Electronic Supplementary Information

Interaction of myo-inositol hexakisphosphate with biogenic and synthetic polyamines[†]

Julia Torres,^a Claudia Giorgi,^b Nicolás Veiga,^a Carlos Kremer,*^a Antonio Bianchi*^b

^aCátedra de Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Gral. Flores 2124, Montevideo, Uruguay. Email: ckremer@fq.edu.uy ^bDepartment of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.

E-mail: antonio.bianchi@unifi.it

Fig. S1 RHF/3-21+G* geometries for the 1a5e conformer of two Ins P_6 species: H₄L⁸⁻ (a) and H₆L⁶⁻ (b), taken from reference ¹. In all cases, the electrostatic potential is mapped on an isodensity surface (isodensity value = 0.0004 e, scale: -0.75 V (red) to -0.65 V (blue) for a, and -0.56 V (red) to -0.51 V (blue) for b). Color code: C (grey), H (white), O (red), P (orange).

Fig. S2 Speciation of the amines (labelled as A): a) put; b) cad; c) agm; d) spd; e) spm; f) 3,3,3-tet; g) Me₂hexaen; h) Me₂heptaen; i) Me₂octaen.

Fig. S3 RB3LYP/LANL2DZ geometries for $[(H_2put)H_4L]^{6-}$ (a) and $[(H_2put)H_6L]^{4-}$ (b) species. The O-H…N and O-H…O hydrogen bonds are shown as dashed and dotted lines, respectively, with the associated distances for the former in Å. Color code: C (grey), H (white), O (red), P (orange), N (blue).

	put	cad	agm	spd	spm	3,3,3- tet	Me ₂ hexaen	Me ₂ heptaen	Me ₂ octaen
$HA^{+} + H_{3}L^{9-}$	3.50(4)	3.90(6)	3.16(6)	2.7(3)	4.43(6)				
\rightarrow [(HA)(H ₃ L)] ⁸⁻									
$H_2A^{2+} + H_3L^{9-}$	4.39(4)	4.43(5)	3.7(2)	4.28(4)	5.30(1)	4.66(5)	4.0(2)	5.0(1)	5.6(1)
\rightarrow [(H ₂ A)(H ₃ L)] ⁷⁻									
$H_2A^{2+} + H_4L^{8-}$	4.02(6)	3.8(1)	3.6(1)	5.04(6)	6.43(6)	5.84(5)	5.86(6)	6.61(6)	7.12(7)
$\rightarrow [(H_2A)(H_4L)]^{6-}$									
$H_2A^{2+} + H_5L^{7-}$	3.72(8)	3.6(1)	4.5(1)						
$\rightarrow [(H_2A)(H_5L)]^{5-}$				1 50(0)	= 02(5)	6.00(5)		-	0.10(5)
$H_3A^{3+} + H_4L^{6-} \rightarrow$				4.78(6)	7.03(5)	6.90(5)	6.34(7)	7.38(7)	8.18(7)
$[(H_3A)(H_4L)]^{3*}$				2 79(0)					
$H_3A^{3'} + H_5L' \rightarrow$ [(H A)(H I)]4-				3.78(9)					
$H_{\Lambda}^{4+} + H_{J}^{8-} \rightarrow$					6 75(6)	7 48(6)	5 88(8)	6.86(8)	7 90(7)
$[(H,A)(H,L)]^{4-}$					0.75(0)	7.40(0)	5.00(0)	0.00(0)	1.50(7)
$H_4A^{4+} + H_5L^{7-} \rightarrow$					5.42(6)	6.10(6)	5.07(7)	6.39(8)	
[(H₄A)(H₅L)] ³⁻								(0)	
$H_4A^{4+} + H_6L^{6-} \rightarrow$					3.85(7)	4.60(8)	4.0(1)		
$[(H_4A)(H_6L)]^{2-}$									
$\mathrm{H}_{5}\mathrm{A}^{5+} + \mathrm{H}_{4}\mathrm{L}^{8-} \rightarrow$									7.15(7)
[(H ₅ A)(H ₄ L)] ³⁻									
$H_5A^{5+} + H_5L^{7-} \rightarrow$								5.1(1)	5.73(8)
$[(H_5A)(H_5L)]^{2-}$									
$H_5A^{5+} + H_6L^{6-} \rightarrow$							3.90(8)	4.3(1)	5.06(7)
$[(H_5A)(H_6L)]^{-1}$									

