.1345
2	11.443	1231.233	21346.689	0.3890
3	13.745	37454.383	898470.500	16.3732
4	23.247	76169.508	3407895.000	62.1033

HPLC of 30

26918.381

33118.023

692587.000

1432843.250

16.1305

33.3712

4

5

14.798

23.732

Peak	RT (min)	Height (mV*sec)	Area (mV)	Area (%)
1	9.330	23422.906	356040.813	7.6414
2	10.253	191381.359	3214327.250	68.9866
3	14.970	19134.318	480734.688	10.3176
4	23.882	13976.125	608246.688	13.0543

HPLC of 3p

Peak	RT (min)	Height (mV*sec)	Area (mV)	Area (%)
1	8.523	63202.742	1669647.500	31.0199
2	9.478	34300.695	1014424.438	18.8467
3	12.342	50984.449	1734510.500	32.2250
4	18.317	15201.221	963914.938	17.9083

Peak	RT (min)	Height (mV*sec)	Area (mV)	Area (%)
1	8.457	91545.414	2464670.500	90.9878
2	12.323	7203.161	244122.703	9.0122

6. Copies of NMR and MS Spectra

1

150

20.00 Cm 5.00 Cm 200.500 Cpm 15131.28 Hz -5.500 Cpm -415.07 Hz 10.30000 cpm/cm 777.31787 Hz/cm

10 NM CX CY F1P F1 F2P F2 PPMCH HZCM

ppm

