Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Synthesis of Benzimidazoles *via* Iridium-catalyzed Acceptorless Dehydrogenative Coupling

Xiang Sun, Lin-Miao Ye, Xiao-Hui Lv, Yu Hu, Yan-Yan Chen,

Xue-Jing Zhang, and Ming Yan*

Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical Sciences,

Sun Yat-sen University, Guangzhou 510006, China.

E-mail: <u>yanming@mail.sysu.edu.cn;</u>

Fax/Tel: + 86-20-39943049

Supporting Information

1. General information	S 1
 Screening of nitrogen ligands Preparation of the substrates 	S2
	83
4. General procedure for the dehydrogenative coupling	S15
5. ¹ H and ¹³ C NMR spectra of the substrates	S26
6. ¹ H and ¹³ C NMR spectra of the products	S 51

1. General information

¹H NMR and ¹³C NMR spectra were recorded on Bruker AVANCE 400 spectrometer. Chemical shifts of protons are reported in parts per million downfield from tetramethylsilane and are referenced to residual protium in the NMR solvent (CDCl₃: δ 7.26, DMSO: δ 2.50). Chemical shifts of carbons are referenced to the carbon resonances of the solvent (CDCl₃: δ 77.0, DMSO: δ 39.5). Peaks are labeled as singlet (s), doublet (d), triplet (t), quartet (q) multiplet (m) and broad (br). Melting points were measured on a WRS-2A melting point apparatus and are uncorrected. Infrared (IR) spectra were recorded on a Bruker Tensor 37 spectrophotometer. Data are represented as the frequency of absorption (cm⁻¹). All products were further characterized by HRMS (high resolution mass spectra) with the Shimadzu IT-TOF instrument. Anhydrous solvents were transferred by oven-dried syringes. [Cp*IrCl₂]₂ and nitrogen ligands were purchased from Alfa-Aesar chemical company and used without further purification.

2. Screening of nitrogen ligands

 Table S1: Screening of ligands.^a

^{*a*} Conditions: **1a** (0.2 mmol), $[Ir(cod)Cl]_2$ (5 mol%), ligand (10 mol%), trifluoroethanol (2 mL), argon atmosphere, 80 °C, 72 h. ^{*b*} The yields were determined by ¹H NMR using dimethyl terephthalate as the internal standard.

3. Preparation of the substrates

Typical procedure for the preparation of substrate:

To a solution of K_2CO_3 (6.6 mmol) in DMF (8 mL), were added piperidine (6.6 mmol) and 2-fluoronitrobenzene (6 mmol). The reaction mixture was stirred at 120 °C for 12 h and then poured into water (100 mL). The mixture was extracted with ethyl acetate (25 mL×3). The combined organic layer was dried over anhydrous MgSO₄ and concentrated under vacuum. The residue was dissolved in methanol (25 mL). Pd/C (10 %, 0.3 mmol) was added and the reaction mixture was hydrogenated (4 atm) at room temperature for 4 h. The mixture was filtered through a sintered glass funnel, and washed with methanol (5 mL). The filtrate was concentrated under vacuum. The residue was purified by flash column chromatography over silica gel to give **1a** as a white solid (0.97 g, 92% yield).

2-(piperidin-1-yl)aniline (1a)

White solid, mp 44.8–46.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.98 (dd, J = 8.2, 1.4 Hz, 1H), 6.93–6.87 (m, 1H), 6.75–6.70 (m, 2H), 3.96 (br, 2H), 2.83 (br, 4H), 1.73–1.66 (m, 4H), 1.57 (br, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 140.6, 124.1, 119.7, 118.4, 114.9, 52.6, 26.8, 24.3; **IR (KBr)** ν /cm⁻¹: 3431, 3340, 3065, 2932, 2842, 2793, 1606, 1499, 1453, 1437, 1274, 1231, 1206, 1139, 1110, 920, 744, 480; **HRMS** (ESI) calculated for C₁₁H₁₇N₂ (M+H)⁺: 177.1386, found : 177.1386.

2-(2-methylpiperidin-1-yl)aniline (1b)

Colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.04 (dd, J = 7.7, 1.2 Hz, 1H), 6.95–6.90 (m, 1H), 6.74–6.68 (m, 2H), 4.15 (br, 2H), 2.96–2.88 (m, 2H), 2.51 (td, J = 11.4, 3.2 Hz, 1H), 1.81–1.75 (m, 2H), 1.71–1.58 (m, 2H), 1.48–1.32 (m, 2H), 0.84 (d, J = 6.1 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 143.5, 138.5, 125.0, 122.8, 118.0, 114.9, 55.1, 35.1, 27.1, 24.5, 20.0; **IR (KBr)** ν /cm⁻¹: 3461, 3356, 3026, 2930, 2853, 2794, 1607, 1499, 1451, 1376, 1287, 1265, 1239, 1207, 1112, 745, 487; **HRMS** (ESI) calculated for C₁₂H₁₉N₂ (M+H)⁺: 191.1543, found : 191.1552.

2-(pyrrolidin-1-yl)aniline (1c)

Colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 6.99 (dd, J = 8.2, 1.4 Hz, 1H), 6.91–6.85 (m, 1H), 6.76–6.69 (m, 2H), 3.84 (br, 2H), 3.08–3.01 (m, 4H), 1.95–1.88 (m, 4H); ¹³**C NMR** (100 MHz, CDCl₃) δ 141.2, 137.6, 123.3, 118.5, 118.4, 115.3, 50.7, 24.0; **IR (KBr)** ν/cm^{-1} : 3430, 3345, 3020, 2973, 2875, 2814, 1605, 1502, 1450, 1287, 1198, 1115, 962, 742, 473; **HRMS** (ESI) calculated for C₁₀H₁₅N₂ (M+H)⁺: 163.1230, found : 163.1235.

2-(azepan-1-yl)aniline (1d)

Colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.02 (dd, J = 7.6, 1.0 Hz, 1H), 6.91–6.86 (m, 1H), 6.75–6.67 (m, 2H), 4.02 (br, 2H), 3.06–3.00 (m, 4H), 1.79–1.71 S4 (m, 8H); ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 141.7, 124.1, 121.7, 118.5, 115.0, 55.8, 29.8, 26.9; **IR (KBr)** ν/cm^{-1} : 3440, 3345, 2921, 2854, 1606, 1498, 1454, 1265, 1176, 1153, 1016, 890, 740, 476; **HRMS** (ESI) calculated for C₁₂H₁₉N₂ (M+H)⁺: 191.1543, found : 191.1551.

2-morpholinoaniline (1e)

White solid, mp 98.0–100.8 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.00 (dd, J = 7.6, 1.3 Hz, 1H), 6.95 (td, J = 7.6, 1.4 Hz, 1H), 6.78–6.71 (m, 2H), 3.98 (br, 2H), 3.87–3.81 (m, 4H), 2.94–2.89 (m, 4H); ¹³**C NMR** (100 MHz, CDCl₃) δ 141.5, 138.9, 124.9, 119.8, 118.7, 115.2, 67.7, 51.5; **IR (KBr)** ν /cm⁻¹: 3411, 3327, 2974, 2857, 2834, 1619, 1589, 1505, 1445, 1372, 1299, 1275, 1255, 1221, 1202, 1111, 1068, 929, 757, 669; **HRMS** (ESI) calculated for C₁₀H₁₅N₂O (M+H)⁺: 179.1179, found : 179.1185.

