Supporting Information

Aziridine electrophiles in the functionalisation of peptide chains with amine nucleophiles

Anatol P. Spork and Timothy J. Donohoe*

Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
corresponding author* e-mail address: timothy.donohoe@chem.ox.ac.uk

Table of contents:

1. General Methods S2
2. Preparation of unknown compounds and key building block S3
3.

\qquad
3. Mechanistic control S39
experiment
4. NMR spectra of unknown compounds and key building block S40 9. \qquad5. ReferencesS89

1. General Methods

Compounds $\boldsymbol{8}^{[S 1]}, \mathbf{1 3}^{[\mathrm{S} 2]}$ and $\mathbf{1 4}^{[53]}$ as well as benzyl azide ${ }^{[54]}$, 3-azido-7-hydroxycoumarine ${ }^{[S 5]}$ and L-alanine dibenzylamide ${ }^{[56]}$ are literature known (see references). Compound $\mathbf{1 3}$ and L-alanine dibenzylamide are also commercially available from Aurora Building Blocks (US) and Aldlab Chemicals Building Blocks (US). Benzyl azide is also commercially available but potentially explosive and was therefore only prepared in very small quantities. ${ }^{[54]}$ All other chemicals were purchased from standard suppliers. All solvents and reagents were used as commercially supplied without further purification unless otherwise stated. In all aziridine ring-opening reactions only free amines have been used. In those cases in which only the corresponding hydrochlorides were commercially available, the desired free amines were obtained by dissolving the corresponding hydrochlorides in $\mathrm{AcOEt}, \mathrm{DCM}$ or CHCl_{3} and washing with sat. aqueous NaHCO_{3} solution. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the filtrate evaporated in vacuo. All anhydrous reactions were carried out in flame-dried glassware and under an inert atmosphere of argon. Anhydrous solvents were dried by filtration through an activated alumina purification column or directly purchased as anhydrous solvents in sealed bottles. Petrol (PE) refers to petroleum ether in the boiling range $30-40^{\circ} \mathrm{C}$.
Flash column chromatography (FCC) was performed using Merck Kieselgel $60(40-63 \mu \mathrm{~m})$. Thin layer chromatography (TLC) analyses were performed on aluminum plates precoated with 0.25 mm silica gel $60 \mathrm{~F}_{254}$ (VWR). Visualization of the spots was carried out using UV light (254 nm) and/or staining under heating (Vanillin $-\mathrm{H}_{2} \mathrm{SO}_{4}$ staining solution: 4 g vanillin, 25 mL conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, 80 \mathrm{~mL} \mathrm{AcOH}$ and 680 mL MeOH).
Melting points T_{mp} were obtained using a Leica VMTG heated-stage microscope and are uncorrected. Specific optical rotation values $[\alpha]_{D}{ }^{20}$ are quoted in ${ }^{\circ} \mathrm{cm}^{3} \mathrm{~g}^{-1} \mathrm{dm}^{-1}$ and were recorded on a Perkin-Elmer polarimeter with a Na source using a 10 cm cell [concentrations c are quoted in $\left.\mathrm{g}(100 \mathrm{~mL})^{-1}\right]$. ${ }^{1} \mathrm{H}$ nuclear magnetic resonance spectra (NMR) were recorded on a Bruker AV400 (400 MHz) or Bruker AVII500 $(500 \mathrm{MHz}) .{ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV400 $(101 \mathrm{MHz})$ or AVII500 $(126 \mathrm{MHz})$ as stated. Chemical shifts are reported relative to residual solvent peaks. Coupling constants J are quoted to the nearest 0.1 Hz for ${ }^{1} \mathrm{H}$ NMR. Chemical shifts δ are quoted in ppm (parts per million) to the nearest 0.01 ppm (${ }^{1} \mathrm{H}$ NMR) or $0.1 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right.$ NMR) with signal splittings recorded as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m). All NMR spectra were recorded at room temperature. Assignments were based upon DEPT, COSY, HSQC and HMBC experiments. Atoms have been numbered according to a self-consistent system used for clarity of assignment of the NMR data which does not reflect the IUPAC rules in naming compounds. Fourier transform infrared spectra (FTIR) were recorded neat on a Bruker Tensor 27 FT-IR spectrometer equipped with Attenuated Total Reflectance (ATR) sampling accessories. The nine most intense absorption maxima are quoted in wavenumbers $v\left[\mathrm{~cm}^{-1}\right]$. Mass spectra (MS) under the conditions of electrospray ionization (ESI) were recorded on a Fisons Platform II and on a Bruker MicroTof (resolution $=10000$ FWHM). Calibration was via the lock-mass of tetraoctyl ammonium bromide for positive ions and sodium dodecyl sulfate for negative ions.

2. Preparation of unknown compounds and key building block 9

Preparation of aziridine building block 9

The existing protocols for the preparation of 9 from $8^{[51]}$ were significantly improved by employing $\left(\mathrm{MeSO}_{2}\right)_{2} \mathrm{O}$ instead of $\mathrm{MeSO}_{2} \mathrm{Cl}$ or $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ and thereby avoiding the formation of N-Trityl- β-chloro-Lalanine benzyl ester as side-product: Serine derivative $\boldsymbol{8}^{[S 1]}(14.0 \mathrm{~g}$, $32.0 \mathrm{mmol})$ was dissolved in abs. THF $(100 \mathrm{~mL})$ and was cooled to $0^{\circ} \mathrm{C} . \mathrm{NEt}_{3}(13.4 \mathrm{~mL}$, $96.0 \mathrm{mmol})$ and a solution of $\mathrm{Ms}_{2} \mathrm{O}(8.36 \mathrm{~g}, 48.0 \mathrm{mmol})$ in abs. THF $(25 \mathrm{~mL})$ were added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 20 min at $0^{\circ} \mathrm{C}$, for 30 min at rt and for 60 h at $60^{\circ} \mathrm{C}$. The solvent was evaporated in vacuo. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ and washed with water (200 mL), $10 \mathrm{wt} \%$ aqueous citric acid solution ($2 \times 150 \mathrm{~mL}$) and sat. aqueous NaHCO_{3} solution ($2 \times 150 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the filtrate evaporated in vacuo. The resultant crude product was purified by FCC ($250 \mathrm{~g}, 5.0 \times 21 \mathrm{~cm}$, PE:DCM, $50: 50 \rightarrow 40: 60$) to give $12.7 \mathrm{~g}(30.3 \mathrm{mmol}, 95 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.39$ (PE:DCM, 30:70).
Melting point: $\mathrm{T}_{\mathrm{mp}}=109{ }^{\circ} \mathrm{C}\left[\mathrm{Lit} .{ }^{[\mathrm{S} 1]}: \mathrm{T}_{\mathrm{mp}}=106-118{ }^{\circ} \mathrm{C}\right]$.
Specific rotation: $[\alpha]_{D}{ }^{20}=-98.9(c=1.08$, THF $)\left[L i t .{ }^{[S 1]}:[\alpha]_{D}{ }^{20}=-95.5-(-98.3)(c=0.92-1.0\right.$, THF)].
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.51-7.19\left(\mathrm{~m}, 20 \mathrm{H}, 20 \times H \mathrm{C}_{\mathrm{Ar}}\right), 5.26(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.21\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 2.30\left(\mathrm{dd}, J=2.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-H_{a}\right), 1.95$ (dd, $J=6.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-H), 1.43\left(\mathrm{dd}, J=6.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-H_{b}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.6(C-1), 143.7,136.0\left(4 \times C_{A r}\right), 129.5,128.7,128.5$, 128.5, 127.8, $127.1\left(20 \times \operatorname{HC} C_{A r}\right), 74.5\left(\mathrm{Ph}_{3} C\right), 66.8\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 31.9(C-2), 29.0(C-3)$.

IR (ATR): $v=1729,1447,1234,1171,1015,908,746,699,631$.
MS $\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}=861.4[2 \mathrm{M}+\mathrm{Na}]^{+}, \quad$ calculated: $442.1778[\mathrm{M}+\mathrm{Na}]^{+}$,
$\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{NO}_{2}\left(419.51 \mathrm{~g}(\mathrm{~mol})^{-1}\right), \quad$ found: 442.1774 [-0.7 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of dipeptide 11

To aziridine building block $9(4.00 \mathrm{~g}, 9.53 \mathrm{mmol})$ in degassed EtOH (50 mL) degassed $\mathrm{NEt}_{3}(3.99 \mathrm{~mL}, 28.6 \mathrm{mmol})$ and $10 \mathrm{wt} \%$ palladium on charcoal ($250 \mathrm{mg}, 0.235 \mathrm{mmol}$) were added. The resulting suspension was stirred under a hydrogen atmosphere (1 bar , balloon) for 1.5 h and then filtered through a syringe filter. The syringe filter was washed with $\mathrm{EtOH}(3 \times 5 \mathrm{~mL})$ and the solvent of the combined filtrates evaporated in vacuo. After co-evaporation with toluene:THF 1:1 ($2 \times 30 \mathrm{~mL}$) the resulting colourless solid was dried in vacuo. With respect to its poor stability the unprotected carboxylate was always prepared freshly and used instantly in the subsequent transformation without further purification.
HOBt ($709 \mathrm{mg}, 5.25 \mathrm{mmol}$) was added to $1 / 2$ of the crude product (only $1 / 2$ of the initially prepared benzyl-deprotected aziridine building block, vide supra, was used in the 2nd step,
calculated maximal amount of substance: 4.77 mmol$)$ in abs. DMF (18 mL). EDAC (1.01 g , 5.25 mmol) was added after cooling the solution to $0{ }^{\circ} \mathrm{C}$. After stirring for 10 min at $0{ }^{\circ} \mathrm{C}$ $\mathrm{NEt}_{3}(0.74 \mathrm{~mL}, 5.3 \mathrm{mmol})$ was added. Glycine derivative $\mathbf{1 3}^{[52]}(1.34 \mathrm{~g}, 5.25 \mathrm{mmol})$ in abs. DCM (4 mL) was added after additional 15 min of stirring at $0^{\circ} \mathrm{C}$. After stirring for 12 h and concomitantly slowly warming to rt the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ and washed with $10 \mathrm{wt} \%$ aqueous citric acid solution ($2 \times 200 \mathrm{~mL}$) and sat. aqueous NaHCO_{3} solution ($2 \times 200 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the filtrate evaporated in vacuo. The resultant crude product was purified by FCC (150 g , $5.0 \times 15 \mathrm{~cm}$, PE:AcOEt, $80: 20 \rightarrow 70: 30$) to give $2.46 \mathrm{~g}(4.35 \mathrm{mmol}, 91 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.25$ (PE:AcOEt, 70:30).
Melting point: $\mathrm{T}_{\mathrm{mp}}=78^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-73.2\left(\mathrm{c}=0.98, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.79\left(\mathrm{dd}, J=4.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}, 2{ }^{\prime}-\mathrm{NH}\right), 7.54-7.20(\mathrm{~m}, 25 \mathrm{H}$, $25 \times H C_{\text {Ar }}$), $4.78\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.64\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} H_{b}\right)$, $4.51\left(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.46\left(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.35$ (dd, $\left.J=17.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-H_{a}\right), 4.26\left(\mathrm{dd}, J=17.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-H_{b}\right), 2.16(\mathrm{dd}, J=2.7,0.7 \mathrm{~Hz}$, $1 \mathrm{H}, 3-H_{a}$), $2.05(\mathrm{dd}, J=6.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-H), 1.52\left(\mathrm{dd}, J=6.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}, 3-H_{b}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.3,168.8\left(C-1, C-1\right.$ '), 143.4, $136.6,135.5\left(5 \times C_{A r}\right)$, 129.6, 129.3, 128.9, 128.4, 128.1, 127.9, 127.2, $126.6\left(25 \times \mathrm{HC}_{A r}\right), 74.8\left(\mathrm{Ph}_{3} C\right), 49.1,48.7$ ($2 \mathrm{x} \mathrm{Bn}-\mathrm{CH}_{2}$), 41.0 ($C-2$ '), 34.2 ($C-2$), 29.9 ($C-3$).
IR (ATR): $v=1648,1494,1448,1221,1010,909,731,699,632$.
MS $\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}=566.3[\mathrm{M}+\mathrm{H}]^{+}, \quad$ calculated: $588.2621[\mathrm{M}+\mathrm{Na}]^{+}$, $\mathrm{C}_{38} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{2}\left(565.70 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$, found: 588.2593 [+4.9 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of dipeptide 12

To aziridine building block $9(4.00 \mathrm{~g}, 9.53 \mathrm{mmol})$ in degassed EtOH (50 mL) degassed $\mathrm{NEt}_{3}(3.99 \mathrm{~mL}, 28.6 \mathrm{mmol})$ and $10 \mathrm{wt} \%$ palladium on charcoal ($250 \mathrm{mg}, 0.235 \mathrm{mmol}$) were added. The resulting suspension was stirred under a hydrogen atmosphere (1 bar, balloon) for 1.5 h and then filtered through a syringe filter. The syringe filter was washed with $\mathrm{EtOH}(3 \times 5 \mathrm{~mL})$ and the solvent of the combined filtrates evaporated in vacuo. After co-evaporation with toluene:THF 1:1 ($2 \times 30 \mathrm{~mL}$) the resulting colourless solid was dried in vacuo. With respect to its poor stability the unprotected carboxylate was always prepared freshly and used instantly in the subsequent transformation without further purification.
HOBt ($709 \mathrm{mg}, 5.25 \mathrm{mmol}$) was added to $1 / 2$ of the crude product (only $1 / 2$ of the initially prepared benzyl-deprotected aziridine building block, vide supra, was used in the 2nd step, calculated maximal amount of substance: 4.77 mmol$)$ in abs. DMF $(18 \mathrm{~mL})$. EDAC (1.01 g , 5.25 mmol) was added after cooling the solution to $0^{\circ} \mathrm{C}$. After stirring for 10 min at $0^{\circ} \mathrm{C}$ $\mathrm{NEt}_{3}(0.74 \mathrm{~mL}, 5.3 \mathrm{mmol})$ was added. Valine derivative $\mathbf{1 4}^{[\mathrm{S3]}}(1.56 \mathrm{~g}, 5.25 \mathrm{mmol})$ in abs. DCM (4 mL) was added after additional 15 min of stirring at $0^{\circ} \mathrm{C}$. After stirring for 12 h and
concomitantly slowly warming to rt the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$ and washed with $10 \mathrm{wt} \%$ aqueous citric acid solution ($2 \times 200 \mathrm{~mL}$) and sat. aqueous NaHCO_{3} solution ($2 \times 200 \mathrm{~mL}$). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the filtrate evaporated in vacuo. The resultant crude product was purified by FCC (150 g , $5.0 \times 15 \mathrm{~cm}$, PE:AcOEt, $85: 15 \rightarrow 80: 20)$ to give $2.61 \mathrm{~g}(4.29 \mathrm{mmol}, 90 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.29$ (PE:AcOEt, 80:20).
Melting point: $\mathrm{T}_{\mathrm{mp}}=74^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{D}{ }^{20}=-109.3\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.62(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathrm{~N}-\mathrm{NH}), 7.53-7.21(\mathrm{~m}, 25 \mathrm{H}$, $25 \times H C_{\text {Ar }}$), $5.04\left(\mathrm{dd}, J=9.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-H\right), 4.98\left(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.73$ (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), $4.49\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.34(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}$), $2.20(\mathrm{dqq}, J=6.7,6.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}, 3 '-H), 2.10\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-H_{a}\right)$, $2.04(\mathrm{dd}, J=6.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-H), 1.50\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-H_{b}\right), 1.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$, $4^{\prime}-H_{a}$), 0.97 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4^{\prime}-H_{b}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.2,170.8\left(C-1, C-1\right.$), $143.5,137.1,136\left(5 \times C_{A r}\right)$, 129.6, 129.1, 128.9, 128.5, 128.0, 127.9, 127.7, 127.3, $127.2\left(25 \times \mathrm{HC}_{A r}\right), 74.8\left(\mathrm{Ph}_{3} C\right), 53.2$ (C-2'), 50.0, 47.9 ($2 \times \mathrm{Bn}-\mathrm{CH}_{2}$), 33.9 ($C-2$), 32.2 ($C-3$ '), 30.3 ($C-3$), 19.9, 17.6 ($2 \times C-4$).
IR (ATR): $v=1641,1495,1447,1215,1011,909,732,705,633$.
MS (ESI ${ }^{+}$): m/z = $608.3[\mathrm{M}+\mathrm{H}]^{+}$, calculated: $630.3091[\mathrm{M}+\mathrm{Na}]^{+}$, $\mathrm{C}_{41} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{2}\left(607.78 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,

Preparation of tripeptide 4

To a solution of dipeptide $12(2.30 \mathrm{~g}, 3.78 \mathrm{mmol})$ in abs. $\mathrm{MeOH}(10 \mathrm{~mL})$ and abs. $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ precooled to $0^{\circ} \mathrm{C}$, TFA (2.0 mL) was added dropwise. The solution was stirred for 3.5 h at $0^{\circ} \mathrm{C}$, diluted with AcOEt $(150 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and washed with a preformed mixture of 1 m aqueous NaOH solution $(100 \mathrm{~mL})$ and sat. aqueous NaCl solution (100 mL), which was also cooled to $0^{\circ} \mathrm{C}$ beforehand. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the filtrate evaporated in vacuo. The resultant crude product was purified by FCC $\left(100 \mathrm{~g}, 4.5 \times 14 \mathrm{~cm}, ~ D C M: M e O H, 96: 4 \quad\left[R_{\mathrm{f}}=0.21\right.\right.$ (DCM:MeOH, 95:5)]). With respect to its poor stability the trityl-deprotected dipeptide was always prepared freshly and used in the subsequent transformation without any delay.
HOBt ($92 \mathrm{mg}, 0.68 \mathrm{mmol}$) was added to N-Carbobenzoxy-L-valine ($172 \mathrm{mg}, 0.684 \mathrm{mmol}$) in abs. DMF (2.5 mL). EDAC ($131 \mathrm{mg}, 0.684 \mathrm{mmol}$) was added after cooling the solution to $0^{\circ} \mathrm{C}$. After stirring for 10 min at $0{ }^{\circ} \mathrm{C} \mathrm{NEt} 3(95 \mu \mathrm{~L}, 0.68 \mathrm{mmol})$ was added. $1 / 6$ of the crude product (only $1 / 6$ of the initially prepared trityl-deprotected dipeptide, vide supra, was used in the 2nd step, calculated maximal amount of substance: 0.630 mmol) in abs. DMF (1.5 mL) was added after additional 15 min of stirring at $0^{\circ} \mathrm{C}$. After stirring for 16 h and concomitantly slowly warming to rt the reaction mixture was diluted with $\mathrm{AcOEt}(150 \mathrm{~mL})$ and washed with water (100 mL), $10 \mathrm{wt} \%$ aqueous citric acid solution (100 mL) and sat. aqueous NaHCO_{3}
solution (100 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the filtrate evaporated in vacuo. The resultant crude product was purified by FCC (50 g , $4.5 \times 7.0 \mathrm{~cm}, \mathrm{PE}:$ AcOEt, $75: 25 \rightarrow 65: 35)$ to give $256 \mathrm{mg}(0.428 \mathrm{mmol}, 68 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.24$ (PE:AcOEt, 60:40).
Melting point: $\mathrm{T}_{\mathrm{mp}}=47^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-99.0\left(\mathrm{c}=1.23, \mathrm{CHCl}_{3}\right)$
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO): $\delta=8.88\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{N} H\right), 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}, 2-\mathrm{N} H), 7.37-7.16\left(\mathrm{~m}, 15 \mathrm{H}, 15 \times \mathrm{C}_{\mathrm{Ar}}\right), 5.02\left(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.99(\mathrm{~d}$, $\left.J=16.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.69-4.55\left(\mathrm{~m}, 4 \mathrm{H}, 2 "-H, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 4.33(\mathrm{~d}$, $\left.J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.02(\mathrm{dd}, J=8.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-H), 3.34-3.30\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-H\right)$, $2.55\left(\mathrm{dd}, J=5.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}\right), 2.28\left(\mathrm{dd}, J=2.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}\right), 2.18-2.04(\mathrm{~m}, 2 \mathrm{H}$, $3-H, 3 "-H), 0.90-0.88\left(\mathrm{~m}, 9 \mathrm{H}, 4-H, 4 "-H_{a}\right), 0.76\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4 "-H_{b}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO): $\delta=181.7(C-1), 171.4\left(C-1{ }^{\prime \prime}\right), 166.3(C-1 '), 156.2$ $(\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 137.3,137.1,137.0\left(3 \times C_{A r}\right), 128.6,128.5,128.3,127.8,127.6,127.5,127.4$, $127.1\left(15 \times \mathrm{HC}_{A r}\right), 65.4\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 60.9(C-2), 54.2(C-2 "), 49.9,48.0\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right), 35.1$ (C-2'), 30.1 ($\left.C-3, C-3^{\prime \prime}\right), 29.6$ ($\left.C-3^{\prime}\right), 19.3,19.3,17.9,17.6$ ($2 \times C-4,2 \times C-4$ ").
IR (ATR): $v=1698,1629,1497,1451,1220,1027,909,729,698$.
MS (ESI ${ }^{+}$): m/z = 599.3 $[\mathrm{M}+\mathrm{H}]^{+}$, calculated: $621.3047[\mathrm{M}+\mathrm{Na}]^{+}$, $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{5}\left(598.73 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
found: $621.3056[-1.3 \mathrm{ppm}]$ ($\left.\mathrm{ESI}^{+}-\mathrm{HRMS}\right)$.

