Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Trivalent ligands for CXCR4 bearing polyproline linkers show specific recognition for cells with increased CXCR4 expression

Wataru Nomura, Taisuke Koseki, Nami Ohashi, Takaaki Mizuguchi, and Hirokazu Tamamura*

Supporting information

Table of Contents

Synthetic details and HPLC charts of compoundsS2-S22 HRMS of compounds and Curve fittings of binding experimentsS23-S24 Standard errors of binding analysis and Flow cytometry analysisS25

Synthesis of cFC131

2-Chlorotrityl chloride resin (1.2 mmol/g, 1.0 g) was treated with Fmoc-D-Cys(Trt)-OH (0.50 mmol, 290 mg) and DIPEA (1.2 mmol, 350 μ L) in dry DMF (5.0 mL) for 1 h. The resin was dried under vacuum after washing with dry DMF, CH_2Cl_2 , and Et_2O . The loading was determined by measuring UV absorption at 301 nm of the piperidine treated Fmoc-D-Cys (Trt)-Trt(2-Cl)-resin (0.33 mmol/g). Unreacted chloride was capped by MeOH (2.0 mL) and DIPEA (510 μ L, 0.94 mmol). The peptide chain of cFC131 was manually elongated on an Fmoc-D-Cys(Trt)-Trt(2-Cl)-resin (0.33 mmol/g, 0.84 mmol scale) by Fmoc-based SPPS. Each cycle involves (i) deprotection with 20% piperidine/DMF for 10 min and (ii) coupling with: Fmoc-amino acid (Fmoc-AA-OH) (3 eq.), 1hydroxybenzotriazole (HOBt•H₂O) (5 eq.) and N,N'-diisopropylcarbodiimide (DIPCI) (5 equiv) in DMF for 50 min. Coupling efficiency was checked by the Kaiser ninhydrin test. In the case of a slightly positive Kaiser test, the coupling step was repeated (double coupling) using a mixture of Fmoc-protected amino acid (3 eq.), HOBt•H2O (3 eq.), DIPEA (6 eq.), and O-benzotriazole-N, N, N', N'-tetramethyluronium hexafluorophosphate (HBTU) (2.9 eq.). After construction of the protected peptide on the resins, the resins were extensively washed with CH₂Cl₂, MeOH and Et₂O, and then dried in vacuum overnight. The synthetic peptide was cleaved from the resins by treatment with TFE-AcOH-CH₂Cl₂ (1:1:3, v/v) for 2 h. The reaction mixtures were filtered, and the resins were washed with CH_2Cl_2 . The filtrates and washed solutions were evaporated under vacuum, and the protected peptides were precipitated as solid powder by an addition of cold Et₂O. After centrifugation, the supernatants were removed. The precipitations were washed with cold Et₂O. The obtained peptides were dried under vacuum overnight. To a mixture of protected liner peptide and NaHCO₃ (58 mg, 0.7 mmol) in DMF (40 mL) was added diphenylphosphoryl azide (86.7 µL, 0.40 mmol) at -40 °C. After incubation for 48 h with warming to room temperature, the reaction mixture was filtered. The filtrate was concentrated under reduced pressure, followed by chromatography over basic alumina column with CHCl₃-MeOH (9:1) to give the protected cyclic peptide. The obtained cyclic peptide was treated with TFA/thioanisole/m-cresol/ethanedithiol/ H2O/triisopropylsilane (79/5/5/5/5/1, v/v) for 2 h. After concentration under reduced pressure, the residue was washed with cold Et₂O and dried under vacuum. Purification by preparative HPLC gave cFC131 (150 mg, 22%) as white powder: MS (ESI) m/z calculated for $C_{37}H_{50}N_{11}O_6S$ [M+H]⁺ 776.4, found 776.3 (Fig. S1).

Retention time: 11.5 min with MeCN (27% isocratic)

Synthesis of polyproline linkers 1a-1f.

