Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2015

Construction of Photoswitchable Rotaxanes and Catenanes

Containing Dithienylethene Fragments

Ziyong Li,^{ac} Xie Han,^{ac} Haiyan Chen,*^b Di, Wu,^a Fang Hu,^a Sheng Hua Liu,*^a Jun Yin*^a

^a Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China

^bDepartment of Biomedical Engineering, School of Engineering, China Pharmaceutical University, 24 Tongjia Lane, Gulou District, Nanjing 210009, China.

E-mail: yinj@mail.ccnu.edu.cn

Table of Contents

1.	Packing diagram and crystal data of 4	. S1
2.	Partial ¹ H NMR spectra of 16, 19 and 20	. S2
3.	Photochromic reaction and photochromic parameters 16, 17, 18, 19	and
	20	. S4
4.	Fluorescence spectra of 18, 19 and 20	. S6
5.	Appendix: NMR and Mass spectra	. S 7

1. Crystal structure and crystal data of 4

Figure S1. Packing diagram of dialdehyde 4. (A) Viewed from the side. (B) Viewed from the top.

Compound	4	
Empirical formula	C ₄₂ H ₃₅ NO ₂ S ₂	
Formula weight	649.83	
Temperature	298(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
a (Å)	7.9698(13)	
b (Å)	11.8816(19)	
c (Å)	18.669(3)	
$\alpha(\text{deg})$	92.975(2)	
$\beta(\deg)$	96.585(2)	
γ(deg)	104.742(2)	
Volume(Å ⁻³)	1692.3(5)	
Z	2	
Density (calculated)	1.275 Mg/m ³	
Absorption coefficient	0.195 mm ⁻¹	
F(000)	684	
Crystal size	$0.15\times0.12\times0.10\ mm^3$	
Theta range for data collection	11.10 to 25.50°.	
Index ranges	-9<=h<=9, -14<=k<=14, -22<=l<=22	
Reflections collected	11037	
Independent reflections	6221 [R(int) = 0.0252]	

 Table S1. Crystal data and structure refinement parameters for the dithienylethene 4.

Completeness to theta $= 26.00$	98.7 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	6221 / 36 / 460		
Goodness-of-fit on F ²	1.085		
Final R indices [I>2sigma(I)]	R1 = 0.0475, $wR2 = 0.1466$		
R indices (all data)	R1 = 0.0593, wR2 = 0.1770		
Largest diff. peak and hole	0.295 and -0.290 e.Å ⁻³		

2. Partial ¹H NMR spectra

Figure S2. Partial ¹H NMR spectra (600 MHz, CD₃CN, 298 K) of 15 (A); 16 (B); clipping reaction mixture (dynamic imine of 16) (C); and 5 (D).

Fgure S3. Partial ¹H NMR spectra (600 MHz, CD₃CN, 298 K) of 15 (A); 19 (B); clipping reaction mixture (dynamic imine of 19) (C); 8 (D).

Figure S4. Partial ¹H NMR spectra (400 MHz, CD₃CN, 298 K) of 15 (A); 20 (B); 9 (C).

3. Photochromic reaction and photochromic parameters

Scheme S1. Photochromic reaction of [2]rotaxane 16 and [3]rotaxane 17.

Compounds	λ_{max}/nm^{a} ($\epsilon \times 10^{-4}$)	λ_{max}/nm^{b} ($\epsilon \times 10^{-4}$)	Φ°	
	(Open)	(PSS)	$\phi_{o\text{-}c}\left(\lambda/nm\right)$	$\phi_{c\text{-}o} \; (\lambda \! / nm)$
15	244 (6.02), 282 (3.29), 346 (1.95)	546 (1.20)	0.105	0.0053
16	240 (7.58), 282 (4.75), 346 (2.81)	552 (1.78)	0.131	0.0072
17	240 (14.59), 282 (8.84), 346 (5.31)	552 (2.70)	0.052	0.0032

Table S2. Photochromic parameters of 15, 16 and 17 in CH₃CN (2.0×10^{-5} mol/L).

a Absorption maxima of open-ring isomers. b Absorption maxima of closed-ring isomers. c Quantum yields of open-ring (ϕ_{c-o}) and closed-ring isomers (ϕ_{o-c}), respectively.

Scheme S2. Photochromic reaction of the monoswitchable [2]catenane 18.

Scheme S3. Photochromic reaction of the diswitchable [2]catenanes 19 and 20.

Table S3. Photochromic parameters of 18, 19 and 20 in CH₃CN (2.0×10^{-5} mol/L).

Compounds	$\lambda max/nm^{a}$ $(\epsilon \times 10^{-4})$	$\lambda max/n^b$ ($\epsilon \times 10^{-4}$)	Φ^{c}	
	(Open)	(PSS)	$\phi_{o-c} (\lambda/nm)$	$\phi_{c\text{-}o} \left(\lambda / nm \right)$
18	236 (8.63), 278 (4.73), 346 (2.69)	550 (1.78)	0.090 (528)	0.0075 (278)
19	236(15.83), 280(10.29)	546 (3.55)	0.140 (546)	0.0051 (280)
20	234(13.37), 280 (8.88)	544 (3.37)	0.173 (544)	0.0068 (280)

a Absorption maxima of open-ring isomers. b Absorption maxima of closed-ring isomers. c Quantum yields of open-ring (ϕ_{c-o}) and closed-ring isomers (ϕ_{o-c}), respectively.

4. Fluorescence spectra of 18, 19 and 20

Figure S5. Emission intensity changes of 18 (A), 19 (B) and 20 (C) with 254 nm UV and >402 nm Vis light irradiation in CH₃CN (2.0×10^{-5} mol/L) ($\lambda_{ex} = 346$ nm).

4. Appendix: NMR and Mass spectra

