Copper-Catalyzed Efficient Amidation of 2-Methylquinolines

with Amines

Hao Xie,^a Yunfeng Liao,^a Shuqing Chen,^a Ya Chen,^a Guo-Jun Deng^{a,b}*

- ^a Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Fax: (+86)-731-58292251; e-mail: gjdeng@xtu.edu.cn
- ^b Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China.

Table of Contents

1. General information and procedure	S2
 Characterization data of products References Copies of ¹H and ¹³C NMR spectra of all products The MS spectra of ¹⁸O labeling products 	S2-S13 S13 S14-S38 S39-S40

General information:

All reactions were carried out under an atmosphere of oxygen unless otherwise noted. Column chromatography was performed using silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or chloroform signals. Mass spectra was measured on Agilent 5975 GC-MS instrument (EI). High-resolution mass spectra were recorded at Institute of Chemistry, Chinese Academy of Sciences. The structure of known compounds was further corroborated by comparing their ¹H NMR, ¹³C NMR data and MS data with those of literature. All reagents were obtained from commercial suppliers and used without further purification.

General procedure:

CuI (9.5 mg, 0.05 mmol) were added to a 25 mL oven-dried reaction vessel. The reaction vessel was purged with oxygen for three times and then was added 2-methylquinoline (**1a**, 70 μ L, 0.5 mmol), aniline (**2a**, 90 μ L, 1.0 mmol) and PivOH (0.8 mL) by syringe. The reaction vessel was stirred at 120 °C for 48 h. After cooling to room temperature, the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1) to yield the desired product **3a** as white solid; yield 76%.

N-Phenylquinoline-2-carboxamide (3a, CAS: 7477-46-5)^[1]

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.25 (s, 1H), 8,40 (q, J = 8.1 Hz, 2H), 8.20 (d, J = 8.4 Hz, 1H), 7.94-7.80 (m, 4H), 7.67 (t, J = 7.2 Hz, 1H), 7,43 (t, J = 8.0 Hz, 2H), 7.18 (t, J = 7.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.2, 149.7, 146.3, 137.8, 137.8, 130.3, 129.7, 129.4, 129.1, 128.1, 127.8, 124.3, 119.8, 118.8; MS (EI) m/z (%) 248 (100), 207, 129, 101, 77.

N-(*p*-Tolyl)quinoline-2-carboxamide (3b, CAS: 110490-58-9)^[1]

The reaction was conducted with 2-methylquinoline (1a, 70 µL, 0.5 mmol) and p-toluidine (2b,

107.0 mg, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3b** as white solid; yield 57%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.22 (s, 1H), 8,39 (q, *J* = 8.1 Hz, 2H), 8.21 (d, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.83-7.74 (m, 3H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.22 (d, *J* = 8.0 Hz, 2H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 161.9, 149.8, 146.2, 137.9, 135.3, 133.9, 130.3, 129.7, 129.6, 129.4, 128.1, 127.8, 119.7, 118.8, 20.9; MS (EI) m/z (%) 262 (100), 207, 129, 101, 77.

N-(4-Methoxyphenyl)quinoline-2-carboxamide (3c, CAS: 22765-52-2)^[1]

The reaction was conducted with 2-methylquinoline (**1a**, 70 μ L, 0.5 mmol) and 4-methoxyaniline (**2c**, 125.0 mg, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3c** as orange solid; yield 49%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.19 (s, 1H), 8.40 (q, *J* = 7.9 Hz, 2H), 8.21 (d, *J* = 8.4 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.84-7.77 (m, 3H), 7.66 (d, *J* = 7.6 Hz, 1H), 6.96 (d, *J* = 8.8 Hz, 2H), 3.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 161.8, 156.4, 149.8, 146.2, 137.8, 131.0, 130.3, 129.6, 129.3, 128.0, 127.8, 121.3, 118.7, 114.2, 55.5; MS (EI) m/z (%) 278 (100), 207, 129, 101, 77.

