N-B dative bond-induced [3.3.0] bicyclic boronate-tethered *exo*-selective intramolecular Diels-Alder reaction

Chao Feng, Hong Wang, Liang Xu and Pengfei Li*

Centre for Organic Chemistry, Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an 710054, P.R. China.

E-mail: lipengfei@mail.xjtu.edu.cn

Supporting Information

1. General considerations	S2
2. Preparation of the diene components and alkenyl boronic acids	S3
3. MIDA-type boronate tethered intramolecular Diels-Alder reactions	S12
4. DABO-type boronate tethered intramolecular Diels-Alder reactions	S18
5. X-ray diffraction data of 4a. (CCDC 1058696)	S24
6. X-ray diffraction data of 7i _o . (CCDC 1058694)	S37
7. Copy of NMR spectra	S44

1. General considerations

General. Unless otherwise noted, all reactions were carried out in a flame-dried flask under an atmosphere of nitrogen. Analytical thin-layer chromatography (TLC) was performed on glass plates coated with 0.25 mm 230–400 mesh silica gel containing a fluorescent indicator. Visualization was accomplished by exposure to a UV lamp, and/or treatment with a solution of Phosphomolybdic Acid (PMA) followed by brief heating with a heating gun. Most of the products in this article are compatible with standard silica gel chromatography. Column chromatography was performed on silica gel (200–300 mesh) using standard methods.

Structural analysis. NMR spectra were measured on a Bruker Avance-400 spectrometer and chemical shifts (δ) are reported in parts per million (ppm). ¹H NMR spectra were recorded at 400 MHz in NMR solvents (CDCl₃, DMSO-d₆, D₂O, Acetone-d₆) and referenced internally to corresponding solvent resonance, and ¹³C NMR spectra were recorded at 100 MHz and referenced to corresponding solvent resonance. Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Infrared spectra were collected on a Thermo Fisher Nicolet 6700 FT-IR spectrometer using ATR (Attenuated Total Reflectance) method. Absorption maxima (v max) are reported in wavenumbers (cm⁻¹). High resolution mass spectra (HRMS) were acquired with an ESI, APCI or EI source. Optical rotation date were collected on an Anton Paar MCP 200 polarimeter using anhydrous DCM. Single crystal X-ray diffraction analysis of **4a** and **7io** were carried out by Mr. Yousong Ding on a Bruker apex duo equipment at Center for Applied Chemistry Research, Frontier Institute of Science and Technology, Xi'an Jiaotong University. Melting points were determined on a Hannon MP300 apparatus and are not corrected

Materials. Commercial reagents were purchased from J&K, Energy, Sigma-Aldrich, Alfa Aesar, Acros Organics, TCI and used as received unless otherwise stated. Hexane, THF, Et_2O , toluene were purified by distillation over sodium and stored under N_2 .

2. Preparation of the diene components and alkenyl

boronic acids

(2E,4E)-1-bromohexa-2,4-diene (S1):¹ In a 500 mL three-necked round bottom flask containing a stir bar, sorbitol (2.94 g, 30.0 mmol, 1.0 eq.) was dissolved in anhydrous DCM (150 mL) and the solution was cooled to -10 °C, a solution of phosphorus tribromide (2.71 g, 10.0 mmol, 0.33 eq.) in anhydrous DCM (50 mL) was added dropwise at -10 °C via a drop funnel under an atmosphere of N₂. Then the mixture was slowly warmed to 25 °C and stirred for 3 h. A saturated solution of NaHCO₃ in H₂O was added and the resulting mixture was extracted using DCM (3 × 50 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure carefully (water bath <30 °C, vacuum >300mbar). The crude product S1 can be directly used for the next step without further purification.

Dimethyl 2,2'-(((2E,4E)-hexa-2,4-dien-1-yl)azanediyl)diacetate (S2): In a 250 mL three-necked round bottom flask containing a stir bar, KI (4.98 g, 30.0 mmol, 1.1 eq.), K_2CO_3 (7.46 g, 54.0 mmol, 2.0 eq.) was added in anhydrous MeCN (90 mL) under an atmosphere of N₂, a solution of **S1** in anhydrous MeCN (5 mL) was added dropwise via a syringe. Then the mixture was stirred at room temperature for 1 h. To this mixture was added a solution of dimethyl 2,2'-azanediyldiacetate (4.35 g, 27.0 mmol, 1.0 eq.) in anhydrous MeCN (27 mL) via addition funnel and the resulting the mixture was warmed to 50 °C and stirred for another 5 h. The organic solvent was removed under reduced pressure and the residue was dissolved in water, and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure to give **S2** as yellow oil (5.50 g, 85% over 2 steps). The product was used for next step without further purification.

¹H NMR (400 MHz, CDCl₃): δ ppm 6.18-5.94 (m, 2H), 5.70-5.61 (m, 1H), 5.61-5.48 (m, 1H), 3.68 (s, 6H), 3.52 (s, 4H), 3.34 (d, *J* = 7.2 Hz, 2H), 1.72 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 171.5, 134.1, 130.7, 129.5, 126.8, 56.5, 54.0, 51.4, 17.9.

HRMS (APCI): Calculated for $C_{12}H_{20}NO_4$ [M+H]⁺: 22.13492, Found: 242.1381.

IR (v, cm⁻¹): 3019, 2953, 1738, 1681, 1436, 1198, 1166.

2,2'-(((2E,4E)-hexa-2,4-dien-1-yl)azanediyl)diacetic acid (1): In a 250 mL round bottom flask containing a stir bar, a solution of **S2** (3.62 g, 15.0 mmol, 1.0 eq.), NaOH (1.80 g, 45.0 mmol, 3.0 eq.) in deoxygenated water (100 mL) was stirred at room temperature overnight. The mixture was concentrated under reduced pressure to about 90 mL and was charged on an Amberlite[®] cation exchange resin² (H form) column (Q = 2.8mmol/g, 16.0 g). After complete elution with deionized water, **1** was obtained by lyophilization *in vacuo* as yellow solid (m.p.: < 50 °C, 2.88 g, 90%).

¹H NMR (400 MHz, D₂O): δ ppm 6.49-6.42 (m, 1H), 6.25-6.05 (m, 1H), 5.97-5.87 (m, 1H), 5.59-5.47 (m, 1H), 3.87-3.80 (m, 6H), 1.72 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, D₂O): δ ppm 170.6, 143.0, 136.4, 130.4, 116.9, 58.9, 56.0, 18.5.

HRMS (APCI): Calculated for C₁₀H₁₅NO₄ [M-H]⁻: 212.0923, Found: 212.0929.

IR (v, cm⁻¹): 3006, 2956, 2921, 2850, 1732, 1455, 1298, 1122, 1076, 1039.

2.2 Preparation of 2,2'-(((2E,4E)-hexa-2,4-dien-1-yl)azanediyl)bis(ethan-1-ol)

2,2'-(((2E,4E)-hexa-2,4-dien-1-yl)azanediyl)bis(ethan-1-ol) (5): In a 250 mL three-necked round bottom flask containing a stir bar, KI (4.98 g, 30.0 mmol, 1.1 eq.), K_2CO_3 (7.46 g, 54.0 mmol, 2.0 eq.) was added in anhydrous MeCN (90 mL) under an atmosphere of N₂, a solution of S1 in anhydrous MeCN (5 mL) was added dropwise via a syringe. Then the mixture was stirred at room temperature for 1 h. To this mixture was added a solution of 2,2'-azanediylbis(ethan-1-ol) (2.84 g, 27.0 mmol, 1.0 eq.) in anhydrous MeCN (27 mL) via addition funnel and the resulting the mixture was warmed to 50 °C and stirred for another 5 h. The organic solvent was removed under reduced pressure and the residue was dissolved in water, and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure to give 5 as yellow oil (4.40 g, 88% over 2 steps). The product was used for next step without further purification.

¹H NMR (400 MHz, CDCl₃): δ ppm 6.17-5.97 (m, 2H), 5.73-5.60 (m, 1H), 5.60-5.48 (m, 1H), 3.61 (t, *J* = 5.2 Hz, 4H), 3.20 (d, *J* = 6.9 Hz, 2H), 2.65 (t, *J* = 5.3 Hz, 4H), 1.73 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 134.1, 131.0, 129.5, 126.7, 59.6, 56.6, 55.6, 18.2.

HRMS (APCI): Calculated for $C_{10}H_{20}NO_2$ [M+H]⁺: 186.1494, Found: 186.1486.

IR (*v*, cm⁻¹): 3356, 3018, 2879, 1738, 1445, 1373, 1242, 1043.

2.3 Preparation of (R)-1-(((2E,4E)-hexa-2,4-dien-1-yl)((R)-2-hydroxy-1-phenylethyl)amino)propan-2-ol

(R)-1-(((2E,4E)-hexa-2,4-dien-1-yl)((R)-2-hydroxy-1-phenylethyl)amino)propan-2-ol (8): In a dried Schlenk flask (25 mL in volume) equipped with a stirring bar were placed with D-Phenylglycinol (0.69 g, 5.0 mmol, 1.0 eq.) and (S)-(-)-propylene oxide (0.29 g, 5.0 mmol, 1.0 eq.)³, anhydrous methanol (5 mL) was added via syringe under a stream of N₂. The resulting mixture was allowed to stir at reflux overnight. After cooling to room temperature, solvent was

removed under reduced pressure and the residue was directly used without further purification to the next step.

In a 50 mL three-necked round bottom flask containing a stir bar, KI (0.91 g, 5.5 mmol, 1.1 eq.), K_2CO_3 (1.38 g, 10.0 mmol, 2.0 eq.) was added in anhydrous MeCN (15 mL) under an atmosphere of N₂, a solution of **S1** in anhydrous MeCN (1 mL) was added dropwise via a syringe. Then the mixture was stirred at room temperature for 1 h. To this mixture was added a solution of the above crude product in anhydrous MeCN (5 mL) via a syringe and the resulting the mixture was warmed to 50 °C and stirred for another 5 h. The organic solvent was removed under reduced pressure and the residue was dissolved in water, and extracted with ethyl acetate (3 x 5 mL). The combined organic layers were washed with brine, dried over MgSO₄, filtered, and concentrated. The product **8** was purified by silica gel chromatography as a light yellow solid (m.p.: 101.9-103.5°C, 0.98 g, 71% over 2 steps).

¹H NMR (400 MHz, CDCl₃): δ ppm 7.38-7.28 (m, 3H), 7.22-7.15 (m, 2H), 6.19-5.99 (m, 2H), 5.73-5.60 (m, 1H), 5.60-5.47 (m, 1H), 4.06-3.96 (m, 2H), 3.91-3.82 (m, 1H), 3.77-3.58 (m, 1H), 3.32 (dd, *J* = 14.3, 5.1 Hz, 1H), 2.97 (dd, *J* = 14.4, 8.4 Hz, 1H), 2.58 (dd, *J* = 13.3, 10.2 Hz, 1H), 2.20 (dd, *J* = 13.3, 2.4 Hz, 1H), 1.76 (d, *J* = 6.8 Hz, 3H), 1.13 (t, *J* = 4.7 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 136.9, 133.5, 131.1, 129.3, 128.9, 128.5, 127.9, 65.1, 64.2, 62.0, 56.8, 53.6, 20.5, 18.2.

HRMS (APCI): Calculated for $C_{17}H_{26}NO_2$ [M+H]⁺: 276.1964, Found: 276.1949.

IR (v, cm⁻¹): 3331, 3019, 2972, 2894, 1451, 1379, 1261, 1094, 1075, 1027.

2.3 Preparation of Alkenyl boronates

A. General procedure A for synthesis of Alkenyl boronates:

$$R \longrightarrow B_2 pin_2 \qquad CuCl 3\%, Phosphorus ligand 3\%, NaOt-Bu 6\%, R \longrightarrow B_0 Phosphorus Phosphor$$

MeOH 2.0 eq, THF

CuCl (30 mg, 0.3 mmol, 3 mol%), NaOt-Bu (60 mg, 0.3 mmol, 6 mol%) and DPEphos ligand (160 mg, 0.3 mmol, 3 mol%) were placed in an oven-dried Schlenk flask (100 mL in volume) and THF (10 mL) were added under nitrogen. The reaction mixture was stirred for 30 min at room temperature and then, bis(pinacolato)diboron (2.79 g, 11.0 mmol, 1.1 eq.) and THF (5 mL) were added. The reaction mixture was stirred for another 10 min and the alkyne (10.0 mmol) was added, followed by MeOH (0.81 mL, 20.0 mmol, 2.0 eq.). The reaction tube was washed with THF (3 mL), sealed, and stirred until no starting material was detected by TLC. The reaction mixture was filtered through a pad of Celite and concentrated. The product was purified by silica gel chromatography.

General procedure B for synthesis of Alkenyl boronates:⁴

CuCl (30.0 mg, 0.3 mmol, 3 mol%), NaOt-Bu (60.0 mg, 0.3 mmol, 6 mol%) and Xantphos ligand (173 mg, 0.3 mmol, 3%) were placed in an oven-dried Schlenk flask (100 mL in volume) and THF (10 mL) were added under nitrogen. The reaction mixture was stirred for 30 min at room temperature and then, bis(pinacolato)diboron (2.79 g, 11.0 mmol, 1.1 eq.) and THF (5 mL) were added. The reaction mixture was stirred for another 10 min and the alkyne compound (10.0 mmol) was added, followed by MeOH (0.81 mL, 20.0 mmol, 2.0 eq.). The reaction tube was washed with THF (3 mL), sealed, and stirred until no starting material was detected by TLC. The reaction mixture was filtered through a pad of Celite and concentrated. The product was purified by silica gel chromatography.