Table S1 Relative formation constants of 1:1 complexes of $InsP_6$ (L¹²⁻) with polyamines (A) calculated from Tables 1 and 2.

Table S2 Structural parameters for some of the 1:1 and 2:1 amine-Ins P_6 species.

	Hydrogen dist	bond mean ance	Number o bo	f hydrogen nds
	d _{HC}	o (Å) ^a	I	la
Species	A = N	A = 0	A = N	$\mathbf{A} = \mathbf{O}$
[(H ₂ put)(H ₄ L)] ⁶⁻	1.73	1.57	4	11
[(H ₂ cad)(H ₄ L)] ⁶⁻	1.80	1.63	5	12
[(H ₂ agm)(H ₄ L)] ⁶⁻	2.03	1.63	7	13
[(H ₃ spd)(H ₄ L)] ⁵⁻	1.96	1.72	4	15
[(H ₂ put) ₂ (H ₆ L)] ²⁻	1.54	1.70	8	20
[(H ₂ cad) ₂ (H ₆ L)] ²⁻	1.53	1.66	8	20
[(H ₂ agm) ₂ (H ₆ L)] ²⁻	1.82	1.62	11	21

a) $d_{H\dots O}$ and n represent the average distance (proton-acceptor) and number of A-H···O hydrogen bonds, respectively, with A = N or O.

