Supporting Information

Phenalenones: Insight into the biosynthesis of polyketides from the marine alga-derived fungus *Coniothyrium cereale*

Mamona Nazir,^a Fayrouz El Maddah,^a Stefan Kehraus,^a Ekaterina Egereva,^a Jörn Piel,^b Alexander O. Brachmann,^b Gabriele M. König^{*a}.

^aInstitute for Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany

^bInstitute for Microbiology, ETH Zürich, Wolfgang Pauli Strasse 10, 8093 Zürich, Switzerland

Contents

Extraction and Isolation Scheme

Scheme S1: Isolation scheme for [1-¹³C] labeled metabolites 1, 3, 5, 6, 9, 12, 14-16 Spectroscopic Data

Figure **S1.1**: ¹H NMR spectrum of [1-¹³C] labeled compound Figure **S1.2**: ¹³C NMR spectrum of [1-¹³C] labeled compound Figure S1.3: LCESIMS spectrum of [1-13C] labeled compound 1 Figure **S2.1**: ¹H NMR spectrum of [1-¹³C] labeled compound Figure **S2.2**: ¹³C NMR spectrum of [1-¹³C] labeled compound Figure **S2.3**: LCESIMS spectrum of [1-¹³C] labeled compound Figure **S3.1**: ¹H NMR spectrum of [1-¹³C] labeled compound Figure **S3.2** ¹³C NMR spectrum of [1-¹³C] labeled compound Figure **S3.3**: LCESIMS spectrum of [1-¹³C] labeled compound Figure **S4.1**: ¹H NMR spectrum of [1-¹³C] labeled compound Figure **S4.2**: ¹³C NMR spectrum of [1-¹³C] labeled compound Figure **S4.3**: LCESIMS spectrum of [1-¹³C] labeled compound Figure **S5.1**: ¹H NMR spectrum of [1-¹³C] labeled compound Figure **S5.2**: ¹³C NMR spectrum of [1-¹³C] labeled compound Figure **S5.3**: UPLC-HRMS spectrum of [1-¹³C] labeled compound Figure **S6.1**: ¹H NMR spectrum of [1-¹³C] labeled compound Figure **S6.2**: ¹³C NMR spectrum of [1-¹³C] labeled compound Figure **S6.3**: LCESIMS spectrum of compound [1-¹³C] labeled Figure **S7.1**: UPLC-HRMS spectrum of [1-¹³C] labeled compound Figure **S8.1**: ¹H NMR spectrum of [1-¹³C] labeled compound Figure **S9.2**: ¹³C NMR spectrum of [1-¹³C] labeled compound Figure **S9.3**: UPLC-HRMS spectrum of [1-¹³C] labeled compound Tables with spectroscopic data Table S1: ¹³C NMR spectroscopic data of [1-¹³C] labeled metabolites 1, 3, 5, 9, 12, 14 and 16

- - Table **S2**: UPLC-HRMS spectroscopic data of [1-¹³C] labeled compound **12**

Table **S3**: UPLC-HRMS spectroscopic data of [1-¹³C] labeled compound **15**

Table **S4**: UPLC-HRMS spectroscopic data of [1-¹³C] labeled compound **16**

Table S5: Results of time scale experiment

Miscellaneous

Figure **S9**: Biosynthesis of the prenyl group

Figure S10: Structures and labeling pattern of sclerodin, scleroderolide, sclerodione, deoxyherqueinone and atrovenetin

Figure S11: Carbon skeleta of polyketides produced by the fungus Coniothyrium cereale

Extraction and isolation scheme

Scheme S1: Isolation scheme for [1-¹³C] labeled *C. cereale* metabolites 1, 3, 5, 6, 9, 12, 14-16

Figure **S1.1**: ¹H NMR spectrum of [1-¹³C] labeled compound **1** in acetone- d_6

Figure **S1.2**: ¹³C NMR spectrum of $[1-^{13}C]$ labeled compound **1** in acetone- d_6 (x: impurity)

Figure **S1.3**: LC-ESIMS chromatogram (extracted ion mode; left) and LC-PDA chromatogram (total wavelength mode; right) as well as ESI mass spectrum of $[1-^{13}C]$ labeled compound **1**