B. Special procedure for synthesis of Alkenyl boronates:

3-oxocyclohex-1-en-1-yl 4-methylbenzenesulfonate (426 mg, 1.6 mmol, 1.0 eq.) was placed in an oven-dried Schlenk flask and anhydrous dioxane (6 mL) were added under nitrogen, to this stirred solution was added $Pd_2(dba)_3$ (29.0 mg, 0.032 mmol, 2 mol%), KOAc (266 mg, 3.2 mmol, 6 mol%), XPhos ligand (53.0 mg, 0.112 mmol, 7 mol%), and bis(pinacolato)diboron (488 mg, 1.92 mmol, 1.2 eq.). The reaction mixture was stirred at 80 °C until no starting material was detected by TLC (~ 10 h). The reaction mixture was filtered through a pad of Celite and concentrated. The product was purified by silica gel chromatography (PE:EA = 2:1, $R_f = 0.3$).

C. Spectra data of the alkenyl boronates:

(2b') (E)-4,4,5,5-tetramethyl-2-(4-methylstyryl)-1,3,2-dioxaborolane

The general procedure A was followed using 1-ethynyl-4-methylbenzene (1.16 g, 10.0 mmol, 1.0 eq.) as starting material, **2b'** was obtained as a white solid (m.p.: 56.0-57.0 °C, 2.32 g, 95%).

Chemical Formula: C₁₅H₂₁BO₂ Exact Mass: 244.1635 Molecular Weight: 244.1410

¹H NMR (400 MHz, CDCl₃): δ ppm 7.45-7.31 (m, 3H), 7.14 (d, *J* = 7.6 Hz, 2H), 6.11 (d, *J* = 18.4 Hz, 2H), 2.35 (s, 3H), 1.31 (s, 12H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 149.5, 139.0, 134.8, 129.3, 127.0, 83.3, 24.8, 21.3.

¹¹B NMR (128 MHz, CDCl₃): δ ppm 30.48.

HRMS (APCI): Calculated for C₁₅H₂₂BO₂ [M+H]⁺: 245.1713, Found: 245.1702. IR (*v*, cm⁻¹): 2977, 2927, 1625, 1510, 1412, 1350, 1323, 1140, 1110.

$(2c')\ (E)\ -2\ -(4\ -methoxy styryl)\ -4\ ,4\ ,5\ ,5\ -tetramethyl\ -1\ ,3\ ,2\ -dioxaborolane$

The general procedure A was followed using 1-ethynyl-4-methoxybenzene (1.32 g, 10.0 mmol, 1.0 eq.) as starting material, **2c'** was obtained as a yellow oil (2.34 g, 90%).

Chemical Formula: C₁₅H₂₁BO₃ Exact Mass: 260.1584 Molecular Weight: 260.1400

¹H NMR (400 MHz, CDCl₃): δ ppm 7.43 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 18.4 Hz, 1H), 6.86 (d, *J* = 8.0 Hz, 2H), 6.01 (d, *J* = 18.4 Hz, 1H), 3.81 (s, 3H), 1.31 (s, 12H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 160.4, 149.2, 130.6, 128.6, 114.1, 83.4, 55.4, 25.0.

¹¹B NMR (128 MHz, CDCl₃): δ ppm 29.97.

HRMS (APCI): Calculated for C₁₅H₂₂BO₃ [M+H]⁺:261.1662, Found: 261.1656. IR (*v*, cm⁻¹): 2977, 2837, 1738, 1624, 1604, 1575, 1511, 1421, 1354, 1251, 1140,

1030.

$(2d')\ (E) - 4, 4, 5, 5 - tetramethyl - 2 - (4 - (methylthio)styryl) - 1, 3, 2 - dioxaborolane$

The general procedure A was followed using (4-ethynylphenyl)(methyl)sulfane (1.48 g, 10.0 mmol, 1.0 eq.) as starting material, **2d'** was obtained as a yellow solid (m.p.: 62.2-64.0 °C, 2.21 g, 80%).

Exact Mass: 276.1355

Molecular Weight: 276.2010

¹H NMR (400 MHz, CDCl₃): δ ppm 7.40 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 18.4 Hz, 1H), 7.19 (d, *J* = 8.4 Hz, 2H), 6.11 (d, *J* = 18.4 Hz, 1H), 2.47 (s, 3H), 1.30 (s, 12H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 148.9, 139.8, 134.3, 127.5, 126.2, 83.4, 24.9, 15.5.

¹¹B NMR (128 MHz, CDCl₃): δ ppm 30.77.

HRMS (APCI): Calculated for $C_{15}H_{22}BO_2S$ [M+H]⁺: 277.1434, Found: 277.1423.

IR(v, cm⁻¹): 2977, 2837, 1622, 1605, 1511, 1422, 1354, 1251, 1140, 1030.

$(2e')\ (E)-4,4,5,5-tetramethyl-2-(3,4,5-trimethoxystyryl)-1,3,2-dioxaborolane$

The general procedure A was followed using 5-ethynyl-1,2,3-trimethoxybenzene (1.92 g, 10.0 mmol, 1.0 eq.) as starting material, **2e'** was obtained as a white solid (m.p.: 126.3-127.1 °C, 2.82 g, 88%).

Chemical Formula: C₁₇H₂₅BO₅ Exact Mass: 320.1795 Molecular Weight: 320.1920 ¹H NMR (400 MHz, CDCl₃): δ ppm 7.31 (d, *J* = 18.4 Hz, 1H), 6.73 (s, 2H), 6.06 (d, *J* = 18.4 Hz, 1H), 3.86 (s, 9H), 1.31 (s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ ppm 153.4, 149.5, 139.1, 133.3, 104.3, 83.5, 61.1, 56.2, 25.0. ¹¹B NMR (128 MHz, CDCl₃): δ ppm 29.76.

HRMS (APCI): Calculated for C₁₇H₂₆BO₅ [M+H]⁺: 321.1873, Found: 321.1861. IR (*v*, cm⁻¹): 2942, 2837, 1718, 1580, 1418, 1315, 1244, 1120, 1001.

$(2f')\ (E) - 2 - (4 - fluorostyryl) - 4, 4, 5, 5 - tetramethyl - 1, 3, 2 - dioxaborolane$

The general procedure A was followed using 1-ethynyl-4-fluorobenzene (1.20 g, 10.0 mmol, 1.0 eq.) as starting material, **2f'** was obtained as a colorless oil (2.21 g, 89%).

Chemical Formula: C₁₄H₁₈BFO₂ Exact Mass: 248.1384 Molecular Weight: 248.1044

¹H NMR (400 MHz, CDCl₃): δ ppm 7.45 (t, J = 8.0 Hz, 2H), 7.34 (d, J = 18.4 Hz, 1H), 7.02 (t, J = 8.6 Hz, 2H), 6.07 (d, J = 18.4 Hz, 1H), 1.31 (s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ ppm 164.5, 162.1, 148.3, 133.9, 128.9, 128.8, 115.8, 115.6, 83.6, 25.0.

¹¹B NMR (128 MHz, CDCl₃): δ ppm 30.80.

¹⁹F NMR (376 MHz, Acetone- d_6): δ ppm -112.39.

HRMS (APCI): Calculated for $C_{14}H_{18}BFO_2$ [M+H]⁺: 249.1462, Found: 249.1457.

IR (*v*, cm⁻¹): 2979, 1623, 1600, 1507, 1349, 1324, 1222, 1208, 1142.

(2g') (E)-2-(4-chlorostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

Chemical Formula: C₁₄H₁₈BClO₂ Exact Mass: 264.1088 Molecular Weight: 264.5560

The general procedure A was followed using 1-chloro-4-ethynylbenzene (1.37 g, 10.0 mmol, 1.0 eq.) as starting material, **2g'** was obtained as a white solid (m.p.: 86.1-87.5 $^{\circ}$ C, 2.32 g, 88%).

¹H NMR (400 MHz, CDCl₃): δ ppm 7.40 (d, *J* = 8.4 Hz, 2H), 7.36-7.29 (m, 3H), 6.13 (d, *J* = 18.4 Hz, 1H), 1.31 (s, 12H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 148.1, 136.1, 134.7, 128.9, 128.4, 83.6, 24.9.

¹¹B NMR (128 MHz, CDCl₃): δ ppm 30.28.

HRMS (APCI): Calculated for C₁₄H₁₉BClO₂ [M+H]⁺: 265.1167, Found: 265.1157. IR (*v*, cm⁻¹): 2976, 2931, 1623, 1599, 1507, 1489, 1352, 1270, 1210, 1142, 1087.

(2h') (E)-2-(4-bromostyryl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

The general procedure A was followed using 1-bromo-4-ethynylbenzene (1.81 g, 10.0 mmol, 1.0 eq.) as starting material, **2h'** was obtained as a slight white solid (m.p.: 95.2-96.5 °C, 2.89 g, 93%).

¹H NMR (400 MHz, CDCl₃): δ ppm 7.46 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 7.6 Hz, 2H), 7.32 (d, *J* = 16.8 Hz, 1H), 6.15 (d, *J* = 18.4 Hz, 1H), 1.31 (s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ ppm 148.2, 136.6, 131.9, 128.7, 123.1, 83.6, 25.0. ¹¹B NMR (128 MHz, CDCl₃): δ ppm 30.54.

Chemical Formula: C₁₄H₁₈BBrO₂ Exact Mass: 308.0583 Molecular Weight: 309.0100

HRMS (APCI): Calculated for $C_{14}H_{19}BBrO_2$ [M+H]⁺: 309.0661, Found: 309.0653.

IR (v, cm⁻¹): 2973, 1625, 1487, 1402, 1318, 1140, 1067, 1006.

$(2i')\ (E) \hbox{-} 2-(3-methoxy styryl) \hbox{-} 4,4,5,5-tetramethyl \hbox{-} 1,3,2-dioxaborolane$

The general procedure A was followed using 1-ethynyl-3-methoxybenzene (1.32 g, 10.0 mmol, 1.0 eq.) as starting material, **2i**' was obtained as a yellow oil (2.13 g, 82%).

Chemical Formula: C₁₅H₂₁BO₃ Exact Mass: 260.1584 Molecular Weight: 260.1400

¹H NMR (400 MHz, CDCl₃): δ ppm 7.40 (d, J = 18.4 Hz, 1H), 7.33-7.27 (m, 1H), 7.11 (d, J = 7.6 Hz, 1H), 7.06 (s, 1H), 6.88 (d, J = 8 Hz, 1H), 6.19 (d, J = 18.4 Hz, 1H), 3.84 (s, 3H), 1.34 (s, 12H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 159.9, 149.5, 139.1, 129.7, 112.0, 115.0, 112.1, 83.5, 55.3, 25.0.

¹¹B NMR (128 MHz, CDCl₃): δ ppm 30.61.

HRMS (APCI): Calculated for $C_{15}H_{22}BO_3$ [M+H]⁺: 261.1662, Found: 261.1651.

IR (v, cm⁻¹): 2978, 2930, 1740, 1625, 1371, 1351, 1325, 1283, 1143, 1124, 1045.

$(2j')\ (E) - 4, 4, 5, 5 - tetramethyl - 2 - (2 - (thiophen - 2 - yl)vinyl) - 1, 3, 2 - dioxaborolane$

The general procedure A was followed using 2-ethynylthiophene (1.08 g, 10.0 mmol, 1.0 eq.) as starting material, **2j**' was obtained as a yellow oil (2.15 g, 91%).

¹H NMR (400 MHz, CDCl₃): δ ppm 7.47 (d, J = 18.4 Hz, 1H), 7.24 (d, J = 5.2 Hz, 1H), 7.08 (d, J = 3.6 Hz, 1H), 7.02-6.94 (m, J = 4.2 Hz, 1H), 5.91 (d, J = 18.0 Hz, 1H), 1.30 (s, 12H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 144.1, 141.9, 127.9, 127.8, 126.4, 83.5, 24.9.

Chemical Formula: C₁₂H₁₇BO₂S Exact Mass: 236.1042 Molecular Weight: 236.1360

¹¹B NMR (128 MHz, CDCl₃): δ ppm 30.38.

HRMS (APCI): Calculated for $C_{12}H_{17}BO_2S$ [M+H]⁺: 237.1121, Found: 237.1114.

IR (v, cm⁻¹): 2977, 2929, 1616, 1371, 1324, 1282, 1236, 1206, 1143, 1124.

$(2k')\ (E) \hbox{-} 2-(hex-1-en-1-yl) \hbox{-} 4,4,5,5-tetramethyl-1,3,2-dioxaborolane$

Chemical Formula: C₁₂H₂₃BO₂ Exact Mass: 210.1791 Molecular Weight: 210.1240 The general procedure A was followed using hex-1-yne (0.82 g, 10.0 mmol, 1.0 eq.) as starting material, 2k' was obtained as a colorless oil (1.47 g, 70%). Spectra data was same to liturature.⁵

HRMS (APCI): Calculated for $C_{12}H_{24}BO_2$ [M+H]⁺: 211.1869, Found: 211.1863. IR (ν , cm⁻¹): 2957, 2927, 2856, 1639, 1613, 1398, 1363, 1313, 1247, 1147, 1002.

$(2l')\ (E) - 2 - (3 - (4,4,5,5 - tetramethyl - 1,3,2 - dioxaborolan - 2 - yl) allyl) isoindoline - 1,3 - dioxaborolan - 2 - yl) allyl) allyl) allyl) allyl) allyl) allyl) allyl) allyl) allyl) all$

The general procedure A was followed using 2-(prop-2-yn-1-yl)isoindoline-1,3-dione (1.85 g, 10.0 mmol, 1.0 eq.) as starting material, **2l'** was obtained as a light yellow oil (2.98 g, 95%).