Polyproline linkers, **1a-1f**, were manually elongated on a NovaSyn® TGR resin (0.22 mmol/g, 0.91 g) by Fmoc-based SPPS. For the cleavage from the resin and deprotection, the protective peptide resin was treated with TFA (10 mL) and H₂O (0.5 mL) for 2 h. After filtering and concentration under reduced pressure, the residue was washed with cold Et₂O and dried under vacuum. To a solution of crude peptides in DMF (10 mL) were added chloroacetyl chloride (38 μ L, 0.60 mmol) and DIPEA (160 μ L, 1.2 mmol), and the mixture was stirred for 24 h. After concentration under reduced pressure, purification by preparative HPLC gave **1a-1f** (**Table S1**, **Fig. S2**). The UV-absorption was monitored at 220 nm.

compd.	yield (%)
1a	38
1b	53
1c	20
1d	46
1e	55
1f	47

Table S1. Yields of polyproline linkers 1a-1f.

Retention time: 9.9 min with MeCN (25-30%)

Retention time: 10.2 min with MeCN (25-30%)

Retention time: 10.3 min with MeCN (25-30%)

Retention time: 10.3 min with MeCN (25-30%).

Synthesis of templates 2a-2f.

To a solution of polyproline chains **1a-1f** in 0.2 M phosphate buffer were added tripropargylamine (0.33 eq.), 100 mM aqueous solution of $CuSO_4$ (0.01 eq.), and 200 mM aqueous solution of sodium ascorbate (0.01 eq.), and the mixture was incubated for 24 h under room temperature. After being diluted with 0.1% aqueous TFA, purification by preparative HPLC gave **2a-2f** (**Table S2**, **Fig. S3**). The UV-absorption was monitored at 220 nm.

Table S2. Yields of trivalent polyproline templates 2a-2f.

compd.	yield (%)
2a	81
2b	45
2c	25
2d	42
2e	77
2f	99

Fig. S3 HPLC chart of trivalent polyproline linkers 2a-2f.

Synthesis of trivalent ligands 3a-3f.

To a solution of trivalent polyproline linkers **2a-2f** in 0.1 M phosphate buffer were added potassium iodide (60 eq.) and cFC131 (3.3 eq.), and the mixture was degassed and stirred 24-72 h under 37 °C. After being diluted with 0.1% aqueous TFA, purification by preparative HPLC gave **3a-3f** (**Table S3**, **Fig. S4**). The UV-absorption was monitored at 220 nm.

Table S3. Yields of trivalent ligands 3a-3f.

compd.	yield (%)
3 a	7
3b	5
3c	4
3d	4
3e	6
3 f	3

Synthesis of polyproline linker (4).

Polyproline linker **4** was manually elongated on a TGR resin (0.22 mmol/g, 0.91 g) by Fmoc-based SPPS. For the cleavage from the resin and deprotection, the protective peptide resin was treated with TFA (10 mL) and H₂O (0.5 mL) for 2 h. After filtering and concentration under reduced pressure, the residue was washed with cold Et_2O and dried under vacuum. To a solution of crude peptides in pyridine (10 mL) was added acetylanhydride (10 mL), and the mixture was stirred for 15 min. After being diluted with 0.1% aqueous TFA, purification by preparative HPLC gave **4** (55.7 mg, 46%) as white powder (**Fig. S5**). The UV-absorption was monitored at 220 nm.

Retention time: 18.3 min with MeCN (20-25%)

Fig. S5 HPLC chart of polyproline linker 4.

Synthesis of templates for mono- and bi-valent ligands (5 and 6).

To a solution of tripropargylamine in 0.2 M phosphate buffer was added polyproline linker 1c (1.5 eq.), 100 mM aqueous solution of $CuSO_4$ (0.01 eq.), and 200 mM aqueous solution of sodium ascorbate (0.01 eq.), and the mixture was incubated 24 h under room temperature. The mixture was added polyproline linker 4 (1.5 eq.), and the mixture was incubated 24 h under room temperature. After being diluted with 0.1% aqueous TFA, purification by preparative HPLC gave 5 and 6 (Table S4, Fig. S6). HPLC was monitored at 220 (nm).