2-(4-methylpiperazin-1-yl)aniline (1f)

White solid, mp 87.3–89.8 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.04–7.00 (m, 1H), 6.96–6.91 (m, 1H), 6.77–6.71 (m, 2H), 3.96 (br, 2H), 2.95 (t, *J* = 4.7 Hz, 4H), 2.58 (br, 4H), 2.36 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 141.5, 139.2, 124.6, 119.9, 118.6, 115.1, 55.9, 51.0, 46.2; **IR (KBr)** *v*/cm⁻¹: 3433, 3332, 2945, 2851, 1602, 1500, 1451, 1380, 1266, 1211, 745; **HRMS** (ESI) calculated for C₁₁H₁₈N₃ (M+H)⁺: 192.1495, found : 192.1504.

2-(3,4-dihydroisoquinolin-2(1H)-yl)aniline (1g)

White solid, mp 110.5–112.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.19–7.12 (m, 3H), 7.08–7.03 (m, 2H), 6.96 (t, J = 7.6 Hz, 1H), 6.79–6.72 (m, 2H), 4.08 (s, 2H), 4.00 (br, 2H), 3.23 (t, J = 5.8 Hz, 2H), 3.00 (t, J = 5.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 139.2, 135.4, 134.3, 128.9, 126.4, 126.2, 125.7, 124.8, 120.1, 118.6, 115.1, 53.8, 49.3, 29.8; **IR (KBr)** ν /cm⁻¹: 3692, 3428, 3340, 3018, 2898, 2807, 1606, 1500, 1454, 1380, 1288, 1267, 1206, 1145, 1035, 929, 743; **HRMS** (ESI) calculated for C₁₅H₁₇N₂ (M+H)⁺: 225.1386, found: 225.1396.

2-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)aniline (1h)

White solid, mp 126.2–128.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.05 (dd, J = 8.2, 1.4 Hz, 1H), 6.96 (td, J = 7.7, 1.4 Hz, 1H), 6.79–6.74 (m, 2H), 6.66 (s, 1H), 6.57 (s, 1H), 4.01 (br, 4H), 3.87 (s, 3H), 3.85 (s, 3H), 3.22 (t, J = 5.7 Hz, 2H), 2.92 (t, J = 5.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 147.3, 141.8, 139.3, 127.3, 126.2, 124.7, 120.2, 118.6, 115.1, 111.7, 109.3, 55.9, 53.4, 49.3, 29.4; **IR (KBr)** ν /cm⁻¹: 3430, 3340, 2960, 2885, 2821, 1606, 1516, 1497, 1462, 1370, 1255, 1228, 1185, 1114, 1024, 857, 745; **HRMS** (ESI) calculated for C₁₇H₂₁N₂O₂ (M+H)⁺: 285.1598, found : 285.1591.

2-(6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)aniline (1i)

White solid, mp 103.9–106.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, J = 5.1 Hz, 1H), 7.07–7.03 (m, 1H), 6.96 (td, J = 7.8, 1.3 Hz, 1H), 6.80–6.71 (m, 3H), 4.01 (br,

4H), 3.27 (t, J = 5.5 Hz, 2H), 2.97 (t, J = 5.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 141.9, 138.9, 134.4, 133.5, 125.1, 124.9, 122.7, 120.6, 118.6, 115.2, 51.0, 49.3, 26.2; **IR (KBr)** v/cm^{-1} : 3423, 3335, 3096, 2899, 2830, 1611, 1585, 1499, 1452, 1320, 1297, 1269, 1228, 1207, 1182, 1158, 1120, 996, 919, 739; **HRMS** (ESI) calculated for C₁₃H₁₅N₂S (M+H)⁺: 231.0950, found : 231.0942.

 N^1 , N^1 -dimethylbenzene-1,2-diamine (1k)

Colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.00 (dd, J = 7.8, 1.4 Hz, 1H), 6.90 (td, J = 7.6, 1.4 Hz, H), 6.75–6.68 (m, 2H), 3.94 (br, 2H), 2.65 (s, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 141.4, 140.6, 124.1, 119.3, 118.4, 115.1, 43.6; **IR (KBr)** ν/cm^{-1} : 3438, 3347, 3028, 2946, 2843, 2795, 1608, 1500, 1453, 1364, 1295, 1265, 1215, 1167, 1099, 939, 745, 698; **HRMS** (ESI) calculated for C₈H₁₃N₂ (M+H)⁺: 137.1073, found : 137.1068.

 N^1 , N^1 -diethylbenzene-1,2-diamine (11)

Colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.01 (dd, J = 7.7, 1.0 Hz, 1H), 6.96–6.89 (m, 1H), 6.77–6.68 (m, 2H), 4.07 (br, 2H), 2.94 (q, J = 7.1 Hz, 4H), 0.98 (t, J = 7.1 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 144.1, 137.1, 124.7, 122.9, 118.0, 115.0, 47.6, 12.6; **IR (KBr)** v/cm^{-1} : 3450, 3352, 3024, 2972, 2927, 2816, 1604, 1498, 1450, 1376, 1286, 1228, 1171, 1135, 1086, 742, 484; **HRMS** (ESI) calculated for C₁₀H₁₇N₂ (M+H)⁺: 165.1386, found : 165.1378.

N^1 , N^1 -dipropylbenzene-1,2-diamine (1m)

Colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.04 (dd, J = 7.8, 1.4 Hz, 1H), 6.92 (ddd, J = 7.8, 7.3, 1.5 Hz, 1H), 6.75–6.68 (m, 2H), 4.08 (br, 2H), 2.87–2.80 (m, 4H), 1.48–1.38 (m, 4H), 0.85 (t, J = 7.4 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 143.8, 137.9, 124.7, 122.9, 118.1, 115.0, 56.1, 20.6, 11.7; **IR (KBr)** ν /cm⁻¹: 3457, 3362, 3021, 2962, 2878, 2809, 1610, 1500, 1460, 1382, 1301, 1277, 1215, 1133, 1080, 752, 598; **HRMS** (ESI) calculated for C₁₂H₂₁N₂ (M+H)⁺: 193.1699, found : 193.1690.

N^1 -benzyl- N^1 -isopropylbenzene-1,2-diamine (10)

White solid, mp 67.0–69.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.23–7.15 (m, 4H), 7.13–7.09 (m, 1H), 7.08–7.04 (m, 1H), 6.87–6.82 (m, 1H), 6.65–6.60 (m, 2H), 4.13 (s, 2H), 3.98 (br, 2H), 3.29 (dq, J = 13.2, 6.6 Hz, 1H), 1.15 (d, J = 6.6 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 139.9, 136.1, 128.3, 127.9, 126.5, 124.8, 124.6, 117.7, 115.2, 52.3, 51.2, 19.5; **IR (KBr)** ν /cm⁻¹: 3372, 3274, 3033, 2966, 2863, 1607, 1497, 1461, 1385, 1364, 1265, 1230, 1146, 1077, 1041, 926, 868, 745, 711; **HRMS** (ESI) calculated for C₁₆H₂₁N₂ (M+H)⁺: 241.1699, found : 241.1685.