Figure **S2.1**: ¹H NMR spectrum of $[1^{-13}C]$ labeled compound **3** in chloroform- d_1

Figure **S2.2**: ¹³C NMR spectrum of [1-¹³C] labeled compound **3** in chloroform- d_1 (x: impurity)

Figure **S2.3**: LC-ESIMS chromatogram (extracted ion mode; left) and LC-PDA chromatogram (total wavelength mode; right) as well as ESI mass spectrum of $[1-^{13}C]$ labeled compound **3**

Figure **S3.2**: ¹³C NMR spectrum of $[1^{-13}C]$ labeled compound **6** chloroform- d_1 (x: impurity)

Figure **S3.3**: LC-ESIMS chromatogram (extracted ion mode; left) and LC-PDA chromatogram (total wavelength mode; right) as well as ESI mass spectrum of $[1-^{13}C]$ labeled compound **6**

Figure **S4.1**: ¹H NMR spectrum of $[1^{-13}C]$ labeled compound **9** in methanol- d_4

Figure **S4.2**: ¹³C NMR spectrum of $[1-^{13}C]$ labeled compound **9** in methanol- d_4

Figure **S4.3**: LC-ESIMS chromatogram (extracted ion mode; left) and LC-PDA chromatogram (total wavelength mode; right) as well as ESI mass spectrum of $[1-^{13}C]$ labeled compound **9**

Figure **S5.1**: ¹H NMR spectrum of $[1^{-13}C]$ labeled compound **12** in methanol- d_4

Figure **S5.2**: ¹³C NMR spectrum of $[1^{-13}C]$ labeled compound **12** in acetone- d_6 (x: impurity)

Figure **S5.3**: UPLC-HRMS spectrum of [1-¹³C] labeled compound **12**

Figure **S6.1**: ¹H NMR spectrum of $[1^{-13}C]$ labeled compound **14** in acetone- d_6

Figure **S6.2**: ¹³C NMR spectrum of $[1-^{13}C]$ labeled compound **14** in acetone- d_6

Figure **S6.3:** LC-ESIMS chromatogram (extracted ion mode; left) and LC-PDA chromatogram (total wavelength mode; right) as well as ESI mass spectrum of $[1-^{13}C]$ labeled compound **14**

Figure **S7.1:** UPLC-HRMS spectrum of [1-¹³C] labeled compound **15**

Figure **S8.1**: ¹H NMR spectrum of $[1-^{13}C]$ labeled compound **16** in methanol- d_4

Figure **S8.3**: UPLC-HRMS spectrum of [1-¹³C] labeled compound **16**

Figure **S8.2**: ¹³C NMR spectrum of $[1-^{13}C]$ labeled compound **16** in methanol- d_4

Pos.	Comp. 1^b	Comp. 3^a	Comp. 6 ^a	Com	p. 9 ^c	Comp. 12 ^{<i>c</i>}	Comp.	14^b	Comp. 16 ^b	
	$\delta_{\rm C}$, mult. ^d	$\delta_{\rm C}$, mult. ^d	$\delta_{\rm C}$, mult. ^d	$\delta_{\rm C}$, mult.	enrich. ^e	$\delta_{\rm C}$, mult. ^d	$\delta_{\rm C}$, mult. ^d	enrich.e	$\delta_{\rm C}$, mult. ^d	
2	170.03, C	167.98, C	164.20, C	168.12, C	2.2	151.18, C	160.72, C	3.8	176.64, C	
4	138.27, C	135.09, C	135.31, C	124.13, C	2.4	131.73, C	135.62, C	3.2	135.55, C	
5	199.46, C	164.72, C	164.84, C	171.90, C	2.1	-	167.17, C 3.5		-	
7	201.45, C	165.15, C	165.41, C	-	-	165.79, C	-	-	-	
9	167.23, C	165.22, C	165.93, C	148.44, C	2.3	138.33, C	138.38, C	5.9	162.56, C	
11	150.21, C	150.70, C	149.72, C	138.06, C	4.0	143.50, C	131.65, C	3.2	142.74, C	
14	166.67, C	166.68, C	166.13, C	170.99, C	2.6	157.75, C	164.35, C	3.4	175.12, C	
16	67.27, CH ₂	66.58, CH ₂	14.51, CH ₂	14.82, CH ₃	9.2	14.66, CH ₃	14.64, CH ₃	12.7	14.92, CH ₃	
17	140.07, C	140.13, C	43.38, C	44.25, C	6.3	44.23, C	44.21, C	7.5	43.86, C	
18	-	-	-	25.56, CH ₃	1.0	-	25.63, CH ₃	1.0	-	