Preparation of tripeptide 5

To a solution of dipeptide $\mathbf{1 2}(2.30 \mathrm{~g}, 3.78 \mathrm{mmol})$ in abs. $\mathrm{MeOH}(10 \mathrm{~mL})$ and abs. $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ precooled to $0^{\circ} \mathrm{C}$, TFA (2.0 mL) was added dropwise. The solution was stirred for 3.5 h at $0^{\circ} \mathrm{C}$, diluted with $\mathrm{AcOEt}(150 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and washed with a preformed mixture of 1 M aqueous NaOH solution $(100 \mathrm{~mL})$ and sat. aqueous NaCl solution $(100 \mathrm{~mL})$, which was also cooled to $0{ }^{\circ} \mathrm{C}$ beforehand. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the filtrate evaporated in vacuo. The resultant crude product was purified by FCC (100 g , $4.5 \times 14 \mathrm{~cm}, \mathrm{DCM}: \mathrm{MeOH}, 96: 4\left[R_{\mathrm{f}}=0.21\right.$ ($\mathrm{DCM}: \mathrm{MeOH}, 95: 5$)]). With respect to its poor stability the trityl-deprotected dipeptide was always prepared freshly and used in the subsequent transformation without any delay.
HOBt ($92 \mathrm{mg}, 0.68 \mathrm{mmol}$) was added to N-Carbobenzoxy-glycine ($143 \mathrm{mg}, 0.684 \mathrm{mmol}$) in abs. DMF (2.5 mL). EDAC ($131 \mathrm{mg}, 0.684 \mathrm{mmol}$) was added after cooling the solution to $0{ }^{\circ} \mathrm{C}$. After stirring for 10 min at $0{ }^{\circ} \mathrm{C} \mathrm{NEt} 3(95 \mu \mathrm{~L}, 0.68 \mathrm{mmol})$ was added. $1 / 6$ of the crude product (only $1 / 6$ of the initially prepared trityl-deprotected dipeptide, vide supra, was used in the 2nd step, calculated maximal amount of substance: 0.630 mmol) in abs. DMF (1.5 mL) was added after additional 15 min of stirring at $0^{\circ} \mathrm{C}$. After stirring for 16 h and concomitantly slowly warming to rt the reaction mixture was diluted with $\mathrm{AcOEt}(150 \mathrm{~mL})$ and washed with water (100 mL), $10 \mathrm{wt} \%$ aqueous citric acid solution $(100 \mathrm{~mL})$ and sat. aqueous NaHCO_{3} solution (100 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the
filtrate evaporated in vacuo. The resultant crude product was purified by FCC (50 g , $4.5 \times 7.0 \mathrm{~cm}, \mathrm{PE}:$ AcOEt, $45: 55 \rightarrow 40: 60)$ to give $223 \mathrm{mg}(0.401 \mathrm{mmol}, 64 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.26$ ($\mathrm{PE}: \mathrm{AcOEt}, 40: 60$).
Melting point: $\mathrm{T}_{\mathrm{mp}}=48^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-95.7\left(\mathrm{c}=1.09, \mathrm{CHCl}_{3}\right)$
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO): $\delta=8.96$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{NH}$), 7.57 (dd, $J=6.1$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{NH}), 7.38-7.17\left(\mathrm{~m}, 15 \mathrm{H}, 15 \times \mathrm{HC}_{\mathrm{Ar}}\right.$), $5.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 4.70-4.62(\mathrm{~m}$, $3 \mathrm{H}, 2 "-H, 2 \times \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), $4.55\left(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.33(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}$, Bn-CH ${ }_{a} H_{b}$), $3.84\left(\mathrm{dd}, J=17.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-H_{a}\right), 3.70\left(\mathrm{dd}, J=17.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-H_{b}\right)$, $3.35-3.33\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-H\right), 2.44\left(\mathrm{dd}, J=5.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}\right), 2.23(\mathrm{dd}, J=2.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}$, $3^{\prime}-H_{b}$), 2.09 (dqq, $\left.J=7.5,6.8,6.7 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime \prime}-H\right), 0.87\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 4 "-H_{a}\right), 0.76$ (d, $\left.J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4 "-H_{b}\right)$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO): $\delta=179.8$ ($C-1$), 171.3 ($\left.C-1^{\prime \prime}\right)$, 166.3 ($C-1$ '), 156.4 $(\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 137.3,137.1,137.0\left(3 \times C_{A r}\right), 128.6,128.5,128.4,127.8,127.7,127.5,127.4$, 127.2, $127.0\left(15 \times \mathrm{HC}_{A r}\right), 65.5\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 54.2\left(C-2^{\prime \prime}\right), 49.9,48.0\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right), 44.5(C-2)$, 34.8 (C-2'), 30.2 ($\left.C-3^{\prime \prime}\right), 28.9$ ($\left.C-3^{\prime}\right), 19.3,17.9$ ($2 \times C-4 "$).

IR (ATR): $v=1707,1632,1524,1451,1249,1167,1049,732,699$.
MS $\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}=579.3[\mathrm{M}+\mathrm{Na}]^{+}, \quad$ calculated: $579.2578[\mathrm{M}+\mathrm{Na}]^{+}$, $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{5}\left(556.65 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
found: 579.2583 [-0.8 ppm] $\left(\mathrm{ESI}^{+}-\mathrm{HRMS}\right)$.

Preparation of tripeptide 6

To a solution of dipeptide $\mathbf{1 1}(2.25 \mathrm{~g}, 3.98 \mathrm{mmol})$ in abs. $\mathrm{MeOH}(10 \mathrm{~mL})$ and abs. $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ precooled to $0^{\circ} \mathrm{C}$, TFA $(2.0 \mathrm{~mL})$ was added dropwise. The solution was stirred for 3.5 h at $0^{\circ} \mathrm{C}$, diluted with $\mathrm{AcOEt}(200 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and washed with a preformed mixture of 1 m aqueous NaOH solution (100 mL) and sat. aqueous NaCl solution $(100 \mathrm{~mL})$, which was also cooled to $0^{\circ} \mathrm{C}$ beforehand. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the filtrate evaporated in vacuo. The resultant crude product was purified by FCC $\left(100 \mathrm{~g}, 5.0 \times 9.0 \mathrm{~cm}, \mathrm{DCM}: \mathrm{MeOH}, 95: 5 \quad\left[R_{\mathrm{f}}=0.14\right.\right.$ (DCM:MeOH, 94:6)]). With respect to its poor stability the trityl-deprotected dipeptide was always prepared freshly and used in the subsequent transformation without any delay.
HOBt ($104 \mathrm{mg}, 0.773 \mathrm{mmol}$) was added to N-Carbobenzoxy-L-valine ($194 \mathrm{mg}, 0.773 \mathrm{mmol}$) in abs. DMF (3 mL). EDAC ($148 \mathrm{mg}, 0.773 \mathrm{mmol}$) was added after cooling the solution to $0^{\circ} \mathrm{C}$. After stirring for 10 min at $0^{\circ} \mathrm{C} \mathrm{NEt}_{3}(0.11 \mathrm{~mL}, 0.77 \mathrm{mmol})$ was added. $1 / 6$ of the crude product (only $1 / 6$ of the initially prepared trityl-deprotected dipeptide, vide supra, was used in the 2nd step, calculated maximal amount of substance: 0.663 mmol) in abs. DMF (1.5 mL) was added after additional 15 min of stirring at $0^{\circ} \mathrm{C}$. After stirring for 16 h and concomitantly slowly warming to rt the reaction mixture was diluted with $\operatorname{AcOEt}(150 \mathrm{~mL})$ and washed with water (100 mL), $10 \mathrm{wt} \%$ aqueous citric acid solution (100 mL) and sat. aqueous NaHCO_{3} solution (100 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the
filtrate evaporated in vacuo. The resultant crude product was purified by FCC (50 g , $4.5 \times 7.0 \mathrm{~cm}$, PE:AcOEt, $50: 50$) to give $261 \mathrm{mg}(0.469 \mathrm{mmol}, 71 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.33$ ($\mathrm{PE}: \mathrm{AcOEt}, 40: 60$).
Melting point: $\mathrm{T}_{\mathrm{mp}}=51^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-62.1\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right)$
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO): $\delta=8.55(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{NH}), 7.54(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}, 2-\mathrm{N} H), 7.39-7.21\left(\mathrm{~m}, 15 \mathrm{H}, 15 \times \mathrm{HC}_{\mathrm{Ar}}\right), 5.02\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.97(\mathrm{~d}$, $\left.J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.54-4.45\left(\mathrm{~s}, 4 \mathrm{H}, 2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right), 4.09\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, 2{ }^{2}-H\right)$, 4.03 (dd, $J=8.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-H), 3.23(\mathrm{dd}, J=5.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-H), 2.62$ (dd, $J=5.7$, $\left.2.0 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}\right), 2.38\left(\mathrm{dd}, J=3.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}\right), 2.15(\mathrm{dqq}, J=6.8,6.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}$, $3-H), 0.92\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{a}\right), 0.89\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{b}\right)$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO): $\delta=182.5$ ($C-1$), 168.6 ($C-1$ ' $)$), 166.8 ($C-1$ '), 156.4 $(\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 137.3,137.0,136.7\left(3 \times C_{A r}\right), 128.8,128.4,128.3,127.8,127.7,127.7,127.4$, 127.1, $126.6\left(15 \times \mathrm{HC} C_{A r}\right), 65.5\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 61.0(C-2), 49.2,48.5\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right), 40.7\left(C-2^{\prime \prime}\right)$, 35.3 ($\left.C-2^{\prime}\right), 29.9$ ($\left.C-3, C-3^{\prime}\right), 19.4,17.8(2 \times C-4)$.

IR (ATR): $v=1700,1647,1525,1453,1224,1081,1028,732,699$.
MS $\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}=579.3[\mathrm{M}+\mathrm{Na}]^{+}, \quad$ calculated: $579.2578[\mathrm{M}+\mathrm{Na}]^{+}$,
$\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{5}\left(556.65 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$, found: 579.2572 [+1.1 ppm$]$ (ESI ${ }^{+}$-HRMS).

Preparation of tripeptide 7

To a solution of dipeptide $11(2.25 \mathrm{~g}, 3.98 \mathrm{mmol})$ in abs. $\mathrm{MeOH}(10 \mathrm{~mL})$ and abs. $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$ precooled to $0^{\circ} \mathrm{C}$, TFA (2.0 mL) was added dropwise. The solution was stirred for 3.5 h at $0^{\circ} \mathrm{C}$, diluted with AcOEt (200 mL) at $0^{\circ} \mathrm{C}$ and washed with a preformed mixture of 1 m aqueous NaOH solution (100 mL) and sat. aqueous NaCl solution (100 mL), which was also cooled to $0{ }^{\circ} \mathrm{C}$ beforehand. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the filtrate evaporated in vacuo. The resultant crude product was purified by FCC (100 g , $5.0 \times 9.0 \mathrm{~cm}, \mathrm{DCM}: \mathrm{MeOH}, 95: 5\left[R_{\mathrm{f}}=0.14\right.$ ($\mathrm{DCM}: \mathrm{MeOH}, 94: 6$)]). With respect to its poor stability the trityl-deprotected dipeptide was always prepared freshly and used in the subsequent transformation without any delay.
HOBt ($104 \mathrm{mg}, 0.773 \mathrm{mmol}$) was added to N-Carbobenzoxy-glycine ($162 \mathrm{mg}, 0.773 \mathrm{mmol}$) in abs. DMF (3 mL). EDAC ($148 \mathrm{mg}, 0.773 \mathrm{mmol}$) was added after cooling the solution to $0^{\circ} \mathrm{C}$. After stirring for 10 min at $0{ }^{\circ} \mathrm{C} \mathrm{NEt}_{3}(0.11 \mathrm{~mL}, 0.77 \mathrm{mmol})$ was added. $1 / 6$ of the crude product (only $1 / 6$ of the initially prepared trityl-deprotected dipeptide, vide supra, was used in the 2nd step, calculated maximal amount of substance: 0.663 mmol) in abs. DMF (1.5 mL) was added after additional 15 min of stirring at $0^{\circ} \mathrm{C}$. After stirring for 16 h and concomitantly slowly warming to rt the reaction mixture was diluted with $\mathrm{AcOEt}(150 \mathrm{~mL})$ and washed with water (100 mL), $10 \mathrm{wt} \%$ aqueous citric acid solution (100 mL) and sat. aqueous NaHCO_{3} solution (100 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the filtrate evaporated in vacuo. The resultant crude product was purified by FCC (50 g ,
$4.5 \times 7.0 \mathrm{~cm}, \mathrm{PE}:$ AcOEt, $40: 60 \rightarrow 25: 75)$ to give $217 \mathrm{mg}(0.422 \mathrm{mmol}, 63 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.13$ (PE:AcOEt, 30:70).
Melting point: $\mathrm{T}_{\mathrm{mp}}=62^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{D}{ }^{20}=-56.9\left(\mathrm{c}=0.81, \mathrm{CHCl}_{3}\right)$
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO): $\delta=8.72(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{NH}), 7.61(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}, 2-\mathrm{N} H$), $7.39-7.22\left(\mathrm{~m}, 15 \mathrm{H}, 15 \times \mathrm{HC}_{\mathrm{Ar}}\right.$), 5.03 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{2}$), 4.53 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}$), $4.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{2}\right), 4.10(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 "-H), 3.78(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}, 2-H), 3.31$ (dd, $J=5.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-H$), $2.47\left(\mathrm{dd}, J=5.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}\right), 2.30(\mathrm{dd}, J=3.0$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO): $\delta=180.4$ ($C-1$), 168.7 ($\left.C-11^{\prime \prime}\right), 166.9$ ($C-1$ '), 156.4 $(\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 137.3,137.0,136.7\left(3 \times C_{A r}\right), 128.8,128.4,128.3,127.8,127.7,127.4,127.1$, 126.6 ($15 \times \mathrm{HC}_{A r}$), 65.5, 49.2, 48.6 ($3 \times \mathrm{Bn}-\mathrm{CH}_{2}$), 44.7 (C-2), 40.8 (C-2"), 35.2 (C-2'), 28.9 (C-3').
IR (ATR): $v=3317,1647,1527,1452,1251,1168,1048,733,698$.
MS (ESI ${ }^{+}$): m/z = $537.3[\mathrm{M}+\mathrm{Na}]^{+}$, $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{5}\left(514.57 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $537.2108[\mathrm{M}+\mathrm{Na}]^{+}$,
found: 537.2086 [+4.1 ppm] (ESI'-HRMS).

Preparation of tripeptide 15

To a solution of tripeptide $4(15 \mathrm{mg}, 0.025 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$, diethylamine ($16 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) was added. After stirring for 20 h at $40^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC $(3 \mathrm{~g}, \quad 1.0 \times 6.0 \mathrm{~cm}$, DCM:AcOEt:MeOH, 60:40:0 \rightarrow 98:0:2) to give $16 \mathrm{mg}(0.024 \mathrm{mmol}, 96 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.14$ ($\mathrm{DCM}: \mathrm{MeOH}, 96: 4$).
Melting point: $\mathrm{T}_{\mathrm{mp}}=106^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-3.5\left(\mathrm{c}=1.34, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.17(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathrm{~N}-\mathrm{NH}), 7.31-7.09(\mathrm{~m}, 15 \mathrm{H}$, $15 \times C_{\mathrm{Ar}}$), 6.77 (d, $J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, 22^{\prime}-\mathrm{NH}$), 5.34 (d, $\left.J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{NH}\right), 5.06$ (d, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), $5.02\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.79-4.76\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime \prime}-H\right.$, $\left.\mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.55\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{\mathrm{C}} \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.42\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right)$, 4.33-4.28 (m, $\left.1 \mathrm{H}, 2^{\prime}-H\right), 4.22\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.02(\mathrm{dd}, J=8.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}$, 2-H), 2.81-2.74 (m, $3 \mathrm{H}, 3{ }^{\prime}-\mathrm{H}_{a}, 2 \times \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{3}$), 2.65-2.58 (m, $2 \mathrm{H}, 2 \times \mathrm{CH}_{a} H_{b} \mathrm{CH}_{3}$), 2.46 (dd, $\left.J=11.7,11.7 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}\right), 2.09-1.98(\mathrm{~m}, 2 \mathrm{H}, 3-H, 3 "-H), 1.00(\mathrm{dd}, J=7.2,7.1 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right),[0.90(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $\left.0.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})\left(4-H_{a}, 4-H_{b}, 4 "-H_{a}, 4 "-H_{b}\right)\right]$.
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=172.0,171.3,171.2\left(C-1, C-1^{\prime}, C-1^{\prime \prime}\right), 156.4(\mathrm{NC}(=\mathrm{O}) \mathrm{O})$, 137.2, 136.5, $136.4\left(3 \times C_{A r}\right), 129.0,128.7,128.7,128.4,128.3,128.2,128.0,127.6,127.4$ $\left(15 \times \mathrm{HC}_{A r}\right), 67.1\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 60.3(C-2), 55.5(C-3 '), 54.7(C-2 \mathrm{l}), 50.1\left(\mathrm{Bn}^{\prime}-\mathrm{CH}_{2}\right), 49.7\left(C-2^{\prime}\right)$,
$48.0\left(\mathrm{Bn}-\mathrm{CH}_{2}\right)$, $46.1\left(2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 31.7, 31.1 ($C-3, C-3$ "), 20.1, 19.3, 17.8, 17.5 ($2 \times \mathrm{C}-4$, $2 \times \mathrm{C}-4 \mathrm{C})$, $11.2\left(2 \mathrm{x} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
IR (ATR): $v=3292,2964,1633,1534,1448,1233,1028,733,697$.
MS (ESI ${ }^{+}$): m/z = $672.5[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{5}\left(671.40 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $672.4120[\mathrm{M}+\mathrm{H}]^{+}$,
found: 672.4102 [-2.7 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of tripeptide 16

To a solution of tripeptide 5 ($15 \mathrm{mg}, 0.027 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$, diethylamine ($17 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$) was added. After stirring for 20 h at rt and for 24 h at $40^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC ($3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}$, DCM:MeOH, $93: 7$) to give $16 \mathrm{mg}(0.025 \mathrm{mmol}, 94 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.17$ (DCM:MeOH, 95:5).
Melting point: $\mathrm{T}_{\mathrm{mp}}=159^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-6.8\left(\mathrm{c}=1.21, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.17\left(\mathrm{~s}, 1 \mathrm{H}, 2{ }^{2}-\mathrm{N} H\right), 7.31-7.09\left(\mathrm{~m}, 15 \mathrm{H}, 15 \times \mathrm{HC}_{\mathrm{Ar}}\right), 6.83$ (s, 1 H, 2'-NH), 5.38 (s, $1 \mathrm{H}, 2-\mathrm{N} H), 5.08\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$), $5.05(\mathrm{~d}$, $\left.J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.81\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.77$ (dd, $J=8.9$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-H), 4.56\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$), 4.40-4.32 (m, $2 \mathrm{H}, 2^{\prime}-H$, $\left.\mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.18\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 3.92-3.79(\mathrm{~m}, 2 \mathrm{H}, 2-H)$, 2.81-2.74 (m, $3 \mathrm{H}, 3^{\prime}-H_{a}, 2 \times \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{3}$), 2.67-2.59 (m, $2 \mathrm{H}, 2 \times \mathrm{CH}_{\mathrm{a}} H_{b} \mathrm{CH}_{3}$), 2.54-2.41 (m, $1 \mathrm{H}, 3^{\prime}-H_{b}$), 2.02 (dqq, $\left.J=6.7,6.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime \prime}-H\right), 1.01\left(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.89$ (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4 "-H_{a}$), 0.83 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4 "-H_{b}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0,171.3,168.9\left(C-1, C-1^{\prime}, C-1^{\prime \prime}\right), 156.5(\mathrm{~N} C(=\mathrm{O}) \mathrm{O})$, 137.1, 136.4, $136.4\left(3 \times C_{A r}\right), 129.0,128.8,128.7,128.4,128.3,128.2,128.0,127.6,127.4$ $\left(15 \times \mathrm{HC}_{A r}\right), 67.3\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 55.4(C-3 '), 54.8(C-2 "), 50.1\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 49.7\left(C-2^{\prime}\right), 48.0$
 ($2 \mathrm{x} \mathrm{CH}_{2} \mathrm{CH}_{3}$).
IR (ATR): $v=3277,1714,1637,1539,1446,1246,1044,738,696$.
MS $\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}=630.4[\mathrm{M}+\mathrm{H}]^{+}, \quad$ calculated: $630.3650[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{5}\left(629.80 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
found: 630.3628 [-3.5 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of tripeptide 17

To a solution of tripeptide $\mathbf{6}(15 \mathrm{mg}, 0.027 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL}$), diethylamine ($17 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$) was added. After stirring for 20 h at rt and for 24 h at $40^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC $(3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}$,
DCM:MeOH, $97: 3$) to give $16 \mathrm{mg}(0.025 \mathrm{mmol}, 94 \%)$ of the title compound as a colourless solid.