		log K	ΔG° (kJ/mol)	ΔH° (kJ/mol)	$T\Delta S^{\circ}$ (kJ/mol)
put	$\mathrm{A} + \mathrm{H^{+}} \rightarrow \mathrm{HA^{+}}$	10.076(3)	-59.80(2)	-57.10(5)	2.70(5)
-	$\mathrm{HA^{+}} + \mathrm{H^{+}} \rightarrow \mathrm{H_{2}A^{2+}}$	9.080(7)	-53.89(4)	-57.81(5)	-3.92(6)
cad	$\mathrm{A} + \mathrm{H^{\scriptscriptstyle +}} \to \mathrm{HA^{\scriptscriptstyle +}}$	9.90(1)	-58.76(6)	-56.53(3)	2.23(7)
	$\mathrm{HA^{\scriptscriptstyle +}+H^{\scriptscriptstyle +}} \rightarrow \mathrm{H_2A^{2+}}$	9.45(2)	-56.1(6)	-56.10(6)	0.0(6)
agm	$\mathrm{A} + \mathrm{H^{\scriptscriptstyle +}} \to \mathrm{HA^{\scriptscriptstyle +}}$	10.179(7)	-60.42(4)	-54.73(5)	5.69(6)
	$\mathrm{HA^{\scriptscriptstyle +}+H^{\scriptscriptstyle +}} \rightarrow \mathrm{H_2A^{2+}}$	9.14(7)	-54.3(4)	-55.04(5)	-0.7(4)
spd	$\mathrm{A} + \mathrm{H^{\scriptscriptstyle +}} \longrightarrow \mathrm{HA^{\scriptscriptstyle +}}$	10.369(8)	-61.54(5)	-50.88(2)	10.66(5)
	$\mathrm{HA^{+}} + \mathrm{H^{+}} \rightarrow \mathrm{H_{2}A^{2+}}$	9.45(1)	-56.09(6)	-55.14(4)	0.95(7)
	$H_2A^{2+} + H^+ \rightarrow H_3A^{3+}$	8.07(3)	-47.9(2)	-49.04(4)	-1.14(2)
spm	$\mathrm{A} + \mathrm{H^{\scriptscriptstyle +}} \longrightarrow \mathrm{HA^{\scriptscriptstyle +}}$	9.95(1)	-59.06(6)	-51.06(6)	8.00(8)
	$\mathrm{HA^{+}} + \mathrm{H^{+}} \rightarrow \mathrm{H_{2}A^{2+}}$	9.50(2)	-56.4(1)	-52.15(5)	4.3(1)
	$H_2A^{2+} + H^+ \rightarrow H_3A^{3+}$	8.39(2)	-49.8(1)	-51.33(6)	-1.5(1)
	$\mathrm{H}_{3}\mathrm{A}^{3+}\!+\mathrm{H}^{+}\!\rightarrow\!\mathrm{H}_{4}\mathrm{A}^{4+}$	7.61(4)	-45.2(2)	-48.63(6)	-3.4(2)
3,3,3-tet	$\mathrm{A} + \mathrm{H^{\scriptscriptstyle +}} \longrightarrow \mathrm{HA^{\scriptscriptstyle +}}$	10.157(4)	-60.29(2)	-52.4(1)	7.9(1)
	$\mathrm{HA^{+}} + \mathrm{H^{+}} \rightarrow \mathrm{H_{2}A^{2+}}$	9.532(7)	-56.58(4)	-54.4(1)	2.2(1)
	$\mathrm{H}_{2}\mathrm{A}^{2+} + \mathrm{H}^{+} \longrightarrow \mathrm{H}_{3}\mathrm{A}^{3+}$	8.30(1)	-49.26(6)	-54.0(1)	-4.7(1)
	$\mathrm{H}_{3}\mathrm{A}^{3+}\!+\mathrm{H}^{+}\!\rightarrow\mathrm{H}_{4}\mathrm{A}^{4+}$	7.01(2)	-41.6(1)	-50.3(1)	-8.7(1)
Me ₂ hexaen	$\mathrm{A} + \mathrm{H}^{\scriptscriptstyle +} {\rightarrow} \mathrm{H} \mathrm{A}^{\scriptscriptstyle +}$	10.09(1)	-59.89(6)	-36.17(6)	23.72(8)
	$\mathrm{HA^{+}} + \mathrm{H^{+}} \rightarrow \mathrm{H_{2}A^{2+}}$	9.36(3)	-55.6(2)	-43.25(5)	12.4(2)
	$\mathrm{H}_{2}\mathrm{A}^{2+}\!+\mathrm{H}^{+}\!\rightarrow\!\mathrm{H}_{3}\mathrm{A}^{3+}$	8.76(5)	-52.0(3)	-41.90(5)	10.1(3)
	$\mathrm{H}_{3}\mathrm{A}^{3+}\!+\mathrm{H}^{+}\!\rightarrow\!\mathrm{H}_{4}\mathrm{A}^{4+}$	7.72(8)	-45.8(5)	-42.87(5)	2.9(5)
	$H_4A^{4+} + H^+ \rightarrow H_5A^{5+}$	4.6(1)	-27.3(6)	-36.11(5)	-8.8(6)
	$\mathrm{H}_{5}\mathrm{A}^{5+}\!+\mathrm{H}^{+}\!\rightarrow\!\mathrm{H}_{6}\mathrm{A}^{6+}$	3.1 (2)	-18(1)	-31.67(6)	-14(1)
	$\mathrm{H}_{6}\mathrm{A}^{6+} + \mathrm{H}^{+} \longrightarrow \mathrm{H}_{7}\mathrm{A}^{7+}$	2.2(2)	-13(1)	-25.79(7)	-13(1)
Me ₂ heptaen	$A + H^+ \rightarrow HA^+$	9.69(2)	-57.5(1)	-36.22(6)	21.3(1)
	$\mathrm{HA^{+}} + \mathrm{H^{+}} \rightarrow \mathrm{H_{2}A^{2+}}$	9.55(4)	-56.7(2)	-43.75(5)	13.0(2)
	$H_2A^{2+} + H^+ \rightarrow H_3A^{3+}$	8.74(6)	-51.9(2)	-38.76(5)	13.1(3)
	$H_3A^{3+} + H^+ \rightarrow H_4A^{4+}$	8.3(1)	-49.3(6)	-42.77(5)	6.5(6)
	$H_4A^{4+} + H^+ \rightarrow H_5A^{5+}$	6.4(2)	-38(1)	-35.82(5)	2(1)
	$\mathrm{H}_{5}\mathrm{A}^{5+}\!+\mathrm{H}^{+}\!\rightarrow\!\mathrm{H}_{6}\mathrm{A}^{6+}$	4.4(3)	-26(2)	-28.66(5)	-3(2)
	$\mathrm{H}_{6}\mathrm{A}^{6+} + \mathrm{H}^{+} \longrightarrow \mathrm{H}_{7}\mathrm{A}^{7+}$	3.2(3)	-19(2)	-31.85(6)	-13(2)
	$H_7A^{7+} + H^+ \rightarrow H_8A^{8+}$	2.9(4)	-17(2)	-26.3(1)	-9(2)
Me ₂ octaen	$A + H^+ \rightarrow HA^+$	9.65(2)	-57.3(1)	-42.92(6)	14.4(6)
	$\mathrm{HA^{+}} + \mathrm{H^{+}} \rightarrow \mathrm{H_{2}A^{2+}}$	9.56(3)	-56.7(2)	-44.4(1)	12.3(2)
	$H_2A^{2+} + H^+ \rightarrow H_3A^{3+}$	8.78(4)	-52.1(2)	-44.40(9)	7.7(2)
	H_3A^{3+} + $H^+ \rightarrow H_4A^{4+}$	8.36(6)	-49.6(4)	-47.35(8)	2.3(4)
	$H_4A^{4+} + H^+ \rightarrow H_5A^{5+}$	7.47(8)	-44.3(5)	-45.30(8)	-1.0(5)
	$\mathrm{H}_{5}\mathrm{A}^{5+}\!+\mathrm{H}^{+}\!\rightarrow\!\mathrm{H}_{6}\mathrm{A}^{6+}$	5.0(1)	-29.7(6)	-37.00(9)	-7.3(6)
	$H_6A^{6+} + H^+ \rightarrow H_7A^{7+}$	3.8(2)	-23(1)	-37.1(1)	-14(1)
	$\mathrm{H}_{7}\mathrm{A}^{7+}\!+\mathrm{H}^{+}\!\rightarrow\!\mathrm{H}_{8}\mathrm{A}^{8+}$	2.9(2)	-17(1)	-32.5(1)	-16(1)
	H_8A^{8+} + $H^+ \rightarrow H_9A^{9+}$	2.6(3)	-15(2)	-27.2(2)	-12(2)