¹H NMR (400 MHz, CDCl₃): δ ppm 7.89-7.81 (m, 2H), 7.75-7.70 (m, 2H), 6.58 (dt, *J* = 18.0 Hz, 4.5 Hz, 1H), 5.46 (dd, *J* = 18.0, 1.6 Hz, 1H), 4.37 (dd, *J* = 4.5, 1.7Hz, 2H), 1.21 (s, 12H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 168.0, 145.4, 134.2, 132.2, 123.5, 83.5, 41.1, 24.9.
¹¹B NMR (128 MHz, CDCl₃): δ ppm 30.19.

Chemical Formula: C₁₇H₂₀BNO₄ Exact Mass: 313.1485 Molecular Weight: 313.1600

HRMS (APCI): Calculated for $C_{17}H_{21}BNO_4$ [M+H]⁺: 314.1564, Found: 314.1557.

IR (v, cm⁻¹): 2977, 2837, 1738, 1707, 1643, 1624, 1423, 1362, 1138, 1043.

$(2m')\ ethyl\ (E)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) acrylate$

The general procedure B was followed using ethyl propiolate (0.98 g, 10.0 mmol, 1.0 eq.) as starting material, **2m'** was obtained as a colorless liquid (1.81 g, 80%).

Chemical Formula: C₁₁H₁₉BO₄ Exact Mass: 226.1376 Molecular Weight: 226.0790

¹H NMR (400 MHz, CDCl₃): δ 6.75 (d, *J* = 18.2 Hz, 1H), 6.60 (d, *J* = 18.2 Hz, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 1.26 (s, 12H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 166.1, 138.9, 84.1, 60.7, 24.9, 14.3.

¹¹B NMR (128 MHz, CDCl₃): δ ppm 29.78.

HRMS (APCI): Calculated for C₁₁H₁₉BO₄ [M+H]⁺: 227.1455, Found: 227.1446. IR (*v*, cm⁻¹): 2981, 1723, 1642, 1386, 1337, 1303, 1258, 1166, 1140, 1033.

(2n') ethyl (Z)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-2-enoate

The general procedure B was followed using ethyl but-2-ynoate (0.56 g, 5.0 mmol, 1.0 eq.) as starting material, **2n'** was obtained as a colorless liquid (1.02 g, 85%).

Chemical Formula: C₁₂H₂₁BO₄ Exact Mass: 240.1533 Molecular Weight: 240.1060

¹H NMR (400 MHz, CDCl₃): δ ppm 6.42 (s, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 2.14 (s, 3H), 1.30-1.21 (m, 15H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 166.3, 130.7, 84.2, 59.9, 24.9, 16.4, 14.4.

¹¹B NMR (128 MHz, CDCl₃): δ ppm 30.18.

HRMS (APCI): Calculated for C₁₂H₂₂BO₄ [M+H]⁺: 241.1611, Found: 241.1604. IR (*v*, cm⁻¹): 2980, 1719, 1363, 1319, 1255, 1185, 1146, 1109, 1037.

(20') 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-2-en-1-one

The special procedure C was followed using 3-oxocyclohex-1-en-1-yl 4-methylbenzenesulfonate (426 mg, 1.6 mmol, 1.0 eq.) as starting material, **20'** was obtained as a yellow oil (278 mg, 78%).

Chemical Formula: C₁₂H₁₉BO₃ Exact Mass: 222.1427 Molecular Weight: 222.0910

¹H NMR (400 MHz, CDCl₃): δ ppm 6.51 (s, 1H), 2.45-2.35 (m, 4H), 2.05-1.92 (m, 2H), 1.29 (s, 12H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 200.0, 138.6, 84.5, 38.4, 27.1, 24.9, 23.3.
¹¹B NMR (128 MHz, CDCl₃): δ ppm 30.66.

HRMS (APCI): Calculated for C₁₂H₁₉BO₃ [M+H]⁺: 223.1506, Found: 223.1500. IR (*v*, cm⁻¹): 2979, 1671, 1381, 1372, 1320, 1282, 1269, 1143, 1022.

$(2p')\ (E)-4-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)vinyl) benzonitrile$

The general procedure A was followed using 4-ethynylbenzonitrile (1.27 g, 10.0 mmol, 1.0 eq.) as starting material, **2p'** was obtained as a white solid (m.p.: 111.8-112.9 °C, 1.81 g, 71%).

¹H NMR (400 MHz, CDCl₃): δ ppm 7.62 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 18.4 Hz, 1H), 6.27 (d, J = 18.4 Hz, 1H), 1.31 (s, 12H). ¹³C NMR (100 MHz, CDCl₃): δ ppm 147.3, 141.8, 132.6, 127.6, 119.0, 112.1, 83.9, 24.9.

Chemical Formula: C₁₅H₁₈BNO₂ Exact Mass: 255.1431 Molecular Weight: 255.1240

¹¹B NMR (128 MHz, CDCl₃): δ ppm 30.23.

HRMS (APCI): Calculated for $C_{15}H_{18}BNO_2$ [M+H]⁺: 256.1509, Found: 256.1503.

IR (v, cm⁻¹): 2999, 2978, 2227, 1717, 1368, 1334, 1310, 1262, 1135, 1107.

2.4 Preparation of Alkenyl boronic acids

A. Two methods for synthesis of alkenyl boronic acids:

Method A:⁶

To a solution of the pinacol boronate (5.0 mmol, 1.0 eq.) in acetone (25 mL) and water (25 mL) was added ammonium acetate (1.93 g, 25.0 mmol, 5.0 eq.) and sodium periodate (5.35 mg, 25.0 mmol, 5.0 eq.). The mixture was stirred until no starting material was left based on TLC monitoring before removal of acetone under reduced pressure. Then ethyl acetate (20 mL) was added, the phases were separated and the aqueous phase extracted with ethyl acetate (2 x 20 mL). The combined organic phases were washed with brine (20 mL), dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was directly used in the next dehydration without purification.

Method B:⁷

To a solution of the pinacol boronate (3.0 mmol, 1.0 eq.) in methanol (20 mL) and water (20 mL) was added potassium hydrogen fluoride (1.41 g, 18.0 mmol, 6.0 eq.). The mixture was stirred at room temperature for 3 h. Then it

was concentrated in vacuum and the resulting solid was extracted with acetone (3 x 5 mL). The combined acetone extracts were filtered and concentrated in vacuum. The residue was dispersed with Et_2O (10 mL) and the resulting suspension was filtered to afford the potassium vinyltrifluoroborate as white solid.

To a 50 mL round-bottom flask containing a mixture of potassium vinyltrifluoroborate (3.0 mmol, 1.0 eq.) and silica gel (200-300 mesh, 180 mg, 3.0 mmol) under N₂ was added deoxygenated water (9 mL) in one portion. The reaction was stirred at room temperature until ¹¹B NMR indicated completion of the reaction (~10 h). The reaction mixture was filtered to remove silica gel, and the filter cake was thoroughly rinsed with ethyl acetate. The aqueous and organic layers were separated, and the aqueous layer was extracted with ethyl acetate(2 x 5 mL), the combined organic layers were washed with brine, dried over anhydrous MgSO₄, filtered, concentrated, and dried in vacuum to afford the desired products.

B. Spectra data of alkenyl BF₃K:

(2m") ethyl (E)-3-(trifluoro-l4-boranyl)acrylate, potassium salt

The general method B was followed using ethyl (E)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)acrylate **2m'** (0.68 g, 3.0 mmol, 1.0 eq.) as starting material, **2m''** was obtained as white solid (m.p.: 173.1-174.8 °C, 0.59 g, 95%).

Chemical Formula: C₅H₇BF₃KO₂ Exact Mass: 206.0128 Molecular Weight: 206.0125

¹H NMR (400 MHz, Acetone-d₆): δ ppm 7.02 (dq, J = 18.0, 4.0 Hz, 1H), 5.98 (d, J = 18.0 Hz, 1H), 4.06 (q, J = 7.1 Hz, 2H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, Acetone-d₆): δ ppm 168.2, 126.0, 59.6, 25.2, 14.7. ¹¹B NMR (128 MHz, Acetone-d₆): δ ppm 2.44. ¹⁹F NMR (376 MHz, Acetone-d₆): δ ppm -143.50. HRMS (ESI): Calculated for C₅H₇BF₃O₂ [M–K]⁻: 167.0491, Found: 167.0490.

IR (v, cm⁻¹): 2984, 1682, 1654, 1615, 1371, 1224, 1152, 1125.

(2n") ethyl (Z)-3-(trifluoro-l4-boranyl)but-2-enoate, potassium salt

The general method B was followed using ethyl (Z)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)but-2-enoate 2n' (0.72 g, 3.0 mmol, 1.0 eq.) as starting material, 2n'' was obtained as white solid (m.p.: 216.1-216.6 °C, 0.61 g, 92%).

O O O BF₃K

Chemical Formula: C₆H₉BF₃KO₂ Exact Mass: 220.0285 Molecular Weight: 220.0395

¹H NMR (400 MHz, Acetone-d₆): δ ppm 5.92 (s, 1H), 4.01 (q, J = 7.2 Hz, 2H), 2.08 (s, 3H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Acetone-d₆): δ ppm 168.0, 117.8, 100.9, 58.6, 17.3, 14.8.

¹¹B NMR (128 MHz, Acetone- d_6): δ ppm 2.41.

¹⁹F NMR (376 MHz, Acetone- d_6): δ ppm -148.80.

HRMS (ESI): Calculated for C₆H₉BF₃O₂ [M-K]⁻: 181.0648, Found: 181.0648. IR (*v*, cm⁻¹): 2930, 1705, 1695, 1654, 1215, 1188, 1152, 1127, 1007.

(20") 3-(trifluoro-l4-boranyl)cyclohex-2-en-1-one, potassium salt

The general method B was followed using 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)cyclohex-2-en-1-one **20'** (0.67 g, 3.0 mmol, 1.0 eq.) as starting material, **20''** was obtained as white solid (m.p.: 173.7-174.4 °C, 0.55 g, 91%).

Chemical Formula: C₆H₇BF₃KO Exact Mass: 202.0179 Molecular Weight: 202.0245 ¹H NMR (400 MHz, Acetone-d₆): δ ppm 6.00 (s, 1H), 2.30 (t, J = 5.8 Hz, 2H), 2.15 (t, J = 6.8 Hz, 2H), 1.89-1.75 (m, 2H).

¹³C NMR (100 MHz, Acetone-d₆): δ ppm 200.0, 128.9, 39.0, 28.5, 25.2, 24.6.

¹¹B NMR (128 MHz, Acetone- d_6): δ ppm 2.03.

¹⁹F NMR (376 MHz, Acetone-d₆): δ ppm -148.1. HRMS (ESI): Calculated for C₆H₇BF₃O [M-K]⁻: 163.0542, Found: 163.0541. IR (ν, cm⁻¹): 2958, 2926, 1655, 1603, 1151, 1127.

3. MIDA-type boronate tethered intramolecular

Diels-Alder reactions

A. General procedure for synthesis of MIDA-type boronates and corresponding D-A products:

In a dried Schlenk flask (25 mL in volume) equipped with a stirring bar were placed with molecular sieves, alkenyl boronic acid (0.30 mmol, 1.0 eq.) and 2, 4-diene amino acids (0.33 mmol, 1.1 eq.). After evacuation and refill with dry N_2 for three times, toluene (3 mL) and DMSO (0.3 mL) were added with syringes under a stream of N_2 . The resulting mixture was allowed to stir at 80 °C for 12 h. After cooling to room temperature, molecular sieves was filtered off and the filtrate was concentrated under high vacuum to removal the solvents. The resulting residue was used for the next step without further purification.

In a dried Schlenk flask (25 mL in volume) equipped with a stirring bar was added the above crude product. After evacuation and refill with dry N₂ for three times, o-dichlorobenzene (3 mL) were added with syringe under a stream of N₂. The resulting mixture was allowed to stir at 160 °C until no starting material detected by TLC. After cooling to room temperature, the mixture was directly purified by silica gel chromatography. (Apply PE to elute the o-dichlorobenzene, PE:EA = 1:2 to elute the product, $R_f = 0.2$)

B. Spectra data of the D-A products:

(4a)

$8-methyl-9-phenyl-5a, 8, 9, 9a-tetrahydro-5H-4\lambda^4, 10\lambda^4-10, 4-(epoxyethano) benzo [3,4] [1,2] azaborolo [2,1-b] [1,3,2] oxazaborole-2, 12(3H)-dione$

The general procedure was followed using (E)-styrylboronic acid (148 mg, 1.0 mmol, 1.0 eq.) and compound **1** (235 mg, 1.1 mmol, 1.1 eq.) as starting material. **4a** was obtained as a white solid (m.p.: >300 °C, 208 mg, 64%).

¹H NMR (400 MHz, DMSO-d₆): δ ppm 7.30 (t, *J* = 7.5 Hz, 2H), 7.23 (d, *J* = 7.5 Hz, 2H), 7.17 (t, *J* = 7.2 Hz, 1H), 5.75 (dt, *J* = 9.8, 2.8 Hz, 1H), 5.67 (d, *J* = 9.9 Hz, 1H), 4.30-4.10 (m, 4H), 3.77 (dd, *J* = 11.2, 5.2 Hz, 1H), 3.08 (d, *J* = 12.8 Hz, 1H), 3.04 (t, *J* = 6.0 Hz, 1H), 2.49-2.32 (m, 2H), 1.12 (t, *J* = 11.8 Hz, 1H), 0.46 (d, *J* = 7.0 Hz, 3H).

Chemical Formula: C₁₈H₂₀BNO₄ Exact Mass: 325.1485 Molecular Weight: 325.1710

¹³C NMR (100 MHz, DMSO-d₆): δ ppm 170.7, 170.6, 144.4, 136.1, 127.9, 127.8, 125.5, 124.7, 67.9, 63.3, 62.4, 45.1, 41.7, 36.6, 16.2.