TLC: $R_{\mathrm{f}}=0.25(\mathrm{DCM}: \mathrm{MeOH}, 95: 5)$.
Melting point: $\mathrm{T}_{\mathrm{mp}}=105^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=+19.4\left(\mathrm{c}=1.27, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.07\left(\mathrm{~s}, 1 \mathrm{H}, 2{ }^{2}-\mathrm{N} H\right), 7.40-7.14\left(\mathrm{~m}, 15 \mathrm{H}, 15 \times \mathrm{HC}_{\mathrm{Ar}}\right), 7.01$
($\mathrm{s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{N} H$), $5.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.13\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.09$ (d, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}$), $4.69\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.62(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}$), 4.46-4.38 (m, $3 \mathrm{H}, 2^{\prime}-\mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}$), 4.28-4.19 (m, $2 \mathrm{H}, 2 \mathrm{2}-\mathrm{H}$), 4.14 (dd, $J=8.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-H), 2.85-2.81\left(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{~B}^{\prime}-\mathrm{H}_{a}, 2 \times \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{3}\right), 2.65-2.56(\mathrm{~m}, 3 \mathrm{H}$, $3^{\prime}-H_{b}, 2$ x CH $_{a} H_{b} \mathrm{CH}_{3}$), 2.46 (dqq, $\left.J=6.7,6.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-H\right), 1.12(\mathrm{dd}, J=7.1,7.0 \mathrm{~Hz}$, $6 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.99\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{a}\right), 0.95\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{b}\right)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.2,168.4\left(C-1, C-1^{\prime}, C-1 "\right), 156.4(\mathrm{~N} C(=\mathrm{O}) \mathrm{O}), 136.7$, $136.5,135.6\left(3 \times C_{A r}\right), 129.2,128.8,128.6,128.4,128.2,128.1,128.0,127.8,126.5$ $\left(15 \times \mathrm{HC}_{A r}\right), 67.0\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 60.2(C-2), 55.2\left(C-3^{\prime}\right), 50.3(C-2 '), 49.1,48.5\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right)$, $46.9\left(2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 41.8(C-2 "), 31.7(C-3), 19.3,17.8(2 \times C-4), 11.7\left(2 \mathrm{x} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
IR (ATR): $v=3287,1719,1630,1523,1222,1028,733,697,646$.
MS (ESI ${ }^{+}$): m/z = $630.4[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{5}\left(629.80 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $630.3650[\mathrm{M}+\mathrm{H}]^{+}$,
found: 630.3630 [-3.2 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of tripeptide 18

To a solution of tripeptide $7(14 \mathrm{mg}, 0.027 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$, diethylamine ($17 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$) was added. After stirring for 18 h at rt and for 20 h at $40^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by $\operatorname{FCC}(3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}, \mathrm{DCM}: \mathrm{MeOH}, 96: 4)$ to give 14 mg ($0.026 \mathrm{mmol}, 96 \%$) of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.18$ ($\mathrm{DCM}: \mathrm{MeOH}, 95: 5$).
Melting point: $\mathrm{T}_{\mathrm{mp}}=78^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=+16.6\left(\mathrm{c}=1.18, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.00(\mathrm{~s}, 1 \mathrm{H}, 2 \mathrm{~N}-\mathrm{NH}), 7.40-7.07\left(\mathrm{~m}, 16 \mathrm{H}, 2{ }^{2}-\mathrm{NH} H\right.$, $15 \times H \mathrm{C}_{\mathrm{Ar}}$), $5.59(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{NH}), 5.15\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{\left.-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.12(\mathrm{~d}, J=12.5 \mathrm{~Hz} \text {, }}\right.$ $\left.1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.66\left(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.63(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}$, Bn- $\mathrm{CH}_{\mathrm{a}} H_{b}$), 4.47-4.39 (m, $3 \mathrm{H}, 2^{\prime}-\mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}$), 4.25-4.16 (m, $2 \mathrm{H}, 2 "-H$), 3.99 (dd, $J=16.9$, $\left.5.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-H_{a}\right), 3.91\left(\mathrm{dd}, J=16.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-H_{b}\right), 2.88-2.78\left(\mathrm{~m}, 3 \mathrm{H}, 3 \mathrm{H}^{\prime}-H_{a}\right.$, $2 \times \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{3}$), 2.67-2.58 (m, $3 \mathrm{H}, 3^{\prime}-H_{b}, 2 \times \mathrm{CH}_{a} H_{b} \mathrm{CH}_{3}$), $1.11(\mathrm{dd}, J=7.1,7.1 \mathrm{~Hz}, 6 \mathrm{H}$, $2 \mathrm{xCH}_{2} \mathrm{CH}_{3}$).
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.2,169.0,168.4\left(C-1, C-1^{\prime}, C-1^{\prime \prime}\right), 156.6(\mathrm{NC}(=\mathrm{O}) \mathrm{O})$, 136.6, 136.4, 135.6 ($3 \times C_{A r}$), 129.2, 128.8, 128.6, 128.4, 128.2, 128.2, 128.0, 127.8, 126.5 $\left(15 \times \mathrm{HC}_{A r}\right), 67.2\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 55.0\left(C-3^{\prime}\right), 50.2\left(C-2^{\prime}\right), 49.1,48.5\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right), 46.9$ ($2 \times \mathrm{CH}_{2} \mathrm{CH}_{3}$), $44.5(\mathrm{C}-2), 41.7(\mathrm{C}-2 \mathrm{C}), 11.5\left(2 \mathrm{x} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
IR (ATR): $v=3278,1717,1633,1523,1452,1223,1046,733,697$.
MS (ESI $\left.{ }^{+}\right): \mathrm{m} / \mathrm{z}=588.3[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{5}\left(587.72 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $588.3181[\mathrm{M}+\mathrm{H}]^{+}$,
found: 588.3167 [-2.3 ppm] ($\mathrm{ESI}^{+}-\mathrm{HRMS}$).

Preparation of tripeptide 19

To a solution of tripeptide $4(72 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(2.5 \mathrm{~mL}), \quad N$-methylpropargylamine $(61 \mu \mathrm{~L}$, 0.72 mmol) was added. After stirring for 8 h at $40^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC ($4 \mathrm{~g}, 1.0 \times 8.0 \mathrm{~cm}$, DCM:AcOEt, $80: 20 \rightarrow 70: 30)$ to give $74 \mathrm{mg}(0.11 \mathrm{mmol}, 92 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.15$ (DCM:AcOEt, 80:20).
Melting point: $\mathrm{T}_{\mathrm{mp}}=123{ }^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-13.8\left(\mathrm{c}=1.84, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.52\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 2{ }^{\prime}-\mathrm{N} H\right), 7.32-7.08(\mathrm{~m}, 15 \mathrm{H}$, $15 \times H C_{\text {Ar }}$), $6.80(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, 2 '-\mathrm{NH}), 5.39(\mathrm{~d}, ~ J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.05(\mathrm{~d}$, $\left.J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.01\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.83-4.80\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime \prime}-H\right.$, $\left.\mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.56\left(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.35-4.30\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-\mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.14$ $\left(\mathrm{d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.04(\mathrm{dd}, J=8.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-H), 3.52(\mathrm{dd}, J=17.2$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-H_{a}$), $3.37\left(\mathrm{dd}, J=17.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-H_{b}\right.$), 2.76 (dd, $J=12.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.3^{\prime}-H_{a}\right), 2.50\left(\mathrm{dd}, J=12.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.16(\mathrm{dd}, J=2.3,2.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 6^{\prime}-H\right), 2.08-1.98\left(\mathrm{~m}, 2 \mathrm{H}, 3-H, 3^{\prime \prime}-H\right),[0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $\left.0.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})\left(4-H_{a}, 4-H_{b}, 4 "-H_{a}, 4 "-H_{b}\right)\right]$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=172.1,171.3,171.1\left(C-1, C-1^{\prime}, C-1^{\prime \prime}\right), 156.4(\mathrm{NC}(=\mathrm{O}) \mathrm{O})$, $137.1,136.5,136.2\left(3 \times C_{A r}\right), 129.1,128.8,128.6,128.3,128.2,128.1,128.0,127.6,127.4$ $\left(15 \times C_{A r}\right), 78.3(C-5 '), 73.7(C-6 '), 67.1\left(\mathrm{Bn}^{\prime} C H_{2}\right), 60.2(C-2), 57.3(C-3 '), 54.7\left(C-2{ }^{\prime \prime}\right), 50.0$ $\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 49.9(C-2 '), 47.9\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 46.3(C-4 '), 41.0\left(\mathrm{NCH}_{3}\right), 31.7,31.1\left(C-3, C-3^{\prime \prime}\right), 20.1$, 19.3, 17.8, 17.3 ($2 \times C-4,2 \times C-4 "$).

IR (ATR): $v=3289,2962,1630,1531,1449,1232,1028,733,697$.
MS (ESI $\left.{ }^{+}\right): \mathrm{m} / \mathrm{z}=668.4[\mathrm{M}+\mathrm{H}]^{+}, \quad$ calculated: $668.3807[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{39} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{5}\left(667.85 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$, found: 668.3788 [-2.8 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of tripeptide 20

To a solution of tripeptide $5(25 \mathrm{mg}, 0.045 \mathrm{mmol})$ in $\mathrm{CHCl}_{3} \quad(1.5 \mathrm{~mL}), \quad N$-methylpropargylamine $(23 \mu \mathrm{~L}$, 0.27 mmol) was added. After stirring for 20 h at rt and 20 h at $40^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC (4 g, $1.0 \times 8.0 \mathrm{~cm}$, DCM:AcOEt, $50: 50 \rightarrow 40: 60)$ to give $22 \mathrm{mg}(0.035 \mathrm{mmol}, 78 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.17$ (DCM:AcOEt, 40:60).

Melting point: $\mathrm{T}_{\mathrm{mp}}=118{ }^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{D}{ }^{20}=-14.1\left(\mathrm{c}=1.53, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.57(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{NH}), 7.32-7.08(\mathrm{~m}, 15 \mathrm{H}$, $15 \times \mathrm{CC}_{\mathrm{Ar}}$), $6.84\left(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{NH}\right), 5.42(\mathrm{dd}, J=5.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{NH}), 5.07$ (d, $\left.J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.04\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.84(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), $4.80(\mathrm{dd}, J=8.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-H), 4.57\left(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right)$, 4.36-4.29 (m, $2 \mathrm{H}, 2^{\prime}-H, \mathrm{Bn}^{2} \mathrm{CH}_{\mathrm{a}} H_{b}$), $4.10\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right.$), 3.89 (dd, $\left.J=16.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-H_{a}\right), 3.81\left(\mathrm{dd}, J=16.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-H_{b}\right), 3.50(\mathrm{dd}, J=17.2,2.2 \mathrm{~Hz}$, $1 \mathrm{H}, 4^{\prime}-H_{a}$), 3.38 (dd, $J=17.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-H_{b}$), 2.76 (dd, $J=11.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}$), $2.50\left(\mathrm{dd}, J=11.9,11.4 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}\right), 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.16$ (dd, $J=2.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}$, 6'-H), 2.01 (dqq, $J=6.8,6.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime \prime}-H$), $0.87\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, 4 "-H_{a}\right), 0.84$ (d, $\left.J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 4 "-H_{b}\right)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0,171.2,168.9\left(C-1, C-1^{\prime}, C-1 "\right), 156.5(\mathrm{~N} C(=\mathrm{O}) \mathrm{O})$, 137.0, 136.4, 136.1 ($3 \times C_{A r}$), 129.1, 128.8, 128.7, 128.3, 128.3, 128.2, 128.1, 127.7, 127.4
 49.8 (C-2'), $47.9\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 46.3$ (C-4'), $44.4(C-2), 41.1\left(\mathrm{NCH}_{3}\right), 31.0(C-3 "), 20.1,17.2$ ($2 \times \mathrm{C}$-4").
IR (ATR): $v=3275,1714,1631,1514,1445,1219,1043,730,697$.
MS $\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}=626.4[\mathrm{M}+\mathrm{H}]^{+}, \quad$ calculated: $626.3337[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{5}\left(625.77 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
found: $626.3331[-0.9 \mathrm{ppm}]\left(\mathrm{ESI}^{+}-\mathrm{HRMS}\right)$.

Preparation of tripeptide 21

To a solution of tripeptide $6(25 \mathrm{mg}, 0.045 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL}), N$-methylpropargylamine $(23 \mu \mathrm{~L}$, 0.27 mmol) was added. After stirring for 20 h at rt and 20 h at $40^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC (4 g , $1.0 \times 8.0 \mathrm{~cm}$, DCM:AcOEt, $80: 20 \rightarrow 60: 40$) to give $26 \mathrm{mg}(0.042 \mathrm{mmol}, 93 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.20$ (DCM:AcOEt, 60:40).
Melting point: $\mathrm{T}_{\mathrm{mp}}=87^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=+16.1\left(\mathrm{c}=1.87, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.41\left(\mathrm{dd}, J=4.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{NH}\right.$), 7.30-7.05 (m, 15 H , $15 \times H C_{\mathrm{Ar}}$) $6.85\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}, 2{ }^{\prime}-\mathrm{N} H\right), 5.37(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.03(\mathrm{~d}$, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), $4.99\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.57(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), $4.52\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.35-4.28\left(\mathrm{~m}, 3 \mathrm{H}, 2^{\prime}-H, \mathrm{Bn}-\mathrm{CH}_{2}\right)$, 4.23 (dd, $J=17.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{a}$), 4.06-4.02 (m, 2 H, 2-H, 2"- H_{b}), 3.44 (dd, $J=17.2$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-H_{a}$), 3.37 (dd, $J=17.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-H_{b}$), 2.77 (dd, $J=12.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}$, $3^{\prime}-H_{a}$), $2.60\left(\mathrm{dd}, J=12.4,9.7 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.15(\mathrm{dd}, J=2.2,2.2 \mathrm{~Hz}$, $1 \mathrm{H}, 6$ '-H), 2.01 (dqq, $J=6.8,6.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-H), 0.90\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{a}\right), 0.85(\mathrm{~d}$, $\left.J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{b}\right)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.4,170.9,168.5\left(C-1, C-1^{\prime}, C-1^{\prime \prime}\right), 156.4(\mathrm{NC}(=\mathrm{O}) \mathrm{O})$, 136.6, 136.4, 135.5 ($3 \times C_{A r}$), 129.2, 128.9, 128.6, 128.4, 128.2, 128.2, 128.1, 127.8, 126.6
 $48.6\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right), 46.5\left(C-4{ }^{\prime}\right), 41.7\left(C-2{ }^{\prime}\right), 41.3\left(\mathrm{NCH}_{3}\right), 31.7(C-3), 19.3,17.8(2 \times C-4)$.
IR (ATR): $v=3289,1632,1522,1452,1220,1028,735,697,632$.

MS (ESI ${ }^{+}$): $\mathrm{m} / \mathrm{z}=626.3[\mathrm{M}+\mathrm{H}]^{+}$, $\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{5}\left(625.77 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $626.3337[\mathrm{M}+\mathrm{H}]^{+}$,
found: 626.3333 [-0.7 ppm] (ESI $\left.{ }^{+}-\mathrm{HRMS}\right)$.

Preparation of tripeptide 22

To a solution of tripeptide $7(23 \mathrm{mg}, 0.045 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL}), \quad N$-methylpropargylamine $(23 \mu \mathrm{~L}$, 0.27 mmol) was added. After stirring for 20 h at rt and 20 h at $40^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC $(4 \mathrm{~g}, 1.0 \times 8.0 \mathrm{~cm}$, DCM:AcOEt, $40: 60 \rightarrow$ 20:80) to give $19 \mathrm{mg}(0.033 \mathrm{mmol}, 73 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.3$ (DCM:AcOEt, 20:80).
Melting point: $\mathrm{T}_{\mathrm{mp}}=83^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=+12.3\left(\mathrm{c}=1.21, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.35(\mathrm{dd}, J=4.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{NH}), 7.31-7.05(\mathrm{~m}, 15 \mathrm{H}$, $15 \times H C_{\mathrm{Ar}}$), $6.89\left(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{N} H\right), 5.45(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.04\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 4.54$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}$), 4.37-4.32 (m, $3 \mathrm{H}, 2^{\prime}-H, \mathrm{Bn}^{2} \mathrm{CH}_{2}$), $4.20\left(\mathrm{dd}, J=17.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{a}\right.$), 4.02 (dd, $J=17.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{b}$), $3.91-3.76(\mathrm{~m}, 2 \mathrm{H}, 2-H), 3.43(\mathrm{dd}, J=17.1,2.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 4^{\prime}-H_{a}\right), 3.35$ (dd, $\left.J=17.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-H_{b}\right), 2.79-2.73\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-H_{a}\right), 2.60(\mathrm{dd}$, $\left.J=11.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.15\left(\mathrm{dd}, J=2.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-H\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.0,169.1,168.6\left(C-1, C-1^{\prime}, C-1^{\prime \prime}\right), 156.6(\mathrm{NC}(=\mathrm{O}) \mathrm{O})$, 136.6, 136.4, $135.5\left(3 \times C_{A r}\right), 129.2,128.9,128.7,128.4,128.3,128.2,128.1,127.8,126.6$
 ($2 \mathrm{x} \mathrm{Bn}-\mathrm{CH}_{2}$), $46.4\left(C-4\right.$ '), $44.5(C-2), 41.7(C-2 "), 41.4\left(\mathrm{NCH}_{3}\right)$.
IR (ATR): $v=3293,1714,1630,1522,1452,1236,1029,732,696$.
MS (ESI ${ }^{+}$): $\mathrm{m} / \mathrm{z}=584.3[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{5}\left(583.69 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $584.2868[\mathrm{M}+\mathrm{H}]^{+}$,
found: 584.2863 [-0.7 ppm] (ESI ${ }^{+}$-HRMS).
Preparation of tripeptide 23

To a solution of tripeptide $4(30 \mathrm{mg}, 0.050 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL})$, tert-butyl amine ($32 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) was added. After stirring for 22 h at $40^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC $(4 \mathrm{~g}, 1.0 \times 8.0 \mathrm{~cm}$, DCM:AcOEt:MeOH, $60: 40: 0 \rightarrow 96: 0: 4)$ to give $31 \mathrm{mg}(0.046 \mathrm{mmol}, 92 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.18$ ($\mathrm{DCM}: \mathrm{MeOH}, 95: 5$).

Melting point: $\mathrm{T}_{\mathrm{mp}}=117^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=+20.3\left(\mathrm{c}=2.56, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.67(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{NH}), 7.31-7.03(\mathrm{~m}, 16 \mathrm{H}$, 2'-NH, $15 \times \mathrm{CC}_{\mathrm{Ar}}$), $5.41(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{NH}), 5.05\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right)$, $5.01\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.83\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$), 4.80 (dd, $\left.J=8.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H\right), 4.58\left(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{\left.-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.50-4.22\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-H \text {, }\right.}\right.$ $\left.\mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.11\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.03(\mathrm{dd}, J=8.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-H)$, 3.16-3.10 (m, 1 H, 3'- H_{a}), 2.60-2.52 (m, $1 \mathrm{H}, 3^{\prime}-H_{b}$), 2.09-2.00 (m, $2 \mathrm{H}, 3-H, 3 "-H$), 1.11 (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.93-0.85\left(\mathrm{~m}, 12 \mathrm{H}, 4-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}\right)$. The signal attributed to the secondary amine $\mathrm{N} H$ proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.2,171.4,171.0\left(C-1, C-1 ', C-1{ }^{\prime}\right)$, $156.5(\mathrm{~N} C(=\mathrm{O}) \mathrm{O})$, 137.0, 136.4, $136.1\left(3 \times C_{A r}\right), 129.0,128.8,128.6,128.3,128.2,128.2,128.0,127.6,127.4$ $\left(15 \times \mathrm{HC}_{A r}\right), 67.1\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 60.3(\mathrm{C}-2), 55.2(C-2 \mathrm{C}), 52.4\left(\mathrm{C}-2^{\prime}\right), 50.1,47.9\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right)$,
 Despite several attempts, the ${ }^{13} \mathrm{C}$ NMR signal attributed to quaternary carbon atom $C\left(\mathrm{CH}_{3}\right)_{3}$ was not observed, probably due to very pronounced line-broadening. However, the presence of the Bu^{t} group was unambiguously confirmed by appearance of signals for the corresponding three CH_{3} groups both in the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra, vide supra.
IR (ATR): $v=3287,2962,1630,1529,1448,1217,1028,733,697$.
MS (ESI $): \mathrm{m} / \mathrm{z}=672.4[\mathrm{M}+\mathrm{H}]^{+}, \quad$ calculated: $672.4120[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{5}\left(671.40 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
found: 672.4095 [-3.6 ppm] (ESI $\left.{ }^{+}-\mathrm{HRMS}\right)$.

Preparation of tripeptide 24

To a solution of tripeptide 5 ($15 \mathrm{mg}, 0.027 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$, tert-butyl amine ($17 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$) was added. After stirring for 20 h at rt and for 24 h at $40^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC (3 g , $1.0 \times 6.0 \mathrm{~cm}, \mathrm{DCM}: \mathrm{MeOH}, 96: 4)$ to give $16 \mathrm{mg}(0.025 \mathrm{mmol}, 94 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.11$ (DCM:MeOH, 95:5).
Melting point: $\mathrm{T}_{\mathrm{mp}}=96^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-36.3\left(\mathrm{c}=0.84, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.69(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathrm{~N}-\mathrm{NH}), 7.32-7.08(\mathrm{~m}, 16 \mathrm{H}$, $2^{\prime}-\mathrm{N} H, 15 \times \mathrm{C}_{\mathrm{Ar}}$), $5.51(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.08\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.04(\mathrm{~d}$, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}$), 4.86 (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), 4.77 (dd, $J=8.0$, $\left.6.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H\right), 4.58\left(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.51-4.42\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-H\right), 4.32(\mathrm{~d}$, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}$), 4.08 (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}$), 3.89 (dd, $J=16.9$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-H_{a}$), 3.83 (dd, $J=16.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-H_{b}$), 3.16 (dd, $J=11.1,2.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.3^{\prime}-H_{a}\right), 2.59\left(\mathrm{dd}, J=11.1,9.7 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}\right), 2.05\left(\mathrm{dqq}, J=6.7,6.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime \prime}-H\right), 1.13$ (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.92\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4 "-H_{a}\right), 0.86\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4{ }^{\prime \prime}-H_{b}\right)$. The signal attributed to the secondary amine $\mathrm{N} H$ proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.2,170.9,169.1\left(C-1, C-1^{\prime}, C-1^{\prime \prime}\right), 156.6(\mathrm{~N} C(=\mathrm{O}) \mathrm{O})$, 137.0, 136.3, $136.0\left(3 \times C_{A r}\right), 129.1,128.8,128.7,128.4,128.3,128.2,128.1,127.7,127.4$ $\left(15 \times \mathrm{HC}_{A r}\right), 67.3\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 55.3(C-2 \mathrm{C}), 52.1(C-2), 50.1,48.0\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right), 44.6(C-2)$,
 ${ }^{13} \mathrm{C}$ NMR signal attributed to quaternary carbon atom $C\left(\mathrm{CH}_{3}\right)_{3}$ was not observed, probably due to very pronounced line-broadening. However, the presence of the Bu^{t} group was unambiguously confirmed by appearance of signals for the corresponding three CH_{3} groups both in the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra, vide supra.
IR (ATR): $v=3286,2963,1630,1526,1449,1216,1046,734,697$.
MS (ESI $):$ m/z = $630.4[\mathrm{M}+\mathrm{H}]^{+}, \quad$ calculated: $630.3650[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{5}\left(629.80 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
found: $630.3631[-3.0 \mathrm{ppm}]\left(\mathrm{ESI}^{+}-\mathrm{HRMS}\right)$.