N^1 -benzyl- N^1 -ethylbenzene-1,2-diamine (1p)

Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.20 (m, 5H), 7.02 (dd, *J*=7.8, 1.3 Hz, 1H), 6.93 (td, *J*=7.8, 1.4 Hz, 1H), 6.76–6.68 (m, 2H), 4.10 (br, 2H), 4.03 (s, 2H), 2.93 (q, *J*=7.1, 2H), 0.97 (t, *J*=7.1, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 139.0, 137.2, 128.7, 128.1, 126.9, 124.8, 122.9, 118.1, 115.1, 58.1, 46.1, 12.1; IR (KBr)

 v/cm^{-1} : 3443, 3351, 3027, 2969, 2929, 2821, 1606, 1498, 1453, 1368, 1290, 1204, 1157, 1108, 745, 698; **HRMS** (ESI) calculated for $C_{15}H_{19}N_2$ (M+H)⁺: 227.1543, found : 227.1532.

4-amino-3-(3,4-dihydroisoquinolin-2(1H)-yl)phenol (3f)

Light yellow solid, mp 186.8–190.3 °C. ¹**H NMR** (400 MHz, DMSO) δ 8.41 (s, 1H), 7.17–7.09 (m, 4H), 6.54 (d, J = 8.4 Hz, 1H), 6.45 (d, J = 2.6 Hz, 1H), 6.30 (dd, J = 8.4, 2.6 Hz, 1H), 4.16 (br, 2H), 3.98 (s, 2H), 3.09 (t, J = 5.8 Hz, 2H), 2.93 (t, J = 5.8 Hz, 2H); ¹³C NMR (100 MHz, DMSO) δ 149.1, 139.2, 135.3, 134.3, 134.2, 128.7, 126.4, 126.1, 125.6, 115.5, 110.4, 107.1, 52.9, 48.5, 29.1; **IR (KBr)** *v*/cm⁻¹: 3366, 3292, 3021, 2889, 2819, 1608, 1558, 1515, 1470, 1454, 1382, 1327, 1235, 1171, 1132, 951, 756, 728; **HRMS** (ESI) calculated for C₁₅H₁₇N₂O (M+H)⁺: 241.1335, found : 241.1331.

4-bromo-2-(3,4-dihydroisoquinolin-2(1H)-yl)aniline (3g)

White solid, mp 76.8–79.3 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.22–7.13 (m, 4H), 7.10–7.02 (m, 2H), 6.63 (d, J = 8.4 Hz, 1H), 4.06 (s, 2H), 4.00 (br, 2H), 3.21 (t, J = 5.8 Hz, 2H), 3.01 (t, J = 5.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 140.5, 134.9, 134.0, 128.9, 127.4, 126.4, 126.3, 125.8, 123.4, 116.2, 109.8, 53.6, 49.2, 29.8; **IR (KBr)** ν /cm⁻¹: 3448, 3342, 3016, 2954, 2925, 2782, 1598, 1490, 1452, 1378, 1277, 1199, 1133, 929, 811, 746; **HRMS** (ESI) calculated for C₁₅H₁₆BrN₂ (M+H)⁺: 303.0491, found :303.0478.

2-(3,4-dihydroisoquinolin-2(1H)-yl)-4-(trifluoromethyl)aniline (3h)

Light yellow solid, mp 97.0–99.2 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.27 (m, 1H), 7.23–7.15 (m, 4H), 7.10–7.06 (m, 1H), 6.76 (d, J = 8.2 Hz, 1H), 4.29 (br, 2H), 4.07 (s, 2H), 3.23 (t, J = 5.7 Hz, 2H), 3.04 (t, J = 5.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 138.7, 134.8, 134.0, 128.9, 126.5, 126.4, 125.8, 124.8 (q, ¹J_{CF3} = 269 Hz), 122.1 (q, ³J_{CF3} = 4 Hz), 120.2 (q, ²J_{CF3} = 32 Hz), 117.3 (q, ³J_{CF3} = 4 Hz), 114.2, 53.6, 49.3, 29.9; **IR (KBr)** ν /cm⁻¹: 3452, 3349, 2935, 2850, 2785, 1617, 1581, 1517, 1435, 1331, 1300, 1282, 1200, 1145, 1100, 1068, 960, 817, 756; **HRMS** (ESI) calculated for C₁₆H₁₆F₃N₂ (M+H)⁺: 293.1260, found : 293.1252.

3-(3,4-dihydroisoquinolin-2(1H)-yl)pyridin-2-amine (3i)

White solid, mp 130.7–132.0 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.85 (dd, J = 5.0, 1.5 Hz, 1H), 7.22 (dd, J = 7.6, 1.5 Hz, 1H), 7.21–7.14 (m, 3H), 7.10–7.06 (m, 1H), 6.67 (dd, J = 7.6, 5.0 Hz, 1H), 4.76 (br, 2H), 4.10 (s, 2H), 3.25 (t, J = 5.8 Hz, 2H), 3.00 (t, J = 5.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 142.7, 134.7, 134.0, 133.9, 128.9, 126.6, 126.4, 126.3, 125.8, 114.1, 53.3, 48.7, 29.4; **IR (KBr)** ν /cm⁻¹: 3425, 3261, 3122, 2918, 2900, 1620, 1588, 1463, 1382, 1269, 1200, 1133, 1038, 928, 768, 742; **HRMS** (ESI) calculated for C₁₄H₁₆N₃ (M+H)⁺: 226.1339, found : 226.1349.

Procedure for the preparation of substrate 1j:

To a solution of K_2CO_3 (6.6 mmol) in acetonitrile (8 mL), were added 1,2-diaminobenzene (6.6 mmol) and 1,2-bis(bromomethyl)-benzen (6 mmol). The reaction mixture was stirred at 75 °C for 12 h. After completed, the reaction was cooled to room temperature, and then the mixture was filtered through a sintered glass funnel. The filtrate was concentrated under vacuum and the residue was purified by flash column chromatography over silica gel to give **1j** as a white solid (1.07 g, 85% yield).

2-(isoindolin-2-yl)aniline (1j)

White solid, mp 100.8–103.0 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.29–7.23 (m, 4H), 7.21–7.16 (m, 1H), 6.96–6.91 (m, 1H), 6.79–6.74 (m, 2H), 4.45 (s, 4H), 3.95 (br, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 139.8, 136.8, 126.8, 124.3, 122.3, 120.4, 118.7, 115.7, 56.4; **IR (KBr)** *v*/cm⁻¹: 3414, 3329, 3027, 2940, 2802, 1616, 1500, 1457, 1353, 1280, 1266, 1244, 1166, 745, 689; **HRMS** (ESI) calculated for C₁₄H₁₅N₂ (M+H)⁺: 211.1230, found : 211.1232.

Procedure for the preparation of substrate 1n:

To a solution of K_2CO_3 (6.6 mmol) in acetonitrile (5 mL), were added 1,2-diaminobenzene (6 mmol) and benzyl bromide (6.6 mmol). The reaction mixture was stirred at room temperature for 2 h. Then the mixture was filtered through a sintered glass funnel. The filtrate was concentrated under vacuum and the residue was purified by flash column chromatography over silica gel to give **1n** as a light yellow oil (0.33 g, 19% yield).