¹¹B NMR (128 MHz, DMSO-d₆): δ ppm 15.68.

HRMS (APCI): Calculated for C₁₈H₁₉BNO₄ [M-H]⁻: 324.1407, Found: 324.1406. IR (*v*, cm⁻¹): 3014, 2956, 2854, 1748, 1299, 1250, 1176, 1120, 1059, 1035.

(4b)

$\label{eq:second} 8-methyl-9-(p-tolyl)-5a, 8, 9, 9a-tetrahydro-5H-4\lambda^4, 10\lambda^4-10, 4-(epoxyethano) \\ benzo[3,4][1,2]azaborolo[2,1-b][1,3,2] \\ oxazaborole-2, 12(3H)-dione$

The general procedure was followed using (E)-(4-methylstyryl)boronic acid (48.6 mg, 0.30 mmol, 1.0 eq.) and compound **1** (70.3 mg, 0.33 mmol, 1.1 eq.) as starting material. **4b** was obtained as a white solid (m.p.: 282.1-283.5 $^{\circ}$ C, 68.2 mg, 67%).

Chemical Formula: C₁₉H₂₂BNO₄

Exact Mass: 339.1642

Molecular Weight: 339.1980

¹H NMR (400 MHz, Acetone-d₆): δ ppm 7.18 (d, J = 8.0 Hz, 2H), 7.09 (d, J = 8.0 Hz, 2H), 5.79 (dt, J = 9.8, 4.0 Hz, 1H), 5.72 (dt, J = 10.0, 1.5 Hz, 1H), 4.33-4.11 (m, 4H), 4.03 (dd, J = 11.2, 5.2 Hz, 1H), 3.26-3.10 (m, 2H), 2.64-2.52 (m, 1H), 2.51-2.41 (m, 1H), 2.29 (s, 3H), 1.25 (t, J = 12.0 Hz, 1H), 0.54 (d, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, Acetone-d₆): δ ppm 170.6,170.4, 142.3, 137.6, 135.4, 129.3, 129.0, 125.0, 70.0, 64.8, 64.0, 46.1, 43.2, 38.0, 21.1, 16.8.

¹¹B NMR (128 MHz, Acetone- d_6): δ ppm 15.76.

HRMS (APCI): Calculated for C₁₉H₂₁BNO₄ [M-H]⁻: 338.1564, Found: 338.1563. IR (*v*, cm⁻¹): 3016, 2969, 2853, 1748, 1515, 1293, 1066, 1032, 1003.

(4c)

9-(4-methoxyphenyl)-8-methyl-5a,8,9,9a-tetrahydro-5H- $4\lambda^4$,10 λ^4 -10,4-(epoxyethano)benzo[3,4][1,2]azaborolo[2, 1-b][1,3,2]oxazaborole-2,12(3H)-dione

The general procedure was followed using (E)-(4-methoxystyryl)boronic acid (53.4 mg, 0.30 mmol, 1.0 eq.) and compound **1** (70.3 mg, 0.33 mmol, 1.1 eq.) as starting material. **4c** was obtained as a white solid (m.p.: 275.7-276.3 °C, 80.0 mg, 75%).

Chemical Formula: C₁₉H₂₂BNO₅ Exact Mass: 355.1591 Molecular Weight: 355.1970

¹H NMR (400 MHz, CDCl₃): δ ppm 7.14 (d, J = 8.4 Hz, 2H), 6.84 (d, J = 8.4 Hz, 2H), 5.78 (dt, J = 10.0, 3.2 Hz, 1H), 5.57 (d, J = 9.8 Hz, 1H), 3.83 (dd, J = 18.4, 10.8 Hz, 2H), 3.78 (s, 3H), 3.61 (d, J = 18.0 Hz, 1H), 3.52-3.38 (m, 2H), 3.10 (dd, J = 11.6, 5.6 Hz, 1H), 2.54-2.36 (m, 2H), 2.33-2.30 (m, 1H), 1.06 (t, J = 11.6 Hz, 1H), 0.55 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Acetone-d₆): δ ppm 170.6, 170.5, 158.7, 137.6, 137.3, 129.9, 125.0, 114.0, 70.0, 64.8, 65.0, 55.3, 45.6, 43.2, 38.1, 16.8.
¹¹B NMR (128 MHz, Acetone-d₆): δ ppm 15.64.

HRMS (APCI): Calculated for C₁₉H₂₁BNO₅ [M-H]⁻: 354.1513, Found: 354.1513. IR (*v*, cm⁻¹): 3010, 2956, 2839, 1744, 1512, 1289, 1244, 1065, 1027.

(4d)

$8-methyl-9-(4-(methylthio)phenyl)-5a, 8, 9, 9a-tetrahydro-5H-4\lambda^4, 10\lambda^4-10, 4-(epoxyethano)benzo[3,4][1,2]azaborol o[2,1-b][1,3,2]oxazaborole-2, 12(3H)-dione$

The general procedure was followed using (E)-(4-(methylthio)styryl)boronic acid (58.2 mg, 0.30 mmol, 1.0 eq.) and compound **1** (70.3 mg, 0.33 mmol, 1.1 eq.) as starting material. **4d** was obtained as a yellow solid (m.p.: >300 °C, 95.1mg, 86%).

Chemical Formula: C₁₉H₂₂BNO₄S

Exact Mass: 371.1363

Molecular Weight: 371.2580

4H), 4.06 (dd, J = 11.2, 5.2 Hz, 1H), 3.34-3.16 (m, 2H), 2.70 (d, J = 1.2 Hz, 3H), 2.68-2.49 (m, 2H), 1.33 (t, J = 12.0 Hz, 1H), 0.53 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Acetone-d₆): δ ppm 170.6, 170.4, 148.6, 144.9, 144.9, 137.2, 129.9, 125.2, 123.9, 69.9, 64.9, 64.0, 46.3, 44.2, 44.1, 43.0, 37.7, 37.7, 16.7. ¹¹B NMR (128 MHz, Acetone-d₆): δ ppm 15.96. HRMS (APCI): Calculated for C₁₉H₂₂¹⁰BNO₅ [M]: 370.1399, Found: 370.1399.

¹H NMR (400 MHz, Acetone-d₆): δ ppm 7.63 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.0

Hz, 2H), 5.80 (dt, J = 10.0, 3.2 Hz, 1H), 5.74 (d, J = 10.0 Hz, 1H), 4.41-4.16 (m,

HRMS (APCI): Calculated for $C_{19}H_{22}^{10}BNO_5$ [M]: 370.1399, Found: 370.1399. IR (v, cm⁻¹): 3006, 2956, 2921, 2850, 1730, 1455, 1298, 1265, 1122, 1077, 1039,

1015.

(4e)

$8-methyl-9-(3,4,5-trimethoxyphenyl)-5a,8,9,9a-tetrahydro-5H-4\lambda^4,10\lambda^4-10,4-(epoxyethano)benzo[3,4][1,2]azabor olo[2,1-b][1,3,2]oxazaborole-2,12(3H)-dione$

The general procedure was followed using (E)-(3,4,5-trimethoxystyryl)boronic acid (71.4 mg, 0.30 mmol, 1.0 eq.) and compound **1** (70.3 mg, 0.33 mmol, 1.1 eq.) as starting material. **4e** was obtained as a white solid (m.p.: >300 °C, 105 mg, 84%).

Chemical Formula: C₂₁H₂₆BNO₇ Exact Mass: 415.1802 Molecular Weight: 415.2490

¹H NMR (400 MHz, Acetone-d₆): δ ppm 6.63 (s, 2H), 5.84-5.76 (m, 1H), 5.80 (dt, J = 10.0, 2.8 Hz, 1H), 5.71 (d, J = 10.0 Hz, 1H), 4.40-4.15 (m, 4H), 4.05 (dd, J = 11.2, 5.2 Hz, 1H), 3.84 (s, 6H), 3.69 (s, 3H), 3.23 (dd, J = 13.6, 11.2Hz, 1H), 3.13 (dd, J = 11.8, 5.8 Hz, 1H), 2.65-2.45 (m, 2H), 1.23 (t, J = 12.0 Hz, 1H), 0.55 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Acetone-d₆): δ ppm 170.6, 170.3, 153.9, 141.0, 137.5, 125.0, 106.1, 70.2, 65.0, 64.1, 60.4, 56.2, 46.3, 43.6, 37.9, 30.6, 16.7.
¹¹B NMR (128 MHz, Acetone-d₆): δ ppm 15.84.

HRMS (APCI): Calculated for $C_{21}H_{26}BNO_7$ [M-H]⁻: 414.1724, Found: 414.1729. IR (ν , cm⁻¹): 3014, 2964, 2930, 1750, 1585, 1278, 1123, 1105, 1064, 1029.

(4f)

$9-(4-fluorophenyl)-8-methyl-5a, 8, 9, 9a-tetrahydro-5H-4\lambda^4, 10\lambda^4-10, 4-(epoxyethano)benzo [3,4] [1,2] azaborolo [2,1-b] [1,3,2] oxazaborole-2, 12(3H)-dione$

The general procedure was followed using (E)-(4-fluorostyryl)boronic acid (50.0 mg, 0.30 mmol, 1.0 eq.) and compound **1** (70.3 mg, 0.33 mmol, 1.1 eq.) as starting material. **4f** was obtained as a white solid (m.p.: 216.8-217.2 $^{\circ}$ C, 71.0 mg, 69%).

¹H NMR (400 MHz, Acetone-d₆): δ ppm 7.31 (dd, J = 8.0, 4.0 Hz, 2H), 7.05 (t, J = 8.0 Hz, 2H), 5.79 (dt, J = 8.0, 4.0

Chemical Formula: C₁₈H₁₉BFNO₄ Exact Mass: 343.1391 Molecular Weight: 343.1614

Hz, 1H), 5.73 (d, J = 10.0 Hz, 1H), 4.40-4.15 (m, 4H), 4.04 (dd, J = 11.2, 5.3 Hz, 2H), 3.23 (d, J = 12.0 Hz, 1H), 3.18 (t, J = 6.0 Hz, 1H), 2.59 (t, J = 11.3 Hz, 1H), 2.55-2.40 (m, 1H), 1.26 (t, J = 12.0 Hz, 1H), 0.54 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Acetone-d₆): δ ppm 170.5, 170.4, 163.2, 160.8, 141.4, 141.4, 137.3, 130.7, 130.6, 125.1, 115.2, 115.0, 69.9, 64.8, 64.0, 45.6, 43.1, 37.9, 16.6. ¹¹B NMR (128 MHz, Acetone-d₆): δ ppm 15.65. ¹⁹F NMR (376 MHz, Acetone-d₆): δ ppm -119.54.

HRMS (APCI): Calculated for $C_{18}H_{18}BFNO4$ [M-H]⁻: 342.1313, Found: 342.1314.

IR (v, cm⁻¹): 3015, 2959, 2927, 1750, 1510, 1295, 1222, 1031.

(4g)

9-(4-chlorophenyl)-8-methyl-5a,8,9,9a-tetrahydro-5H- $4\lambda^4$,10 λ^4 -10,4-(epoxyethano)benzo[3,4][1,2]azaborolo[2,1-b][1,3,2]oxazaborole-2,12(3H)-dione

The general procedure was followed using (E)-(4-chlorostyryl)boronic acid (54.7 mg, 0.30 mmol, 1.0 eq.) and compound **1** (70.3 mg, 0.33 mmol, 1.1 eq.) as starting material. **4g** was obtained as a white solid (m.p.: 237.8-239.0 °C, 76.5 mg, 71%).

¹H NMR (400 MHz, CDCl₃): δ ppm 7.27 (d, J = 8.0 Hz, 2H), 7.17 (d, J = 8.0 Hz, 2H), 5.79 (dt, J = 9.6, 4.0 Hz, 1H), 5.59 (d, J = 9.8 Hz, 1H), 3.84 (dd, J = 18.0, 10.6 Hz, 2H), 3.63 (d, J = 18.0 Hz, 1H), 3.54-3.39 (m, 2H), 3.13 (dd, J = 11.8, 5.8 Hz, 1H), 2.65-2.48 (m, 1H), 2.47-2.40 (m, 1H), 2.39-2.27 (m, 1H), 0.54 (d, J = 7.2 Hz, 3H).

Chemical Formula: C₁₈H₁₉BCINO₄ Exact Mass: 359.1096 Molecular Weight: 359.6130

¹³C NMR (100 MHz, Acetone-d₆): δ ppm 170.5, 170.4, 144.3, 137.2, 131.7, 130.8, 128.6, 125.1, 69.9, 64.8, 64.0, 45.8, 43.0, 37.7, 16.6.

¹¹B NMR (128 MHz, Acetone- d_6): δ ppm 15.70.

HRMS (APCI): Calculated for C₁₈H₁₈BClNO₄ [M-H]⁻: 358.1017, Found: 358.1017. IR (*v*, cm⁻¹): 3006, 2956, 2921, 2858, 1732, 1646, 1456, 1298, 1122, 1076, 1039, 1015.

(4h)

9-(4-bromophenyl)-8-methyl-5a,8,9,9a-tetrahydro-5H-4λ⁴,10λ⁴-10,4-(epoxyethano)benzo[3,4][1,2]azaborolo[2,1b][1,3,2]oxazaborole-2,12(3H)-dione

The general procedure was followed using (E)-(4-bromostyryl)boronic acid (68.1 mg, 0.30 mmol, 1.0 eq.) and compound **1** (70.3 mg, 0.33 mmol, 1.1 eq.) as starting material. **4h** was obtained as a white solid (m.p.: 277.1-278.9 °C, 109 mg, 90%).