Preparation of tripeptide 25

To a solution of tripeptide $6(15 \mathrm{mg}, 0.027 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$, tert-butyl amine ($17 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$) was added. After stirring for 20 h at rt and for 2 d at $40^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC (3 g , $1.0 \times 6.0 \mathrm{~cm}, \mathrm{DCM}: \mathrm{MeOH}, 95: 5)$ to give $16 \mathrm{mg}(0.025 \mathrm{mmol}, 94 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.11$ (DCM:MeOH, 95:5).
Melting point: $\mathrm{T}_{\mathrm{mp}}=81^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=+4.6\left(\mathrm{c}=1.21, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.59\left(\mathrm{~s}, 1 \mathrm{H}, 2{ }^{2}-\mathrm{NH}\right), 7.32-7.08\left(\mathrm{~m}, 16 \mathrm{H}, 2{ }^{2}-\mathrm{N} H\right.$, $15 \times H C_{\mathrm{Ar}}$), $5.49(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.05\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, B \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.02(\mathrm{~d}, J=12.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}$), 4.66-4.46 (m, $\left.3 \mathrm{H}, 2^{\prime}-\mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 4.34\left(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right)$, $4.30\left(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{\mathrm{a}} H_{b}\right.$), 4.16-3.99 (m, $3 \mathrm{H}, 2-H, 2^{\prime \prime}-H$), 3.33-3.24 (m, 1 H , $\left.3^{\prime}-H_{a}\right), 2.84-2.74\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-H_{b}\right), 2.10(\mathrm{dqq}, J=6.8,6.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-H), 1.20(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.92\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{a}\right), 0.87\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{b}\right)$. The signal attributed to the secondary amine $\mathrm{N} H$ proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.9,170.6,169.1\left(C-1, C-1^{\prime}, C-1^{\prime \prime}\right), 156.9(\mathrm{~N} C(=\mathrm{O}) \mathrm{O})$, 136.4, $135.2\left(3 \times C_{A r}\right), 129.3,128.9,128.7,128.4,128.2,128.2,128.2,127.9,127.6$ $\left(15 \times \mathrm{HC}_{A r}\right), 67.2\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 60.9(C-2), 52.0(C-2 '), 49.4,49.0\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right), 43.8$ (C-3'), $41.9\left(C-2^{\prime \prime}\right), 31.2(C-3), 27.5\left(\mathrm{C}_{(}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.4,17.9(2 \times C-4)$. Despite several attempts, the ${ }^{13} \mathrm{C}$ NMR signal attributed to quaternary carbon atom $C\left(\mathrm{CH}_{3}\right)_{3}$ was not observed, probably due to very pronounced line-broadening. However, the presence of the Bu^{t} group was unambiguously confirmed by appearance of signals for the corresponding three CH_{3} groups both in the ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra, vide supra.
IR (ATR): $v=2962,1639,1496,1452,1219,1080,1027,735,698$.

MS (ESI ${ }^{+}$): $\mathrm{m} / \mathrm{z}=630.4[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{5}\left(629.80 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $630.3650[\mathrm{M}+\mathrm{H}]^{+}$,
found: 630.3633 [-2.7 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of tripeptide 26

To a solution of tripeptide $7(23 \mathrm{mg}, 0.045 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL})$, tert-butyl amine ($28 \mu \mathrm{~L}, 0.27 \mathrm{mmol}$) was added. After stirring for 20 h at $40^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC ($4 \mathrm{~g}, 1.0 \times 8.0 \mathrm{~cm}$, DCM:AcOEt:MeOH, 30:70:0 \rightarrow 92:0:8) to give $24 \mathrm{mg}(0.041 \mathrm{mmol}, 91 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.15$ (DCM:MeOH, 93:7).
Melting point: $\mathrm{T}_{\mathrm{mp}}=63^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-5.1\left(\mathrm{c}=1.83, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.47(\mathrm{~s}, 1 \mathrm{H}, 2 "-\mathrm{N} H), 7.77(\mathrm{~s}, 1 \mathrm{H}, 2$ '-NH), 7.31-7.07 (m, $15 \mathrm{H}, 15 \times H \mathrm{C}_{\mathrm{Ar}}$), $5.66(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.05\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.02(\mathrm{~d}$, $\left.J=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.55-4.47\left(\mathrm{~m}, 3 \mathrm{H}, 2 \mathrm{H}-\mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right)$, $4.31\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 4.13$ (d, $\left.J=17.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{a}\right), 4.01\left(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{b}\right), 3.91(\mathrm{dd}, J=16.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}$, $2-H_{a}$), $3.82\left(\mathrm{dd}, J=16.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-H_{b}\right), 3.32\left(\mathrm{dd}, J=11.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{H}-H_{a}\right), 2.72$ (dd, $\left.J=11.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}\right), 1.13\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. The signal attributed to the secondary amine NH proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.8,169.7,169.0\left(C-1, C-1^{\prime}, C-1^{\prime \prime}\right), 156.9(\mathrm{~N} C(=\mathrm{O}) \mathrm{O})$, 136.5, 136.3, 135.3 ($3 \times C_{A r}$), 129.3, 128.9, 128.6, 128.4, 128.3, 128.2, 128.1, 127.9, 127.6
 43.6 (C-3'), 41.8 ($\left.\left.C-2^{\prime \prime}\right), 28.0\left(\mathrm{C}_{(} \mathrm{CH}_{3}\right)_{3}\right)$.

IR (ATR): $v=2962,1647,1496,1451,1218,1047,735,698,613$.

MS (ESI ${ }^{+}$): m/z = $588.3[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{5}\left(587.72 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $588.3181[\mathrm{M}+\mathrm{H}]^{+}$,
found: 588.3164 [-2.7 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of tripeptide 27

To a solution of tripeptide $4(30 \mathrm{mg}, 0.050 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL}), n$-butyl amine ($30 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$) was added. After stirring for 22 h at $40^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC $(4 \mathrm{~g}, \quad 1.0 \times 8.0 \mathrm{~cm}$, DCM:AcOEt:MeOH, 60:40:0 \rightarrow 96:0:4) to give $33 \mathrm{mg}(0.049 \mathrm{mmol}, 98 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.18$ ($\mathrm{DCM}: \mathrm{MeOH}, 95: 5$).
Melting point: $\mathrm{T}_{\mathrm{mp}}=115^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{D}{ }^{20}=-23.6\left(c=2.77, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.63(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{NH}), 7.31-7.08(\mathrm{~m}, 15 \mathrm{H}$, $15 \times \mathrm{CC}_{\mathrm{Ar}}$), $6.98(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, 2 ' \mathrm{~N} H), 5.44(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.05(\mathrm{~d}$, $\left.J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.01\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.81-4.78\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime \prime}-H\right.$, $\left.\mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.55\left(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.36-4.33\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-H, \mathrm{Bn}^{2} \mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.15$ (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}$), $4.03(\mathrm{dd}, J=8.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-H), 3.05(\mathrm{dd}, J=12.0$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}, 3$ '- H_{a}), 2.68-2.58 (m, $3 \mathrm{H}, 3^{\prime}-H_{b}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.08-2.00 (m, $2 \mathrm{H}, 3-\mathrm{H}$,

3"-H), 1.45-1.39 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.33-1.25 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 0.91-0.83 (m, $15 \mathrm{H}, 4-\mathrm{H}, 4 "-\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$). The signal attributed to the secondary amine NH proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.1,171.4,171.2\left(C-1, C-1^{\prime}, C-1^{\prime \prime}\right), 156.5(\mathrm{~N} C(=\mathrm{O}) \mathrm{O})$, 137.1, 136.5, $136.2\left(3 \times C_{A r}\right), 129.0,128.8,128.6,128.3,128.2,128.1,128.0,127.6,127.3$ ($15 \times \mathrm{HC}_{A r}$), $67.1\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 60.3(C-2), 54.8(C-2 "), 51.6\left(C-2^{\prime}\right), 50.7\left(C-3^{\prime}\right), 50.0\left(\mathrm{Bn}-\mathrm{CH}_{2}\right)$, $49.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 47.9\left(\mathrm{Bn}-\mathrm{CH}_{2}\right)$, 32.1, 31.6, $31.0\left(C-3, C-3 ", \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 20.4, 20.0, 19.4, 17.8, 17.4 ($2 \times \mathrm{C}-4,2 \times \mathrm{C}-4$ ", $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $14.1\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

IR (ATR): $v=3286,2960,1631,1531,1450,1219,1028,733,696$.
MS (ESI^{+}): $\mathrm{m} / \mathrm{z}=672.4[\mathrm{M}+\mathrm{H}]^{+}, \quad$ calculated: $672.4120[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{5}\left(671.40 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
found: 672.4098 [-3.2 ppm] (ESI ${ }^{+}$HRMS).

Preparation of tripeptide 28

To a solution of tripeptide $6(25 \mathrm{mg}, 0.045 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL}), n$-butyl amine $(27 \mu \mathrm{~L}, 0.27 \mathrm{mmol})$ was added. After stirring for 20 h at $40^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC $(4 \mathrm{~g}, 1.0 \times 8.0 \mathrm{~cm}$, DCM:AcOEt:MeOH, 50:50:0 \rightarrow 96:0:4) to give $24 \mathrm{mg}(0.038 \mathrm{mmol}, 85 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.05$ (DCM:MeOH, 96:4).
Melting point: $\mathrm{T}_{\mathrm{mp}}=121^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=+3.6\left(\mathrm{c}=2.03, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.42\left(\mathrm{~s}, 1 \mathrm{H}, 2{ }^{\prime \prime}-\mathrm{NH}\right), 7.37-7.07\left(\mathrm{~m}, 16 \mathrm{H}, 2{ }^{2}-\mathrm{NH}\right.$, $15 \times H \mathrm{C}_{\mathrm{Ar}}$), $5.45(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.05\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.01(\mathrm{~d}$, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}$), 4.55-4.45 (m, $3 \mathrm{H}, 2^{\prime}-\mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}$), $4.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 4.11$ ($\left.\mathrm{s}, 2 \mathrm{H}, 2^{\prime \prime}-H\right), 4.02(\mathrm{dd}, J=7.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-H), 3.18\left(\mathrm{dd}, J=8.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}\right)$, 2.73-2.59 (m, $3 \mathrm{H}, 3^{\prime}-H_{b}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.09 (dqq, $J=6.7,6.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-H$), 1.50-1.44 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.32-1.25 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 0.92-0.82 (m, $9 \mathrm{H}, 4-\mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$). The signal attributed to the secondary amine NH proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.6,171.0,168.8\left(C-1, C-1^{\prime}, C-1{ }^{\prime \prime}\right), 156.7(\mathrm{NC}(=\mathrm{O}) \mathrm{O})$, 136.5, 136.4, $135.4\left(3 \times C_{A r}\right), 129.3,128.8,128.6,128.4,128.3,128.2,128.1,127.8,126.6$ $\left.\left(15 \times \mathrm{HC}_{A r}\right), 67.2\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 60.6(\mathrm{C}-2), 51.9(\mathrm{C}-2)^{\prime}\right), 50.5\left(\mathrm{C}-3^{\prime}\right), 49.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 49.2, $48.8\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right), 41.7(C-2 "), 31.4\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 31.3(C-3), \quad 20.4$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 19.4,17.8(2 \times \mathrm{C}-4), 14.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
IR (ATR): $v=3287,2960,1630,1523,1452,1219,1028,736,697$.
MS (ESI ${ }^{+}$): m/z = $630.4[\mathrm{M}+\mathrm{H}]^{+}, \quad$ calculated: $630.3650[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{5}\left(629.80 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$, found: 630.3634 [-2.5 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of lysine tripeptide conjugate 29

To lysine derivative $\mathbf{S 1}$ ($100 \mathrm{mg}, 0.179 \mathrm{mmol}$) in degassed EtOH (4 mL), $10 \mathrm{wt} \%$ palladium on charcoal ($10 \mathrm{mg}, 9.4 \mu \mathrm{~mol}$) was added. The resulting suspension was stirred under a hydrogen atmosphere (1 bar , balloon) for 3 h and then filtered through a syringe filter. The syringe filter was washed with EtOH ($3 \times 3 \mathrm{~mL}$) and the solvent of the combined filtrates evaporated in vacuo. The resulting colourless solid was dried in vacuo. The resulting free amine was always prepared freshly and used instantly in the subsequent transformation without further purification.
To a solution of tripeptide $\mathbf{4}(24 \mathrm{mg}, 0.040 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL}), 1 / 2$ of the crude product (only $1 / 2$ of the initially prepared Cbz-deprotected lysine derivative, vide supra, was used in the 2 nd step, calculated maximal amount of substance: 0.080 mmol) was added. After stirring for 24 h at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC ($3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}$, DCM:AcOEt:MeOH, 50:50:0 \rightarrow 95:0:5) to give $35 \mathrm{mg}(0.034 \mathrm{mmol}, 85 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.36(\mathrm{DCM}: \mathrm{MeOH}, 93: 7)$.
Melting point: $\mathrm{T}_{\mathrm{mp}}=142^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-30.9\left(\mathrm{c}=2.79, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{NH}), 7.39-7.16(\mathrm{~m}, 25 \mathrm{H}$, $25 \times H \mathrm{C}_{\mathrm{Ar}}$), $7.03\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{N} H\right), 5.59(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, $2 "-\mathrm{NH}$), $5.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 4.90-4.85\left(\mathrm{~m}, 2 \mathrm{H}, 2 "-\mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$), 4.73-4.52(m, 6 H , $2 '-H, \mathrm{Bn}^{2} \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}, 2 \times \mathrm{Bn}-\mathrm{CH}_{2}$), $4.43\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H},{\left.\mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.36(\mathrm{~s}, 1 \mathrm{H}, 2 '-H) \text {, }}^{\prime}\right.$, $4.24\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.11(\mathrm{dd}, J=7.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-H), 3.10(\mathrm{dd}, J=12.1$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}$), 2.67-2.53 (m, $3 \mathrm{H}, 3^{\prime}-H_{b}, 6^{\prime \prime}-H$), 2.17-2.08 (m, $\left.2 \mathrm{H}, 3-H, 3 "-H\right), 1.64-1.57$
 The signal attributed to the secondary amine $\mathrm{N} H$ proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.5,172.0,171.4,171.2$ ($\left.C-1, C-1 ', C-1 ", C-1{ }^{\prime \prime}\right)$), 156.5, $155.7(2 \times \mathrm{N} C(=\mathrm{O}) \mathrm{O}), 137.1,136.9,136.5,136.4,136.2\left(5 \times C_{A r}\right), 129.0,128.8,128.8,128.6$, 128.3, 128.2, 128.2, 128.0, 127.9, 127.6, $127.3127 .0\left(25 \times \operatorname{HC} C_{\text {Ar }}\right), 79.7\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 67.1$ $\left(\mathrm{Bn}^{2}-\mathrm{CH}_{2}\right), 60.4(C-2), 54.7(C-2 "), 51.7(C-2 '), 50.5$ (C-3'), 50.5 (C-2"'), 50.1, 50.0 ($2 \times \mathrm{Bn}-\mathrm{CH}_{2}$), 49.2 ($\left.C-6 " '\right)$, 48.5, 47.9 ($2 \times \mathrm{Bn}-\mathrm{CH}_{2}$), 33.3 ($\left.C-3 " '\right)$, 31.4 (C-3), 31.0 (C-3"), 29.7 (C-5"'), $28.5\left(\mathrm{C}_{(}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.1\left(C-4{ }^{\prime \prime}\right), 20.0,19.4,17.8,17.5$ ($2 \times C-4,2 \times C-4$ ").

IR (ATR): $v=3286,1678,1637,1527,1450,1218,1167,1028,695$.
MS (ESI ${ }^{+}$): m/z $=1024.5[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{60} \mathrm{H}_{77} \mathrm{~N}_{7} \mathrm{O}_{8}\left(1024.32 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $1024.5906[\mathrm{M}+\mathrm{H}]^{+}$,
found: 1024.5907 [+0.1 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of lysine tripeptide conjugate $\mathbf{3 0}$

To lysine derivative $\mathbf{S 1}(100 \mathrm{mg}, 0.179 \mathrm{mmol})$ in degassed $\mathrm{EtOH}(4 \mathrm{~mL}), 10 \mathrm{wt} \%$ palladium on charcoal ($10 \mathrm{mg}, 9.4 \mu \mathrm{~mol}$) was added. The resulting suspension was stirred under a hydrogen atmosphere (1 bar , balloon) for 3 h and then filtered through a syringe filter. The syringe filter was washed with $\mathrm{EtOH}(3 \times 3 \mathrm{~mL})$ and the solvent of the combined filtrates evaporated in vacuo. The resulting colourless solid was dried in vacuo. The resulting free amine was always prepared freshly and used instantly in the subsequent transformation without further purification.
To a solution of tripeptide $\mathbf{6}(22 \mathrm{mg}, 0.040 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL}), 1 / 2$ of the crude product (only $1 / 2$ of the initially prepared Cbz-deprotected lysine derivative, vide supra, was used in the 2 nd step, calculated maximal amount of substance: 0.080 mmol) was added. After stirring for 24 h at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC ($3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}$, DCM:AcOEt:MeOH, 30:70:0 \rightarrow 95:0:5) to give 37 mg ($0.038 \mathrm{mmol}, 95 \%$) of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.25(\mathrm{DCM}: \mathrm{MeOH}, 93: 7)$.
Melting point: $\mathrm{T}_{\mathrm{mp}}=83^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-11.9\left(\mathrm{c}=2.78, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.34(\mathrm{~s}, 1 \mathrm{H}, 2 \mathrm{~N}-\mathrm{NH}), 7.38-7.14\left(\mathrm{~m}, 26 \mathrm{H}, 2{ }^{2}-\mathrm{NH}\right.$, $25 \times H \mathrm{C}_{\mathrm{Ar}}$), $5.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.55\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, 2{ }^{\prime \prime}-\mathrm{N} H\right), 5.13(\mathrm{~s}, 2 \mathrm{H}$,
 $6.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-H), 3.19$ (dd, $J=12.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}$), 2.71-2.51 (m, $3 \mathrm{H}, 3^{\prime}-H_{b}, 6^{\prime}{ }^{\prime}-H$), 2.17 (dqq, $J=6.6,6.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}, 3-H), 1.69-1.56(\mathrm{~m}, 2 \mathrm{H}, 3 " \mathrm{l}-H), 1.47-1.27(\mathrm{~m}, 13 \mathrm{H}$, 4 "'-H, 5 "'-H, C ($\left.\left.\mathrm{CH}_{3}\right)_{3}\right), 0.99\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{a}\right), 0.93\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{b}\right)$. The signal attributed to the secondary amine $\mathrm{N} H$ proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.5,171.5,171.1,168.7\left(C-1, C-1 ', C-1 ", C-1{ }^{\prime \prime}\right)$, 156.7, $155.7(2 \times \mathrm{N} C(=\mathrm{O}) \mathrm{O}), 136.9,136.6,136.5,136.4,135.5\left(5 \times C_{A r}\right), 129.2,129.0,128.8,128.8$, 128.6, 128.4, 128.2, 128.1, 128.0, 127.9, 127.8, 127.6, 127.1, 126.6 ($25 \times \mathrm{HC}_{A r}$), 79.7 $\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 67.1\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 60.7(C-2), 52.0(C-2 '), 50.5(C-3 '), 50.5(C-2 " '), 50.1\left(\mathrm{Bn}-\mathrm{CH}_{2}\right)$,
 $28.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.0\left(C-4{ }^{\prime \prime}\right), 19.4,17.9(2 \times C-4)$.
IR (ATR): $v=3312,1640,1524,1451,1220,1166,1028,732,697$.
MS (ESI ${ }^{+}$): m/z = $1004.5[\mathrm{M}+\mathrm{Na}]^{+}, \quad$ calculated: $982.5437[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{57} \mathrm{H}_{71} \mathrm{~N}_{7} \mathrm{O}_{8}\left(982.24 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
found: 982.5429 [-0.8 ppm] ($\left.\mathrm{ESI}^{+}-\mathrm{HRMS}\right)$.

Preparation of 1,2,3-triazole 31

To a thoroughly degassed solution of alkyne 19 ($24 \mathrm{mg}, 0.036 \mathrm{mmol}$) in abs. $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$, benzyl azide ${ }^{[S 4]}(29 \mathrm{mg}, 0.22 \mathrm{mmol}), \mathrm{CuI}(10 \mathrm{mg}, 0.054 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(60 \mu \mathrm{~L}, 0.43 \mathrm{mmol})$ were added. After stirring for 3 h the reaction mixture was diluted with DCM (50 mL) and washed with water (50 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the filtrate evaporated in vacuo. The resultant crude product was purified by FCC ($3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}$, DCM:AcOEt, $60: 40 \rightarrow 40: 60$) to give $19 \mathrm{~g}(0.024 \mathrm{mmol}, 67 \%)$ of the title compound as a pale yellow solid.
TLC: $R_{\mathrm{f}}=0.13$ (DCM:AcOEt, 40:60).
Melting point: $\mathrm{T}_{\mathrm{mp}}=74^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=+2.3\left(\mathrm{c}=1.12, \mathrm{CHCl}_{3}\right)$
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{NH}), 7.77(\mathrm{~s}, 1 \mathrm{H}, 6$ 6'-H), 7.317.06 (m, $20 \mathrm{H}, 20 \times \mathrm{C}_{\mathrm{Ar}}$), 6.85 (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathrm{Z}^{\prime}-\mathrm{NH}$), 5.44 (d, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.39\left(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H},{\left.\mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 5.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{NH}), 5.06(\mathrm{~d},}^{2}\right.$ $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), 5.02 (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{\mathrm{a}} H_{b}$), 4.80 (dd, $J=8.7$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-H), 4.76\left(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.56(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), 4.39 (d, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{\mathrm{a}} H_{b}$), 4.37-4.33 (m, $\left.1 \mathrm{H}, 2^{\prime}-H\right), 4.16$ (d, $\left.J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.02(\mathrm{dd}, J=8.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-H), 3.85(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}$, $4^{\prime}-H_{a}$), $3.71\left(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-H_{b}\right), 2.71\left(\mathrm{dd}, J=11.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}, 33^{\prime}-H_{a}\right.$), 2.53 (dd, $J=11.9,11.0 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}$), $2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.05(\mathrm{dqq}, J=6.7,6.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-H)$, 1.96 (dqq, $J=6.7,6.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}, 3 "-H),[0.90(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})\left(4-H_{a}, 4-H_{b}, 4 "-H_{a}, 4 "-H_{b}\right)$].
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0,171.3,170.8\left(C-1, C-1^{\prime}, C-1 "\right), 156.3(\mathrm{NC}(=\mathrm{O}) \mathrm{O})$, 144.3 (C-5'), 137.0, 136.4, 136.1, 134.9 (4 x $C_{A r}$), 129.0, 129.0, 128.7, 128.6, 128.6, 128.2, 128.1, 128.1, 127.9, 127.5, 127.2 ($20 \times \mathrm{HC}_{A r}$), 123.5 ($\left(-6^{\prime}\right), 67.0\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 60.1(C-2), 57.9$
 $41.6\left(\mathrm{NCH}_{3}\right), 31.5,31.1$ ($\left.C-3, C-3 "\right), 19.9,19.2,17.7,17.3$ ($\left.2 \times C-4,2 \times C-4 "\right)$.
IR (ATR): $v=3288,2961,1632,1531,1496,1452,1219,1029,697$.
MS (ESI ${ }^{+}$): $\mathrm{m} / \mathrm{z}=801.4[\mathrm{M}+\mathrm{H}]^{+}$, $\mathrm{C}_{46} \mathrm{H}_{56} \mathrm{~N}_{8} \mathrm{O}_{5}\left(801.01 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $801.4446[\mathrm{M}+\mathrm{H}]^{+}$,
found: 801.4423 [-2.9 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of 1,2,3-triazole 32