N-(4-(Trifluoromethyl)phenyl)quinoline-2-carboxamide (3d)

The reaction was conducted with 2-methylquinoline (**1a**, 70 μ L, 0.5 mmol) and 4-(trifluoromethyl)aniline (**2d**, 125 μ L, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3d** as white solid; yield 89%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.45 (s, 1H), 8.41 (m, 2H), 8.22 (d, J = 8.4 Hz, 1H),

8.01-7.83 (m, 3H), 7.85 (t, J = 7.6 Hz, 1H), 7.71-7.67 (m, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.4, 149.0, 146.2, 140.8 (q, J = 1.3 Hz), 138.0, 130.5, 129.6, 129.5, 128.4, 127.8, 126.3 (q, J = 3.8 Hz), 126.0 (q, J = 32.5 Hz), 124.2 (q, J = 269.8 Hz), 119.4, 118.7; HRMS calcd. for: C₁₇H₁₂ON₂F₃ [M+H]⁺ 317.0907, found 317.0903.

N-(4-Cyanophenyl)quinoline-2-carboxamide (3e, CAS: 22765-56-6)

The reaction was conducted with 2-methylquinoline (**1a**, 70 μ L, 0.5 mmol) and 4-aminobenzonitrile (**2e**, 120.0 mg, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 2:1) to give **3e** as gray solid; yield 86%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.48 (s, 1H), 8.42-8.37 (m, 2H), 8.20 (d, J = 8.4 Hz, 1H), 8.01-7.94 (m, 3H), 7.85 (t, J = 7.6 Hz, 1H), 7.72-7.68 (m, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.5, 148.7, 146.2, 141.7, 138.2, 138.2, 133.4, 130.7, 129.6, 129.6, 128.6, 127.9, 119.6, 118.7, 107.2; HRMS calcd. for: C₁₇H₁₂ON₃ [M+H]⁺ 274.0986, found 274.0982.

N-(4-(Trifluoromethoxy)phenyl)quinoline-2-carboxamide (3f)

The reaction was conducted with 2-methylquinoline (**1a**, 70 μ L, 0.5 mmol) and 4-(trifluoromethoxy)aniline (**2f**, 135 μ L, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3f** as white solid; yield 86%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.32 (s, 1H), 8.40 (m, 2H), 8.20 (d, J = 8.4 Hz, 1H), 7.94-7.89 (m, 3H), 7.83 (t, J = 7.6 Hz, 1H), 7.68 (t, J = 7.2 Hz, 1H), 7.27 (d, J = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.2, 149.2, 146.2, 145.3, 137.9, 136.5, 130.4, 129.6, 129.5, 128.3, 127.8, 121.8, 120.8, 120.5 (q, J = 255.3 Hz), 118.6; HRMS calcd. for: C₁₇H₁₂O₂N₂F₃ [M+H]⁺ 333.0856, found 333.0853.

N-(4-Fluorophenyl)quinoline-2-carboxamide (3g, CAS: 22765-57-7)^[1]

The reaction was conducted with 2-methylquinoline (**1a**, 70 μ L, 0.5 mmol) and 4-fluoroaniline (**2g**, 100 μ L, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3g** as white solid; yield 85%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.28 (s, 1H), 8.43-8.38 (m, 2H), 8.21 (d, J = 8.8 Hz, 1H), 7.94-7.82 (m, 4H), 7.68 (t, J = 7.8 Hz, 1H), 7.12 (t, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.1, 159.3 (d, J = 241.9 Hz), 149.4, 146.2, 137.9, 133.8 (d, J = 3.0 Hz), 130.4, 129.6, 129.4, 128.2, 127.8, 121.4 (d, J = 7.9 Hz), 118.7, 115.7 (d, J = 22.3 Hz); MS (EI) m/z (%) 266 (100), 207, 129, 101, 77.

N-(4-Chlorophenyl)quinoline-2-carboxamide (3h, CAS: 7477-43-2)^[1]

The reaction was conducted with 2-methylquinoline (**1a**, 70 μ L, 0.5 mmol) and 4-chloroaniline (**2h**, 127.5 mg, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3h** as white solid; yield 79%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.28 (s, 1H), 8.39 (m, 2H), 8.20 (d, J = 8.0 Hz, 1H), 7.94-7.82 (m, 4H), 7.67 (t, J = 7.2 Hz, 1H), 7.38 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.1, 149.2, 146.2, 138.0, 136.3, 130.4, 129.5, 129.4, 129.2, 129.1, 128.3, 127.8, 120.9, 118.7; MS (EI) m/z (%) 282 (100), 207, 129, 101, 77.