N^1 , N^1 -dibenzylbenzene-1,2-diamine (1n)

Light yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.30–7.19 (m, 10H), 6.93–6.85 (m, 2H), 6.72 (dd, J = 7.8, 1.4 Hz, 1H), 6.63 (td, J = 7.6, 1.4 Hz, 1H), 4.08 (br, 2H), 4.05 (s, 4H); ¹³**C NMR** (100 MHz, CDCl₃) δ 142.3, 138.2, 137.1, 128.9, 128.1, 127.0, 124.9, 123.2, 118.1, 115.3, 56.2; **IR (KBr)** ν/cm^{-1} : 3445, 3352, 3062, 3028, 2927, 2842, 1726, 1606, 1498, 1452, 1374, 1277, 1190, 1120, 1070, 1029, 956, 740, 697, 499; **HRMS** (ESI) calculated for C₂₀H₂₁N₂ (M+H)⁺: 289.1699, found : 289.1691.

Typical procedure for the preparation of substrate 3a-3d, 3f:

To a solution of K_2CO_3 (6.6 mmol) in acetonitrile (5 mL), were added 1,2,3,4-tetrahydroisoquinoline (6.6 mmol) and 2-fluoro-4-methyl-1-nitrobenzene (6 mmol). The reaction mixture was stirred at 75 °C for 12 h. After completed, the reaction was cooled to room temperature, and then the mixture was filtered through a sintered glass funnel. The filtrate was concentrated under vacuum and the residue was dissolved in methanol (25 mL). Pd/C (10 %, 0.3 mmol) was added and the reaction mixture was hydrogenated (4 atm) at room temperature for 4 h. The mixture was filtered through a sintered glass funnel, and washed with methanol (5 mL). The filtrate was concentrated under vacuum. The residue was purified by flash column chromatography over silica gel to give **3a** as a white solid (1.12 g, 78% yield).

2-(3,4-dihydroisoquinolin-2(1H)-yl)-3-methylaniline (3a)

White solid, mp 109.2–112.9 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.19–7.13 (m, 3H), 7.07–7.02 (m, 1H), 6.90 (t, J = 7.7 Hz, 1H), 6.61 (dd, J = 7.8, 1.0 Hz, 1H), 6.54–6.50 (m, 1H), 4.41 (d, J = 15.6 Hz, 1H), 4.17 (br, 2H), 4.05 (d, J = 15.6 Hz, 1H), 3.56 (td, J = 11.2, 3.4 Hz, 1H), 3.28–3.21 (m, 1H), 3.18–3.08 (m, 1H), 2.87–2.80 (m, 1H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 137.0, 135.8, 135.2, 134.9, 129.2, 126.4, 126.3, 125.9, 125.6, 121.1, 112.8, 50.9, 48.2, 31.5, 19.5; **IR (KBr)** *v*/cm⁻¹: 3444, 3348, 3020, 2955, 2927, 2834, 2798, 1596, 1482, 1452, 1380, 1287, 1202, 1155, 933, 773, 749; **HRMS** (ESI) calculated for C₁₆H₁₉N₂ (M+H)⁺: 239.1543, found : 239.1532.

2-(3,4-dihydroisoquinolin-2(1H)-yl)-4-methylaniline (3b)

White solid, mp 79.2–81.9 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 7.18–7.11 (m, 3H), 7.07–7.03 (m, 1H), 6.87 (d, J = 1.5 Hz, 1H), 6.76 (dd, J = 7.9, 1.2 Hz, 1H), 6.65 (d, J = 7.9 Hz, 1H), 4.06 (s, 2H), 3.84 (br, 2H), 3.20 (t, J = 5.8 Hz, 2H), 3.00 (t, J = 5.8 Hz, 2H), 2.25 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 139.1, 135.5, 134.3, 128.8, 127.9, 126.4, 126.2, 125.6, 125.0, 120.7, 115.2, 53.8, 49.4, 30.0, 20.7; **IR (KBr)** ν /cm⁻¹: 3427, 3336, 3021, 2923, 2901, 2805, 2776, 2749, 1615, 1580, 1512, 1451, 1384, 1280, 1265, 1226, 1131, 1023, 930, 808, 755, 636; **HRMS** (ESI) calculated for C₁₆H₁₉N₂ (M+H)⁺: 239.1543, found : 239.1536.

2-(3,4-dihydroisoquinolin-2(1H)-yl)-5-methylaniline (3c)

White solid, mp 127.3–129.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.18–7.11 (m, 3H), 7.06–7.02 (m, 1H), 6.96–6.92 (m, 1H), 6.58 – 6.54 (m, 2H), 4.04 (s, 2H), 3.95 (br, 2H), 3.18 (t, *J* = 5.7 Hz, 2H), 2.98 (t, *J* = 5.7 Hz, 2H), 2.24 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.6, 136.9, 135.5, 134.4, 134.3, 128.8, 126.4, 126.2, 125.6, 120.0, 119.1, 115.9, 54.1, 49.5, 29.9, 21.0; **IR (KBr)** *v*/cm⁻¹: 3446, 3352, 3019, 2957, 2930, 2833, 2785, 1602, 1579, 1480, 1380, 1277, 1244, 1160, 930, 774; **HRMS** (ESI) calculated for C₁₆H₁₉N₂ (M+H)⁺: 239.1543, found : 239.1534.

2-(3,4-dihydroisoquinolin-2(1H)-yl)-6-methylaniline (3d)

White solid, mp 107.6–109.4 °C. ¹**H NMR** (400 MHz, DMSO) δ 7.18–7.10 (m, 4H), 6.90 (d, J = 7.8 Hz, 1H), 6.77 (d, J = 7.3 Hz, 1H), 6.54 (t, J = 7.6 Hz, 1H), 4.51 (br, 2H), 3.97 (s, 2H), 3.08 (t, J = 5.2 Hz, 2H), 2.95 (t, J = 5.3 Hz, 2H), 2.11 (s, 3H); ¹³C **NMR** (100 MHz, CDCl₃) δ 140.1, 138.9, 135.5, 134.3, 128.9, 126.4, 126.2, 126.1, 125.7, 122.4, 117.9, 117.8, 54.1, 49.6, 30.0, 17.7; **IR** (**KBr**) *v*/cm⁻¹: 3458, 3360, 3019, 2958, 2927, 2896, 2820, 2782, 1607, 1574, 1481, 1380, 1347, 1310, 1275, 1230, 1168, 1108, 933, 777, 739; **HRMS** (ESI) calculated for C₁₆H₁₉N₂ (M+H)⁺: 239.1543, found : 239.1534.