To a thoroughly degassed solution of alkyne 19 ($24 \mathrm{mg}, 0.036 \mathrm{mmol}$) in abs. CHCl_{3} $(1.0 \mathrm{~mL})$ and abs. EtOH (1.0 mL), 3-azido-7hydroxycoumarine ${ }^{[S 5]}(15 \mathrm{mg}, \quad 0.072 \mathrm{mmol})$, $\mathrm{CuI}(3.4 \mathrm{mg}, 0.018 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(15 \mu \mathrm{~L}$, $0.11 \mathrm{mmol})$ were added. After stirring for 3 h the reaction mixture was diluted with DCM $(30 \mathrm{~mL})$ and washed with water (30 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the filtrate evaporated in vacuo. The resultant crude product was purified by FCC ($3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}$, DCM:AcOEt, $50: 50 \rightarrow 30: 70$) to give $16 \mathrm{mg}(0.018 \mathrm{mmol}, 51 \%)$ of the title compound as a yellow solid.
TLC: $R_{\mathrm{f}}=0.18$ ($\mathrm{DCM}: A c O E t, 40: 60$).
Melting point: $\mathrm{T}_{\mathrm{mp}}=108^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-10.7\left(\mathrm{c}=0.70, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{NH}), 8.59(\mathrm{~s}, 1 \mathrm{H}, 6 '-H), 8.20$ (s, $\left.1 \mathrm{H}, 8^{\prime}-H\right), 7.42-7.18\left(\mathrm{~m}, 16 \mathrm{H}, 10 '-H, 15 \times H C_{\mathrm{Ar}}\right), 7.13$ (d, $\left.J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, 2{ }^{\prime}-\mathrm{N} H\right)$, 6.76-6.72 (m, $\left.2 \mathrm{H}, 11^{\prime}-H, 13 '-H\right), 5.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.15(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), $5.11\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.93(\mathrm{dd}, J=8.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathrm{Z}-H), 4.83$ (d, $\left.J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.70\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.63-4.57(\mathrm{~m}, 2 \mathrm{H}$,
 $4.06\left(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-H_{a}\right), 3.85\left(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-H_{b}\right), 2.89(\mathrm{dd}, J=9.9,4.0 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 3^{\prime}-H_{a}\right), 2.72\left(\mathrm{dd}, J=10.7,9.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.25-2.17(\mathrm{~m}, 2 \mathrm{H}$, $3-H, 3 "-H),[1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 3 \mathrm{H})$, $\left.0.97(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})\left(4-H_{a}, 4-H_{b}, 4 "-H_{a}, 4 "-H_{b}\right)\right]$. The signal attributed to the hydroxy OH proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.7,171.9,171.0\left(C-1, C-1{ }^{\prime}, C-1 "\right), 162.0,156.6,156.1$, 154.6 (C-12', C-14', C-15', $\mathrm{N} C(=\mathrm{O}) \mathrm{O}$), 143.8 ($\left.C-5^{\prime}\right)$, 136.7, $136.4,136.0$ ($3 \times C_{A r}$), 133.5 ($C-8^{\prime}$), 130.1 ($\left.C-10^{\prime}\right), 129.2,128.9,128.7,128.3,128.2,128.1,128.1,127.8,127.3$ $\left(15 \times H_{A r}\right), 124.1(C-6 '), 119.4,114.7,110.7,103.1$ (C-7', $\left.C-9^{\prime}, C-11^{\prime}, C-13^{\prime}\right), 67.2$ $\left({\left.\mathrm{Bn}-\mathrm{CH}_{2}\right),} 60.5(C-2), 57.7\left(C-3^{\prime}\right), 55.0\left(C-2{ }^{\prime}\right), 51.6\left(C-4^{\prime}\right), 50.5\left(\mathrm{Bn}^{\prime}-\mathrm{CH}_{2}\right), 50.3\left(C-2^{\prime}\right), 48.5\right.$ $\left(\mathrm{Bn}^{2} \mathrm{CH}_{2}\right), 42.2\left(\mathrm{NCH}_{3}\right), 31.5,31.3$ ($\left.C-3, C-3 "\right), 20.0,19.4,17.9,17.8$ (2 x $C-4,2 \times C-4$ ").
IR (ATR): $v=2961,1609,1515,1452,1231,1118,1029,734,697$.
MS (ESI ${ }^{+}$): m/z = $871.4[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{48} \mathrm{H}_{54} \mathrm{~N}_{8} \mathrm{O}_{8}\left(871.01 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
found: 871.4113 [-2.8 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of proline tripeptide conjugate 33

To a solution of tripeptide $4(24 \mathrm{mg}, 0.040 \mathrm{mmol})$ in CHCl_{3} (1.5 mL), L-proline tert-butyl ester (14 mg , 0.080 mmol) was added. After stirring for 24 h at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC ($3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}$, DCM:AcOEt, $90: 10 \rightarrow 80: 20$) to give 30 mg ($0.039 \mathrm{mmol}, 98 \%$) of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.21$ (DCM:AcOEt, 80:20).
Melting point: $\mathrm{T}_{\mathrm{mp}}=81^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-44.4\left(\mathrm{c}=2.83, \mathrm{CHCl}_{3}\right)$
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{NH}), 7.48(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}$, 2'-NH), 7.38-7.18 (m, $15 \mathrm{H}, 15 \times \mathrm{HC}_{\mathrm{Ar}}$), 5.59 (d, $\left.J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{NH}\right), 5.14$ (d, $J=12.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.09\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.86-4.83\left(\mathrm{~m}, 2 \mathrm{H}, 2 "-H, \mathrm{Bn}^{2}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right)$, $4.62\left(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.52\left(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{\mathrm{a}} H_{b}\right)$, 4.32-4.22(m, $3 \mathrm{H}, 2-H, 2^{\prime}-H, \mathrm{Bn}^{2}-\mathrm{CH}_{\mathrm{a}} H_{b}$), $3.40\left(\mathrm{dd}, J=9.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}, 2{ }^{\prime \prime}-H\right), 3.23-3.19\left(\mathrm{~m}, 1 \mathrm{H}, 5{ }^{\prime \prime}-H_{a}\right)$, 2.99 (dd, $\left.J=12.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}\right), 2.78\left(\mathrm{dd}, J=12.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}, 3 '-H_{b}\right), 2.56-2.51(\mathrm{~m}$,
 $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.00-0.90(\mathrm{~m}, 12 \mathrm{H}, 4-H, 4 "-H)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.1,172.1,171.8,170.6$ ($C-1, C-1 ', C-1{ }^{\prime \prime}, C-1^{\prime \prime}$), 156.4 $(\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 137.2,136.6,136.5$ ($3 \times C_{A r}$), 129.0, 128.7, 128.6, 128.4, 128.1, 127.9, 127.5, $127.4\left(15 \times \mathrm{HC}_{A r}\right), 81.4\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 67.0\left(\mathrm{Bn}^{2} \mathrm{CH}_{2}\right), 66.2(C-2 " '), 60.1(C-2), 55.9(C-3 '), 54.7}\right.$ (C-2"), 53.9 ($\left.C-5{ }^{\prime \prime \prime}\right), 51.9(C-2 '), 50.0,48.0\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right), 31.8$ (C-3), 31.2 (C-3"), 30.4 (C-3"'), $28.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 24.2 ($\left.C-4 " '\right), 19.9,19.3,17.4,17.4$ (2 x C-4, $2 \times \mathrm{C}-4$ ").
IR (ATR): $v=1720,1632,1532,1449,1367,1218,1149,1028,697$.

MS (ESI ${ }^{+}$): m/z = 770.4 $[\mathrm{M}+\mathrm{H}]^{+}$, $\mathrm{C}_{44} \mathrm{H}_{59} \mathrm{~N}_{5} \mathrm{O}_{7}\left(769.98 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $770.4487[\mathrm{M}+\mathrm{H}]^{+}$,
found: 770.4458 [-3.8 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of proline tripeptide conjugate 34

To a solution of tripeptide $5(22 \mathrm{mg}, 0.040 \mathrm{mmol})$ in CHCl_{3} (1.5 mL), L-proline tert-butyl ester (14 mg , 0.080 mmol) was added. After stirring for 24 h at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC $(3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}$, DCM:AcOEt, $\quad 70: 30 \rightarrow 60: 40$) to give 27 mg ($0.037 \mathrm{mmol}, 93 \%$) of the title compound as a
colourless solid.
TLC: $R_{\mathrm{f}}=0.11$ (DCM:AcOEt, 70:30).
Melting point: $\mathrm{T}_{\mathrm{mp}}=128^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-38.4\left(\mathrm{c}=2.58, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{NH}), 7.39-7.18(\mathrm{~m}, 16 \mathrm{H}$, $2^{\prime}-\mathrm{N} H, 15 \times H \mathrm{C}_{\mathrm{Ar}}$), $5.54(\mathrm{dd}, J=5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{NH}), 5.13\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 4.85-4.82$ $\left(\mathrm{m}, 2 \mathrm{H}, 2 "-H, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.62\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.51(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}$, Bn-CH ${ }_{a} H_{b}$), 4.32-4.22 (m, $2 \mathrm{H}, 2^{\prime}-H, \mathrm{Bn}^{2} \mathrm{CH}_{\mathrm{a}} H_{b}$), 3.97 (d, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, 2-H$), 3.41 (dd, $\left.J=9.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H\right), 3.25-3.20\left(\mathrm{~m}, 1 \mathrm{H}, 5^{\prime \prime}-H_{a}\right), 2.97\left(\mathrm{dd}, J=12.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}\right)$, 2.78 (dd, $J=12.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}$), 2.59-2.54 (m, $1 \mathrm{H}, 5^{\prime \prime}-H_{b}$), 2.21-2.11 (m, $2 \mathrm{H}, 3^{\prime \prime}-H$,
 4"- H_{a}), $0.93\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 4 "-H_{b}\right)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.0,172.1,170.6,169.0\left(C-1, C-1\right.$ ', $C-1$ ",$\left.C-1{ }^{\prime \prime \prime}\right)$), 156.5 $(\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 137.2,136.5,136.4\left(3 \times C_{A r}\right), 129.0,128.7,128.6,128.3,128.2,128.2,127.9$,
 (C-2"), 54.2 ($\left.C-5{ }^{\prime \prime \prime}\right), 51.7$ (C-2'), 50.1, $48.0\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right.$), 44.4 (C-2), 31.1 (C-3"), 30.5 (C-3"'), 28.2 ($\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 24.2$ ($C-4{ }^{4}$ '), 19.9, 17.3 ($2 \times \mathrm{C}$-4").
IR (ATR): $v=1711,1629,1519,1445,1366,1218,1149,1041,698$.
MS (ESI ${ }^{+}$): m/z = $728.3[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{41} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{7}\left(727.90 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $728.4018[\mathrm{M}+\mathrm{H}]^{+}$,
found: $728.3986[-4.3 \mathrm{ppm}]$ (ESI^{+}-HRMS).

Preparation of proline tripeptide conjugate 35

To a solution of tripeptide $6(22 \mathrm{mg}, 0.040 \mathrm{mmol})$ in CHCl_{3} (1.5 mL), L-proline tert-butyl ester (14 mg , 0.080 mmol) was added. After stirring for 24 h at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC ($3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}$, DCM:AcOEt, $80: 20 \rightarrow 75: 25$) to give 27 mg ($0.037 \mathrm{mmol}, 93 \%$) of the title compound as a
colourless solid.
TLC: $R_{\mathrm{f}}=0.19$ (DCM:AcOEt, 75:25).
Melting point: $\mathrm{T}_{\mathrm{mp}}=75^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-17.5\left(\mathrm{c}=1.78, \mathrm{CHCl}_{3}\right)$
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.90(\mathrm{dd}, J=4.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{N} H), 7.62(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 2{ }^{\prime}-\mathrm{N} H\right), 7.30-7.06\left(\mathrm{~m}, 15 \mathrm{H}, 15 \times \mathrm{HC}_{\mathrm{Ar}}\right), 5.58(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.08(\mathrm{~d}$, $\left.J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.08\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.57(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.50\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 4.28-4.15(\mathrm{~m}$, $3 \mathrm{H}, 2-H, 2^{\prime}-H, 2^{\prime \prime}-H_{a}$), 4.03 (dd, $J=17.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{b}$), 3.27 (dd, $J=8.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}$, 2'"-H), 3.11-3.06 (m, 1 H, 5 '"- H_{a}), 2.90 (dd, $J=13.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}$), 2.83 (dd, $J=13.0$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}$), 2.48-2.43 (m, $1 \mathrm{H}, 5{ }^{\prime \prime}-H_{b}$), 2.23-2.05 (m, $2 \mathrm{H}, 3-H, 3$ '"- H_{a}), 1.82-1.73 (m, $\left.3 \mathrm{H}, 3^{\prime \prime}-H_{b}, 4{ }^{\prime \prime}-H\right), 1.35\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.93\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{a}\right), 0.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H}, 4-H_{b}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.0,172.4,170.8,168.5\left(C-1, C-1^{\prime}, C-1^{\prime \prime}, C-1^{\prime \prime}\right), 156.6$ $(\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 136.7,136.6,135.6\left(3 \times C_{A r}\right), 129.2,128.8,128.6,128.5,128.2,128.1,128.0$, 127.7, $127.6\left(15 \times \mathrm{HC}_{\text {Ar }}\right), 81.6\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 67.0\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 66.1\left(C-2{ }^{\prime \prime}\right), 60.1(C-2), 55.4$
 $28.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 24.0\left(C-4{ }^{\prime \prime}\right), 19.4,17.3$ ($2 \times \mathrm{C}-4$).
IR (ATR): $v=3297,1713,1634,1515,1219,1151,1027,735,697$.
MS (ESI ${ }^{+}$): m/z = $728.4[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{41} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{7}\left(727.90 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $728.4018[\mathrm{M}+\mathrm{H}]^{+}$,
found: 728.3989 [-4.0 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of proline tripeptide conjugate 36

To a solution of tripeptide $7(21 \mathrm{mg}, 0.040 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL}$), L-proline tert-butyl ester (14 mg , 0.080 mmol) was added. After stirring for 24 h at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC ($3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}$, DCM:AcOEt, $40: 60 \rightarrow 30: 70$) to give 26 mg ($0.038 \mathrm{mmol}, 95 \%$) of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.14$ (DCM:AcOEt, 40:60).
Melting point: $\mathrm{T}_{\mathrm{mp}}=42^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-19.3\left(\mathrm{c}=2.42, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.06(\mathrm{dd}, J=4.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{N} H), 7.64(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{NH}\right), 7.38-7.14\left(\mathrm{~m}, 15 \mathrm{H}, 15 \times \mathrm{CC}_{\mathrm{Ar}}\right), 5.61(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{NH}), 5.13\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{2}\right), 4.63$ (d, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), $4.59\left(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.40-4.35(\mathrm{~m}, 3 \mathrm{H}$, $\left.2^{\prime}-H, \mathrm{Bn}-\mathrm{CH}_{2}\right), 4.25\left(\mathrm{dd}, J=17.1,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{a}\right), 4.12\left(\mathrm{dd}, J=17.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{b}\right)$, 4.04-3.97 (m, 2 H, 2-H), 3.35 (dd, $J=8.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}, 2{ }^{2}-H$), 3.20-3.15 (m, $1 \mathrm{H}, 5{ }^{\prime \prime}-H_{a}$), $2.99\left(\mathrm{dd}, J=12.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}\right), 2.89\left(\mathrm{dd}, J=12.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}\right), 2.59-2.51(\mathrm{~m}$,
 $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.8,170.8,169.8,168.5\left(C-1, C-1 ', C-1 ", C-1^{\prime \prime}\right)$), 156.5 $(\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 136.7,136.5,135.5$ (3 x $C_{A r}$), 129.2, 128.8, 128.6, 128.4, 128.2, 128.0, 127.8, $126.7\left(15 \times \mathrm{HC}_{\text {Ar }}\right), 81.5\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 67.1\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 66.3\left(C-2{ }^{\prime \prime}\right), 55.6(C-3 '), 53.6\left(C-5{ }^{\prime \prime}\right), 52.6}\right.$ (C-2'), 49.1, $48.6\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right), 44.4(\mathrm{C}-2), 41.6(\mathrm{C}-2 \mathrm{C}), 30.1(\mathrm{C}-3 " '), 28.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 23.9$ ($C-4$ "').
IR (ATR): $v=1721,1645,1496,1452,1367,1218,1151,732,697$.

MS (ESI ${ }^{+}$): $\mathrm{m} / \mathrm{z}=686.3[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{38} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{7}\left(685.82 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$, calculated: $686.3548[\mathrm{M}+\mathrm{H}]^{+}$, found: 686.3520 [-4.1 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of sarcosine tripeptide conjugate $\mathbf{3 7}$

To a solution of tripeptide $4(24 \mathrm{mg}, 0.040 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$, sarcosine ethyl ester (9.4 mg , 0.080 mmol) was added. After stirring for 40 h at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant
crude product was purified by FCC ($3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}$, DCM:AcOEt:MeOH, 90:10:0 \rightarrow 99:0:1) to give $28 \mathrm{mg}(0.039 \mathrm{mmol}, 98 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.25$ (DCM:AcOEt, 80:20).
Melting point: $\mathrm{T}_{\mathrm{mp}}=104^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{D}{ }^{20}=-16.3\left(c=2.46, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{NH}), 7.31-7.08(\mathrm{~m}, 16 \mathrm{H}$, $\left.2^{\prime}-\mathrm{N} H, 15 \times H C_{\mathrm{Ar}}\right), 5.40(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.06\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right)$, $5.02\left(\mathrm{~d}, ~ J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right.$), 4.81-4.76 (m, $2 \mathrm{H}, 2 "-H, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), 4.56 (d, $\left.J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.38\left(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.27-4.23\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-H\right)$, $4.17\left(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.13-4.06\left(\mathrm{~m}, 3 \mathrm{H}, 2-H, \mathrm{Et}^{2}-\mathrm{CH}_{2}\right), 3.50(\mathrm{~d}, J=17.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 2 "-H_{a}\right), 3.25\left(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}, 2^{2}{ }^{\prime}-H_{b}\right), 2.88\left(\mathrm{dd}, J=12.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}\right), 2.56$ (dd, $J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}, 3{ }^{\prime}-H_{b}$), $2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.12-2.02(\mathrm{~m}, 2 \mathrm{H}, 3-H, 3 "-H), 1.19$ (dd, $\left.J=7.2,7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Et}-\mathrm{CH}_{3}\right), 0.92-0.84(\mathrm{~m}, 12 \mathrm{H}, 4-H, 4 "-H)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.1,171.5,171.3,171.0\left(C-1, C-1^{\prime}, C-1 ", C-1^{\prime \prime}\right)$), 156.4 $(\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 137.2,136.5,136.3$ ($3 \times C_{A r}$), 129.0, 128.7, 128.6, 128.3, 128.2, 128.2, 128.0, 127.6, $127.4\left(15 \times \mathrm{HC}_{A r}\right), 67.1\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 60.8\left(\mathrm{Et}^{2}-\mathrm{CH}_{2}\right), 60.2(C-2), 58.3,58.2\left(C-2^{\prime \prime}, C-3^{\prime}\right)$, 54.9 (C-2"), 50.6 ($C-2 '$), 50.0, 47.9 ($2 \times \mathrm{Bn}-\mathrm{CH}_{2}$), $42.7\left(\mathrm{NCH}_{3}\right)$, 31.7, 30.9 ($\left.C-3, C-3 "\right), 20.0$, 19.3, 17.7, 17.3 ($2 \times C-4,2 \times C-4$ "), $14.4\left(E t-\mathrm{CH}_{3}\right)$.

IR (ATR): $v=3288,2963,1720,1630,1532,1448,1235,1027,697$.
MS (ESI ${ }^{+}$): $\mathrm{m} / \mathrm{z}=716.4[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{40} \mathrm{H}_{53} \mathrm{~N}_{5} \mathrm{O}_{7}\left(715.89 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $716.4018[\mathrm{M}+\mathrm{H}]^{+}$,
found: $716.3996[-3.1 \mathrm{ppm}]$ (ESI ${ }^{+}$-HRMS).

Preparation of sarcosine tripeptide conjugate $\mathbf{3 8}$

To a solution of tripeptide $5(22 \mathrm{mg}, 0.040 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$, sarcosine ethyl ester (9.4 mg , 0.080 mmol) was added. After stirring for 40 h at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC $(3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}$, DCM:AcOEt:MeOH, 70:30:0 \rightarrow 97:0:3) to give 25 mg ($0.037 \mathrm{mmol}, 93 \%$) of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.31$ (DCM:AcOEt, 50:50).
Melting point: $\mathrm{T}_{\mathrm{mp}}=106^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{D}{ }^{20}=-17.2\left(c=2.19, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.30\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 2{ }^{\prime \prime}-\mathrm{NH}\right), 7.31-7.08(\mathrm{~m}, 16 \mathrm{H}$, $2^{\prime}-\mathrm{N} H, 15 \times H \mathrm{C}_{\mathrm{Ar}}$), $5.45(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.05\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{2}\right), 4.81(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), $4.78(\mathrm{dd}, J=8.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-H), 4.56\left(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.35$ (d, $J=16.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}$), 4.28 (ddd, $J=9.3,5.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-H$), 4.14 (d, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}$), 4.12-4.07 (m, 2 H, Et-CH $)_{2}$, 3.92-3.82 (m, 2 H, 2-H), $3.49(\mathrm{~d}$, $\left.J=17.3 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{a}\right), 3.25\left(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{b}\right), 2.88(\mathrm{dd}, J=12.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}$, $3^{\prime}-H_{a}$), $2.57\left(\mathrm{dd}, J=12.6,9.3 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}\right.$), $2.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.05$ (dqq, $J=6.7,6.7$,
$\left.5.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime \prime}-H\right), 1.19$ (dd, $\left.J=7.2,7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Et}-\mathrm{CH}_{3}\right), 0.90\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4\right.$ "- H_{a}), 0.84 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4 "-H_{b}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.0,171.3,171.1,169.1$ ($C-1, C-1$ ', $C-1$ ",$C-1{ }^{\prime \prime}$), 156.5 $(\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 137.1,136.4,136.3\left(3 \times C_{A r}\right), 129.0,128.8,128.6,128.3,128.3,128.2,128.0$,
 50.7 (C-2'), 50.0, $47.9\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right)$, $44.4(C-2), 42.7\left(\mathrm{NCH}_{3}\right), 30.9(C-3 "), 20.0,17.2$ ($2 \times \mathrm{C}-4$ "), $14.4\left(\mathrm{Et}-\mathrm{CH}_{3}\right)$.
IR (ATR): $v=3270,1720,1631,1507,1443,1220,1040,733,701$.