Chemical Formula: C₁₈H₁₉BBrNO₄ Exact Mass: 403.0591 Molecular Weight: 404.0670

¹H NMR (400 MHz, Acetone-d₆): δ ppm 7.47 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 5.79 (dt, J = 10.0, 2.8 Hz, 1H), 5.73 (d, J = 9.9 Hz, 1H), 4.35-4.12 (m, 4H), 4.05 (dd, J = 11.2, 5.2 Hz, 1H), 3.22 (dd, J = 12.5, 10.3 Hz, 1H), 3.17 (dd, J = 10.9, 4.8 Hz, 1H), 2.60 (dd, J = 16.9, 8.2 Hz, 1H), 2.55-2.42 (m, 1H), 1.26 (t, J = 11.6 Hz, 1H), 0.54 (d, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, Acetone-d₆): δ ppm 170.5, 170.4, 144.8, 137.3, 131.6, 131.3, 125.1, 119.8, 69.9, 64.8, 64.0, 45.9, 43.1, 37.6, 16.7.

¹¹B NMR (128 MHz, Acetone- d_6): δ ppm 15.64.

HRMS (ESI): Calculated for C₁₈H₁₈BBrNO4 [M-H]⁻: 402.0512, Found: 402.0520. IR (*v*, cm⁻¹): 3021, 2974, 2917,1771, 1739, 1285, 1064, 1029, 1007.

(4i)

9-(3-methoxyphenyl)-8-methyl-5a,8,9,9a-tetrahydro-5H- $4\lambda^4$,10 λ^4 -10,4-(epoxyethano)benzo[3,4][1,2]azaborolo[2, 1-b][1,3,2]oxazaborole-2,12(3H)-dione

The general procedure was followed using (E)-(3-methoxystyryl)boronic acid (54.0 mg, 0.30 mmol, 1.0 eq.) and compound 1 (70.3 mg, 0.33 mmol, 1.1 eq.) as starting material. 4i was obtained as a white solid (m.p.: >300 °C, 73.7 mg, 69%).

Chemical Formula: C₁₉H₂₂BNO₅ Exact Mass: 355.1591 Molecular Weight: 355.1970

¹H NMR (400 MHz, Acetone-d₆): δ ppm 7.18 (t, J = 7.8 Hz, 1H), 6.94 (s, 1H), 6.87 (d, J = 7.6 Hz, 1H), 6.72 (dd, J = 8.0, 2.6 Hz, 1H), 5.79 (dt, J = 10.0, 2.8 Hz, 1H), 5.72 (d, J = 10.0 Hz, 1H), 4.35-4.15 (m, 4H), 4.04 (dd, J = 10.8, 5.2Hz, 1H), 3.80 (s, 3H), 3.28-3.12 (m, 2H), 2.65-2.54 (m, 1H), 2.54-2.46 (m, 1H), 1.26 (t, J = 11.6 Hz, 1H), 0.55 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, Acetone-d₆): δ ppm 170.6, 170.4, 160.5, 147.0, 137.5, 129.5, 125.1, 121.3, 114.3, 112.2, 70.0, 64.9, 64.0, 55.2, 46.4, 43.1, 38.0, 16.7.
¹¹B NMR (128 MHz, Acetone-d₆): δ ppm 15.76.

HRMS (APCI): Calculated for $C_{19}H_{21}BNO_5$ [M-H]⁻: 354.1513, Found: 354.1522.

IR (v, cm⁻¹): 3014, 2961, 2927, 2871, 1750, 1601, 1275, 1123, 1064, 1030.

(4j)

8-methyl-9-(thiophen-2-yl)-5a,8,9,9a-tetrahydro-5H- $4\lambda^4$,10 λ^4 -10,4-(epoxyethano)benzo[3,4][1,2]azaborolo[2,1-b] [1,3,2]oxazaborole-2,12(3H)-dione

The general procedure was followed using (E)-(2-(thiophen-2-yl)vinyl)boronic acid (46.2 mg, 0.30 mmol, 1.0 eq.) and compound **1** (70.3 mg, 0.33 mmol, 1.1 eq.) as starting material. **4j** was obtained as a white solid (m.p.: 178.9-180.0 °C, 79.2 mg, 80%).

Chemical Formula: C₁₆H₁₈BNO₄S Exact Mass: 331.1050 Molecular Weight: 331.1930

¹H NMR (400 MHz, DMSO-d₆): δ ppm 7.34 (d, J = 4.9 Hz, 1H), 6.99-6.93 (m, 2H), 5.75-5.69 (m, 1H), 5.65 (d, J = 9.9 Hz, 1H), 4.33-4.08 (m,4H), 3.75 (dd, J = 10.8, 5.2 Hz, 1H), 3.23 (dd, J = 11.6, 5.6 Hz, 1H), 3.11-2.99 (m, 1H), 2.48-2.32 (m, 2H), 1.08 (t, J = 12.0 Hz, 1H), 0.56 (d, J = 7.0 Hz, 3H). ¹³C NMP (100 MHz, DMSO, d): δ ppm 170.7, 170.6, 147.0, 135.4, 126.5, 124.6

¹³C NMR (100 MHz, DMSO-d₆): δ ppm 170.7, 170.6, 147.9, 135.4, 126.5, 124.6, 123.8, 123.2, 67.7, 63.4, 62.5, 41.5, 40.5, 37.3, 16.2.

¹¹B NMR (128 MHz, Acetone- d_6): δ ppm 15.53.

HRMS (APCI): Calculated for C₁₆H₁₇BNO₄S [M-H]⁻: 330.0971, Found: 330.0974. IR (*v*, cm⁻¹): 3014, 2956, 2855, 1744, 1292, 1251, 1177, 1051, 1060, 1034.

(4k)

 $9-butyl-8-methyl-5a, 8, 9, 9a-tetrahydro-5H-4\lambda^4, 10\lambda^4-10, 4-(epoxyethano) \\ benzo[3,4][1,2]azaborolo[2,1-b][1,3,2]oxazaborole-2, 12(3H)-dione$

The general procedure was followed using (E)-(4-bromostyryl)boronic acid (68.1 mg, 0.30 mmol, 1.0 eq.) and compound **1** (70.3 mg, 0.33 mmol, 1.1 eq.) as starting material. **4k** was obtained as a white solid (m.p.: 227.6-229.0 °C, 78.8 mg, 86%).

¹H NMR (400 MHz, CDCl₃) δ ppm 5.77 (d, J = 10.0 Hz, 1H), 5.51 (d, J = 9.7 Hz, 1H), 3.96-3.81 (m, 4H), 3.69 (dd, J = 11.1, 5.2 Hz, 1H), 2.78-2.69 (m, 1H), 2.36 (s, 2H), 1.85-1.72 (m, 1H), 1.44-1.26 (m, 6H), 0.91 (t, J = 6.4 Hz, 3H),

Chemical Formula: C₁₆H₂₄BNO₄ Exact Mass: 305.1798 Molecular Weight: 305.1810

0.86 (d, *J* = 7.0 Hz, 3H), 0.59 (t, *J* = 11.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ ppm 169.2, 168.8, 139.0, 122.1, 71.4, 64.9, 64.0, 41.7, 37.9, 32.6, 31.5, 29.2, 23.1, 14.7, 14.3.

¹¹B NMR (128 MHz, Acetone- d_6): δ ppm 15.56.

HRMS (APCI): Calculated for C₁₆H₂₃BNO₄ [M-H]⁻: 304.1720, Found: 304.1719. IR (*v*, cm⁻¹): 3012, 2956, 2925, 2857, 1747, 1467, 1297, 1230, 1026.

(4l)

9-((1,3-dioxoisoindolin-2-yl)methyl)-8-methyl-5a,8,9,9a-tetrahydro-5H- $4\lambda^4$,10 λ^4 -10,4-(epoxyethano)benzo[3,4][1, 2]azaborolo[2,1-b][1,3,2]oxazaborole-2,12(3H)-dione

The general procedure was followed using (E)-(3-(1,3-dioxoisoindolin-2-yl)prop-1-en-1-yl)boronic acid (69.3mg, 0.30 mmol, 1.0 eq.) and compound 1 (70.3 mg, 0.33 mmol, 1.1 eq.) as starting material. **41** was obtained as a light yellow solid (m.p.: >300 °C, 86.0 mg, 70%).

Chemical Formula: C₂₁H₂₁BN₂O₆ Exact Mass: 408.1493 Molecular Weight: 408.2170

¹H NMR (400 MHz, DMSO-d₆) δ ppm 7.89-7.77 (m, 4H), 5.63 (d, J = 9.2 Hz, 1H), 5.57 (d, J = 10.0 Hz, 1H), 4.26-4.02 (m, 4H), 3.71 (dd, J = 10.5, 4.8 Hz, 1H), 3.57 (d, J = 8.4 Hz, 2H), 2.96 (t, J = 12.0 Hz, 1H), 2.69-2.55 (m, 1H), 2.34-2.14 (m, 2H), 0.87 (d, J = 6.8 Hz, 3H), 0.57 (t, J = 11.8 Hz, 1H).

¹³C NMR (100 MHz, Acetone-d₆): δ ppm 170.6, 170.4, 168.3, 135.9, 134.2, 131.8, 124.3, 122.9, 68.4, 63.6, 62.8, 41.0, 40.3, 35.4, 31.5, 14.8.

¹¹B NMR (128 MHz, Acetone- d_6): δ ppm 15.89.

HRMS (APCI): Calculated for $C_{21}H_{22}BN_2O_6$ [M+H]⁺: 409.1571, Found:

409.1583.

IR (v, cm⁻¹): 3013, 2918, 2850, 1770, 1750, 1703, 1405, 1290, 1044, 1026.

(4m)

ethyl-8-methyl-2,12-dioxo-2,3,5a,8,9,9a-hexahydro-5H-4λ⁴,10λ⁴-10,4-(epoxyethano)benzo[3,4][1,2]azaborolo[2,1 -b][1,3,2]oxazaborole-9-carboxylate

The general procedure was followed using (E)-(3-ethoxy-3-oxoprop-1-en-1-yl)boronic acid (43.2mg, 0.30 mmol, 1.0 eq.) and compound **1** (70.3 mg, 0.33 mmol, 1.1 eq.) as starting material. **4m** was obtained as a white solid (m.p.: 188.9-190.9 $^{\circ}$ C, 60.0 mg, 62%).

Chemical Formula: C₁₅H₂₀BNO₆ Exact Mass: 321.1384 Molecular Weight: 321.1360

¹H NMR (400 MHz, Acetone-d₆) δ ppm 5.74-5.64 (m, 2H), 4.35-4.04 (m, 6H), 4.00 (dd, J = 11.2, 5.3 Hz, 1H), 3.12 (dd, J = 13.3, 11.4 Hz, 1H), 2.73 (dd, J = 11.4, 6.0 Hz, 1H), 2.70-2.62 (m, 1H), 2.41 (td, J = 13.1, 5.2 Hz, 1H), 1.25 (t, J = 7.2 Hz, 3H), 0.96 (t, J = 11.6 Hz, 1H), 0.88 (d, J = 6.8 Hz, 3H).

¹³C NMR (100 MHz, Acetone-d₆): δ ppm 174.0, 170.6, 135.8, 125.7, 69.4, 64.8, 63.9, 60.3, 46.7, 41.6, 33.6, 17.1, 14.6.

¹¹B NMR (128 MHz, Acetone-d₆): δ ppm 15.83.

HRMS (APCI): Calculated for $C_{15}H_{19}BNO_6$ [M-H]⁻: 320.1305, Found: 320.1305.

IR (v, cm⁻¹): 3005, 2956, 2921, 2851, 1728, 1456, 1298, 1264, 1122, 1077, 1039, 1015.

ethyl-8,9a-dimethyl-2,12-dioxo-2,3,5a,8,9,9a-hexahydro-5H- $4\lambda^4$,10 λ^4 -10,4-(epoxyethano)benzo[3,4][1,2]azaborol o[2,1-b][1,3,2]oxazaborole-9-carboxylate

The general procedure was followed using (Z)-(4-ethoxy-4-oxobut-2-en-2-yl)boronic acid (47.3mg, 0.30 mmol, 1.0 eq.) and compound **1** (70.3 mg, 0.33 mmol, 1.1 eq.) as starting material. **4n** was obtained as a white solid (m.p.: >300 °C, 49.0 mg, 49%).

Chemical Formula: C₁₆H₂₂BNO₆ Exact Mass: 335.1540 Molecular Weight: 335.1630

¹H NMR (400 MHz, Acetone-d₆) δ ppm 5.75 (dt, *J* = 10.0, 3.2 Hz, 1H), 5.53 (d, *J* = 10.0 Hz, 1H), 4.39-4.08 (m, 6H), 3.91 (dd, *J* = 11.6, 5.8 Hz, 1H), 3.42-3.28 (m, 1H), 2.78-2.70 (m, 1H), 2.60-2.48 (m, 1H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.05 (d, *J* = 7.4 Hz, 3H), 0.91 (s, 3H).

¹³C NMR (100 MHz, Acetone-d₆): δ ppm 173.5, 170.9, 170.7, 135.9, 122.2, 67.7, 65.3, 65.1, 60.1, 50.5, 46.0, 32.6, 18.4, 14.6, 11.7.

¹¹B NMR (128 MHz, Acetone- d_6): δ ppm 16.38.

HRMS (APCI): Calculated for C₁₆H₂₁BNO₆ [M-H]⁻: 334.1462, Found: 334.1464.

IR (v, cm⁻¹): 3013, 2967, 2876, 1773, 1750, 1290, 1104, 1030.