2-(3,4-dihydroisoquinolin-2(1H)-yl)-4-methoxyaniline (3e)

White solid, mp 102.6–104.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.19–7.13 (m, 3H),

7.09–7.05 (m, 1H), 6.72–6.67 (m, 2H), 6.55 (dd, J = 8.5, 2.8 Hz, 1H), 4.09 (s, 2H), 3.75 (s, 3H), 3.74 (br, 2H), 3.24 (t, J = 5.8 Hz, 2H), 3.01 (t, J = 5.8 Hz, 2H); ¹³**C NMR** (100 MHz, CDCl₃) δ 152.9, 140.4, 135.3, 135.2, 134.2, 128.9, 126.4, 126.3, 125.7, 115.6, 108.9, 107.4, 55.8, 53.6, 49.2, 29.8; **IR** (**KBr**) *v*/cm⁻¹: 3423, 3336, 3014, 2983, 2919, 2821, 2780, 1589, 1511, 1450, 1378, 1319, 1236, 1193, 1166, 1024, 968, 927, 813, 754, 644, 480; **HRMS** (ESI) calculated for C₁₆H₁₉N₂O (M+H)⁺: 255.1492, found : 255.1486.

4. General procedure for the dehydrogenative coupling

Under an argon atmosphere, a mixture of $[Ir(cod)Cl]_2$ (0.01 mmol), the substrate (0.2 mmol) in trifluoroethanol (2 mL) was stirred at 80 °C for the indicated time in the Table 1–2. The solvent was removed under vacuum. The residue was purified by flash column chromatography over silica gel to give the product.

1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine (2a)

White solid, mp 62.4–64.6 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71–7.67 (m, 1H), 7.31–7.27 (m, 1H), 7.25–7.19 (m, 2H), 4.08 (t, J = 6.1 Hz, 2H), 3.10 (t, J = 6.4 Hz, 2H), 2.17–2.10 (m, 2H), 2.06–1.99 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 151.6, 142.8, 134.5, 122.0, 121.5, 118.8, 108.6, 42.3, 25.4, 22.6, 20.7; **IR (KBr)** ν /cm⁻¹: 3043, 2944, 2891 1612, 1508, 1481, 1457, 1413, 1375, 1317, 1286, 1272, 1228, 1157, 1002, 769, 754, 680; **HRMS** (ESI) calculated for C₁₁H₁₃N₂ (M+H)⁺: 173.1073, found : 173.1074.

1-methyl-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine (2b)

White solid, mp 96.7–99.2 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.70–7.66 (m, 1H), 7.35–7.32 (m, 1H), 7.25–7.18 (m, 2H), 4.64–4.56 (m, 1H), 3.19–3.11 (m, 1H), 3.04–2.94 (m, 1H), 2.25–2.04 (m, 2H), 2.00–1.92 (m, 2H), 1.52 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.4, 143.1, 133.8, 121.8, 121.5, 119.0, 109.6, 48.3, 29.7, 25.5, 20.1, 16.8; **IR (KBr)** *v*/cm⁻¹: 3045, 2954, 1608, 1510, 1459, 1416, 1380, 1365, 1305, 1280, 1228, 1159, 755, 530, 431; **HRMS** (ESI) calculated for C₁₂H₁₅N₂ (M+H)⁺: 187.1230, found : 187.1241.

2,3-dihydro-1H-benzo[d]pyrrolo[1,2-a]imidazole (2c)

White solid, mp 105.4–108.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74–7.66 (m, 1H), 7.33–7.27 (m, 1H), 7.25–7.18 (m, 2H), 4.11 (t, *J* = 7.0 Hz, 2H), 3.07 (t, *J* = 7.6 Hz, 2H), 2.77–2.68 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 161.1, 148.8, 132.3, 121.7, 121.6, 119.5, 109.4, 42.7, 26.0, 23.4; **IR (KBr)** *v*/cm⁻¹: 3394, 3052, 2960, 2920, 2849, 1624, 1523, 1461, 1446, 1416, 1331, 1302, 1280, 1217, 1134, 1004, 936, 735; **HRMS** (ESI) calculated for C₁₀H₁₁N₂ (M+H)⁺: 159.0917, found : 159.0910.

7,8,9,10-tetrahydro-6H-benzo[4,5]imidazo[1,2-a]azepine (2d)

White solid, mp 120.5–122.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71–7.66 (m, 1H), 7.28–7.18 (m, 3H), 4.16–4.12 (m, 2H), 3.12–3.07 (m, 2H), 1.98–1.90 (m, 2H), 1.87–1.76 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 142.4, 135.7, 121.8, 121.4,

119.2, 108.6, 44.4, 30.8, 30.1, 28.7, 25.5; **IR (KBr)** *v*/cm⁻¹: 3367, 3052, 2980, 2927, 2848, 1615, 1516, 1478, 1462, 1434, 1413, 1334, 1281, 1240, 1190, 1084, 1006, 885, 740; **HRMS** (ESI) calculated for C₁₂H₁₅N₂ (M+H)⁺: 187.1230, found : 187.1240.

5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (2g)

White solid, mp 145.1–147.3 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.33–8.28 (m, 1H), 7.86–7.80 (m, 1H), 7.45–7.35 (m, 3H), 7.34–7.27 (m, 3H), 4.35 (t, *J* = 6.8 Hz, 2H), 3.30 (t, *J* = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 143.9, 134.6, 134.2, 130.1, 128.0, 127.6, 126.6, 125.6, 122.6, 122.4, 119.7, 109.0, 40.3, 28.2; **IR (KBr)** ν /cm⁻¹: 3682, 3014, 2962, 2892, 1615, 1527, 1482, 1448, 1408, 1325, 1233, 1171, 1003, 774, 735, 438; **HRMS** (ESI) calculated for C₁₅H₁₃N₂ (M+H)⁺: 221.1073, found: 221.1069.

2,3-dimethoxy-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (2h)

White solid, mp 151.1–153.5 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (ddd, J = 5.9, 3.1, 0.6 Hz, 1H), 7.78 (s, 1H), 7.35–7.31 (m, 1H), 7.29–7.24 (m, 2H), 6.79 (s, 1H), 4.30 (t, J = 6.9 Hz, 2H), 4.01 (s, 3H), 3.95 (s, 3H), 3.22 (t, J = 6.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.7, 149.4, 148.6, 143.9, 134.7, 127.4, 122.3, 122.2, 119.3, 119.2, 110.7, 108.7, 108.0, 56.2, 56.0, 40.5, 27.8; **IR (KBr)** ν/cm^{-1} : 3442, 3047, 2967, 2843, 1620, 1585, 1531, 1486, 1456, 1410, 1243, 1215, 1163, 1064, 1024, 817, 765; **HRMS** (ESI) calculated for C₁₇H₁₇N₂O₂ (M+H)⁺: 281.1285, found : 281.1275.

4,5-dihydrobenzo[4,5]imidazo[1,2-a]thieno[3,2-c]pyridine (2i)

White solid, mp 187.8–189.8 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.81–7.76 (m, 1H), 7.68 (d, J = 5.2 Hz, 1H), 7.34–7.31 (m, 1H), 7.30–7.23 (m, 3H), 4.38 (t, J = 7.1 Hz, 2H), 3.39 (t, J = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.3, 143.8, 138.1, 134.4, 128.8, 124.5, 124.2, 122.6, 122.2, 119.7, 108.8, 41.0, 24.0; **IR (KBr)** v/cm^{-1} : 3102, 3044, 2890, 1616, 1565, 1469, 1446, 1425, 1315, 1278, 1153, 1076, 956, 919, 736, 707; **HRMS** (ESI) calculated for C₁₃H₁₁N₂S (M+H)⁺: 227.0637, found : 227.0632.