MS (ESI ${ }^{+}$): $\mathrm{m} / \mathrm{z}=674.4[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{7}\left(673.81 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,

calculated: $674.3548[\mathrm{M}+\mathrm{H}]^{+}$,
found: 674.3525 [$-3.5 \mathrm{ppm}]$ (ESI $\left.{ }^{+}-\mathrm{HRMS}\right)$.

Preparation of sarcosine tripeptide conjugate 39
To a solution of tripeptide $6(22 \mathrm{mg}, 0.040 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$, sarcosine ethyl ester (9.4 mg , 0.080 mmol) was added. After stirring for 40 h at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC $(3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}$, DCM:AcOEt:MeOH, 80:20:0 \rightarrow 98:0:2) to give 26 mg ($0.039 \mathrm{mmol}, 98 \%$) of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.37$ (DCM:AcOEt, 70:30).
Melting point: $\mathrm{T}_{\mathrm{mp}}=59^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=+13.6\left(\mathrm{c}=2.09, \mathrm{CHCl}_{3}\right)$
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.30(\mathrm{dd}, J=4.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{NH}$), 7.30-7.07 (m, 16 H , $2^{\prime}-\mathrm{N} H, 15 \times H C_{\mathrm{Ar}}$), $5.41(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.05\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right)$, $5.02\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.54\left(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.50(\mathrm{~d}$, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}$), 4.32-4.21 (m, $4 \mathrm{H}, 2^{\prime}-\mathrm{H}, 2^{2}-\mathrm{H}_{a},{\left.\mathrm{Bn}-\mathrm{CH}_{2}\right), 4.12-4.06(\mathrm{~m}, 3 \mathrm{H} \text {, }}^{2}$, $2-H, \mathrm{Et}-\mathrm{CH}_{2}$), $4.02\left(\mathrm{dd}, J=17.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-H_{b}\right), 3.36\left(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{a}\right), 3.31$ (d, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}, 2{ }^{\prime \prime}-H_{b}$), 2.89 (dd, $J=12.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}, 3 '-H_{a}$), 2.65 (dd, $J=12.7$, $8.6 \mathrm{~Hz}, 1 \mathrm{H}, 3 '-H_{b}$), $2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.12(\mathrm{dqq}, J=6.7,6.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-H), 1.18$ (dd, $\left.J=7.2,7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{Et}-\mathrm{CH}_{3}\right), 0.92\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{a}\right), 0.85\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{b}\right)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.7,171.7,171.1,168.6$ ($C-1, C-1^{\prime}, C-1 ", C-1^{\prime \prime}$), 156.5 $(\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 136.7,136.5,135.6\left(3 \times C_{A r}\right), 129.0,128.8,128.6,128.4,128.2,128.2,128.0$,
 51.1 ($C-2$ '), 49.0, $48.5\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right)$, $42.5\left(\mathrm{NCH}_{3}\right)$, 41.7 ($C-2$ " $)$, $31.6(C-3), 19.3,17.6$ ($2 \times \mathrm{C}-4$), $14.3\left(\mathrm{Et}-\mathrm{CH}_{3}\right)$.
IR (ATR): $v=3289,1719,1631,1520,1452,1222,1027,734,697$.

MS (ESI ${ }^{+}$): $\mathrm{m} / \mathrm{z}=674.4[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{37} \mathrm{H}_{47} \mathrm{~N}_{5} \mathrm{O}_{7}\left(673.81 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $674.3548[\mathrm{M}+\mathrm{H}]^{+}$,
found: 674.3524 [-3.6 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of sarcosine tripeptide conjugate 40

To a solution of tripeptide $7(21 \mathrm{mg}, 0.040 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$, sarcosine ethyl ester (9.4 mg , 0.080 mmol) was added. After stirring for 40 h at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC $(3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}$, DCM:AcOEt:MeOH, 70:30:0 \rightarrow 97:0:3) to give 24 mg ($0.038 \mathrm{mmol}, 95 \%$) of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.12$ (DCM:AcOEt, 50:50).
Melting point: $\mathrm{T}_{\mathrm{mp}}=62^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=+5.7\left(\mathrm{c}=1.86, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.24(\mathrm{dd}, J=5.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{N} H), 7.35(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{N} H\right), 7.31-7.07\left(\mathrm{~m}, 15 \mathrm{H}, 15 \times \mathrm{CC}_{\mathrm{Ar}}\right), 5.49(\mathrm{dd}, J=5.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{NH}$), 5.05 (s, $\left.2 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 4.54\left(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.50\left(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right)$, 4.34-4.28 (m, $3 \mathrm{H}, 2^{\prime}-\mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}$), $4.20\left(\mathrm{dd}, J=17.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{a}\right), 4.10-4.05(\mathrm{~m}, 2 \mathrm{H}$, Et-CH2), $4.02\left(\mathrm{dd}, J=17.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-H_{b}\right), 3.91-3.87(\mathrm{~m}, 2 \mathrm{H}, 2-H), 3.34(\mathrm{~d}$, $J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, 2 \mathrm{~L}-H_{a}$), $3.30\left(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{b}\right), 2.89(\mathrm{dd}, J=12.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}$, $3^{\prime}-H_{a}$), $2.66\left(\mathrm{dd}, J=12.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}\right), 2.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 1.18(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{Et}-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.8,171.1,169.4,168.6\left(C-1, C-1 ', C-1 ", C-1^{\prime \prime}\right)$, 156.6 ($\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 136.6,136.4,135.5\left(3 \times C_{A r}\right), 129.2,128.8,128.6,128.4,128.2,128.2,128.0$, 127.8, $126.6\left(15 \times \mathrm{HC}_{A r}\right), 67.2\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 61.0\left({\left.\mathrm{Et}-\mathrm{CH}_{2}\right), 58.9(C-2 " '), 58.3(C-3 '), 51.2\left(C-2^{\prime}\right),}^{2}\right.$, 49.1, $48.6\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right), 44.5(\mathrm{C}-2), 42.6\left(\mathrm{NCH}_{3}\right), 41.6(\mathrm{C}-2 "), 14.3\left({\left.\mathrm{Et}-\mathrm{CH}_{3}\right)}\right.$.

IR (ATR): $v=3290,1717,1630,1521,1452,1217,1028,735,696$.
MS (ESI ${ }^{+}$): m/z = $632.3[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{7}\left(631.73 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,

Preparation of tert-leucine tripeptide conjugate 41
To a solution of tripeptide $4(24 \mathrm{mg}, 0.040 \mathrm{mmol})$ in CHCl_{3} (1.5 mL), L-tert-leucine methyl ester (12 mg , 0.080 mmol) was added. After stirring for 20 h at $40^{\circ} \mathrm{C}$ and for 70 h at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC ($3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}$, DCM:AcOEt, 80:20) to give $23 \mathrm{mg}(0.031 \mathrm{mmol}, 78 \%)$ of the title compound as a
colourless solid.
TLC: $R_{\mathrm{f}}=0.32$ (DCM:AcOEt, 80:20).
Melting point: $\mathrm{T}_{\mathrm{mp}}=118^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{D}{ }^{20}=-37.0\left(\mathrm{c}=1.82, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.56\left(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 2{ }^{\prime \prime}-\mathrm{NH}\right), 7.31-7.08(\mathrm{~m}, 15 \mathrm{H}$, $\left.15 \times H C_{\mathrm{Ar}}\right), 6.90\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, 2{ }^{\prime}-\mathrm{N} H\right), 5.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.05(\mathrm{~d}$, $\left.J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.00\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.81$ (dd, $J=9.0$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-H), 4.75\left(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.53(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.38\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.36-4.30\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-H\right), 4.20(\mathrm{~d}$, $\left.J=14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.00(\mathrm{dd}, J=7.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-H), 3.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.98$ (dd, $\left.J=11.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}\right), 2.86\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime \prime}-H\right), 2.45\left(\mathrm{dd}, J=11.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}\right)$, 2.13-2.01 (m, $2 \mathrm{H}, 3-H, 3 "-H), 0.91-0.81(\mathrm{~m}, 21 \mathrm{H}, 4-H, 4 "-H, 4 "-H)$. The signal attributed to the secondary amine NH proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.2,171.9,171.2,170.5\left(C-1, C-1^{\prime}, C-1^{\prime \prime}, C-1^{\prime \prime}\right), 156.5$ $(\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 137.2,136.4,136.3$ ($3 \times C_{A r}$), 129.0, 128.8, 128.6, 128.4, 128.3, 128.2, 127.9,
 $51.5\left(\mathrm{OCH}_{3}\right), 50.2\left(C-3^{\prime}\right), 50.0,48.0\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right), 34.3\left(C-3{ }^{\prime \prime}\right), 31.4(C-3, C-3 "), 27.0$ (3 x C-4"'), 19.9, 19.3, 17.8, 17.7 ($2 \times C-4,2 \times C-4 "$).
IR (ATR): $v=2962,1731,1630,1528,1448,1217,1155,1028,697$.

MS (ESI ${ }^{+}$): $\mathrm{m} / \mathrm{z}=744.5[\mathrm{M}+\mathrm{H}]^{+}$, $\mathrm{C}_{42} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{O}_{7}\left(743.95 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $766.4150[\mathrm{M}+\mathrm{Na}]^{+}$,
found: 766.4134 [-2.1 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of tert-leucine tripeptide conjugate 42

colourless solid.
TLC: $R_{\mathrm{f}}=0.31$ ($\mathrm{DCM}: \mathrm{AcOEt}, 70: 30$).
Melting point: $\mathrm{T}_{\mathrm{mp}}=156^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-5.8\left(\mathrm{c}=1.65, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71(\mathrm{dd}, J=4.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{NH}$), 7.30-7.05 (m, 15 H , $15 \times H C_{\text {Ar }}$), $6.98(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}, 2 ' \mathrm{~N} H), 5.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.05(\mathrm{~d}$, $\left.J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.01\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right)$, 4.41-4.35 (m, $\left.1 \mathrm{H}, 2^{\prime}-H\right), 4.31$ (s, $2 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}$), 4.11-4.00 (m, $3 \mathrm{H}, 2-H, 2 "-H$), 3.63 (s, 3 H , OCH_{3}), $3.05\left(\mathrm{dd}, J=11.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}\right), 2.84(\mathrm{~s}, 1 \mathrm{H}, 2 "-H), 2.48(\mathrm{dd}, J=11.8,6.9 \mathrm{~Hz}$, $1 \mathrm{H}, 3^{\prime}-H_{b}$), 2.11 (dqq, $\left.J=6.8,6.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-H\right), 0.92-0.85\left(\mathrm{~m}, 15 \mathrm{H}, 4-H, 4{ }^{\prime \prime}-H\right)$. The signal attributed to the secondary amine NH proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.9,171.3,170.8,168.4\left(C-1, C-1^{\prime}, C-1 ", C-1^{\prime \prime}\right)$), 156.6 $(\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 136.7,136.4,135.6$ ($3 \times C_{A r}$), 129.2, 128.8, 128.7, 128.5, 128.3, 128.2, 128.0, 127.8, $126.6\left(15 \times \mathrm{HC}_{A r}\right), 71.3(C-2 " '), 67.2\left({\left.\mathrm{Bn}-\mathrm{CH}_{2}\right), 60.5(C-2), 52.6(C-2), 51.5\left(\mathrm{OCH}_{3}\right) \text {, }}^{2}\right.$,
 19.3, 17.8 ($2 \times C-4$).

IR (ATR): $v=3298,1715,1631,1520,1218,1155,1028,752,698$.
MS (ESI ${ }^{+}$): $\mathrm{m} / \mathrm{z}=724.3[\mathrm{M}+\mathrm{Na}]^{+}$,
$\mathrm{C}_{39} \mathrm{H}_{51} \mathrm{~N}_{5} \mathrm{O}_{7}\left(701.87 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $724.3681[\mathrm{M}+\mathrm{Na}]^{+}$,
found: 724.3667 [-1.9 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of alanine tripeptide conjugate 43

To a solution of tripeptide $4(24 \mathrm{mg}, 0.040 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$, alanine tert-butyl ester (12 mg , 0.080 mmol) was added. After stirring for 48 h at $40^{\circ} \mathrm{C}$ and 20 h at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC $(4 \mathrm{~g}$, $1.0 \times 8.0 \mathrm{~cm}$, DCM:AcOEt, $70: 30 \rightarrow 60: 40$) to give $28 \mathrm{mg}(0.038 \mathrm{mmol}, 95 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.20$ (DCM:AcOEt, 70:30).
Melting point: $\mathrm{T}_{\mathrm{mp}}=66^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-29.6\left(\mathrm{c}=2.33, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.28\left(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 2{ }^{\prime \prime}-\mathrm{NH}\right), 7.31-7.08(\mathrm{~m}, 15 \mathrm{H}$, $15 \times H C_{\mathrm{Ar}}$) $, 6.96\left(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{N} H\right), 5.40(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.05(\mathrm{~d}$, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), $5.01\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.83-4.78\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime \prime}-H\right.$, $\left.\mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.55\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.35\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} H_{b}\right)$, 4.30-4.25 (m, 1 H, 2'-H), $4.17\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{\prime} \mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.04(\mathrm{dd}, J=8.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}$, $2-H), 3.20\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}{ }^{\prime \prime}-H\right), 3.11\left(\mathrm{dd}, J=12.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}\right), 2.48(\mathrm{dd}$, $\left.J=12.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}\right), 2.12-1.97(\mathrm{~m}, 2 \mathrm{H}, 3-H, 3 "-H), 1.39\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.24(\mathrm{~d}$, $\left.J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 3^{\prime \prime \prime}-H\right), 0.91-0.83(\mathrm{~m}, 12 \mathrm{H}, 4-H, 4 "-H)$. The signal attributed to the secondary amine NH proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.2,172.1,171.2,170.9\left(C-1, C-1^{\prime}, C-1 ", C-1{ }^{\prime \prime}\right)$), 156.5 $(\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 137.1,136.5,136.2\left(3 \times C_{A r}\right), 129.0,128.8,128.6,128.4,128.2,128.2,128.0$, 127.6, $127.3\left(15 \times \mathrm{HC}_{A r}\right), 81.4\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 67.1\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 60.3(C-2), 57.7\left(C-2{ }^{\prime \prime}\right), 54.7$
 $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 20.0,19.4,19.4,17.7,17.4$ ($C-3$ '", $2 \times C-4,2 \times C-4$ ").
IR (ATR): $v=3291,1726,1632,1530,1449,1216,1149,1028,698$.
MS (ESI ${ }^{+}$): $\mathrm{m} / \mathrm{z}=744.4[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{42} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{O}_{7}\left(743.95 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $744.4331[\mathrm{M}+\mathrm{H}]^{+}$,
found: 744.4324 [-0.9 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of alanine tripeptide conjugate 44

To a solution of tripeptide $6(22 \mathrm{mg}, 0.040 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$, alanine tert-butyl ester (12 mg , 0.080 mmol) was added. After stirring for 48 h at $40^{\circ} \mathrm{C}$ and 20 h at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC $(4 \mathrm{~g}$, $1.0 \times 8.0 \mathrm{~cm}$, DCM:AcOEt, $70: 30 \rightarrow 60: 40$) to give $21 \mathrm{mg}(0.030 \mathrm{mmol}, 75 \%)$ of the title compound as a
colourless solid.
TLC: $R_{\mathrm{f}}=0.18$ (DCM:AcOEt, 60:40).
Melting point: $\mathrm{T}_{\mathrm{mp}}=57^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-3.8\left(\mathrm{c}=1.58, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.07(\mathrm{~s}, 1 \mathrm{H}, 2 \mathrm{~N}-\mathrm{NH}), 7.31-7.06\left(\mathrm{~m}, 16 \mathrm{H}, 2{ }^{\prime}-\mathrm{NH}\right.$, $15 \times H \mathrm{C}_{\mathrm{Ar}}$), $5.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.05\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.01(\mathrm{~d}$, $\left.J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.56\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.51(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}$), 4.36-4.30 (m, 3 H, 2'-H, Bn-CH2), 4.16 (dd, $J=17.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{a}$), 4.09-4.04 (m, $2 \mathrm{H}, 2-H, 2^{\prime \prime}-H_{b}$), 3.19-3.14 (m, $2 \mathrm{H}, 2^{\prime \prime}{ }^{\prime}-H, 3^{\prime}-H_{a}$), 2.53 (dd, $J=12.0,7.4 \mathrm{~Hz}$, $1 \mathrm{H}, 3{ }^{\prime}-H_{b}$), 2.11 (dqq, $\left.J=6.7,6.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-H\right), 1.38\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.24$ (d, $\left.J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 3{ }^{\prime \prime}-H\right), 0.92\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{a}\right), 0.86\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{b}\right)$. The signal attributed to the secondary amine NH proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.9,171.4,170.8,168.4$ ($\left.C-1, C-1^{\prime}, C-1{ }^{\prime \prime}, C-1{ }^{\prime \prime}\right)$), 156.6 $(\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 136.7,136.4,135.5\left(3 \times C_{A r}\right), 129.2,128.8,128.6,128.5,128.3,128.2,128.1$, 127.8, $126.6\left(15 \times C_{A r}\right), 81.4\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 67.2\left(\mathrm{Bn}^{2} \mathrm{CH}_{2}\right), 60.4(C-2), 57.7\left(C-2{ }^{\prime \prime}\right), 52.6$ $\left(C-2^{\prime}\right), 49.1\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 49.0\left(C-3^{\prime}\right), 48.6\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 41.7(C-2 "), 31.5(C-3), 28.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 19.4, 19.2 ($\left.C-3 " ', C_{a}-4\right)$, 17.7 ($C_{b}-4$).

IR (ATR): $v=3317,1638,1519,1453,1240,1151,1043,744,697$.

MS (ESI ${ }^{+}$): m/z = $702.4[\mathrm{M}+\mathrm{H}]^{+}$, $\mathrm{C}_{39} \mathrm{H}_{51} \mathrm{~N}_{5} \mathrm{O}_{7}\left(701.87 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $702.3861[\mathrm{M}+\mathrm{H}]^{+}$,
found: $702.3855[-0.9 \mathrm{ppm}]$ ($\left.\mathrm{ESI}^{+}-\mathrm{HRMS}\right)$.

Preparation of glycine tripeptide conjugate $\mathbf{4 5}$

To a solution of tripeptide $4(24 \mathrm{mg}, 0.040 \mathrm{mmol})$ in CHCl_{3} (1.5 mL), glycine tert-butyl ester (10 mg , 0.080 mmol) was added. After stirring for 40 h at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC ($3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}$, DCM:AcOEt, $80: 20 \rightarrow 50: 50$) to give 26 mg ($0.036 \mathrm{mmol}, 90 \%$) of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.27$ (DCM:AcOEt, 60:40).
Melting point: $\mathrm{T}_{\mathrm{mp}}=84^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{D}{ }^{20}=-37.2\left(\mathrm{c}=1.89, \mathrm{CHCl}_{3}\right)$
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.14(\mathrm{~d}, ~ J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{NH}), 7.31-7.09(\mathrm{~m}, 16 \mathrm{H}$, 2'-NH, $15 \times \mathrm{CC}_{\mathrm{Ar}}$), $5.46(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.05\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right)$, $5.02\left(\mathrm{~d}, ~ J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2}-\mathrm{CH}_{\mathrm{a}} H_{b}\right.$), 4.84-4.71 (m, $2 \mathrm{H}, 2$ " $-H, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), $4.55(\mathrm{~d}$, $\left.J=17.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.34-4.28\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}-\mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.13(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}$), $4.10(\mathrm{dd}, J=9.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-H), 3.37\left(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}, 2{ }^{2}{ }^{\prime}-H_{a}\right.$), 3.27 (d, $J=17.7 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{b}$), 3.13 (dd, $J=12.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}$), 2.55 (dd, $J=12.5,7.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 3^{\prime}-H_{b}\right), 2.14-2.01\left(\mathrm{~m}, 2 \mathrm{H}, 3-H, 3^{\prime \prime}-H\right), 1.39\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right),[0.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})\left(4-H_{a}, 4-H_{b}\right.$,
$\left.\left.4 "-H_{a}, 4 "-H_{b}\right)\right]$. The signal attributed to the secondary amine NH proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.5,172.0,171.5,171.0\left(C-1, C-1 ', C-1 ", C-1{ }^{\prime \prime}\right)$), 156.5 $(\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 137.1,136.5,136.2\left(3 \times C_{A r}\right), 129.1,128.8,128.6,128.4,128.2,128.1,128.0$, 127.6, $127.3\left(15 \times \mathrm{HC}_{\text {Ar }}\right), 81.7\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 67.0\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 60.2(\mathrm{C}-2), 54.7\left(C-2{ }^{\prime \prime}\right), 52.5\left(\mathrm{C}-2^{\prime}\right)$, 51.3 (C-2'"), $50.8(C-3 '), 49.9,47.9\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right)$, 31.6, $31.1(C-3, C-3 ")$, $28.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 20.0, 19.4, 17.6, 17.3 ($2 \times C-4,2 \times C-4$).

IR (ATR): $v=3285,1630,1533,1452,1368,1223,1152,1029,697$.

MS (ESI ${ }^{+}$): m/z = 730.4 $[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{41} \mathrm{H}_{55} \mathrm{~N}_{5} \mathrm{O}_{7}\left(729.92 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $752.3994[\mathrm{M}+\mathrm{Na}]^{+}$,
found: 752.3965 [-3.8 ppm] (ESI $\left.{ }^{+}-\mathrm{HRMS}\right)$.