Table S1: ¹³C NMR spectroscopic data for ¹³C enriched compounds 1, 3, 6, 9, 12, 14 and 16

^a In chloroform- $d_{1.}$ ^b In acetone- $d_{6.}$ ^cIn methanol- $d_{4.}$ ^d Implied multiplicities determined by DEPT. ^{e 13}C enrichment ratios of labeled compounds were calculated on the basis of the relative intensity of CH₃-18 (1.0). Due to low concentrations for compounds **1**, **3**, **6**, **12**, and **16** no enrichment ratios could be calculated.

Table S2: UPLC-HRMS results (experimental and calculated mass values (m/z) of isotopic molecular ions) of [1-¹³C] labeled compound **12**

Molecular formula	Isotopic molecular ions	Calculated mass values (<i>m/z</i>)	Experimental mass values (<i>m/z</i>)
¹² C ₁₇ H ₁₇ NO ₄ H	$[M+H]^+$	300.1236	300.1236
$^{12}C_{16} + ^{13}C_1 + H_{17}NO_4H$	$[M+H+1]^+$	301.1270	301.1262
$^{12}C_{15} + ^{13}C_2 + H_{17}NO_4H$	$[M+H+2]^+$	302.1304	302.1290
¹² C ₁₄ + ¹³ C ₃ +H ₁₇ NO ₄ H	$[M+H+3]^+$	303.1338	303.1322
¹² C ₁₃ + ¹³ C ₄ +H ₁₇ NO ₄ H	$[M+H+4]^+$	304.1372	304.1356
$^{12}C_{12}$ + $^{13}C_5$ +H ₁₇ NO ₄ H	$[M+H+5]^+$	305.1406	305.1390
¹² C ₁₁ + ¹³ C ₆ +H ₁₇ NO ₄ H	$[M+H+6]^+$	306.1440	306.1425
¹² C ₁₀ + ¹³ C ₇ +H ₁₇ NO ₄ H	$[M+H+7]^+$	307.1474	307.1460
$^{12}C_9 + ^{13}C_8 + H_{17}NO_4H$	[M+H+8]⁺	308.1508	308.1494

Molecular formula	Isotopic molecular ions	Calculated mass values (<i>m/z</i>)	Experimental mass values (<i>m/z</i>)
¹² C ₁₆ H ₁₅ NO ₅ H	$[M+H]^+$	302.1028	302.1029
$^{12}C_{15} + ^{13}C_1 + H_{15}NO_5H$	$[M+H+1]^+$	303.1062	303.1057
$^{12}C_{14} + ^{13}C_2 + H_{15}NO_5H$	$[M+H+2]^+$	304.1096	304.1089
$^{12}C_{13}$ + $^{13}C_3$ +H ₁₅ NO ₅ H	$[M+H+3]^+$	305.1130	305.1120
$^{12}C_{12}$ + $^{13}C_4$ +H ₁₅ NO ₅ H	$[M+H+4]^+$	306.1164	306.1154
$^{12}C_{11}$ + $^{13}C_5$ +H ₁₅ NO ₅ H	$[M+H+5]^+$	307.1198	307.1189
$^{12}C_{10} + ^{13}C_6 + H_{15}NO_5H$	$[M+H+6]^+$	308.1232	308.1223
$^{12}C_9 + ^{13}C_7 + H_{15}NO_5H$	[M+H+7] ⁺	309.1266	309.1252

Table S3: UPLC-HRMS results (experimental and calculated mass values (m/z) of isotopic molecular ions) of [1-¹³C] labeled compound **15**

Table S4: UPLC-HRMS results (experimental and calculated mass values (m/z) of isotopic molecular ions) of [1-¹³C] labeled compound **16**