Table S4. Yields of mono- and bi-valent polyproline linkers 5 and 6.

Fig. S6 HPLC charts of mono- and bi-valent polyproline linkers 5 and 6.

Synthesis of control monomer with the trivalent template (7).

To a solution of trivalent polyproline linker **5** (2.8 mg, 0.74 μ mol) in 0.1 M phosphate buffer was added potassium iodide (2.3 mg, 20 eq.) and cFC131 (0.63 mg, 1.1 eq.), and the mixture was degassed and stirred 24 h under 37 °C. After being diluted with 0.1% aqueous TFA, purification by preparative HPLC gave **7** (1.05 mg, 31%) as white powder (**Fig. S7**). The UV-absorption was monitored at 220 nm.

Retention time: 10.1 min with MeCN (25-40%)

Fig. S7 HPLC chart of monovalent ligand 7.

Synthesis of bivalent control ligand with the trivalent template (8).

To a solution of trivalent polyproline linker **6** (2.3 mg, 0.61 μ mol) in 0.1 M phosphate buffer was added potassium iodide (4.5 mg, 40 eq.) and cFC131 (1.0 mg, 2.2 eq.), and the mixture was degassed and stirred 24 h under 37 °C. After being diluted with 0.1% aqueous TFA, purification by preparative HPLC gave **8** (0.64 mg, 20%) as white powder (**Fig. S8**). The UV-absorption was monitored at 220 nm.

Retention time: 11.8 min with MeCN (25-40%)

Fig. S8 HPLC chart of bivalent ligand 8.

Polyproline linkers with TAMRA, **9a** and **9b**, were manually elongated on a NovaSyn® TGR resin (0.22 mmol/g, 0.91 g) by Fmoc-based SPPS. For the cleavage from the resin and deprotection, the protective peptide resin was treated with TFA (10 mL) and H₂O (0.5 mL) for 2 h. After filtering and concentration under reduced pressure, the residue was washed with cold Et₂O and dried under vacuum. To a solution of crude peptides in DMF (10 mL) were added chloroacetyl chloride (38 μ L, 0.60 mmol) and DIPEA (160 μ L, 1.2 mmol), and the mixture was stirred for 24 h. After concentration under reduced pressure, purification by preparative HPLC gave **9a** and **9b** (**Table S5**, **Fig. S9**). The UV-absorption was monitored at 220 nm.

	Table S5.	Yields	of poly	proline	linkers	9a	and	9b.
--	-----------	--------	---------	---------	---------	----	-----	-----

Fig. S9 HPLC charts of polyproline chains 9a and 9b.

Synthesis of TAMRA-labeled templates with polyproline linkers (10a and 10b).

To a solution of polyproline linkers, **10a** and **10b**, in 0.2 M phosphate buffer were added tripropargylamine (0.33 eq.), 100 mM aqueous solution of $CuSO_4$ (0.01 eq.), and 200 mM aqueous solution of sodium ascorbate (0.01 eq.), and the mixture was incubated for 24 h under room temperature. After being diluted with 0.1% aqueous TFA, purification by preparative HPLC gave **10a** and **10b** (**Table S6, Fig. S10**). The UV-absorption was monitored at 220 nm.

 Table S6. Yields of trivalent polyproline linkers 10a and 10b.

Fig. S10 HPLC chart of trivalent polyproline linkers 10a and 10b.

Synthesis of TAMRA-labeled trivalent ligands 11a and 11b.

To a solution of trivalent polyproline linkers **11a** and **11b** in 0.1 M phosphate buffer were added potassium iodide (60 eq.) and cFC131 (3.3 eq.), and the mixture was degassed and stirred 24-72 h under 37 °C. After being diluted with 0.1% aqueous TFA, purification by preparative HPLC gave **11a** and **11b** (**Table S7**, **Fig. S11**). The UV-absorption was monitored at 220 nm.

Fig. S11 HPLC charts of trivalent ligands 11a and 11b.