Table S3 Protonation data of polyamines (A) at 310.1 ± 0.1 K in 0.15 M Me₄NCl.

^a Values in parentheses are standard deviation on the last significant figures.

Table S4 Thermodynamic data for the formation of $InsP_6$ (L¹²⁻) complexes with cadaverine (A). 0.10 M Me₄NCl, 37.0 ± 0.1 °C.

Equilibrium	logK	ΔG° (kJ/mol)	ΔH° (kJ/mol)	$T\Delta S^{\circ}$ (kJ/mol)
$\mathrm{HA^{+} + H_{3}L^{9-} \rightarrow [(\mathrm{HA})(\mathrm{H_{3}L})]^{8-}}$	3.90(6) ^a	-23.1(4)	-25.1(6)	-2.0(7)
$H_2A^{2+} + H_3L^{9-} \rightarrow [(H_2A)(H_3L)]^{7-}$	4.43(3)	-26.3(2)	77.8(5)	104.1(5)
$H_2A^{2+} + H_4L^{8-} \rightarrow [(H_2A)(H_4L)]^{6-}$	3.8(1)	-22.6(6)	79.8(5)	102.4(8)
$H_2A^{2+} + H_5L^{7-} \rightarrow [(H_2A)(H_5L)]^{5-}$	3.65(1)	-21.66(6)	89.0(5)	110.7(5)

^a Values in parentheses are standard deviation on the last significant figures

Table S5 Thermodynamic data for the formation of $InsP_6$ (L¹²⁻) complexes with agmatine (A). 0.10 M Me₄NCl, 37.0 ± 0.1 °C.