N-(4-Bromophenyl)quinoline-2-carboxamide (3i, CAS: 586985-01-5)^[1]

The reaction was conducted with 2-methylquinoline (**1a**, 70 μ L, 0.5 mmol) and 4-bromoaniline (**2i**, 208.5 mg, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3i** as light-yellow solid; yield 72%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.27 (s, 1H), 8.38 (m, 2H), 8.19 (d, J = 8.4 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.84-7.76 (m, 3H), 7.67 (t, J = 7.2 Hz, 1H), 7.52 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.1, 149.2, 146.2, 137.9, 136.8, 132.0, 130.4, 129.6, 129.4, 128.3, 127.8, 121.2, 118.6, 116.8; MS (EI) m/z (%) 326 (100), 207, 129, 101, 77.

N-(*m*-Tolyl)quinoline-2-carboxamide (3j, CAS: 425389-17-9)^[1]

The reaction was conducted with 2-methylquinoline (**1a**, 70 μ L, 0.5 mmol) and *m*-toluidine (**2j**, 108 μ L, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3j** as white solid; yield 69%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.25 (s, 1H), 8.40 (q, *J* = 7.3 Hz, 2H), 8,22 (d, *J* = 8.4 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.83 (t, *J* = 7.6 Hz, 1H), 7.73 (s, 1H), 7.69-7.65 (m, 2H), 7.31 (t, *J* = 8.0 Hz, 1H), 7.00 (d, *J* = 7.2 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.1, 149.7, 146.3, 139.0, 137.9, 137.7, 130.3, 129.6, 129.4, 128.9, 128.1, 127.8, 125.2, 120.4, 118.8, 116.9, 21.6; MS (EI) m/z (%) 262 (100), 207, 129, 101, 77.

N-(3-(Trifluoromethyl)phenyl)quinoline-2-carboxamide (3k, CAS: 313241-23-5)^[1]

The reaction was conducted with 2-methylquinoline (**1a**, 70 μ L, 0.5 mmol) and 3-(trifluoromethyl)aniline (**2k**, 125 μ L, 1,0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3k** as white solid; yield

88%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.39 (s, 1H), 8.40 (m, 2H), 8.21 (d, *J* = 8.4 Hz, 1H), 8.17 (s, 1H), 8.07 (d, *J* = 8.0 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.84 (t, *J* = 7.6 Hz, 1H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.54 (t, *J* = 7.6 Hz, 1H), 7.44-7.42 (m, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.4, 149.0, 146.2, 138.3, 138.0, 131.4 (q, *J* = 32.2 Hz), 130.4, 129.6, 129.5, 128.3, 127.8, 123.9 (q, *J* = 270.8 Hz), 122.7, 122.7, 120.8 (q, *J* = 3.9 Hz), 118.6, 116.4 (q, *J* = 4.0 Hz); MS (EI) m/z (%) 316 (100), 207, 129, 101, 77.

N-(3-Chlorophenyl)quinoline-2-carboxamide (3l, CAS: 22765-54-4)^[1]

The reaction was conducted with 2-methylquinoline (**1a**, 70 μ L, 0.5 mmol) and 3-chloroaniline (**2l**, 106 μ L, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3l** as white solid; yield 84%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.28 (s, 1H), 8.39 (m, 2H), 8.19 (d, J = 8.4 Hz, 1H), 7.98 (s, 1H), 7.93 (d, J = 7.2 Hz, 1H), 7.83 (t, J = 7.2 Hz, 1H), 7.73-7.66 (m, 2H), 7.34 (t, J = 8.0 Hz, 1H), 7.15 (d, J = 8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.2, 149.2, 146.2, 138.9, 137.9, 134.8, 130.4, 130.1, 129.6, 129.5, 128.3, 127.8, 124.3, 119.8, 118.7, 117.7; MS (EI) m/z (%) 282 (100), 207, 129, 101, 77.

N-(*o*-Tolyl)quinoline-2-carboxamide (3m, CAS: 298193-93-8)^[1]

The reaction was conducted with 2-methylquinoline (**1a**, 70 μ L, 0.5 mmol) and 4-acetylbenzonitrile (**2m**, 107 μ L, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ ethyl acetate = 20:1) to give **3m** as orange solid; yield 56%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.37 (s, 1H), 8.43-8.33 (m, 3H), 8.18 (d, J = 8.0 Hz, 1H),

7.93 (d, *J* = 8.0 Hz, 1H), 7.83-7.79 (m, 1H), 7.68-7.64 (m, 1H), 7.33-7.26 (m, 2H), 7.13-7.10 (m, 1H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) *δ* 161.9, 149.9, 146.2, 137.8, 135.9, 130.4, 130.2, 129.8, 129.4, 128.1, 128.0, 127.7, 126.9, 124.5, 121.2, 118.7, 17.7; MS (EI) m/z (%) 262 (100), 207, 129, 101, 77.