11H-benzo[4,5]imidazo[2,1-a]isoindole (2j)

Light brown solid, mp 210.7–213.4 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 6.8 Hz, 1H), 7.87–7.81 (m, 1H), 7.59–7.42 (m, 4H), 7.31–7.26 (m, 2H), 5.05 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 148.3, 143.4, 132.6, 129.4, 129.3, 128.7, 123.8, 122.6, 122.1, 122.0, 120.5, 109.3, 47.1; **IR (KBr)** ν /cm⁻¹: 3050, 2922, 2850, 1620, 1587, 1540, 1472, 1453, 1377, 1329, 1316, 1234, 1158, 924, 739; **HRMS** (ESI) calculated for C₁₄H₁₁N₂ (M+H)⁺: 207.0917, found : 207.0922.

1-ethyl-2-methyl-1H-benzo[d]imidazole (2l)

White solid, mp 47.9–49.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.71–7.66 (m, 1H), 7.32–7.28 (m, 1H), 7.26–7.20 (m, 2H), 4.16 (q, *J* = 7.3 Hz, 2H), 2.61 (s, 3H), 1.41 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 142.6, 134.6, 121.9, 121.7, 119.0, 108.9, 38.5, 14.9, 13.7; **IR (KBr)** *v*/cm⁻¹: 3367, 3056, 2979, 2929, 1668, 1616,

1511, 1461, 1400, 1348, 1328, 1274, 1234, 1166, 1131, 1081, 1008, 744, 661; **HRMS** (ESI) calculated for $C_{10}H_{13}N_2$ (M+H)⁺: 161.1073, found : 161.1079.

2-ethyl-1-propyl-1H-benzo[d]imidazole (2m)

Colorless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.76–7.71 (m, 1H), 7.32–7.28 (m, 1H), 7.25–7.19 (m, 2H), 4.07 (t, J = 7.4 Hz, 2H), 2.90 (q, J = 7.5 Hz, 2H), 1.89–1.79 (m, 2H), 1.48 (t, J = 7.5 Hz, 3H), 0.98 (t, J = 7.4 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 155.9, 142.6, 135.1, 121.8, 121.5, 119.1, 109.1, 45.0, 23.0, 20.7, 11.8, 11.3; **IR (KBr)** ν /cm⁻¹: 3461, 3050, 2924, 2850, 1645, 1561, 1528, 1465, 1411, 1380, 1168, 1107, 1090, 1054, 757, 653; **HRMS** (ESI) calculated for C₁₂H₁₇N₂ (M+H)⁺: 189.1386, found :189.1392.

1-benzyl-2-phenyl-1H-benzo[d]imidazole (2n)

Light yellow solid, mp 137.5–139.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 8.0 Hz, 1H), 7.71–7.67 (m, 2H), 7.49–7.42 (m, 3H), 7.36–7.28 (m, 4H), 7.24–7.18 (m, 2H), 7.10 (d, J = 7.2 Hz, 2H), 5.45 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 143.1, 136.3, 136.0, 130.0, 129.8, 129.2, 129.0, 128.7, 127.7, 125.9, 122.9, 122.6, 119.9, 110.4, 48.3; **IR (KBr)** ν /cm⁻¹: 3430, 3058, 3027, 2942, 1602, 1467, 1446, 1390, 1361, 1328, 1278, 1249, 1160, 989, 775, 732, 698; **HRMS** (ESI) calculated for C₂₀H₁₇N₂ (M+H)⁺: 285.1386, found : 285.1382.

1-isopropyl-2-phenyl-1H-benzo[d]imidazole (2o)

White solid, mp 147.3–148.9 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.85–7.81 (m, 1H), 7.67–7.61 (m, 3H), 7.54–7.50 (m, 3H), 7.31–7.26 (m, 2H), 4.83 (dt, *J* = 13.9, 6.9 Hz, 1H), 1.66 (d, *J* = 7.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 153.6, 143.8, 133.5, 131.1, 129.6, 129.5, 128.6, 122.2, 122.0, 120.3, 112.3, 48.8, 21.4; **IR (KBr)** *v*/cm⁻¹: 3396, 3063, 3032, 2979, 2935, 1601, 1523, 1453, 1377, 1283, 1159, 1134, 1017, 779, 751, 702; **HRMS** (ESI) calculated for C₁₆H₁₇N₂ (M+H)⁺: 237.1386, found : 237.1377.

1-ethyl-2-phenyl-1H-benzo[d]imidazole (2pa)

White solid, mp 67.9–70.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86–7.82 (m, 1H), 7.75–7.71 (m, 2H), 7.56–7.50 (m, 3H), 7.47–7.42 (m, 1H), 7.34–7.28 (m, 2H), 4.29 (q, J = 7.2 Hz, 2H), 1.47 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 143.2, 135.3, 130.5, 129.7, 129.2, 128.7, 122.6, 122.3, 119.9, 109.9, 39.6, 15.3; **IR (KBr)** ν /cm⁻¹: 3057, 2990, 2942, 1610, 1523, 1467, 1443, 1391, 1349, 1329, 1153, 1130, 1074, 757, 699; **HRMS** (ESI) calculated for C₁₅H₁₅N₂ (M+H)⁺: 223.1230, found : 223.1222.

1-benzyl-2-methyl-1H-benzo[d]imidazole (2pb)

White solid, mp 102.9–104.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75–7.71 (m, 1H), 7.33–7.26 (m, 3H), 7.25–7.17 (m, 3H), 7.07–7.03 (m, 2H), 5.32 (s, 2H), 2.57 (s, 3H);

¹³C NMR (100 MHz, CDCl₃) δ 151.9, 142.7, 135.8, 135.5, 129.0, 127.9, 126.2, 122.2, 122.0, 119.1, 109.3, 47.1, 14.0; **IR (KBr)** *ν*/cm⁻¹: 3361, 3200, 3060, 3032, 2921, 2851, 1660, 1633, 1617, 1524, 1453, 1401, 1354, 1330, 1285, 1250, 1155, 1030, 1010, 743, 697; **HRMS** (ESI) calculated for C₁₅H₁₅N₂ (M+H)⁺: 223.1230, found : 223.1225.

8-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (4a)

White solid, mp 146.6–149.6 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.27 (dd, J = 7.2, 1.8 Hz, 1H), 7.69 (d, J = 8.2 Hz, 1H), 7.43–7.35 (m, 2H), 7.31–7.28 (m, 1H), 7.15 (s, 1H), 7.10 (dd, J = 8.2, 1.1 Hz, 1H), 4.29 (t, J = 6.8 Hz, 2H), 3.27 (t, J = 6.8 Hz, 2H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 142.0, 134.9, 134.1, 132.7, 129.9, 128.0, 127.7, 126.8, 125.5, 124.0, 119.2, 109.0, 40.3, 28.3, 21.8; **IR (KBr)** v/cm^{-1} : 3364, 3026, 2941, 2918, 2855, 1624, 1609, 1583, 1535, 1484, 1453, 1410, 1327, 1266, 1155, 1049, 803, 766, 734, 713; **HRMS** (ESI) calculated for C₁₆H₁₅N₂ (M+H)⁺: 235.1230, found : 235.1222.