(40)

5-methyl-2,3,4a,5,7a,8-hexahydro-9λ⁴,13λ⁴-13,9-(epoxyethano)naphtho[8a',1':3,4][1,2]azaborolo[2,1-b][1,3,2]oxa zaborole-4,11,15(1H,10H)-trione

The general procedure was followed using (3-oxocyclohex-1-en-1-yl)boronic acid (42.0mg, 0.30 mmol, 1.0 eq.) and compound **1** (70.3 mg, 0.33 mmol, 1.1 eq.) as starting material. **40** was obtained as a white solid (m.p.: 199.2-201.3 °C, 22.0 mg, 23%).

Chemical Formula: C₁₆H₂₀BNO₅ Exact Mass: 317.1435 Molecular Weight: 317.1480

¹H NMR (400 MHz, Acetone-d₆) δ ppm 5.83 (dt, *J* = 9.6, 2.7 Hz, 1H), 5.74 (dt, *J* = 9.6, 2.9 Hz, 1H), 4.43-4.24 (m, 4H), 4.09-4.01 (m, 1H), 3.51 (dd, *J* = 14.2, 12.0 Hz, 1H), 2.86 (d, *J* = 11.0 Hz, 2H), 2.58-2.38 (m, 2H), 2.34 (dt, *J* = 14.8, 5.4 Hz, 1H), 2.13-2.06 (m, 1H), 1.83-1.71 (m, 1H), 1.66-1.54 (m, 1H), 1.38-1.26 (m, 1H), 1.01 (d, J = 7.8 Hz, 3H)..

¹³C NMR (100 MHz, Acetone-d₆): δ ppm 213.7, 170.5, 136.1, 125.3, 67.1, 65.3, 65.2, 54.0, 44.5, 41.3, 22.1, 21.3, 18.9.

¹¹B NMR (128 MHz, Acetone-d₆): δ ppm 15.65.

HRMS (APCI): Calculated for C₁₆H₁₉BNO₅ [M-H]⁻: 316.1356, Found: 316.1358. IR (*v*, cm⁻¹): 3004, 2955, 1735, 1691, 1292, 1243, 1183, 1115, 1036.

4. DABO-type boronate tethered intramolecular

Diels-Alder reactions

A. General procedure for synthesis of DABO-type boronates and corresponding D-A products:

In a dried round bottom flask equipped with a stirring bar were placed with magnesium sulfate (301 mg, 2.5 mmol, 5.0 eq.) and alkenyl boronic acid (0.50 mmol, 1.0 eq.), After evacuation and refill with dry N_2 for three times, 2,4-diene amino alcohol (0.55 mmol, 1.1 eq.) in DCM (5 mL) were added with syringes. The resulting mixture was allowed to stir at room temperature overnight. After filtered the residue, the filtrate was concentrated under vacuum without further purification.

In a dried Schlenk flask (25 mL in volume) equipped with a stirring bar were placed with the solid from the last step. After evacuation and refill with dry N₂ for three times, o-dichlorobenzene (2.5 mL) were added with syringe under a stream of N₂. The resulting mixture was allowed to stir at 160 °C for 8 h. After cooling to room temperature, the mixture was directly purified by silica gel chromatography. (Apply PE to elute the o-dichlorobenzene, PE:EA = 1:2 to elute the product, $R_f = 0.3$)

B. Spectra data :

(7a)

$8-methyl-9-phenyl-2,3,5a,8,9,9a-hexahydro-5H-4\lambda^4,10\lambda^4-10,4-(epoxyethano)benzo[3,4][1,2]azaborolo[2,1-b][1,3,2]oxazaborole$

The general procedure was followed using (E)-styrylboronic acid (74.0 mg, 0.50 mmol, 1.0 eq.) and compound **5** (102 mg, 0.55 mmol, 1.1 eq.) as starting material. **7a** was obtained as a white solid (m.p.:138.8-140.6 °C, 89.0 mg, 60%).

Chemical Formula: C₁₈H₂₄BNO₂

Exact Mass: 297.1900 Molecular Weight: 297.2050 ¹H NMR (400 MHz, CDCl₃): δ ppm 7.35 (d, J = 7.6 Hz, 2H), 7.31-7.21 (m, 2H), 7.10 (t, J = 7.2 Hz, 1H), 5.76 (dt, J = 10.0, 2.8 Hz, 1H), 5.63 (d, J = 9.8 Hz, 1H), 4.11 (dd, J = 10.0, 6.4 Hz, 1H), 3.97-3.89 (m, 3H), 3.38-3.22 (m, 2H), 3.13 (dd, J = 11.6, 4.2 Hz, 1H), 3.03 (dd, J = 11.2, 3.6 Hz, 1H), 2.86-2.69 (m, 2H), 2.65-2.41 (m, 3H), 0.88 (t, J = 11.2 Hz, 1H), 0.53 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 145.1, 137.1, 128.4, 127.9, 125.6, 125.3, 63.2, 62.1, 61.9, 60.5, 58.7, 45.5, 42.6, 37.5, 31.1, 16.5.

¹¹B NMR (128 MHz, CDCl₃): δ ppm 17.35.

HRMS (APCI): Calculated for C₁₈H₂₅BNO₂ [M+H]⁺: 298.1978, Found: 298.1974.

IR (v, cm⁻¹): 3012, 2919, 2848, 1705, 1448, 1407, 1295, 1266, 1225, 1120.

(7b)

8-methyl-9-(p-tolyl)-2,3,5a,8,9,9a-hexahydro-5H-4λ⁴,10λ⁴-10,4-(epoxyethano)benzo[3,4][1,2]azaborolo[2,1-b][1,3 ,2]oxazaborole

The general procedure was followed using (E)-(4-methylstyryl)boronic acid (48.6 mg, 0.50 mmol, 1.0 eq.) and compound **5** (102 mg, 0.55 mmol, 1.1 eq.) as starting material. **7b** was obtained as a white solid (m.p.: 139.9-140.6 °C,

100 mg, 64%).

Chemical Formula: C₁₉H₂₆BNO₂ Exact Mass: 311.2057 Molecular Weight: 311.2320

¹H NMR (400 MHz, CDCl₃): δ ppm 7.22 (d, J = 7.8 Hz, 2H), 7.06 (d, J = 7.7 Hz, 2H), 5.75 (dt, J = 9.6, 3.2 Hz, 1H), 5.62 (d, J = 9.8 Hz, 1H), 4.09 (dd, J = 10.0, 6.4 Hz, 1H), 4.01-3.83 (m, 3H), 3.29 (dd, J = 10.8, 4.8 Hz, 1H), 3.21 (dd, J = 11.6, 5.8 Hz, 1H), 3.12 (dd, J = 11.8, 4.2 Hz, 1H), 3.03 (dd, J = 11.6, 3.2 Hz, 1H), 2.86-2.67 (m, 2H), 2.62-2.50 (m, 1H), 2.50-2.36 (m, 2H), 2.26 (s, 3H), 0.86 (t, J = 11.4 Hz, 1H), 0.55 (d, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 142.0, 137.2, 134.4, 128.6, 128.2, 125.6, 63.3, 62.2, 61.9, 60.5, 58.8, 45.2, 42.6, 37.5, 31.1, 21.2, 16.6.

¹¹B NMR (128 MHz, CDCl₃): δ ppm 17.31.

HRMS (APCI): Calculated for C₁₉H₂₇BNO₂ [M+H]⁺: 312.2135, Found: 312.2130. IR (*v*, cm⁻¹): 3006, 2921, 2850, 1515, 1457, 1263, 1124, 1081, 1052, 1017.

(7c)

$4-(8-methyl-2,3,5a,8,9,9a-hexahydro-5H-4\lambda^4,10\lambda^4-10,4-(epoxyethano)benzo[3,4][1,2]azaborolo[2,1-b][1,3,2]oxazaborol-9-yl)benzonitrile$

The general procedure was followed using (E)-(4-cyanostyryl)boronic acid (86.5 mg, 0.50 mmol, 1.0 eq.) and compound **5** (102 mg, 0.55 mmol, 1.1 eq.) as starting material. **7c** was obtained as a white solid (m.p.: 146.5-147.2 $^{\circ}$ C, 93.5 mg, 58%).

Chemical Formula: C₁₉H₂₃BN₂O₂ Exact Mass: 322.1853 Molecular Weight: 322.2150

¹H NMR (400 MHz, CDCl₃): δ ppm 7.55 (d, J = 8.1 Hz, 2H), 7.46 (d, J = 8.2 Hz, 2H), 5.72 (dt, J = 9.6, 3.2 Hz, 1H), 5.64 (d, J = 10.0 Hz, 1H), 4.10 (dd, J = 10.2, 6.4 Hz, 1H), 4.00-3.82 (m, 3H), 3.35-3.25 (m, 2H), 3.16 (dd, J = 11.8, 4.3 Hz, 1H), 3.07 (dd, J = 10.8, 3.2 Hz, 1H), 2.86-2.72 (m, 2H), 2.60-2.42 (m, 3H), 0.85 (t, J = 11.2 Hz, 1H), 0.49 (d, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 151.2, 136.4, 131.9, 129.2, 125.7, 119.8, 109.0, 63.2, 62.0, 61.9, 60.5, 58.7, 45.8, 42.3, 37.0, 16.3.

¹¹B NMR (128 MHz, CDCl₃): δ ppm 16.52.

HRMS (APCI): Calculated for C₁₉H₂₄BN₂O₂ [M+H]⁺: 323.1931, Found: 323.1928. IR (*v*, cm⁻¹): 3009, 2962, 2922, 2852, 2218, 1603, 1464, 1270, 1077, 1047, 1014.

(7d)

$8-methyl-9-(4-(methylthio)phenyl)-2,3,5a,8,9,9a-hexahydro-5H-4\lambda^4,10\lambda^4-10,4-(epoxyethano)benzo[3,4][1,2]azaborolo[2,1-b][1,3,2]oxazaborole$

The general procedure was followed using (E)-(4-(methylthio)styryl)boronic acid (97.0 mg, 0.50 mmol, 1.0 eq.) and compound **5** (102 mg, 0.55 mmol, 1.1 eq.) as starting material. **7d** was obtained as a white-yellow solid (m.p.: 199.3-200.5 °C, 86.0 mg, 64%).

Chemical Formula: C₁₉H₂₆BNO₂S Exact Mass: 343.1777 Molecular Weight: 343.2920

¹H NMR (400 MHz, CDCl₃): δ ppm 7.66-7.45 (m, 4H), 5.78-5.72 (m, 1H), 5.64 (d, *J* = 9.8 Hz, 1H), 4.20-4.05 (m, 1H), 4.00-3.83 (m, 3H), 3.32 (dd, *J* = 10.6, 4.6 Hz, 2H), 3.16 (dd, *J* = 11.8, 4.2 Hz, 1H), 3.07 (dd, *J* = 10.4, 3.2 Hz, 1H), 2.87-2.72 (m, 2H), 2.68 (d, *J* = 4.2 Hz, 3H), 2.63-2.43 (m, 3H), 0.96-0.78 (m, 2H), 0.49 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 149.2, 141.9, 136.8, 129.5, 125.6, 123.6,

123.5, 63.3, 62.2, 61.9, 60.6, 58.8, 45.5, 43.9, 43.8, 42.4, 37.4, 29.8, 16.4. ¹¹B NMR (128 MHz, CDCl₃): δ ppm 17.35. HRMS (EI): Calculated for $C_{19}H_{26}^{-10}BNO_2S$ [M]: 342.1814, Found: 342.1814. IR (ν , cm⁻¹): 3005, 2920, 2850, 1717, 1456, 1299, 1263, 1077, 1040, 1015.

(7e)

9-(4-chlorophenyl)-8-methyl-2,3,5a,8,9,9a-hexahydro-5H- $4\lambda^4$,10 λ^4 -10,4-(epoxyethano)benzo[3,4][1,2]azaborolo[2,1-b][1,3,2]oxazaborole

The general procedure was followed using (E)-(4-chlorostyryl)boronic acid (91.2 mg, 0.50 mmol, 1.0 eq.) and compound **5** (102 mg, 0.55 mmol, 1.1 eq.) as starting material. **7e** was obtained as a white solid (m.p.: 161.5-162.9 °C, 116 mg, 70%).

Chemical Formula: C₁₈H₂₃BCINO₂ Exact Mass: 331.1510 Molecular Weight: 331.6470

¹H NMR (400 MHz, CDCl₃): δ ppm 7.29 (d, J = 8.2 Hz, 2H), 7.22 (d, J = 8.2 Hz, 2H), 5.74 (m, 1H), 5.63 (d, J = 9.8 Hz, 1H), 4.09 (dd, J = 10.0, 6.4 Hz, 1H), 4.00-3.82 (m, 3H), 3.30 (dd, J = 10.8, 4.6 Hz, 1H), 3.22 (dd, J = 12.0, 5.8 Hz, 1H), 3.13 (dd, J = 11.6, 4.0 Hz, 1H), 3.04 (dd, J = 10.8, 2.8 Hz, 1H), 2.86-2.66 (m, 2H), 2.60-2.37 (m, 3H), 0.83 (t, J = 11.4 Hz, 1H), 0.52 (d, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ ppm 143.7, 136.9, 130.9, 129.8, 128.0, 125.6, 63.3, 62.1, 61.9, 60.5, 58.8, 45.0, 42.5, 37.3, 31.1, 16.4. ¹¹B NMR (128 MHz, CDCl₃): δ ppm 17.35.

HRMS (APCI): Calculated for C₁₈H₂₄BClNO₂ [M+H]⁺: 332.1589, Found: 332.1585. IR (*v*, cm⁻¹): 3009, 2924, 2851, 1490, 1456, 1263, 1228, 1079, 1053, 1013.