N-(2-Chlorophenyl)quinoline-2-carboxamide (3n, CAS: 22765-55-5)^[1]

The reaction was conducted with 2-methylquinoline (**1a**, 70 μ L, 0.5 mmol) and 2-chloroaniline (**2n**, 105 μ L, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3n** as white solid; yield 71%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 11.02 (s, 1H), 8.70 (d, J = 7.6 Hz, 1H), 8.40 (m, 2H), 8.24 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 7.6 Hz, 1H), 7.83 (t, J = 7.6 Hz, 1H), 7.68 (t, J = 6.8 Hz, 1H), 7.47 (d, J = 7.6 Hz, 1H), 7.37 (t, J = 7.2 Hz, 1H), 7.11 (t, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.3, 149.4, 146.3, 137.9, 134.8, 130.3, 130.0, 129.5, 129.2, 128.3, 127.8, 127.7, 124.6, 123.5, 121.0, 118.6; MS (EI) m/z (%) 282 (100), 247, 129, 101, 77.

N-(Pyridin-2-yl)quinoline-2-carboxamide (30)

The reaction was conducted with 2-methylquinoline (**1a**, 70 μ L, 0.5 mmol) and 4-chloroaniline (**2o**, 95.0 mg, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3o** as light-yellow solid; yield 81%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.81 (s, 1H), 8.50 (d, J = 7.6 Hz, 1H), 8.42-8.38 (m, 3H), 8.21 (d, J = 7.6 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.79 (t, J = 7.6 Hz, 2H), 7.66 (t, J = 7.2 Hz, 1H), 7.12 (t, J = 6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.7, 151.1, 148.8, 148.1, 146.3, 138.4, 137.7, 130.3, 129.8, 129.4, 128.3, 127.6, 119.8, 118.5, 113.9; HRMS calcd. for: C₁₅H₁₁ON₃Na [M+Na]⁺ 272.0805, found 272.0800. Morpholino(quinolin-2-yl)methanone (3p, CAS: 78224-46-1)^[2]

The reaction was conducted with 2-methylquinoline (**1a**, 70 μ L, 0.5 mmol) and morpholine (**2q**, 90 μ L, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3p** as orange solid; yield 62%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.31 (d, J = 8.0 Hz, 1H), 8.15 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.81-7.76 (m, 2H), 7.64 (t, J = 7.2 Hz, 1H), 3.90-3.87 (m, 4H), 3.75 (m, 4H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 167.5, 153.2, 146.5, 137.3, 130.1, 129.7, 128.1, 127.7, 127.6, 120.9, 67.0, 66.8, 47.8, 42.8; MS (EI) m/z (%) 242 (100), 156, 129, 101, 77.

Piperidin-1-yl(quinolin-2-yl)methanone (3q)^[2]

The reaction was conducted with 2-methylquinoline (**1a**, 70 μ L, 0.5 mmol) and piperidine (**2r**, 100 μ L, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3q** as orange solid; yield 42%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.25 (d, *J* = 8.0 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.67-7.58 (m, 2H), 3.81 (m, 2H), 3.53-3.50 (m, 2H), 1.76 (m, 4H), 1.60 (m, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 167.6, 154.3, 146.6, 137.0, 129.9, 129.5, 127.8, 127.5, 127.2, 120.2, 48.2, 43.2, 26.3, 25.4, 24.4; HRMS calcd. for: C₁₅H₁₆ON₂Na [M+Na]⁺ 263.1166, found 263.1162.

2,4-Diptolylpyridine (3s)

The reaction was conducted with 2,6-dimethylquinoline (1c, 81.0 mg, 0.5 mmol) and aniline (2a, 90 μ L, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum

ether/ethyl acetate = 20:1) to give **3s** as white solid; yield 78%.