Equilibrium	logK	ΔG° (kJ/mol)	ΔH° (kJ/mol)	$T\Delta S^{\circ}$ (kJ/mol)
$HA^{+} + H_{3}L^{9-} \rightarrow [(HA)(H_{3}L)]^{8-}$	3.16(6) ^a	-18.8(4)	-31.7(6)	-12.9(7)
$H_2A^{2+} + H_3L^{9-} \rightarrow [(H_2A)(H_3L)]^{7-}$	3.7(2)	-22(1)	37.9(5)	60(1)
$H_2A^{2+} + H_4L^{8-} \rightarrow [(H_2A)(H_4L)]^{6-}$	3.6(1)	-21.4(6)	27.5(5)	48.9(8)
$H_2A^{2+} + H_5L^{7-} \rightarrow [(H_2A)(H_5L)]^{5-}$	4.5(1)	-26.7(6)	19.8(5)	46.5(8)

^a Values in parentheses are standard deviation on the last significant figures

Table S6 Thermodynamic data for the formation of $InsP_6$ (L¹²⁻) complexes with spermidine (A). 0.10 M Me₄NCl, 37.0 ± 0.1 °C.

Equilibrium	logK	ΔG° (kJ/mol)	ΔH° (kJ/mol)	$T\Delta S^{\circ}$ (kJ/mol)
$HA^+ + H_3L^{9-} \rightarrow [(HA)(H_3L)]^{8-}$	2.7(3) ^a	-16(2)	b	b
$H_2A^{2+} + H_3L^{9-} \rightarrow [(H_2A)(H_3L)]^{7-}$	4.28(4)	-25.4(2)	-18.2(3)	7.2(3)
$H_2A^{2+} + H_4L^{8-} \rightarrow [(H_2A)(H_4L)]^{6-}$	5.04(6)	-29.9(4)	-42.7(3)	-12.8(5)
$H_3A^{3+} + H_4L^{8-} \rightarrow [(H_3A)(H_4L)]^{5-}$	4.78(6)	-28.4(4)	8.4(3)	36.8(5)
$H_3A^{3+} + H_5L^{7-} \rightarrow [(H_3A)(H_5L)]^{4-}$	3.78(9)	-22.4(5)	5.8(3)	28.2(6)

^a Values in parentheses are standard deviation on the last significant figures. ^bNot determined.

Table S7 Thermodynamic data for the formation of $InsP_6$ (L¹²⁻) complexes with spermine (A). 0.10 M Me₄NCl, 37.0 ± 0.1 °C.

Equilibrium	logK	ΔG° (kJ/mol)	ΔH° (kJ/mol)	$T\Delta S^{\circ}$ (kJ/mol)
$HA^{+} + H_{3}L^{9-} \rightarrow [(HA)(H_{3}L)]^{8-}$	4.43(6) ^a	-26.3(4)	-15.0(7)	11.3(8)
$H_2A^{2+} + H_3L^{9-} \rightarrow [(H_2A)(H_3L)]^{7-}$	5.30(4)	-31.5(2)	-13.7(7)	17.8(7)
$H_2A^{2+} + H_4L^{8-} \rightarrow [(H_2A)(H_4L)]^{6-}$	6.43(6)	-38.2(4)	-88.2(9)	-50(1)
$H_3A^{3+} + H_4L^{8-} \rightarrow [(H_3A)(H_4L)]^{5-}$	7.03(5)	-41.7(3)	-42.8(7)	-1.1(8)
$H_4A^{4+} + H_4L^{8-} \rightarrow [(H_4A)(H_4L)]^{4-}$	6.75(6)	-40.1(4)	-5.9(7)	34.2(8)
$H_4A^{4+} + H_5L^{7-} \rightarrow [(H_4A)(H_5L)]^{3-}$	5.42(6)	-32.2(4)	8.5(7)	40.7(8)
$H_4A^{4+} + H_6L^{6-} \rightarrow [(H_4A)(H_6L)]^{2-}$	3.85(7)	-22.9(4)	-2.0(6)	20.9(7)
$\frac{H_4 A^{4+} + H_6 L^{6-} \rightarrow [(H_4 A)(H_6 L)]^2}{[(H_4 A)(H_6 L)]^2}$	3.85(7)	-22.9(4)	-2.0(6)	20.9(7)