9-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (4b)

White solid, mp 98.2–100.3 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.35–8.26 (m, 1H), 7.66 (d, *J* = 8.1 Hz, 1H), 7.45–7.35 (m, 2H), 7.33–7.27 (m, 1H), 7.14 (t, *J* = 7.7 Hz, 1H), 6.98 (d, *J* = 7.3 Hz, 1H), 4.66 (t, *J* = 6.8 Hz, 2H), 3.27 (t, *J* = 6.8 Hz, 2H), 2.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.2, 144.0, 133.9, 133.4, 129.9, 127.7, 127.6, 126.8, 125.7, 125.2, 122.3, 120.8, 117.8, 42.9, 28.6, 18.9; **IR (KBr)** *v*/cm⁻¹: 3367, 3033, 2920, 1610, 1580, 1485, 1455, 1408, 1332, 1238, 1145, 1050, 799, 733, 715; **HRMS** (ESI) calculated for C₁₆H₁₅N₂ (M+H)⁺: 235.1230, found : 235.1220.

10-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (4c)

White solid, mp 174.5–176.8 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.30–8.26 (m, 1H), 7.61 (s, 1H), 7.43–7.35 (m, 2H), 7.32–7.29 (m, 1H), 7.24 (d, *J* = 8.2 Hz, 1H), 7.11 (dd, *J* = 8.2, 1.0 Hz, 1H), 4.30 (t, *J* = 6.9 Hz, 2H), 3.28 (t, *J* = 6.9 Hz, 2H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 149.0, 144.2, 134.1, 132.7, 132.0, 129.9, 128.0, 127.6, 126.8, 125.5, 124.1, 119.5, 108.5, 40.3, 28.2, 21.6; **IR (KBr)** *v*/cm⁻¹: 3363, 3026, 2951, 2915, 2855, 1618, 1580, 1527, 1490, 1454, 1423, 1406, 1341, 1323, 1239, 1138, 881, 793, 764, 734, 708; **HRMS** (ESI) calculated for C₁₆H₁₅N₂ (M+H)⁺: 235.1230, found : 235.1220.

11-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (4d)

White solid, mp 132.5–134.0 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.33 (dd, J = 7.3, 1.7 Hz, 1H), 7.42–7.35 (m, 2H), 7.31–7.27 (m, 1H), 7.19–7.16 (m, 2H), 7.09–7.05 (m, 1H), 4.29 (t, J = 6.8 Hz, 2H), 3.26 (t, J = 6.8 Hz, 2H), 2.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.4, 143.3, 134.3, 134.1, 129.9, 129.8, 127.9, 127.6, 126.9, 125.8, 122.7, 122.5, 106.4, 40.5, 28.3, 16.8; **IR (KBr)** ν /cm⁻¹: 3365, 3049, 3019, 2917, 1595, 1482, 1455, 1424, 1402, 1331, 1301, 1232, 1153, 1054, 775, 747, 720; **HRMS** (ESI) calculated for C₁₆H₁₅N₂ (M+H)⁺: 235.1230, found : 235.1231.

9-methoxy-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (4e)

White solid, mp 153.0–155.7 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.24 (dd, J = 7.3, 1.6 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.43–7.34 (m, 2H), 7.32–7.28 (m, 1H), 6.92 (dd, J = 8.8, 2.4 Hz, 1H), 6.82 (d, J = 2.4 Hz, 1H), 4.28 (t, J = 6.8 Hz, 2H), 3.89 (s, 3H), 3.27 (t, J = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 156.6, 148.4, 138.4, 135.2, 133.8, 129.7, 128.0, 127.6, 126.8, 125.1, 120.1, 111.6, 92.7, 55.8, 40.3, 28.2; **IR (KBr)** ν /cm⁻¹: 3429, 3001, 2967, 2838, 1620, 1585, 1531, 1486, 1456, 1410, 1361, 1243, 1215, 1163, 1064, 1024, 817, 765, 712; **HRMS** (ESI) calculated for C₁₆H₁₅N₂O (M+H)⁺: 251.1179, found: 251.1187.

5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-9-ol (4f)

White solid, mp 274.8–278.3 °C. ¹**H** NMR (400 MHz, DMSO) δ 9.34 (s, 1H), 8.05–8.00 (m, 1H), 7.45 (d, J = 8.6 Hz, 1H), 7.43–7.36 (m, 3H), 6.86 (d, J = 2.2 Hz, 1H), 6.72 (dd, J = 8.6, 2.2 Hz, 1H), 4.27 (t, J = 6.8 Hz, 2H), 3.24 (t, J = 6.8 Hz, 2H); ¹³C NMR (100 MHz, DMSO) δ 153.9, 147.1, 137.0, 135.5, 134.6, 129.4, 128.4, 127.2, 126.6, 124.2, 119.3, 111.8, 95.1, 39.7, 27.4; **IR (KBr)** ν/cm^{-1} : 3396, 3063, 2979, 2937, 1599, 1500, 1461, 1377, 1323, 1280, 1248, 1185, 1134, 1072, 1017, 779, 745, 702, 630; **HRMS** (ESI) calculated for C₁₅H₁₃N₂O (M+H)⁺: 237.1022, found : 237.1012.

9-bromo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (4g)

White solid, mp 180.4–183.1 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 8.29 (dd, J = 5.4, 3.6 s23

Hz, 1H), 7.68 (d, J = 8.6 Hz, 1H), 7.53 (d, J = 1.8 Hz, 1H), 7.45–7.40 (m, 2H), 7.38 (dd, J = 8.6, 1.8 Hz, 1H), 7.36–7.31 (m, 1H), 4.31 (t, J = 6.8 Hz, 2H), 3.30 (t, J = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 149.8, 142.9, 135.7, 134.2, 130.5, 128.1, 127.8, 126.3, 125.7, 120.9, 115.8, 112.2, 40.5, 28.1; **IR (KBr)** ν/cm^{-1} : 3396, 3050, 2917, 2890, 1608, 1450, 1405, 1315, 1265, 1226, 1039, 835, 802, 769, 730, 700; **HRMS** (ESI) calculated for C₁₅H₁₂BrN₂ (M+H)⁺: 299.0178, found : 299.0174.

9-(trifluoromethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (4h)

White solid, mp 184.7–187.9 °C. ¹**H** NMR (400 MHz, CDCl₃) δ 8.33–8.28 (m, 1H), 7.88 (d, J = 8.5 Hz, 1H), 7.66 (s, 1H), 7.53 (dd, J = 8.5, 1.1 Hz, 1H), 7.48–7.42 (m, 2H), 7.37–7.33 (m, 1H), 4.39 (t, J = 6.9 Hz, 2H), 3.34 (t, J = 6.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.5, 146.1, 134.5, 134.1, 130.9, 128.2, 127.9, 126.1, 126.0, 124.8 (q, ¹J_{CF3} = 270 Hz); 124.7 (q, ²J_{CF3} = 32 Hz), 120.0, 119.4 (q, ³J_{CF3} = 4 Hz), 106.8 (q, ³J_{CF3} = 4 Hz), 40.7, 28.1; **IR (KBr)** ν /cm⁻¹: 3359, 2920, 2850, 1626, 1580, 1533, 1483, 1456, 1337, 1303, 1274, 1162, 1109, 1047, 823, 774, 726; **HRMS** (ESI) calculated for C₁₆H₁₂N₂F₃ (M+H)⁺: 289.0947, found : 289.0941.