¹H NMR (400 MHz, CDCl₃) δ 10.25 (s, 1H), 8.38-8.36 (m, 1H), 8.28-8.26 (m, 1H), 8.09 (d, J = 8.4 HZ, 1H), 7.86 (d, J = 8.4 HZ, 2H), 7.67-7.63 (m, 2H), 7.44-7.40 (m, 2H), 7.17 (t, J = 6.4 Hz, 1H), 2.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.2, 148.6, 144.7, 138.3, 137.8, 136.9, 132.6, 129.4, 129.2, 129.0, 126.5, 124.1, 119.6, 118.6, 21.7; HRMS calcd. for: C₁₇H₁₄ON₂Na [M+Na]⁺ 285.1009, found 285.1004.

N-Phenyl-6-(trifluoromethoxy)quinoline-2-carboxamide (3t)

The reaction was conducted with 2-methyl-6-(trifluoromethoxy)quinoline (**1d**, 114.0 mg, 0.5 mmol) and aniline (**2a**, 90 μ L, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3t** as off-white solid; yield 86%. ¹H NMR (400 MHz, CDCl₃, ppm) δ 10.16 (s, 1H), 8.47 (d, *J* = 8.4 Hz, 1H), 8.38 (d, *J* = 8.8 Hz, 1H), 8.26 (d, *J* = 9.2 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 2H), 7.74 (s, 1H), 7.67 (d, *J* = 9.2 Hz, 1H), 7.43

(t, J = 7.6 Hz, 2H), 7.19 (t, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 161.6, 150.2, 148.1, 144.4, 137.7, 137.6, 132.0, 129.6, 129.2, 129.1, 124.5, 124.4, 120.5 (q, J = 257.1 Hz), 119.7, 117.4; HRMS calcd. for: C₁₇H₁₂O₂N₂F₃ [M+H]⁺ 333.0856, found 333.0852.

N-Phenyl-6-(trifluoromethyl)quinoline-2-carboxamide (3u)

The reaction was conducted with 2-methyl-6-(trifluoromethyl)quinoline (**1e**, 106.0 mg, 0.5 mmol) and aniline (**2a**, 90 μ L, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3u** as light-yellow solid; yield 88%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.20 (s, J = 8.0 Hz, 1H), 8.51 (q, J = 8.0 Hz, 2H), 8.35 (d, J = 8.8 Hz, 1H), 8.25 (s, 1H), 7.99 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.0 Hz, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.20 (t, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 161.3, 151.6, 147.1, 138.7,

137.5, 130.8, 129.8 (q, J = 32.7 Hz), 129.1, 128.2, 125.9 (q, J = 3.0 Hz), 125.7 (q, J = 4.4 Hz), 124.6, 123.7 (q, J = 270.9 Hz), 119.9, 119.7; HRMS calcd. for: $C_{17}H_{12}ON_2F_3 [M+H]^+$ 317.0907, found 317.0904.

6-Bromo-N-phenylquinoline-2-carboxamide (3v)

The reaction was conducted with 6-bromo-2-methylquinoline (**1f**, 113.0 mg, 0.5 mmol) and aniline (**2a**, 90 μ L, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3v** as a yellow solid; yield 44%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.19 (s, 1H), 8.44 (d, J = 8.4 Hz, 1H), 8.30 (d, J = 8.4 Hz, 1H), 8.10-8.08 (m, 2H), 7.90-7.84 (m, 3H), 7.43 (t, J = 7.6 Hz, 2H), 7.18 (t, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 161.7, 150.0, 144.8, 137.6, 136.8, 133.9, 131.2, 130.4, 129.9, 129.1, 124.5, 122.4, 119.8, 119.7; HRMS calcd. for: C₁₆H₁₂ON₂Br [M+H]⁺ 327.0138, found 327.0136.

7-Fluoro-N-phenylquinoline-2-carboxamide (3w)

The reaction was conducted with 7-fluoro-2-methylquinoline (**1g**, 82.1 mg, 0.5 mmol) and aniline (**2a**, 90 μ L, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3w** as orange solid; yield 81%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.19 (s, 1H), 8.38 (m, 2H), 7.94-7.82 (m, 4H), 7.48-7.41 (m, 3H), 7.19 (t, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 163.4 (d, J = 250.3 Hz), 161.7, 150.6, 147.2 (d, J = 12.8 Hz), 137.8, 137.6, 129.9 (d, J = 9.9 Hz), 129.1, 126.4 (d, J = 1.0 Hz), 124.4, 119.7, 118.8 (d, J = 25.5 Hz), 118.2 (d, J = 2.5 Hz), 113.1 (d, J = 20.4 Hz); HRMS calcd. for: C₁₆H₁₂ON₂F [M+H]⁺ 267.0939, found 267.0935.