(7f)

9-(4-methoxyphenyl)-8-methyl-2,3,5a,8,9,9a-hexahydro-5H-4λ⁴,10λ⁴-10,4-(epoxyethano)benzo[3,4][1,2]azaborol o[2,1-b][1,3,2]oxazaborole

The general procedure was followed using (E)-(4-methoxystyryl)boronic acid (89.0 mg, 0.50 mmol, 1.0 eq.) and compound **5** (102 mg, 0.55 mmol, 1.1 eq.) as starting material. **7f** was obtained as a white-yellow solid (m.p.: 153.6-154.6 $^{\circ}$ C, 90.0 mg, 55%).

Chemical Formula: C₁₉H₂₆BNO₃ Exact Mass: 327.2006 Molecular Weight: 327.2310

¹H NMR (400 MHz, CDCl₃): δ ppm 7.26 (d, J = 8.0 Hz, 2H), 6.82 (d, J = 8.0 Hz, 2H), 5.81-5.68 (m, 1H), 5.62 (d, J = 10.0 Hz, 1H), 4.17-4.03 (m,1H), 4.00-3.82 (m, 3H), 3.75 (s, 3H), 3.29 (dd, J = 10.6, 4.6 Hz, 1H), 3.21 (dd, J = 11.6, 5.6 Hz, 1H), 3.12 (dd, J = 12.0, 4.0 Hz, 1H), 3.03 (d, J = 10.8 Hz, 1H), 2.85-2.65 (m, 2H), 2.64-2.36 (m, 3H), 0.83 (t, J = 11.2 Hz, 1H), 0.53 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 157.3, 137.4, 137.1, 129.1, 125.5, 113.3, 63.2, 62.1, 61.8, 60.4, 58.7, 55.2, 44.6, 42.6, 37.5, 31.0, 16.4.

¹¹B NMR (128 MHz, CDCl₃): δ ppm 17.53.

HRMS (APCI): Calculated for C₁₉H₂₇BNO₃ [M+H]⁺: 328.2084, Found: 328.2083. IR (*v*, cm⁻¹): 3008, 2951, 2924, 2850, 1511, 1457, 1241, 1077, 1053, 1014.

(7g)

 $\label{eq:2-(-8-methyl-2,3,5a,8,9,9a-hexahydro-5H-4\lambda^4,10\lambda^4-10,4-(epoxyethano)benzo[3,4][1,2]azaborolo[2,1-b][1,3,2]oxazaborol-9-yl)methyl) isoindoline-1,3-dione$

The general procedure was followed using (E)-(3-(1,3-dioxoisoindolin-2-yl)prop-1-en-1-yl)boronic acid (116 mg, 0.5 mmol, 1.0 eq.) and compound **5** (102 mg, 0.55 mmol, 1.1 eq.) as starting material. **7g** was obtained as a white-yellow solid (m.p.: 143.9-145.9 °C, 108 mg, 57%).

Chemical Formula: C₂₁H₂₅BN₂O₄ Exact Mass: 380.1907 Molecular Weight: 380.2510 ¹H NMR (400 MHz, CDCl₃): δ ppm 7.87-7.72 (m, 2H), 7.72-7.58 (m, 2H), 5.67-5.57 (m, 1H), 5.51 (d, J = 10.0 Hz, 1H), 4.01 (dd, J = 10.4, 6.0 Hz, 1H), 3.95-3.67 (m, 5H), 3.23 (dd, J = 10.5, 4.4 Hz, 1H), 3.15-2.94 (m, 2H), 2.88-2.64 (m, 3H), 2.50-2.37 (m, 1H), 2.33 (dd, J = 13.2, 10.8 Hz, 1H), 2.28-2.15 (m, 1H), 0.95 (d, J = 7.0 Hz, 3H), 0.39 (t, J = 11.2 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 169.0, 136.7, 133.5, 132.6, 125.3, 123.0, 63.1, 62.5, 62.0, 60.7, 58.9, 42.2, 41.2, 36.7, 32.5, 15.4.

¹¹B NMR (128 MHz, CDCl₃): δ ppm 17.60.

HRMS (APCI): Calculated for $C_{21}H_{26}BN_2O_4$ [M+H]⁺: 381.1986, Found:

381.1976.

IR (v, cm⁻¹): 3005, 2954, 2849, 1770, 1735, 1700, 1396, 1301, 1245, 1184, 1074, 1040, 1016.

(7h)

5-methyl-2,3,4a,5,7a,8,10,11-octahydro-9λ⁴,13λ⁴-13,9-(epoxyethano)naphtho[8a',1':3,4][1,2]azaborolo[2,1-b][1,3, 2]oxazaborol-4(1H)-one

The general procedure was followed using (3-oxocyclohex-1-en-1-yl)boronic acid (42.0 mg, 0.30 mmol, 1.0 eq.) and compound **1** (70.3 mg, 0.33 mmol, 1.1 eq.) as starting material. **7h** was obtained as a white solid (m.p.: 169.2-170.1 °C, 66.1 mg, 76%).

Chemical Formula: C₁₆H₂₄BNO₃ Exact Mass: 289.1849 Molecular Weight: 289.1820

¹H NMR (400 MHz, Acetone-d₆) δ ppm 5.69 (dt, *J* = 9.8, 3.2 Hz, 1H), 5.53 (dt, *J* = 10.0, 3.2 Hz, 1H), 4.10-3.89 (m, 2H), 3.88-3.74 (m, 2H), 3.39 (dd, *J* = 11.6, 5.5 Hz, 1H), 3.36-3.25 (m, 2H), 3.23-3.13 (m, 1H), 3.08-2.91 (m, 3H), 2.51-2.33 (m, 3H), 2.28-2.12 (m, 1H), 2.00-1.90 (m, 1H), 1.72-1.58 (m, 1H), 1.48-1.37 (m, 2H), 0.96 (d, *J* = 7.8 Hz, 3H).

¹³C NMR (100 MHz, Acetone-d₆): δ ppm 215.5, 135.1, 126.3, 66.4, 64.3, 62.5, 61.0, 60.9, 54.5, 46.1, 41.7, 21.7, 21.0, 19.7.

¹¹B NMR (128 MHz, Acetone-d₆): δ ppm 17.28.
HRMS (APCI): Calculated for C₁₆H₂₄BNO₃ [M+H]⁺: 290.1927, Found: 290.1921.
IR (v, cm⁻¹): 2919, 2851, 1683, 1417, 1073, 1015.

$(7i_0)$

(2R,5aR,8R,9S,9aS,13R)-2,8-dimethyl-9,13-diphenyl-2,3,5a,8,9,9a-hexahydro-5H--4λ⁴,10λ⁴-10,4-(epoxyethano)b enzo[3,4][1,2]azaborolo[2,1-b][1,3,2]oxazaborole

Chemical Formula: C₂₅H₃₀BNO₂ Exact Mass: 387.2370 Molecular Weight: 387.3300 The general procedure was followed using (E)-styrylboronic acid (74.0 mg, 0.50 mmol, 1.0 eq.) and compound **8** (151.5 mg, 0.55 mmol, 1.1 eq.) as starting material. **7i**₀ was obtained as a white solid (m.p.: 229.8-231.4 °C, 77.0 mg, 40%, $[\alpha]_D^{20} = -38.9^\circ$ (c 0.50, CH₂Cl₂)), and **7i'**₀ was obtained as a colorless oil (77.0 mg, 40%, $[\alpha]_D^{20} = -69.1^\circ$ (c 0.50, CH₂Cl₂))

¹H NMR (400 MHz, CDCl₃): δ ppm 7.50-7.37 (m, 5H), 7.37-7.31 (m, 2H), 7.32-7.26 (m, 2H), 7.11 (t, J = 8.0 Hz, 1H), 5.72 (dt, J = 10.0, 3.6 Hz, 1H), 5.52

(d, J = 9.8 Hz, 1H), 4.44-4.33 (m, 1H), 4.33-4.24 (m, 2H), 4.01 (t, J = 8.2 Hz, 1H), 3.45 (dd, J = 11.6, 3.6 Hz, 1H), 3.30 (dd, J = 11.6, 5.6 Hz, 1H), 2.59-2.43 (m, 2H), 2.40 (dd, J = 11.6, 4.8 Hz, 1H), 2.36-2.19 (m, 2H), 1.22 (d, J = 6.4 Hz, 3H), 0.86 (t, J = 11.2Hz, 1H), 0.50 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 145.5, 137.0, 133.2, 129.4, 129.1, 128.5, 128.4, 127.9, 125.8, 125.2, 69.2, 68.8, 66.4, 64.1, 56.6, 45.1, 42.1, 37.4, 19.0, 16.6.

¹¹B NMR (128 MHz, CDCl₃): δ ppm 18.63.

HRMS (APCI): Calculated for C₂₅H₃₁BNO₂ [M+H]⁺: 388.2448, Found: 388.2444.

IR (v, cm⁻¹): 3004, 2962, 2924, 2848, 1599, 1497, 1451, 1130, 1069, 1019.

(7i'₀)

(2R,5aS,8S,9R,9aR,13R)-2,8-dimethyl-9,13-diphenyl-2,3,5a,8,9,9a-hexahydro-5H--4λ⁴,10λ⁴-10,4-(epoxyethano)b enzo[3,4][1,2]azaborolo[2,1-b][1,3,2]oxazaborole

Chemical Formula: C₂₅H₃₀BNO₂ Exact Mass: 387.2370 Molecular Weight: 387.3300

¹H NMR (400 MHz, CDCl₃): δ ppm 7.46-7.35 (m, 5H), 7.35-7.25 (m, 4H), 7.11 (t, J = 7.2 Hz, 1H), 5.80 (dt, J = 9.6, 3.0 Hz, 1H), 5.71 (d, J = 10.0 Hz, 1H), 4.28 (t, J = 10.0 Hz, 1H), 4.23-4.15 (m, 1H), 4.15-4.03 (m, 2H), 3.68 (dd, J = 11.4, 5.2 Hz, 1H), 3.35 (dd, J = 11.6, 5.6 Hz, 1H), 2.86-2.73 (m, 1H), 2.60-2.39 (m, 2H), 2.33 (dd, J = 12.4, 3.6 Hz, 1H), 2.18 (t, J = 11.2 Hz, 1H), 1.30 (d, J = 6.0 Hz, 3H), 0.98 (t, J = 11.6 Hz, 1H), 0.55 (d, J = 7.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ ppm 145.1, 137.3, 133.2, 129.4, 129.2, 128.5, 128.4, 128.0, 125.6, 125.3, 69.4, 67.7, 65.6, 61.6, 59.4, 45.6, 42.2, 37.7, 19.5,

16.5.

¹¹B NMR (128 MHz, CDCl₃): δ ppm 17.99.

HRMS (APCI): Calculated for $C_{25}H_{31}BNO_2$ [M+H]⁺: 388.2448, Found: 388.2444.

IR (v, cm⁻¹): 3004, 2986, 2870, 1699, 1653, 1450, 1260, 1152, 1055, 1029, 1010.

The two enantiomers of 4a co-crystalized as the following:

 Table S1.
 Crystal data and structure refinement for 4a.

Identification code	4a
Empirical formula	C18 H20 B N O4
Formula weight	325.16
Temperature	293(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P21/c
Unit cell dimensions	a = 13.048(2) A alpha = 90 deg.
	b = 10.7891(19) A beta = 112.161(2) deg.

	c = 12.787(2) A gamma = 90 deg.
Volume	1667.1(5) A^3
Z, Calculated density	4, 1.296 Mg/m^3
Absorption coefficient	0.090 mm^-1
F(000)	688
Crystal size	0.097 x 0.452 x 0.698 mm
Theta range for data collection	1.69 to 24.92 deg.
Limiting indices	-15<=h<=15, -12<=k<=12, -12<=l<=15
Reflections collected / unique	9639 / 2885 [R(int) = 0.0469]
Completeness to theta $= 24.92$	99.3 %
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2885 / 381 / 359
Goodness-of-fit on F^2	1.098
Final R indices [I>2sigma(I)]	R1 = 0.0634, $wR2 = 0.1492$
R indices (all data)	R1 = 0.0740, wR2 = 0.1547
Largest diff. peak and hole	0.235 and -0.255 e.A^-3

Table S2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for 4a.U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	X	у	Z	U(eq)
D (1)	2524(2)			
B(1)	3734(2)	467(3)	1992(2)	27(1)
C(1)	5380(2)	520(3)	3602(2)	33(1)
C(2)	5232(2)	1852(3)	3200(2)	35(1)
C(3)	4070(2)	930(3)	358(2)	34(1)
C(4)	4527(2)	2044(3)	1096(2)	39(1)
C(5A)	3385(19)	2800(20)	2140(30)	28(3)
C(5B)	3290(12)	2680(11)	2142(16)	37(3)
C(6A)	2289(6)	1970(6)	1531(7)	36(2)
C(6B)	2780(4)	1913(4)	2784(4)	33(1)
C(7A)	1258(6)	2481(7)	1628(8)	50(2)
C(7B)	1764(4)	2369(5)	2928(5)	48(1)
C(8A)	549(6)	1736(7)	1807(8)	50(2)
C(8B)	964(4)	1600(5)	2901(5)	48(1)
C(9A)	668(8)	366(8)	1985(10)	44(2)
C(9B)	950(5)	213(5)	2671(6)	38(1)
C(10A)	1623(5)	-148(7)	1669(6)	37(2)
C(10B)	2104(3)	-248(4)	2716(4)	31(1)
C(11A)	2502(18)	630(20)	2140(20)	25(2)
C(11B)	2640(12)	708(15)	2115(15)	30(2)
C(12A)	744(8)	33(10)	3143(10)	59(3)

C(12B)	-10(4)	-76(5)	1573(5)	49(1)
C(13B)	2056(9)	-1568(11)	2358(8)	38(2)
C(13A)	1920(11)	-1531(14)	1996(10)	33(2)
C(14B)	1796(5)	-1837(7)	1197(7)	42(2)
C(14A)	1499(8)	-2331(11)	1124(9)	48(2)
C(15A)	1700(9)	-3605(12)	1274(11)	54(2)
C(15B)	1690(5)	-3056(7)	801(7)	53(2)
C(16A)	2219(13)	-4042(14)	2369(13)	46(2)
C(16B)	1927(7)	-4026(7)	1593(10)	52(2)
C(17A)	2612(8)	-3213(10)	3286(9)	50(2)
C(17B)	2261(10)	-3800(11)	2720(10)	53(2)
C(18A)	2444(7)	-1946(10)	3054(9)	44(2)
C(18B)	2319(6)	-2572(8)	3100(7)	45(2)
N(1)	4257(2)	1889(2)	2118(2)	28(1)
O(1)	4601(1)	-209(2)	2902(2)	32(1)
O(2)	6107(2)	154(2)	4441(2)	49(1)
O(3)	3692(1)	77(2)	872(1)	33(1)
O(4)	4037(2)	831(2)	-592(2)	50(1)

Table S3.Bond lengths [A] and angles [deg] for 4a.