5,6-dihydropyrido[2',3':4,5]imidazo[2,1-a]isoquinoline (4i)

White solid, mp 143.3–146.7 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.53 (dd, J = 4.8, 1.5 Hz, 1H), 8.41–8.36 (m, 1H), 7.65 (dd, J = 8.0, 1.5 Hz, 1H), 7.46–7.41 (m, 2H), 7.35–7.30 (m, 1H), 7.18 (dd, J = 8.0, 4.8 Hz, 1H), 4.34 (t, J = 6.9 Hz, 2H), 3.32 (t, J = 6.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 156.7, 151.1, 145.0, 134.2, 130.9, 128.1, 127.9, 127.1, 126.7, 126.0, 117.6, 116.7, 40.5, 27.9; IR (KBr) v/cm⁻¹: 3357, 3236, S24

3037, 2920, 1670, 1614, 1527, 1479, 1454, 1402, 1278, 1164, 1108, 771, 725, 696; **HRMS** (ESI) calculated for $C_{14}H_{12}N_3$ (M+H)⁺: 222.1026, found : 222.1021.

5. 1H and 13C NMR spectra of the substrates

2-(piperidin-1-yl)aniline (1a)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

2-(2-methylpiperidin-1-yl)aniline (1b)

2-(pyrrolidin-1-yl)aniline (1c)

2-(azepan-1-yl)aniline (1d)

2-morpholinoaniline (1e)

2-(4-methylpiperazin-1-yl)aniline (1f)

2-(3,4-dihydroisoquinolin-2(1H)-yl)aniline (1g)

2-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)aniline (1h)

2-(6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl)aniline (1i)

2-(isoindolin-2-yl)aniline (1j)

N^1 , N^1 -diethylbenzene-1,2-diamine (11)

N^1 , N^1 -dipropylbenzene-1,2-diamine (1m)

*N*¹,*N*¹-dibenzylbenzene-1,2-diamine (1n)

N^1 -benzyl- N^1 -isopropylbenzene-1,2-diamine (10) ---0. 0000 7, 7, 2212 7, 7, 1919 7, 7, 1919 7, 7, 1919 7, 7, 1919 7, 7, 1919 7, 7, 1919 7, 7, 1919 7, 7, 1919 7, 7, 1919 7, 1917 7, 1113 7, 1113 7, 1113 7, 1113 7, 1113 7, 1113 7, 1113 7, 1113 7, 1113 7, 1113 7, 1113 7, 1113 7, 1113 7, 1113 7, 1113 7, 1113 7, 1113 7, 1113 8633 7, 1113 8633 8633 8634 8634 8634 8634 8634 8634 8634 8633 8634 8634 8635 8636 86316 86416 < -1.1567 ||| | , 1 NH_2 . 1. 89.4 0.1.89.4 4.01 1.02 1.03 1.03 2.03 4.01 2.03 F-00 14-F ġ. 7.0 6.0 f1 (ppm) 13.0 12.0 11.0 10.0 9.0 8.0 5.0 3.0 2.0 1.0 0.0 -143.86-139.95-136.13-136.13-136.13-128.33-127.89127.89127.89127.89127.78127.78127.78127.71117.71 $\underbrace{\uparrow}^{77.32}_{77.00}$ 52.26 -19.51NH₂ 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) 70 90 80 60 50 40 30 20 10 0 -10

2-(3,4-dihydroisoquinolin-2(1H)-yl)-3-methylaniline (3a)

2-(3,4-dihydroisoquinolin-2(1H)-yl)-4-methylaniline (3b)

2-(3,4-dihydroisoquinolin-2(1H)-yl)-5-methylaniline (3c)

2-(3,4-dihydroisoquinolin-2(1H)-yl)-6-methylaniline (3d)

2-(3,4-dihydroisoquinolin-2(1H)-yl)-4-methoxyaniline (3e)

4-amino-3-(3,4-dihydroisoquinolin-2(1H)-yl)phenol (3f)

4-bromo-2-(3,4-dihydroisoquinolin-2(1H)-yl)aniline (3g)

2-(3,4-dihydroisoquinolin-2(1H)-yl)-4-(trifluoromethyl)aniline (3h)

3-(3,4-dihydroisoquinolin-2(1H)-yl)pyridin-2-amine (3i)

6. ¹H and ¹³C NMR Spectra of the products

1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine (2a)

1-methyl-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine (2b)

7,7,7085 7,6093 7,6093 7,6074 6830 7,7,6774 7,7,2576 7,7,2576 7,7,2576 7,7,2513 7,7,2513 7,7,2513 7,7,2513 7,7,2513 7,7,2513 7,7,2513 7,7,2213 7,2222 7,2223 7,2232 7,2232 7,2223 7,2223 7,2223 7,2232 7,2332 7,2332 7,2352 7,2552 7,2552 (1, 9544)(2, 9417)(2, 9417)(2, 9289)(2, 8437)(3, 8265)(3, 8318)(3, 83318)(3, 83318)(3, 83318)(3, 8319)(3, 83120) $\underbrace{ \left\{ \begin{array}{c} 4.\ 1538 \\ 4.\ 1410 \\ 4.\ 1286 \end{array} \right. } \\$ $\underbrace{ \{ \begin{array}{c} 3. \ 1120 \\ 3. \ 0977 \\ 3. \ 0836 \end{array} }_{3. \ 0836 }$ 5. 05 4. 06 4 F-6.0 -3.13-1 2.01-1 2.00 F 7.0 f1 (ppm) 14.0 13.0 12.0 11.0 10.0 9.0 8.0 6.0 5.0 4.0 3.0 1.0 0.0 -142.35 -135.68 $\begin{pmatrix} 121.76\\ 121.42\\ 119.16 \end{pmatrix}$ -108.56 -157.40 $\begin{pmatrix} 77.32\\77.00\\76.68 \end{pmatrix}$ -44.39230.84 230.07 25.48 25.48 210 200 190 180 170 160 150 140 130 120 110 100 90 fl (ppm) 80 70 60 50 40 30 20 10 0 -10

7,8,9,10-tetrahydro-6H-benzo[4,5]imidazo[1,2-a]azepine (2d)

5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (2g)

2,3-dimethoxy-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (2h)

4,5-dihydrobenzo[4,5]imidazo[1,2-a]thieno[3,2-c]pyridine (2i)

1-ethyl-2-methyl-1H-benzo[d]imidazole (2l)

2-ethyl-1-propyl-1H-benzo[d]imidazole (2m)

1-benzyl-2-phenyl-1H-benzo[d]imidazole (2n)

8-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (4a)

9-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (4b)

10-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (4c)

11-methyl-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (4d)

9-methoxy-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (4e)

5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinolin-9-ol (4f)

9-bromo-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (4g)

9-(trifluoromethyl)-5,6-dihydrobenzo[4,5]imidazo[2,1-a]isoquinoline (4h)

5,6-dihydropyrido[2',3':4,5]imidazo[2,1-a]isoquinoline (4i)