Preparation of glycine tripeptide conjugate 46

To a solution of tripeptide $6(22 \mathrm{mg}, 0.040 \mathrm{mmol})$ in CHCl_{3} (1.5 mL), glycine tert-butyl ester (10 mg , $0.080 \mathrm{mmol})$ was added. After stirring for 40 h at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC $(3 \mathrm{~g}, 1.0 \times 6.0 \mathrm{~cm}$, DCM:AcOEt, $\quad 70: 30 \rightarrow 40: 60$) to give 22 mg ($0.032 \mathrm{mmol}, 80 \%$) of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.22$ (DCM:AcOEt, 50:50).
Melting point: $\mathrm{T}_{\mathrm{mp}}=79^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{D}{ }^{20}=-8.0\left(\mathrm{c}=1.55, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.93(\mathrm{dd}, J=4.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{N} H), 7.57(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{N} H\right), 7.31-7.07\left(\mathrm{~m}, 15 \mathrm{H}, 15 \times \mathrm{C}_{\mathrm{Ar}}\right), 5.50(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.04(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{Bn}-\mathrm{CH}_{2}\right), 4.55\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.50\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right)$, 4.36-4.28 (m, $3 \mathrm{H}, 2^{\prime}-\mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}$), 4.14-4.10 (m, $3 \mathrm{H}, 2-\mathrm{H}, 2^{\prime \prime}-H$), 3.29 (s, $2 \mathrm{H}, 2^{2}{ }^{\prime \prime}-H$), 3.24 (dd, $J=12.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}$), 2.57 (dd, $J=12.3,6.6 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}$), 2.17 (dqq, $J=6.7$, $6.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}, 3-H), 1.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.93\left(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{a}\right), 0.86(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{b}$). The signal attributed to the secondary amine $\mathrm{N} H$ proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.3,171.7,171.1,168.6\left(C-1, C-1^{\prime}, C-1 ", C-1^{\prime \prime}\right)$), 156.7 $(\mathrm{N} C(=\mathrm{O}) \mathrm{O}), 136.7,136.5,135.5\left(3 \times C_{A r}\right), 129.2,128.8,128.6,128.5,128.2,128.0,127.8$,
 (C - $\left.3^{\prime}\right)$, 49.1, $48.6\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right)$, $41.7\left(C-2^{\prime \prime}\right), 31.4(C-3), 28.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 19.5, $17.5(2 \times C-4)$. IR (ATR): $v=3290,1714,1630,1521,1219,1151,1028,734,697$.
MS (ESI $): \mathrm{m} / \mathrm{z}=688.4[\mathrm{M}+\mathrm{H}]^{+}, \quad$ calculated: $688.3705[\mathrm{M}+\mathrm{H}]^{+}$, $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{~N}_{5} \mathrm{O}_{7}\left(687.84 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$, found: 688.3678 [-3.9 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of dipeptide 47

To a solution of N-(tert-Butoxycarbonyl)-L-leucine (1.29 g , $5.58 \mathrm{mmol})$ in abs. DMF (10 mL), HOBt ($754 \mathrm{mg}, 5.58 \mathrm{mmol}$) was
added. EDAC ($1.07 \mathrm{~g}, 5.58 \mathrm{mmol}$) was added after cooling the solution to $0{ }^{\circ} \mathrm{C}$. After stirring for 5 min at $0^{\circ} \mathrm{C} \mathrm{NEt}_{3}(0.78 \mathrm{~mL}, 5.6 \mathrm{mmol})$ was added. L-Alanine dibenzylamide ${ }^{[56]}(1.50 \mathrm{~g}$, $5.58 \mathrm{mmol})$ in abs. DMF (5 mL) was added after additional 15 min of stirring at $0^{\circ} \mathrm{C}$. After stirring for 15 h and concomitantly slowly warming to rt the reaction mixture was diluted with AcOEt (200 mL) and washed with water ($2 \times 200 \mathrm{~mL}$), $10 \mathrm{wt} \%$ aqueous citric acid solution $(200 \mathrm{~mL})$ and sat. aqueous NaHCO_{3} solution (200 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the filtrate evaporated in vacuo. The resulting dipeptide was used in the subsequent transformation without further purification.
The crude product (calculated maximal amount of substance: 5.58 mmol) was dissolved in AcOEt (30 mL) and cooled to $0^{\circ} \mathrm{C} . \mathrm{MeOH}(4.53 \mathrm{~mL}, 112 \mathrm{mmol})$ and $\mathrm{AcCl}(3.98 \mathrm{~mL}$, 55.8 mmol) were added at $0^{\circ} \mathrm{C}$. After stirring for 1 h at $0^{\circ} \mathrm{C}$ and 4 h at rt the reaction mixture was diluted with $\operatorname{AcOEt}(150 \mathrm{~mL})$ and washed with 1 m aqueous NaOH solution (150 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the filtrate evaporated in vacuo. The resultant crude product was purified by FCC ($150 \mathrm{~g}, 4.5 \times 18 \mathrm{~cm}$, DCM:MeOH, 95:5) to give $2.08 \mathrm{~g}(5.45 \mathrm{mmol}, 98 \%)$ of the title compound as a colourless oil.
TLC: $R_{\mathrm{f}}=0.22(\mathrm{DCM}: \mathrm{MeOH}, 93: 7)$.
Specific rotation: $[\alpha]_{D}{ }^{20}=-74.0\left(\mathrm{c}=2.51, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{NH}), 7.41-7.19(\mathrm{~m}, 10 \mathrm{H}$, $10 \times H C_{\text {Ar }}$), $5.04(\mathrm{dq}, J=8.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}, 2-H), 4.87\left(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.61$ (d, $\left.J=16.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.50\left(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.34(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} H_{b}\right), 3.36\left(\mathrm{dd}, J=9.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-H\right), 1.79-1.66\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-H_{a}, 4^{\prime}-H\right)$, 1.43-1.36 (m, $\left.4 \mathrm{H}, 3-H, 3 '-H_{b}\right), 0.99\left(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}, 5^{\prime}-H_{a}\right), 0.95(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}$, $5^{\prime}-H_{b}$). The signal attributed to the primary amine $\mathrm{N} H_{2}$ protons was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.2,173.4\left(C-1, C-1\right.$ '), 136.9, $136.0\left(2 \times C_{A r}\right), 129.1$, $\left.128.8,128.2,127.9,127.6,127.0\left(10 \times \mathrm{HC}_{A r}\right), 53.6(C-2)^{\prime}\right), 49.8,48.1\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right), 45.1$ (C-2), 44.1 ($\left.C-3^{\prime}\right), 24.9$ ($C-4$ '), 23.6, 21.5 ($2 \times C-5 '$), 19.2 ($C-3$).
IR (ATR): $v=2954,1637,1495,1451,1365,1220,1079,732,698$.

MS (ESI ${ }^{+}$): m/z = $382.3[\mathrm{M}+\mathrm{H}]^{+}$, $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{2}\left(381.52 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,

colourless solid.
TLC: $R_{\mathrm{f}}=0.20$ (DCM:AcOEt, 50:50).
Melting point: $\mathrm{T}_{\mathrm{mp}}=65^{\circ} \mathrm{C}$.
calculated: $382.2489[\mathrm{M}+\mathrm{H}]^{+}$,
found: 382.2489 [-0.1 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of dipeptide tripeptide conjugate 48
To a solution of tripeptide $5(22 \mathrm{mg}, 0.040 \mathrm{mmol})$ in CHCl_{3} (1.5 mL), dipeptide 47 ($23 \mathrm{mg}, 0.060 \mathrm{mmol}$) was added. After stirring for 4 d at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC $(4 \mathrm{~g}, 1.0 \times 8.0 \mathrm{~cm}$, DCM:AcOEt, $70: 30 \rightarrow 50: 50$) to give 28 mg ($0.030 \mathrm{mmol}, 75 \%$) of the title compound as a

Specific rotation: $[\alpha]_{D}{ }^{20}=-38.3\left(\mathrm{c}=2.10, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.09(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, 2 " \mathrm{~N}-\mathrm{NH}), 7.98(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.2^{\prime}-\mathrm{N} H\right), 7.49(\mathrm{dd}, J=4.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-\mathrm{N} H), 7.34-7.02\left(\mathrm{~m}, 25 \mathrm{H}, 25 \times \mathrm{HC}_{\mathrm{Ar}}\right), 5.80(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{NH}), 5.06\left(\mathrm{dd}, J=8.6,6.9 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime \prime}-H\right), 5.03(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.96\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.78\left(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right)$, 4.58 (ddd, $\left.J=10.2,7.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-H\right), 4.54\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$), 4.52 (d, $J=14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), $4.44\left(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.38(\mathrm{~d}, J=16.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}$), 4.28 (s, $2 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}$), 4.24 (dd, $J=9.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-H$), 4.13 (dd, $\left.J=17.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{a}\right), 4.12\left(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 3.91(\mathrm{dd}, J=17.3$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{b}$), 3.14-3.10 (m, $2 \mathrm{H}, 2^{\prime \prime}-H, 3^{\prime}-H_{a}$), 2.64 (dd, $J=11.8,10.2 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}$), 2.17 (dqq, $J=6.7,6.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-H), 1.62$ (ddqq, $J=7.9,6.6,6.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}, 4{ }^{\prime \prime}-H$), 1.49 (ddd, $J=14.0,7.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime \prime}-H_{a}$), 1.38 (ddd, $J=14.0,8.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}, 3{ }^{\prime \prime}-H_{b}$), $1.26(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 3 " \mathrm{"}-H),[0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}$, $\left.J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})\left(4-H_{a}, 4-H_{b}, 5{ }^{\prime \prime}-H_{a}, 5^{\prime \prime}-H_{b}\right)\right]$. The signal attributed to the secondary amine NH proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.8,174.7,172.9,170.2,168.5\left(C-1, C-1 ', C-1 ", C-1{ }^{\prime \prime}\right.$ ', $C-1 " "), 156.7(\mathrm{~N} C(=\mathrm{O}) \mathrm{O}), 136.6,136.5,135.6,135.4$ ($5 \times C_{A r}$), 129.2, 129.2, 128.9, 128.8, $128.6,128.4,128.2,128.2,128.1,128.0,127.8,127.7,127.4,126.7\left(25 \times H_{A r}\right), 67.0$ $\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 62.0\left(\mathrm{C}-2{ }^{\prime \prime}\right), 60.5(C-2), 54.8(C-2 '), 50.1\left(\mathrm{Bn}^{\prime} \mathrm{CH}_{2}\right), 49.4$ (C-3'), 49.1, 48.6, 48.2
 19.8, 18.8, 17.9 ($\left.C-3^{\prime \prime "}, 2 \times C-4,2 \times C-5 " '\right)$.

IR (ATR): $v=3292,2956,1633,1496,1451,1218,1028,732,697$.
MS $\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}=938.5[\mathrm{M}+\mathrm{H}]^{+}, \quad$ calculated: $960.4994[\mathrm{M}+\mathrm{Na}]^{+}$,
$\mathrm{C}_{55} \mathrm{H}_{67} \mathrm{~N}_{7} \mathrm{O}_{7}\left(938.18 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$, found: 960.4992 [-0.2 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of tripeptide 49
To a solution of N-(tert-Butoxycarbonyl)-L-valine (256 mg , $1.18 \mathrm{mmol})$ in abs. DMF (5 mL), HOBt ($159 \mathrm{mg}, 1.18 \mathrm{mmol}$) was added. EDAC ($226 \mathrm{mg}, 1.18 \mathrm{mmol}$) was added after cooling the solution to $0{ }^{\circ} \mathrm{C}$. After stirring for 5 min at $0^{\circ} \mathrm{C}$ $\mathrm{NEt}_{3}(0.17 \mathrm{~mL}, 1.2 \mathrm{mmol})$ was added. Dipeptide 47 (450 mg , 1.18 mmol) in abs. DMF (3 mL) was added after additional 15 min of stirring at $0^{\circ} \mathrm{C}$. After stirring for 15 h and concomitantly slowly warming to rt the reaction mixture was diluted with $\mathrm{AcOEt}(150 \mathrm{~mL})$ and washed with water ($2 \times 100 \mathrm{~mL}$), $10 \mathrm{wt} \%$ aqueous citric acid solution (200 mL) and sat. aqueous NaHCO_{3} solution (200 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the filtrate evaporated in vacuo. The resulting tripeptide was used in the subsequent transformation without further purification.
AcOEt (6 mL) was added to the crude product (calculated maximal amount of substance: $1.18 \mathrm{mmol})$ and the resulting suspension was cooled to $0^{\circ} \mathrm{C} . \mathrm{MeOH}(0.955 \mathrm{~mL}, 23.6 \mathrm{mmol})$ and $\mathrm{AcCl}(0.842 \mathrm{~mL}, 11.8 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$. After stirring for 1 h at $0^{\circ} \mathrm{C}$ and 3 h at rt the reaction mixture was diluted with $\mathrm{AcOEt}(150 \mathrm{~mL})$ and washed with 1 m aqueous

NaOH solution (100 mL). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the filtrate evaporated in vacuo. The resultant crude product was purified by FCC (100 g , $4.5 \times 12 \mathrm{~cm}, \mathrm{DCM}: \mathrm{MeOH}, 95: 5 \rightarrow 90: 10)$ to give $360 \mathrm{mg}(0.749 \mathrm{mmol}, 63 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.22$ (DCM:MeOH, 93:7).
Melting point: $\mathrm{T}_{\mathrm{mp}}=157^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-83.3\left(\mathrm{c}=3.12, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.65\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{N} H\right), 7.30-7.06(\mathrm{~m}, 11 \mathrm{H}, 2-\mathrm{N} H$, $10 \times \mathrm{C}_{\mathrm{Ar}}$), 4.89 (dq, $\left.J=7.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}, 2-H\right), 4.68\left(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right.$), 4.47-4.38 (m, 3 H, 2'-H, Bn-CH2), 4.31 (d, $J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{\mathrm{a}} H_{b}$), $3.21(\mathrm{~d}, J=3.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 2^{\prime \prime}-H\right), 2.27-2.20\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime \prime}-H\right), 1.28-1.26\left(\mathrm{~m}, 3 \mathrm{H}, 3^{\prime}-H, 4^{\prime}-H\right), 1.27(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, $3-H), 0.91\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, 4^{\prime \prime}-H_{a}\right), 0.88\left(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}, 5^{\prime}-H_{a}\right), 0.85(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $\left.3 \mathrm{H}, 5^{\prime}-H_{b}\right), 0.75\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, 4{ }^{\prime \prime}-H_{b}\right)$. The signal attributed to the primary amine NH_{2} protons was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.6,173.0,171.5\left(C-1, C-1^{\prime}, C-1^{\prime \prime}\right), 136.7,135.9$ ($2 \times C_{A r}$), 129.1, 128.8, 128.1, 128.0, 127.6, 126.9 ($10 \times H_{A r}$), $60.2(C-2 "), 51.4$ (C-2'), 49.7, 48.1 ($2 \times \mathrm{Bn}-\mathrm{CH}_{2}$), 45.6 (C-2), 41.3 (C-3'), 30.8 (C-3'), 24.9 (C-4'), 23.2 ($\left.C_{a}-5^{\prime}\right), 21.9$ ($\left.C_{b}-5^{\prime}\right)$, 19.8 ($C_{a}-4$ "), 19.1 ($C-3$), 16.2 ($C_{b}-4$ ").

IR (ATR): $v=3267,1637,1540,1428,1221,1078,753,719,695$.
MS (ESI ${ }^{+}$): m/z = $481.3[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{3}\left(480.65 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $481.3173[\mathrm{M}+\mathrm{H}]^{+}$,
found: 481.3171 [-0.5 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of tripeptide tripeptide conjugate

50
To a solution of tripeptide 5 (33 mg , 0.060 mmol) in $\mathrm{CHCl}_{3}(2.0 \mathrm{~mL})$, tripeptide 49 ($43 \mathrm{mg}, 0.090 \mathrm{mmol}$) was added. After stirring for 4 d at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC ($4 \mathrm{~g}, 1.0 \times 8.0 \mathrm{~cm}$, DCM:AcOEt, $50: 50$ $\rightarrow 30: 70)$ to give $51 \mathrm{mg}(0.049 \mathrm{mmol}, 82 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.20$ (DCM:AcOEt, 30:70).
Melting point: $\mathrm{T}_{\mathrm{mp}}=163^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-29.4\left(\mathrm{c}=2.52, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.84-7.81\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{NH}, 2^{\prime \prime}-\mathrm{NH}\right), 7.75(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}$,
 (m, $2 \mathrm{H}, 2^{2} " \mathrm{"}-\mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), $4.95\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H},{\left.\mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.70-4.59\left(\mathrm{~m}, 3 \mathrm{H}, 2^{2}-H \text {, }\right.}^{2}\right.$ $2 " '-H, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), 4.48-4.35 (m, $4 \mathrm{H}, 2 \times \mathrm{Bn}-\mathrm{CH}_{2}$), 4.31-4.23 (m, $4 \mathrm{H}, 2 "-\mathrm{H}_{a}, \mathrm{Bn}^{2} \mathrm{CH}_{\mathrm{a}} H_{b}$, $\mathrm{Bn}^{-} \mathrm{CH}_{2}$), $4.07(\mathrm{dd}, J=8.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}, 2-H), 3.75\left(\mathrm{dd}, J=17.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H_{b}\right), 2.98$ (dd, $\left.J=11.8,3.4 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{a}\right), 2.82\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime \prime}-H\right), 2.72(\mathrm{dd}, J=11.8,8.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 3^{\prime}-H_{b}\right), 2.02(\mathrm{dqq}, J=6.7,6.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-H), 1.83(\mathrm{dqq}, J=6.7,6.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}$,

3"'-H), 1.67-1.44 (m, $3 \mathrm{H}, 3^{\prime \prime \prime}$ "-H, 4""-H), 1.25 (d, J = $6.7 \mathrm{~Hz}, 3 \mathrm{H}, 3$ """-H), 0.88-0.76 (m, 18 H , $4-H, 4 "-H, 5 " '-H$). The signal attributed to the secondary amine $\mathrm{N} H$ proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.9,173.3,173.0,172.3170 .5,168.9\left(C-1, C-1{ }^{\prime}, C-1{ }^{\prime \prime}\right.$, $C-1 " 1, C-1 " ", C-1$ """), $156.5(\mathrm{~N} C(=\mathrm{O}) \mathrm{O}), 136.5,136.4,136.3,135.7,135.4$ ($5 \times C_{A r}$), 129.2, 129.1, 128.9, 128.8, 128.6, 128.2, 128.2, 128.1, 128.0, 127.8, 127.7, 127.0, 126.6 ($25 \times \mathrm{HC}_{A r}$), 70.2 (C-2'"), $67.0\left(\mathrm{Bn}^{-C H_{2}}\right), 60.7$ (C-2), 53.5 (C-2'), 51.5 (C-2""), 50.4 (C-3'), 50.0, 49.1, 48.5, 48.2 (4 x Bn-CH2), 45.6 (C-2"""), 41.6 (C-3'"'), 41.4 (C-2"), 31.7 (C-3"'), 31.2 (C-3), 25.0 (C-4""), 23.2, 21.5, 19.6, 19.4, 19.2, 19.0, 18.3 (C-3""', $2 \times$ x-4, $2 \times C-4$ "", $2 \times C-5 " ")$.
IR (ATR): $v=3271,2958,1636,1537,1452,1225,1028,732,697$.
MS (ESI ${ }^{+}$: $\mathrm{m} / \mathrm{z}=1037.6[\mathrm{M}+\mathrm{H}]^{+}, \quad$ calculated: $1037.5859[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{60} \mathrm{H}_{76} \mathrm{~N}_{8} \mathrm{O}_{8}\left(1037.32 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
found: 1037.5860 [+0.1 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of tripeptide 51

To a solution of tripeptide $6(22 \mathrm{mg}, 0.040 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL}), \mathrm{MeNH}_{2}(2 \mathrm{~m}$ in THF, 0.12 mL , 0.24 mmol) was added. After stirring for 20 h at $40^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC ($4 \mathrm{~g}, 1.0 \times 8.0 \mathrm{~cm}$,
DCM:MeOH, $96: 4 \rightarrow 94: 6$) to give $21 \mathrm{mg}(0.036 \mathrm{mmol}, 90 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.14$ ($\mathrm{DCM}: \mathrm{MeOH}, 93: 7$).
Melting point: $\mathrm{T}_{\mathrm{mp}}=98^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=+7.3\left(\mathrm{c}=1.25, \mathrm{CHCl}_{3}\right)$
 $15 \times H C_{\mathrm{Ar}}$), $5.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{N} H), 5.03\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.99(\mathrm{~d}$, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}$), 4.57-4.46 (m, $3 \mathrm{H}, 2^{\prime}-\mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}$), 4.31 (s, $2 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}$), 4.17-4.03 (m, $3 \mathrm{H}, 2-H, 2 "-H$), 3.07 (dd, $J=11.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}, 3{ }^{\prime}-H_{a}$), 2.67 (dd, $J=11.9$, $7.8 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}$), $2.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.06(\mathrm{dqq}, J=6.7,6.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}, 3-H), 0.90(\mathrm{~d}$, $\left.J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{a}\right), 0.85\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, 4-H_{b}\right)$. The signal attributed to the secondary amine NH proton was not observed in the ${ }^{1} \mathrm{H}$ NMR.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.6,171.0,168.7\left(C-1, C-1^{\prime}, C-1 "\right), 156.7(\mathrm{NC}(=\mathrm{O}) \mathrm{O})$, 136.5, 136.4, $135.4\left(3 \times C_{A r}\right), 129.2,128.8,128.6,128.4,128.2,128.2,128.1,127.8,126.6$
 41.7 (C-2"), $36.1\left(\mathrm{NCH}_{3}\right), 31.4(C-3), 19.4,17.8$ (2 x C-4).

IR (ATR): $v=3284,1710,1629,1526,1244,1096,1026,739,697$.
MS (ESI ${ }^{+}$): m/z = $588.3[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{5}\left(587.72 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $588.3181[\mathrm{M}+\mathrm{H}]^{+}$,
found: 588.3181 [+0.1 ppm] (ESI $\left.{ }^{+}-\mathrm{HRMS}\right)$.