7-Chloro-N-phenylquinoline-2-carboxamide (3x)

The reaction was conducted with 7-chloro-2-methylquinoline (**1h**, 90.3 mg, 0.5 mmol) and aniline (**2a**, 90 μ L, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3x** as orange solid; yield 47%.

¹H NMR (400 MHz, CDCl₃, ppm) δ 10.19 (s, 1H), 8.39 (q, J = 9.2 Hz, 2H), 8.24 (s, 1H), 7.88-7.84 (m, 3H), 7.62 (d, J = 8.4 Hz, 1H), 7.43 (t, J = 7.2 Hz, 2H), 7.19 (t, J = 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 161.7, 150.5, 146.6, 137.8, 137.6, 136.3, 129.2, 129.1, 129.0, 128.5, 127.7, 124.5, 119.7, 119.0; HRMS calcd. for: C₁₆H₁₂ON₂Cl [M+H]⁺ 283.0644, found 283.0641.

8-Methoxy-N-phenylquinoline-2-carboxamide (3y, CAS: 22765-62-4)

The reaction was conducted with 8-methoxy-2-methylquinoline (**1i**, 88.3 mg, 0.5 mmol) and aniline (**2a**, 90 μ L, 1.0 mmol). The residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 20:1) to give **3y** as gray solid; yield 88%.

¹H NMR (400 MHz, CDCl₃) δ 10.30 (s, 1H), 8.45 (d, J = 8.4 Hz, 1H), 8.35 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 7.6 Hz, 2H), 7.59 (t, J = 7.6 Hz, 1H), 7.50-7.40 (m, 3H), 7.19-7.14 (m, 2H), 4.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 162.4, 155.2, 148.5, 138.1, 137.8, 137.6, 130.5, 128.9, 128.5, 124.2, 120.0, 119.5, 119.3, 108.4, 55.9; MS (EI) m/z (%) 278 (100), 207, 159, 101, 77; HRMS calcd. for: C₁₇H₁₄O₂N₂Na [M+Na]⁺ 301.0959, found 301.0955.

(E)-N-(Quinolin-2-ylmethylene)aniline (4a, CAS: 22765-62-4)^[3]

¹H NMR (400 MHz, CDCl₃) δ 8.79 (s, 1H), 8.36 (d, J = 8.4 Hz, 1H), 8.24 (d, J = 8.4 Hz, 1H),

8.17 (d, *J* = 8.4 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.76 (t, *J* = 7.6 Hz, 1H), 7.59 (t, *J* = 7.2 Hz, 1H), 7.46-7.25 (m, 5H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 160.8, 154.7, 150.7, 147.9, 136.6, 129.9, 129.6, 129.2, 128.8, 127.7, 127.7, 126.9, 121.2, 118.6; MS (EI) m/z (%) 232 (100), 204, 129, 102, 77.

References

- [1] T. Gonec, P. Bobal, J. Sujan, M. Pesko, J. Guo, K. Kralova, L. Pavlacka, L. Vesely, E. Kreckova, J. Kos, A. Coffey, P. Kollar, A. Imramovsky, L. Placek and J. Jampilek, *Molecules*, 2012, 17, 613.
- [2] Y. S. Bao, B. Zhaorigetu, B. Agula, M. H. Baiyin, M. L. Jia, J. Org. Chem., 2014, 79, 803.
- [3] B. Zhang, S. F. Zhu, Q. L. Zhou, Tetrahedron, 2013, 69, 2033.

-3.841

---0.000

-0.000

---0.000

90 80 fl (ppm)

-0.000

-0.000

---0.000

-0.000

90 80 fl (ppm)

-161.655-150.521-146.567-146.567-137.779137.779137.779137.779137.779128.2129129.229129.279129.299129.29

-0.000

The MS spectra of ¹⁸O labeling products

The MS spectra of desired product from $\boldsymbol{1a}$ and $\boldsymbol{2a}$ under $^{18}\mathrm{O}_2$

The MS spectra of target product from $\boldsymbol{1a}$ and $\boldsymbol{2a}$ under ${\rm H_2}^{18}{\rm O}$

The MS spectra of desired product from 4a under ${\rm H_2}^{18}{\rm O}$