Synthesis of polyproline linker 12.

Polyproline linker **12** was manually elongated on a TGR resin (0.22 mmol/g, 0.91 g) by Fmoc-based SPPS. For the cleavage from the resin and deprotection, the protective peptide resin was treated with TFA (10 mL) and H₂O (0.5 mL) for 2 h. After filtering and concentration under reduced pressure, the residue was washed with cold Et_2O and dried under vacuum. To a solution of crude peptides in pyridine (10 mL) was added acetylanhydride (10 mL), and the mixture was stirred for 15 min. After being diluted with 0.1% aqueous TFA, purification by preparative HPLC gave **12** (10.0 mg, 3%) as red powder (**Fig. S12**). The UV-absorption was monitored at 220 nm.

Retention time: 18.0 min with MeCN (25-30%)

Fig. S12 HPLC chart of polyproline linker 12.

Synthesis of TAMRA-labeled linker 13.

To a solution of tripropargylamine in 0.2 M phosphate buffer was added polyproline linker **9b** (7.0 eq.), 100 mM aqueous solution of $CuSO_4$ (0.01 eq.), and 200 mM aqueous solution of sodium ascorbate (0.01 eq.), and the mixture was incubated 24 h under room temperature. After being diluted with 0.1% aqueous TFA, purification by preparative HPLC gave **13** (3.1 mg, 22%) as red powder (**Fig. S13**). The UV-absorption was monitored at 220 nm.

Retention time: 17.3 min with MeCN (25-30%)

Fig. S13 HPLC chart of polyproline linker 13.

Synthesis of TAMRA-labeled template 14.

To a solution of polyproline linker 13 in 0.2 M phosphate buffer was added polyproline linker 12 (2.0 eq.), 100 mM aqueous solution of $CuSO_4$ (0.01 eq.), and 200 mM aqueous solution of sodium ascorbate (0.01 eq.), and the mixture was incubated 24 h under room temperature. After being diluted with 0.1% aqueous TFA, purification by preparative HPLC gave 14 (3.5 mg, 41%) as red powder (Fig. S14). The UV-absorption was monitored at 220 nm.

Retention time: 23.1 min with MeCN (15-45%)

Fig. S14 HPLC chart of polyproline linker 14.

Synthesis of TAMRA-labeled monomer ligand with trivalent template 15.

To a solution of trivalent polyproline linker **14** in 0.1 M phosphate buffer were added potassium iodide (20 eq.) and cFC131 (1.1 eq.), and the mixture was degassed and stirred 24 h under 37 °C. After being diluted with 0.1% aqueous TFA, purification by preparative HPLC gave **15** (0.52 mg, 13%) as red powder (**Fig. S15**). The UV-absorption was monitored at 220 nm.

Retention time: 17.8 min with MeCN (25-40%)

Fig. S15 HPLC chart of monovalent ligand 15.

Synthesis of penta-GABA linker 16.

Polyproline linker **16** was manually elongated on a NovaSyn® TGR resin (0.22 mmol/g, 0.91 g) by Fmoc-based SPPS. For the cleavage from the resin and deprotection, the protective peptide resin was treated with TFA (10 mL) and H₂O (0.5 mL) for 2 h. After filtering and concentration under reduced pressure, the residue was washed with cold Et₂O and dried under vacuum. To a solution of crude peptides in DMF (10 mL) were added chloroacetyl chloride (38 μ L, 0.60 mmol) and DIPEA (160 μ L, 1.2 mmol), and the mixture was stirred for 24 h. After concentration under reduced pressure, purification by preparative HPLC gave **16** (58.0 mg, 37%) as red powde (**Fig. S16**). The UV-absorption was monitored at 220 nm.

Retention time: 13.6 min with MeCN (20-25%)

Fig. S16 HPLC chart of penta-GABA linker 16.