Molecular formula	Isotopic molecular ions	Calculated mass values (<i>m/z</i>)	Experimental mass values (<i>m/z</i>)
¹² C ₁₆ H ₁₆ O ₄ H	$[M+H]^+$	273.1127	273.1127
$^{12}C_{15} + ^{13}C_1 + H_{16}O_4H$	$[M+H+1]^{+}$	274.1161	274.1153
$^{12}C_{14} + ^{13}C_2 + H_{16}O_4H$	$[M+H+2]^+$	275.1195	275.1183
$^{12}C_{13}$ + $^{13}C_3$ +H ₁₆ O ₄ H	[M+H+3] ⁺	276.1229	276.1216
$^{12}C_{12} + ^{13}C_4 + H_{16}O_4H$	$[M+H+4]^+$	277.1263	277.1250
$^{12}C_{11} + ^{13}C_5 + H_{16}O_4H$	[M+H+5] ⁺	278.1297	278.1285
$^{12}C_{10} + ^{13}C_6 + H_{16}O_4H$	[M+H+6] ⁺	279.1331	279.1322
$^{12}C_9 + ^{13}C_7 + H_{16}O_4H$	[M+H+7] ⁺	280.1365	280.1350

No.	Compounds	Molecular weight	Retention times (t _R) in	Fungus <i>C. cereale</i> extracts (3-30 days)												
			LOWIS	3	5	7	9	11	13	15	17	19	21	23	25	30
1	rousselianone A'	398	20.70-21.55	_	_	+	+	+	+	+	+	+	+	+	+	+
2	lamellicolic anhydride	260	16.92-16.95	-	-	-	-	-	-	-	-	-	-	-	-	+
3	coniosclerodin	328	22.88-23.59	-	+	+	+	+	+	+	+	+	+	+	+	+
4	Z-coniosclerodinol	344	20.78-20.90	_	-	-	-	-	-	-	-	-	-	-	+	+
5	E-coniosclerodinol	344	20.36-20.54	-	-	-	-	-	-	-	-	-	-	-	+	+
6	(-)-sclerodin	328	22.88-23.59	_	+	+	+	+	+	+	+	+	+	+	+	+
7	S,S-sclerodinol	344		n. d	n. d	n. d	n. d	n. d	n. d	n. d	n. d	n. d	n. d	n. d	n. d	n. d
8	conioscleroderolide	328	19.76-19.94	-	+	+	+	+	+	+	+	+	+	+	+	+
9	(-)-scleroderolide	328	19.89-20.02	-	+	+	+	+	+	+	+	+	+	+	+	+
10	coniosclerodione	312	18.97-19.15	-	+	+	+	+	+/ -	+	+	+/ -	+/ -	+	+	+
11	(-)-sclerodione	312	19.34-19.80	-	+	+	+	+	-	+/ -	+	+/ -	+/ -	+	+	+
12	(-)-cereolactam	299	20.96-21.97	-	-	-	-	-	-	-	-	+	+	+/ -	+/ -	+
13	coniolactone	300	19.28-19.46	-	-	-	-	+	+/ -	+/ _	+/ -	+	+/ _	+	+	+
14	(-)-cereolactone	300	21.17-21.40	-	-	+	+	+	+	+	+	+	+	+	+	+
15	(-)-cereoaldomine	301	17.05-17.17	-	-	-	-	-	-	-	-	-	+	+/ -	+/ -	+
16	(-)-trypethelone	272	19.51-19.63	-	-	-	-	-	+	+/ -	+/ -	+	+	+	+	+
17	conioamide	287		n. d.	n. d.	n. d.	n. d.	n. d.	n. d							
18	cereoanhydride	306	18.63-18.87	n. d	n. d	n. d	n. d	n. d	n. d	n. d	n. d	n. d	n. d	n. d	n. d	n. d

Table S5: Results of time scale experiments showing the presence (+) or absence (-) of certain *C. cereale* metabolites. Measurements were performed by LC-MS.

For LCMS measurements: see experimental part; n.d. = not determined; +/- = amount below the detection limit.

Figure S9: Biosynthesis of the prenyl group

Figure **S10**: Structures and labeling pattern of sclerodin, scleroderolide, sclerodione, deoxyherqueinone and atrovenetin

Figure **S11**: Carbon skeleta of polyketides produced by the fungus *Coniothyrium cereale*