Preparation of tripeptide tripeptide conjugate 52
From isolated and purified tripeptide 51: To a solution of tripeptide $5(19 \mathrm{mg}, \quad 0.035 \mathrm{mmol})$ in CHCl_{3}
$(1.5 \mathrm{~mL})$, tripeptide $51(31 \mathrm{mg}, 0.053 \mathrm{mmol})$ was added. After stirring for 2 d at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC (4 g , $1.0 \times 8.0 \mathrm{~cm}$, DCM:AcOEt $40: 60 \rightarrow 20: 80$) to give $38 \mathrm{mg}(0.033 \mathrm{mmol}, 95 \%)$ of the title compound as a colourless solid.
One-pot protocol without isolation and purification of tripeptide 51: To a solution of tripeptide $6(22 \mathrm{mg}, 0.040 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL}), \mathrm{MeNH}_{2}(2 \mathrm{M}$ in THF, 0.12 mL , 0.24 mmol) was added. After stirring for 20 h at $40^{\circ} \mathrm{C}$ the solvent and any excess of MeNH_{2} were evaporated in vacuo. The remaining colourless solid was dissolved in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL})$ and tripeptide $5(15 \mathrm{mg}, 0.027 \mathrm{mmol})$ was added. After stirring for 2 d at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC ($4 \mathrm{~g}, 1.0 \times 8.0 \mathrm{~cm}$, DCM:AcOEt, $40: 60 \rightarrow 20: 80)$ to give $28 \mathrm{mg}(0.024 \mathrm{mmol}, 91 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.09$ (DCM:AcOEt, 40:60).
Melting point: $\mathrm{T}_{\mathrm{mp}}=77^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-11.4\left(\mathrm{c}=2.59, \mathrm{CHCl}_{3}\right)$

$31 \mathrm{H}, 2$ '-NH, $30 \times \mathrm{CC}_{\mathrm{Ar}}$), $5.78\left(\mathrm{~s}, 1 \mathrm{H}, 2{ }^{\prime \prime}-\mathrm{N} H\right), 5.65(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{NH} H), 5.15-5.05(\mathrm{~m}$, $4 \mathrm{H}, 2 \times \mathrm{Bn}-\mathrm{CH}_{2}$), 4.97 (dd, $J=8.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}, 2{ }^{2} " \mathrm{"}-H$) , 4.83 (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), 4.70-4.51 (m, $6 \mathrm{H}, 2^{2}-H, 2^{\prime "} \mathrm{H}-H, 2 \times \mathrm{Bn}-\mathrm{CH}_{2}$), 4.40-4.33 (m, $3 \mathrm{H},{\mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b} \text {, }}^{2}$ Bn- CH_{2}), 4.28-4.25 (m, $2 \mathrm{H}, 2-\mathrm{H}, 2^{\prime \prime}-H_{a}$), $4.01\left(\mathrm{dd}, J=17.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-H_{b}\right), 3.95-3.87$ (m, $2 \mathrm{H}, 2^{\prime \prime}-H$), 2.82-2.75 (m, $\left.3 \mathrm{H}, 3^{\prime}-H_{a}, 3^{\prime \prime \prime}-H\right), 2.60\left(\mathrm{dd}, J=12.3,8.1 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-H_{b}\right), 2.32$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}$), 2.20-2.04 (m, $2 \mathrm{H}, 3-H, 3^{\prime "} "-H$), 1.04-0.88 (m, $12 \mathrm{H}, 4-H, 4$ """-H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.7,172.5,170.7,169.3,168.5(C-1, C-1 ', C-1 ", C-1 " '$, $C-1 " ", C-1 " "), 156.6,156.5(2 \times \mathrm{N} C(=\mathrm{O}) \mathrm{O}), 136.8,136.5,136.5,136.5,136.0,135.3$ ($6 \mathrm{x} C_{A r}$), 129.2, 129.1, 128.8, 128.8, 128.6, 128.4, 128.3, 128.2, 128.2, 128.1, 128.1, 128.1, 127.8, 127.7, 127.3, $126.6\left(30 \times\right.$ HC $\left._{A r}\right)$, 67.1, $67.0\left(2 \times \mathrm{Bn}^{2} \mathrm{CH}_{2}\right), 60.6(C-3 '), 60.3(C-2), 59.1$ (C-3""), 54.5 (C-2""'), 51.1, 51.0 ($C-2$ ', $C-2 " "), 50.3,49.1,48.6,48.3$ ($4 \times \mathrm{Bn}-\mathrm{CH}_{2}$), 44.4 (C-2"'), 41.6 ($C-2 "), 41.1\left(\mathrm{NCH}_{3}\right), 31.8,31.5(C-3, C-3 " ")$, 19.7, 19.5, 18.1, 17.9 (2 x $C-4$, $2 \times C-4 "$ " $)$.
IR (ATR): $v=3296,2961,1635,1496,1452,1217,1028,734,697$.
MS $\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}=1144.5[\mathrm{M}+\mathrm{H}]^{+}, \quad$ calculated: $1144.5866[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{65} \mathrm{H}_{77} \mathrm{~N}_{9} \mathrm{O}_{10}\left(1144.38 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$, found: 1144.5858 [+2.5 ppm] (ESI ${ }^{+}-\mathrm{HRMS}^{2}$).

Preparation of tripeptide tripeptide conjugate 53

To a solution of tripeptide $6(42 \mathrm{mg}, 0.075 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(1.5 \mathrm{~mL}), \mathrm{MeNH}_{2}(2 \mathrm{~m}$ in THF, 0.13 mL , 0.25 mmol) was added. After stirring for 24 h at $40^{\circ} \mathrm{C}$ and 2 d at $65^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was purified by FCC (3 g , $1.0 \times 8.0 \mathrm{~cm}$, DCM:AcOEt, 70:30 $\rightarrow 40: 60$) to give 26 mg ($0.023 \mathrm{mmol}, 92 \%$) of the title compound as a colourless solid.

TLC: $R_{\mathrm{f}}=0.14$ (DCM:AcOEt, 50:50).
Melting point: $\mathrm{T}_{\mathrm{mp}}=86^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=+6.0\left(\mathrm{c}=1.85, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.79(\mathrm{~s}, 2 \mathrm{H}, 2 \times 2 \mathrm{H}-\mathrm{NH}), 7.61(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}$, 2×2 ' NH), $7.28-7.02\left(\mathrm{~m}, 30 \mathrm{H}, 30 \times H \mathrm{C}_{\mathrm{Ar}}\right), 5.59(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times 2-\mathrm{NH}), 5.01(\mathrm{~d}$, $\left.J=12.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.95\left(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.62(\mathrm{~d}$, $J=14.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), 4.55 (ddd, $J=7.4,6.8,6.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times 2 \mathrm{H}-\mathrm{H}$), $4.38(\mathrm{~d}$, $J=14.8 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}$), 4.35-4.24 (m, $6 \mathrm{H}, 2 \times 2 \mathrm{C}-\mathrm{H}_{a}, 2 \times \mathrm{Bn}-\mathrm{CH}_{2}$), 4.04-3.98(m, $\left.4 \mathrm{H}, 2 \times 2-H, 2 \times 2{ }^{\prime}-H_{b}\right), 2.75\left(\mathrm{dd}, J=12.6,7.4 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times 3{ }^{\prime}-H_{a}\right), 2.64(\mathrm{dd}, J=12.6,6.8 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 2 \times 3{ }^{\prime}-H_{b}\right), 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.03(\mathrm{dqq}, J=6.8,6.7,6.7 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times 3-H), 0.90(\mathrm{~d}$, $\left.J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times 4-H_{a}\right), 0.86\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, 2 \times 4-H_{b}\right)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.3,170.8,168.9(2 \times C-1,2 \times C-1 ', 2 \times C-1 "), 156.6$ ($2 \times \mathrm{N} C(=\mathrm{O}) \mathrm{O}), 136.5,136.5,135.3$ ($6 \times C_{\text {Ar }}$), 129.2, 128.8, 128.6, 128.4, 128.2, 128.1, 128.1, 127.8, $126.7\left(30 \times H_{A r}\right), 67.1\left(2 \times B n-C H_{2}\right), 60.5(2 \times C-2), 59.5(2 \times C-3 '), 51.1\left(2 \times C-2^{\prime}\right)$, 49.1, $48.5\left(4 \times \mathrm{Bn}-\mathrm{CH}_{2}\right), 41.6(2 \times C-2 "), 41.0\left(\mathrm{NCH}_{3}\right), 31.2(2 \times C-3), 19.5,18.3$ ($4 \times C-4$).

IR (ATR): $v=3288,2961,1636,1528,1452,1218,1026,734,697$.
MS $\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}=1166.5\left[\mathrm{M}+\mathrm{Na}^{+}, \quad\right.$ calculated: $1144.5866[\mathrm{M}+\mathrm{H}]^{+}$, $\mathrm{C}_{65} \mathrm{H}_{77} \mathrm{~N}_{9} \mathrm{O}_{10}\left(1144.38 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$, found: 1144.5863 [-0.3 ppm] (ESI $-\mathrm{HRMS}^{+}$).

Preparation of lysine derivative S1

To a solution of N^{α}-(tert-Butoxycarbonyl)- N^{ε}-carbobenzoxy-Llysine ($500 \mathrm{mg}, 1.31 \mathrm{mmol}$) in abs. DMF (12 mL), HOBt ($177 \mathrm{mg}, 1.31 \mathrm{mmol}$) was added. EDAC ($251 \mathrm{mg}, 1.31 \mathrm{mmol}$) was added after cooling the solution to $0^{\circ} \mathrm{C}$. After stirring for 5 min at $0^{\circ} \mathrm{C} \mathrm{NEt}_{3}(0.36 \mathrm{~mL}, 2.6 \mathrm{mmol})$ was added. Dibenzyl amine ($0.25 \mathrm{~mL}, 1.3 \mathrm{mmol}$) was added after additional 15 min of stirring at $0{ }^{\circ} \mathrm{C}$. After stirring for 15 h and concomitantly slowly warming to rt the reaction mixture was diluted with AcOEt (200 mL) and washed with water (200 mL), $10 \mathrm{wt} \%$ aqueous citric acid solution $(200 \mathrm{~mL})$ and sat. aqueous NaHCO_{3} solution $(200 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent of the filtrate evaporated in vacuo. The resultant crude product was purified by FCC ($50 \mathrm{~g}, 4.5 \times 7.0 \mathrm{~cm}$, PE:AcOEt, $85: 15 \rightarrow 60: 40$) to give $682 \mathrm{mg}(1.22 \mathrm{mmol}, 94 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.29$ (PE:AcOEt, 60:40).
Melting point: $\mathrm{T}_{\mathrm{mp}}=68^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-24.5\left(\mathrm{c}=2.28, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.28-7.09\left(\mathrm{~m}, 15 \mathrm{H}, 15 \times \mathrm{HC}_{\mathrm{Ar}}\right), 5.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, 2-NH), $5.00\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 4.74\left(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{NH}\right.$), 4.63-4.56 (m, $2 \mathrm{H}, 2-H, \mathrm{Bn}^{2} \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}$), 4.51-4.43 (m, $3 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}, \mathrm{Bn}-\mathrm{CH}_{2}$), 3.02 (ddd, $\left.J=6.2,6.1,5.6 \mathrm{~Hz}, 2 \mathrm{H}, 6-H\right), 1.57-1.48$ (m, $2 \mathrm{H}, 3-\mathrm{H}), 1.35$ (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, 1.31-1.17 (m, $\left.4 \mathrm{H}, 4-\mathrm{H}, 5-\mathrm{H}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.4(C-1), 156.5,155.8(2 \times \mathrm{NC}(=\mathrm{O}) \mathrm{O}), 136.9,136.8$, $136.3\left(3 \times C_{A r}\right), 129.1,128.8,128.6,128.3,128.2,128.0,127.7,127.0\left(15 \times{ }^{2} C_{A r}\right), 79.9$
$\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 66.7\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 50.2(C-2), 50.1,48.6\left(2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right), 40.8(C-6), 33.2(C-3), 29.3$ (C-5), $28.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 22.5(\mathrm{C}-4)$.
IR (ATR): $v=3332,1696,1645,1527,1429,1253,1168,1026,696$.
MS (ESI ${ }^{+}$): $\mathrm{m} / \mathrm{z}=560.3[\mathrm{M}+\mathrm{H}]^{+}$,
$\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{5}\left(559.71 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$,
calculated: $582.2938[\mathrm{M}+\mathrm{Na}]^{+}$,
found: 582.2933 [-1.0 ppm] (ESI ${ }^{+}$-HRMS).

Preparation of tripeptide $\mathbf{S 2}$

purified by FCC ($18 \mathrm{~g}, 2.5 \times 7.0 \mathrm{~cm}$, PE:AcOEt, $75: 25$) to give $162 \mathrm{mg}(0.271 \mathrm{mmol}, 90 \%)$ of the title compound as a colourless solid.
TLC: $R_{\mathrm{f}}=0.42$ (PE:AcOEt, 60:40).
Melting point: $\mathrm{T}_{\mathrm{mp}}=62^{\circ} \mathrm{C}$.
Specific rotation: $[\alpha]_{\mathrm{D}}{ }^{20}=-23.2\left(\mathrm{c}=2.03, \mathrm{CHCl}_{3}\right)$
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.31\left(\mathrm{~s}, 1 \mathrm{H}, 2{ }^{2}-\mathrm{NH}\right), 7.29-7.08(\mathrm{~m}, 16 \mathrm{H}, 2 "-\mathrm{NH}$, $15 \times H \mathrm{C}_{\mathrm{Ar}}$), $6.44\left(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 3{ }^{\prime}-H_{a}\right), 5.39-5.37\left(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{NH}, 3 '-H_{b}\right), 5.06$ (d, $\left.J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 5.01\left(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.95(\mathrm{dd}, J=8.6$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}, 2 "-H), 4.90\left(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{\left.-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.60(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H} \text {, }}\right.$ $\left.\mathrm{Bn}-\mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}\right), 4.30\left(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right), 4.09-4.06\left(\mathrm{~m}, 2 \mathrm{H}, 2-H, \mathrm{Bn}-\mathrm{CH}_{\mathrm{a}} H_{b}\right)$, 2.12-2.03 (m, 2 H, 3-H ,3"-H), 0.91-0.84 (m, 12 H, 4-H, 4"-H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.8(C-1 "), 170.5(C-1), 163.5(C-1), 156.5(\mathrm{NC}(=\mathrm{O}) \mathrm{O})$, 136.7, 136.4, 135.7 ($3 \times C_{A r}$), 133.8 ($\left.C-2^{\prime}\right), 129.1,128.8,128.6,128.4,128.2,128.1,127.7$, $127.1\left(15 \mathrm{x} \mathrm{HC}_{A r}\right), 102.8(C-3 '), 67.1\left({\left.\mathrm{Bn}-\mathrm{CH}_{2}\right), 60.9(C-2), 54.5(C-2 "), 50.0,48.0}^{\prime}\right.$ ($2 \times \mathrm{Bn}-\mathrm{CH}_{2}$), 32.0, 31.5 ($C-3, C-3$ "), 19.8, 19.3, 17.7, 17.3 ($2 \times C-4,2 \times C-4$ ").
IR (ATR): $v=3301,1720,1627,1503,1448,1215,1032,749,699$.
MS $\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}=621.3[\mathrm{M}+\mathrm{Na}]^{+}, \quad$ calculated: $621.3047[\mathrm{M}+\mathrm{Na}]^{+}$, $\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{5}\left(598.74 \mathrm{~g}(\mathrm{~mol})^{-1}\right)$, found: 621.3053 [-0.9 ppm] (ESI ${ }^{+}$HRMS).

3. Mechanistic control experiment

In agreement with the preparation of tripeptide 15 from aziridine containing tripeptide 4, didehydroalanine derivative $\mathbf{S} \mathbf{2}$ was subjected to identical reaction conditions:

Attempted preparation of tripeptide $\mathbf{1 5}$ from didehydroalanine derivative $\mathbf{S 2}$
To a solution of didehydroalanine containing tripeptide $\mathbf{S 2}(15 \mathrm{mg}, 0.025 \mathrm{mmol})$ in $\mathbf{C H C l}_{3}$ $(1.5 \mathrm{~mL})$, diethylamine ($16 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$) was added. After stirring for 20 h at $40^{\circ} \mathrm{C}$ the solvent was evaporated in vacuo. The resultant crude product was filtered through silica (2 g , $1.0 \times 4.0 \mathrm{~cm}, \mathrm{DCM}: \mathrm{MeOH}, 95: 5)$ and the solvent of the filtrate evaporated in vacuo to give 13 mg of a colourless solid.
Based on rigorous TLC, MS and NMR analysis of the isolated material it was unambiguously proven that all starting material $\mathbf{S 2}$ was consumed while no indication for any formation of the expected product 15 was found. Furtheremore, the NMR and MS analysis strongly suggested that the isolated material consisted of a mixture of compounds $\mathbf{S 3}$ and $\mathbf{S 4}$. Since it was not possible to fully purify and to separate $\mathbf{S 3}$ and $\mathbf{S 4}$ the identity of $\mathbf{S 3}$ and $\mathbf{S 4}$ was not unambiguously proven. Nevertheless, it was shown, that the reaction of $\mathbf{S} \mathbf{2}$ with diethylamine does not yield the ring-opening product $\mathbf{1 5}$ or any isomer, under the aziridine ring opening conditions.

4. NMR spectra of unknown compounds and key building block 9

${ }^{1} \mathrm{H}$ NMR spectrum of $9\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

| 200 | 180 | 160 | 140 | 120
 chemical shift $[\mathrm{ppm}]$ | 60 | 40 | 20 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^0]
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N

200 \begin{tabular}{lllllllll}

180 \& 160 \& 140 \& | 120 |
| :---: |
| chemical shift $[\mathrm{ppm}]$ | \& 60 \& 40 \& 20 \& 0

\end{tabular}

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of 4 ($400 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO)

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4}\left(101 \mathrm{MHz}, \mathrm{D}_{6}\right.$-DMSO)

${ }^{1} \mathrm{H}$ NMR spectrum of 5 ($400 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO)

${ }^{13} \mathrm{C}$ NMR spectrum of 5 ($101 \mathrm{MHz}, \mathrm{D}_{6}$-DMSO)

${ }^{1} \mathrm{H}$ NMR spectrum of $6\left(400 \mathrm{MHz}, \mathrm{D}_{6}\right.$-DMSO)

${ }^{13} \mathrm{C}$ NMR spectrum of $6\left(101 \mathrm{MHz}, \mathrm{D}_{6}\right.$-DMSO)

${ }^{1} \mathrm{H}$ NMR spectrum of $7\left(400 \mathrm{MHz}, \mathrm{D}_{6}\right.$-DMSO $)$

${ }^{13} \mathrm{C}$ NMR spectrum of $7\left(101 \mathrm{MHz}, \mathrm{D}_{6}\right.$-DMSO)

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 5}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 5}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 6}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200	180	160	140	120 chemical shift100 $[\mathrm{ppm}]$	60	40	20	0

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 8}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200	180	160	140	120 chemical shift100 $[\mathrm{ppm}]$	60	40	20	0

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 8}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$200 \quad 180 \quad 160 \quad 140 \quad$| 120 |
| :---: |
| chemical shift100
 $[\mathrm{ppm}]$ | | 80 | 40 |
| :--- | :--- | 20 | 0 |
| :--- |

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 9}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 0}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200	180	160	140	120 chemical shift100 $[\mathrm{ppm}]$	60	40	20	0

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 0}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $21\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$200 \quad 180 \quad 160 \quad 140 \quad$| 120 |
| :---: |
| chemical shift100
 $[\mathrm{ppm}]$ | | 80 | 40 |
| :--- | :--- | 20 | 0 |
| :--- |

${ }^{13} \mathrm{C}$ NMR spectrum of $21\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $22\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 3}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 3}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 4}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $24\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 5}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $25\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $26\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $26\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $27\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200	180	160	140	120 chemical shift80 $[\mathrm{pm}]$	60	40	20	0

${ }^{13} \mathrm{C}$ NMR spectrum of $27\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 8}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $29\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200	180	160	140	120 chemical shift $[\mathrm{ppm}]$	60	40	20	0

${ }^{13} \mathrm{C}$ NMR spectrum of $29\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 0}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200	180	160	140	120 chemical shift $[\mathrm{ppm}]$	60	40	20	0

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 0}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 1}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 1}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 2}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 2}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 3}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 3}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 4}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 4}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 5}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200	180	160	140	120 chemical shift $[\mathrm{ppm}]$	60	40	20	0

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 5}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 6}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 6}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 7}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	200	180	160	140	120 chemical shift80 $[\mathrm{pm}]$	60	40	20

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 7}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 8}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$200 \quad 180 \quad 160 \quad 140 \quad$| 120 |
| :---: |
| chemical shift100
 $[\mathrm{ppm}]$ | | 80 | 40 |
| :--- | :--- | 20 | 0 |
| :--- |

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 8}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 9}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200	180	160	140	120 chemical shift80 $[\mathrm{pm}]$	60	40	20	0

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 0}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

200	180	160	140	120 chemical shift80 $[\mathrm{pm}]$	60	40	20	0

${ }^{1} \mathrm{H}$ NMR spectrum of $41\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 1}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 2}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 2}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 3}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^1]
${ }^{1} \mathrm{H}$ NMR spectrum of $44\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 4}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 5}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 5}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4 6}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $46\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $47\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 7}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $48\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $49\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

| 200 | 180 | 160 | 140 | 120
 chemical shift
 $[\mathrm{ppm}]$ | 60 | 40 | 20 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 0}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

| 200 | 180 | 160 | 140 | 120
 chemical shift
 $[\mathrm{ppm}]$ | 60 | 40 | 20 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^2]
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $52\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $53\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S 1}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S} 2\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{S} 2\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
5. References
[S1] (a) K. Nakajima, F. Takai, T. Tanaka, K. Okawa, Bull. Chem. Soc. Jpn., 1978, 51, 1577-1578; (b) E. Kuyl-Yeheskiely, M. Lodder, G. A. van der Marel, J. H. van Boom, Tetrahedron Lett., 1992, 33, 3013-3016; (c) A. Korn, S. Rudolph-Böhner, L. Moroder, Z. Naturforsch., B: J. Chem. Sci., 1993, 48, 1146-1148; (d) A. Korn, S. Rudolph-Böhner, L. Moroder, Tetrahedron, 1994, 50, 1717-1730.
[S2] G. Moinet, D. Cravo, D. Mesangeau, L. Doare, M. Kergoat (MERCK PATENT GMBH), WO/2000/042001, 2000.
[S3] J. M. Andrés, R. Manzano, R. Pedrosa, Chem. Eur. J., 2008, 14, 5116-5119.
[S4] S. C. Bergmeier, e-EROS Encycl. Reagents for Org. Synth., 2009, Benzyl Azide.
[S5] K. Sivakumar, F. Xie, B. M. Cash, S. Long, H.N. Barnhill, Q. Wang, Org. Lett., 2004, 6, 4603-4606.
[S6] Y. Xu, A. Córdova, Chem. Commun., 2006, 2006, 460-462.

[^0]: ${ }^{13} \mathrm{C}$ NMR spectrum of $9\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^1]: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{4 3}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^2]: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{5 0}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