^a Values in parentheses are standard deviation on the last significant figures.

Table S8 Thermodynamic data for the formation of $InsP_6$ (L¹²⁻) complexes with Me₂heptaen (A). 0.10 M Me₄NCl, 37.0 ± 0.1 °C.

Equilibrium	logK	ΔG° (kJ/mol)	ΔH° (kJ/mol)	$T\Delta S^{\circ}$ (kJ/mol)
$H_2A^{2+} + H_3L^{9-} \rightarrow [(H_2A)(H_3L)]^{7-}$	5.0(1) ^a	-29.7(6)	-43.5(6)	-13.8(8)
$H_2A^{2+} + H_4L^{8-} \rightarrow [(H_2A)(H_4L)]^{6-}$	6.61(6)	-39.2(4)	-76.1(5)	-36.9(6)
$H_3A^{3+} + H_4L^{8-} \rightarrow [(H_3A)(H_4L)]^{5-}$	7.38(7)	-43.8(4)	-63.2(5)	-19.4(6)
$H_4A^{4+} + H_4L^{8-} \rightarrow [(H_4A)(H_4L)]^{4-}$	6.86(8)	-40.7(5)	-58.1(5)	-17.4(7)
$H_4A^{4+} + H_5L^{7-} \rightarrow [(H_4A)(H_5L)]^{3-}$	6.39(8)	-37.9(5)	-64.3(5)	-26.4(7)
$H_5A^{5+} + H_5L^{7-} \rightarrow [(H_5A)(H_5L)]^{2-}$	5.1(1)	-30.3(6)	-14.0(4)	16.3(7)
$H_5A^{5+} + H_6L^{6-} \rightarrow [(H_5A)(H_6L)]^{-}$	4.3(1)	-25.5(6)	-44.0(5)	-18.5(8)

^a Values in parentheses are standard deviation on the last significant figures.

Table S9 Thermodynamic data for the formation of $InsP_6$ (L¹²⁻) complexes with Me₂octaen (A). 0.10 M Me₄NCl, 37.0 ± 0.1 °C.

Equilibrium	logK	ΔG° (kJ/mol)	ΔH° (kJ/mol)	$T\Delta S^{\circ}$ (kJ/mol)
$H_2A^{2+} + H_3L^{9-} \rightarrow [(H_2A)(H_3L)]^{7-}$	5.6(1) ^a	-33.2(6)	-22.5(6)	10.7(8)
$H_2A^{2+} + H_4L^{8-} \rightarrow [(H_2A)(H_4L)]^{6-}$	7.12(7)	-42.3(4)	-67.8(5)	-25.5(6)
$H_3A^{3+} + H_4L^{8-} \rightarrow [(H_3A)(H_4L)]^{5-}$	8.18(7)	-48.6(4)	-66.9(4)	-18.3(6)
$H_4A^{4+} + H_4L^{8-} \rightarrow [(H_4A)(H_4L)]^{4-}$	7.90(7)	-46.9(4)	-56.3(4)	-9.4(6)
$H_5A^{5+} + H_4L^{8-} \rightarrow [(H_5A)(H_4L)]^{3-}$	7.15(7)	-42.4(4)	-23.1(5)	19.3(6)
$H_5A^{5+} + H_5L^{7-} \rightarrow [(H_5A)(H_5L)]^{2-}$	5.73(8)	-34.0(5)	-29.8(5)	4.2(7)
$H_5A^{5+} + H_6L^{6-} \rightarrow [(H_5A)(H_6L)]^{-}$	5.06(7)	-30.0(4)	-52.7(4)	-22.7(6)

^a Values in parentheses are standard deviation on the last significant figures.