To a solution of polyproline linker **16** in 0.2 M phosphate buffer were added tripropargylamine (0.33 eq.), 100 mM aqueous solution of $CuSO_4$ (0.01 eq.), and 200 mM aqueous solution of sodium ascorbate (0.01 eq.), and the mixture was incubated for 24 h under room temperature. After being diluted with 0.1% aqueous TFA, purification by preparative HPLC gave **17** (0.52 mg, 13%) as red powder (**Fig. S17**). The UV-absorption was monitored at 220 nm.

Retention time: 13.5 min with MeCN (15-45%)

To a solution of trivalent penta-GABA linker **17** in 0.1 M phosphate buffer were added potassium iodide (60 eq.) and cFC131 (3.3 eq.), and the mixture was degassed and stirred 24 h under 37 °C. After being diluted with 0.1% aqueous TFA, purification by preparative HPLC gave **18** (0.57 mg, 22%) as red powder (**Fig. S18**). The UV-absorption was monitored at 220 nm.

Retention time: 17.8 min with MeCN (25-40%)

Compound	Formular	Calculated ^a	Found ^a
3 a	$C_{207}H_{291}N_{61}O_{36}S_3$	1436.4070 (M/3+H) ³⁺	1436.4062
3 b	$C_{252}H_{354}N_{70}O_{45}S_3$	1295.9318 (M/4+H) ⁴⁺	1295.9318
3c	$C_{297}H_{417}N_{79}O_{54}S_3$	1211.6420 (M/5+H) ⁵⁺	1211.6395
3d	$C_{342}H_{480}N_{88}O_{63}S_3$	1386.3370 (M/5+H) ⁵⁺	1386.3377
3 e	$C_{387}H_{543}N_{97}O_{72}S_3$	1301.0279 (M/6+H) ⁶⁺	1301.0306
3f	$C_{432}H_{606}N_{106}O_{81}S_3$	1240.0929 (M/7+H) ⁷⁺	1240.0979
7	$C_{223}H_{324}N_{57}O_{42}S$	1502.4975 (M/3+H) ³⁺	1502.4935
8	$C_{260}H_{373}N_{68}O_{48}S_2$	1320.9646 (M/4+H) ⁴⁺	1320.9611
11a	$C_{294}H_{375}N_{73}O_{51}S_3$	1169.5756 (M/5+H) ⁵⁺	1169.5707
11b	$C_{384}H_{501}N_{91}O_{69}S_3$	1265.9726 (M/6+H) ⁶⁺	1265.9676
15	$C_{310}H_{410}N_{69}O_{57}S$	1209.2252 (M/5+H) ⁵⁺	1209.2231
18	$C_{222}H_{333}N_{67}O_{42}S_3$	1177.3864 (M/4+H) ⁴⁺	1177.3884

 Table S8. HRMS of newly constructed ligands.

^a HRMS was recorded on a micrOTOF-2 focus (Bruker Daltonics) mass spectrometer.

Fig. S19 Curve fittings of competitive binding analysis of CXCR4 ligand candidates. Panels (A-J) show the results of compounds **3a-f**, **7**, **8**, **18**, and FC131, respectively. The error bars represent S.E.M. of three independent experiments.

Table S9 . Standard errors of IC_{50} for CXCR4 ligands		
Compound	$logIC_{50} \pm SEM$	
3a	-6.819 ± 0.0993	
3b	-7.009 ± 0.153	
3c	-7.223 ± 0.133	
3d	-6.818 ± 0.105	
3e	-6.793 ± 0.0977	
3f	-6.158 ± 0.181	
7	-5.550 ± 0.364	
8	-6.776 ± 0.0913	
18	-6.819 ± 0.0993	
FC131	-7.486 ± 0.1016	

Fig. S20 The results of flow cytometry analysis for binding of TAMRA-labeled trivalent ligand with 3-proline linkers (**11a**). The bars represent the fold increase of fluorescence at the indicated ligand concentration (nM). Each bar shows the results of Jurkat (white), HeLa (gray), and K562 (black).

Reference

1. T. Tanaka, W. Nomura, T. Narumi, A. Masuda, H. Tamamura, J. Am. Chem. Soc. 2010, 132, 15899.