Table S10 Cumulative ΔH° values measured for the formation of Ins P_6 (L¹²⁻) complexes with polyamines in 0.10 M Me₄NCl at 37.0 ± 0.1 °C.

	114	115	116	117	118	119	1 1 10	1 1 1 1
put	-97.0(5) ^a	-116.3(4)	-96.3(3)	-110.6(3)				
cad	-106.0(5)	-59.2(4)	-56.5(4)	-45.5(4)				
agm	-110.8(5)	-96.2(5)	-105.9(4)	-11.8(4)				
spd		-148.6(2)	-172.4(2)	-170.3(2)	-171.1(2)			
spm	-90.4(6)	-141.3(6)	-215.1(8)	-221.0(6)	-232.7(6)	-216.5(6)	-217.7(5)	
Me ₂ hexaen		-173.5(4)	-174.6(2)	-210.5(2)	-223.8(3)	-227.9(3)	-233.2(3)	-240.6(3)
Me ₂ heptaen		-147.8(5)	-179.8(4)	-205.6(4)	-243.3(4)	-247.7(4)	-233.2(3)	-257.9(4)
Me ₂ octaen		-134.1(5)	-178.5(4)	-222.3(3)	-259.0(3)	-271.3(4)	276.1(4)	-293.6(3)

^a Values in parentheses are standard deviation on the last significant figures.

Table S11 Cumulative ΔH° values measured for protonation of Ins P_6 (L¹²⁻) in 0.10 M Me₄NCl at 37.0 ± 0.1 °C.

	ΔH° (kJ/mol)
$L^{12-} + H^+$	9.90(8) ^a
$L^{12-} + 2H^+$	-20.23(8)
$L^{12-} + 3H^+$	-24.35(5)
$L^{12-} + 4H^+$	-23.68(7)
$L^{12-} + 5H^+$	-21.88(7)
$L^{12-} + 6H^+$	-16.53(5)
$L^{12-} + 7H^+$	-4.1(5)
$L^{12-} + 8H^+$	15.4(7)

^a Values in parentheses are standard deviation on the last significant figures.

Table S12 Cumulative ΔH° values measured for protonation of polyamines in 0.10 M Me₄NCl at 37.0 ± 0.1 °C.

	11	12	13	14	15	16	17	18	19
Put	-57.10(5) ^a	-114.91(5)							
Cad	-56.53(3)	-112.63(3)							
Agm	-54.73(4)	-109.77(4)							
Spd	-50.88(2)	-106.02(2)	-155.06(2)						
Spm	-51.06(3)	-103.21(2)	-154.54(2)	-203.17(2					
3,3,3-tet	-52.4(1)	-106.8(1)	-160.8(1)	-211.1(1)					
Me ₂ hexaen	-36.17(6)	-79.41(5)	-121.31(5)	-164.18(5)	-200.30(5)	-231.96(5)	-257.75(6)		
Me ₂ heptaen	-36.22(6)	-79.97(5)	-118.73(5)	-161.50(5)	-197.33(5)	-225.99(5)	-257.84(6)	-284.1(1)	
Me ₂ octaen	-42.92(6)	-87.35(5)	-131.75(4)	-179.10(4)	-224.40(4)	-261.40(5)	-298.53(5)	-331.0(1)	-358.2(1)

^a Values in parentheses are standard deviation on the last significant figures.

References

1 N. Veiga, J. Torres, I. Macho, K. Gomez, G. Gonzalez and C. Kremer, Dalton Trans., 2014, 43, 16238-16251.