B(1)-O(3)	1.473(3)
B(1)-O(1)	1.474(3)
B(1)-N(1)	1.662(3)
B(1)-C(11A)	1.70(2)
C(1)-O(2)	1.199(3)
C(1)-O(1)	1.330(3)
C(1)-C(2)	1.513(4)
C(2)-N(1)	1.486(3)
C(2)-H(2A)	0.9700
C(2)-H(2B)	0.9700
C(3)-O(4)	1.203(3)
C(3)-O(3)	1.330(3)
C(3)-C(4)	1.505(4)
C(4)-N(1)	1.487(3)
C(4)-H(4A)	0.9700
C(4)-H(4B)	0.9700
C(5A)-N(1)	1.512(16)
C(5A)-C(6A)	1.62(3)
C(5A)-H(5AA)	0.9700
C(5A)-H(5AB)	0.9700

C(5A)-H(5BA)	0.95(6)
C(5A)-H(5BB)	0.92(6)
C(5B)-C(6B)	1.487(15)
C(5B)-H(5BA)	0.92(5)
C(5B)-H(5BB)	1.05(5)
C(6A)-C(7A)	1.502(11)
C(6A)-C(11A)	1.62(3)
C(6A)-H(5BA)	1.20(5)
C(6A)-H(6A)	0.9800
C(6A)-H(11B)	1.33(6)
C(6B)-C(7B)	1.490(6)
C(6B)-C(11B)	1.529(18)
C(6B)-H(6B)	1.09(6)
C(7A)-C(8A)	1.309(11)
C(7A)-H(7A)	0.9300
C(7B)-C(8B)	1.323(7)
C(7B)-H(7B)	0.9300
C(8A)-C(9A)	1.494(11)
C(8A)-H(8A)	0.9300
C(8B)-C(9B)	1.524(7)
C(8B)-H(8B)	0.9300
C(9A)-C(12A)	1.491(13)
C(9A)-C(10A)	1.550(11)
C(9A)-H(9A)	0.9800
C(9B)-C(12B)	1.520(8)
C(9B)-C(10B)	1.567(7)
C(9B)-H(9B)	0.9800
C(10A)-C(11A)	1.36(2)
C(10A)-C(13A)	1.558(16)
C(10A)-H(10A)	0.9800
C(10A)-H(11B)	1.27(6)
C(10B)-C(13B)	1.490(12)
C(10B)-C(11B)	1.597(16)
C(10B)-H(10B)	0.9800
C(11A)-H(11A)	0.9800
C(11A)-H(11B)	0.97(6)
C(11B)-H(11B)	1.00(6)
C(12A)-H(12A)	0.9600
C(12A)-H(12B)	0.9600
C(12A)-H(12C)	0.9600
C(12B)-H(12D)	0.9600
C(12B)-H(12E)	0.9600
C(12B)-H(12F)	0.9600

C(13B)-C(18B)	1.394(12)
C(13B)-C(14B)	1.423(12)
C(13A)-C(18A)	1.342(14)
C(13A)-C(14A)	1.352(17)
C(14B)-C(15B)	1.398(9)
C(14B)-H(14B)	0.9300
C(14A)-C(15A)	1.399(15)
C(14A)-H(14A)	0.9300
C(15A)-C(16A)	1.387(18)
C(15A)-H(15A)	0.9300
C(15B)-C(16B)	1.406(11)
C(15B)-H(15B)	0.9300
C(16A)-C(17A)	1.408(16)
C(16A)-H(16A)	0.9300
C(16B)-C(17B)	1.362(15)
C(16B)-H(16B)	0.9300
C(17A)-C(18A)	1.399(12)
C(17A)-H(17A)	0.9300
C(17B)-C(18B)	1.403(13)
C(17B)-H(17B)	0.9300
C(18A)-H(18A)	0.9300
C(18B)-H(18B)	0.9300
O(3)-B(1)-O(1)	111.2(2)
O(3)-B(1)-N(1)	102.86(19)
O(1)-B(1)-N(1)	102.47(19)
O(3)-B(1)-C(11A)	116.6(10)
O(1)-B(1)-C(11A)	116.1(10)
N(1)-B(1)-C(11A)	105.4(9)
O(2)-C(1)-O(1)	123.6(3)
O(2)-C(1)-C(2)	124.9(2)
O(1)-C(1)-C(2)	111.5(2)
N(1)-C(2)-C(1)	107.2(2)
N(1)-C(2)-H(2A)	110.3
C(1)-C(2)-H(2A)	110.3
N(1)-C(2)-H(2B)	110.3
C(1)-C(2)-H(2B)	110.3
H(2A)-C(2)-H(2B)	108.5
O(4)-C(3)-O(3)	124.0(3)
O(4)-C(3)-C(4)	123.9(3)
O(3)-C(3)-C(4)	112.1(2)
N(1)-C(4)-C(3)	107.0(2)
N(1)-C(4)-H(4A)	110.3
C(3)-C(4)-H(4A)	110.3

N(1)-C(4)-H(4B)	110.3
C(3)-C(4)-H(4B)	110.3
H(4A)-C(4)-H(4B)	108.6
N(1)-C(5A)-C(6A)	99.5(14)
N(1)-C(5A)-H(5AA)	111.9
C(6A)-C(5A)-H(5AA)	111.9
N(1)-C(5A)-H(5AB)	111.9
C(6A)-C(5A)-H(5AB)	111.9
H(5AA)-C(5A)-H(5AB)	109.6
N(1)-C(5A)-H(5BA)	105(3)
C(6A)-C(5A)-H(5BA)	47(3)
H(5AA)-C(5A)-H(5BA)	66.4
H(5AB)-C(5A)-H(5BA)	140.5
N(1)-C(5A)-H(5BB)	111(4)
C(6A)-C(5A)-H(5BB)	148(4)
H(5AA)-C(5A)-H(5BB)	67.2
H(5AB)-C(5A)-H(5BB)	46.8
H(5BA)-C(5A)-H(5BB)	129(5)
C(6B)-C(5B)-H(5BA)	114(4)
C(6B)-C(5B)-H(5BB)	112(3)
H(5BA)-C(5B)-H(5BB)	117(4)
C(7A)-C(6A)-C(11A)	106.6(9)
C(7A)-C(6A)-C(5A)	114.4(8)
C(11A)-C(6A)-C(5A)	107.6(12)
C(7A)-C(6A)-H(5BA)	110(2)
C(11A)-C(6A)-H(5BA)	137(3)
C(5A)-C(6A)-H(5BA)	36(3)
C(7A)-C(6A)-H(6A)	109.4
C(11A)-C(6A)-H(6A)	109.4
C(5A)-C(6A)-H(6A)	109.4
H(5BA)-C(6A)-H(6A)	78.9
C(7A)-C(6A)-H(11B)	101(3)
C(11A)-C(6A)-H(11B)	37(3)
C(5A)-C(6A)-H(11B)	138(3)
H(5BA)-C(6A)-H(11B)	146(4)
H(6A)-C(6A)-H(11B)	77.4
C(5B)-C(6B)-C(7B)	119.3(5)
C(5B)-C(6B)-C(11B)	98.5(9)
C(7B)-C(6B)-C(11B)	115.2(6)
C(5B)-C(6B)-H(6B)	113(3)
C(7B)-C(6B)-H(6B)	107(3)
C(11B)-C(6B)-H(6B)	103(3)
C(8A)-C(7A)-C(6A)	120.2(7)

C(8A)-C(7A)-H(7A)	119.9
C(6A)-C(7A)-H(7A)	119.9
C(8B)-C(7B)-C(6B)	121.3(4)
C(8B)-C(7B)-H(7B)	119.3
C(6B)-C(7B)-H(7B)	119.3
C(7A)-C(8A)-C(9A)	126.4(8)
C(7A)-C(8A)-H(8A)	116.8
C(9A)-C(8A)-H(8A)	116.8
C(7B)-C(8B)-C(9B)	125.0(4)
C(7B)-C(8B)-H(8B)	117.5
C(9B)-C(8B)-H(8B)	117.5
C(12A)-C(9A)-C(8A)	110.7(9)
C(12A)-C(9A)-C(10A)	114.5(8)
C(8A)-C(9A)-C(10A)	111.3(7)
C(12A)-C(9A)-H(9A)	106.7
C(8A)-C(9A)-H(9A)	106.7
C(10A)-C(9A)-H(9A)	106.7
C(12B)-C(9B)-C(8B)	109.0(5)
C(12B)-C(9B)-C(10B)	114.5(4)
C(8B)-C(9B)-C(10B)	111.3(4)
C(12B)-C(9B)-H(9B)	107.2
C(8B)-C(9B)-H(9B)	107.2
C(10B)-C(9B)-H(9B)	107.2
C(11A)-C(10A)-C(9A)	106.9(12)
C(11A)-C(10A)-C(13A)	112.8(12)
C(9A)-C(10A)-C(13A)	114.6(7)
C(11A)-C(10A)-H(10A)	107.4
C(9A)-C(10A)-H(10A)	107.4
C(13A)-C(10A)-H(10A)	107.4
C(11A)-C(10A)-H(11B)	43(3)
C(9A)-C(10A)-H(11B)	106(3)
C(13A)-C(10A)-H(11B)	138(3)
H(10A)-C(10A)-H(11B)	66.5
C(13B)-C(10B)-C(9B)	111.3(5)
C(13B)-C(10B)-C(11B)	116.5(8)
C(9B)-C(10B)-C(11B)	111.5(7)
C(13B)-C(10B)-H(10B)	105.5
C(9B)-C(10B)-H(10B)	105.5
C(11B)-C(10B)-H(10B)	105.5
C(10A)-C(11A)-C(6A)	112.0(16)
C(10A)-C(11A)-B(1)	124.2(17)
C(6A)-C(11A)-B(1)	92.2(13)
C(10A)-C(11A)-H(11A)	108.9

C(6A)-C(11A)-H(11A)	108.9
B(1)-C(11A)-H(11A)	108.9
C(10A)-C(11A)-H(11B)	63(4)
C(6A)-C(11A)-H(11B)	55(4)
B(1)-C(11A)-H(11B)	99(4)
H(11A)-C(11A)-H(11B)	148.7
C(6B)-C(11B)-C(10B)	105.2(11)
C(6B)-C(11B)-H(11B)	111(4)
C(10B)-C(11B)-H(11B)	101(3)
C(9B)-C(12B)-H(12D)	109.5
C(9B)-C(12B)-H(12E)	109.5
H(12D)-C(12B)-H(12E)	109.5
C(9B)-C(12B)-H(12F)	109.5
H(12D)-C(12B)-H(12F)	109.5
H(12E)-C(12B)-H(12F)	109.5
C(18B)-C(13B)-C(14B)	116.9(9)
C(18B)-C(13B)-C(10B)	124.3(8)
C(14B)-C(13B)-C(10B)	118.8(8)
C(18A)-C(13A)-C(14A)	120.8(13)
C(18A)-C(13A)-C(10A)	124.8(12)
C(14A)-C(13A)-C(10A)	114.1(10)
C(15B)-C(14B)-C(13B)	121.5(8)
C(15B)-C(14B)-H(14B)	119.3
C(13B)-C(14B)-H(14B)	119.3
C(13A)-C(14A)-C(15A)	121.2(11)
C(13A)-C(14A)-H(14A)	119.4
C(15A)-C(14A)-H(14A)	119.4
C(16A)-C(15A)-C(14A)	117.8(12)
C(16A)-C(15A)-H(15A)	121.1
C(14A)-C(15A)-H(15A)	121.1
C(14B)-C(15B)-C(16B)	118.3(8)
C(14B)-C(15B)-H(15B)	120.8
C(16B)-C(15B)-H(15B)	120.8
C(15A)-C(16A)-C(17A)	120.7(13)
C(15A)-C(16A)-H(16A)	119.7
C(17A)-C(16A)-H(16A)	119.7
C(17B)-C(16B)-C(15B)	121.6(9)
C(17B)-C(16B)-H(16B)	119.2
C(15B)-C(16B)-H(16B)	119.2
C(18A)-C(17A)-C(16A)	117.7(11)
C(18A)-C(17A)-H(17A)	121.1
C(16A)-C(17A)-H(17A)	121.1
C(16B)-C(17B)-C(18B)	119.3(10)

C(16B)-C(17B)-H(17B)	120.4
C(18B)-C(17B)-H(17B)	120.4
C(13A)-C(18A)-C(17A)	121.3(12)
C(13A)-C(18A)-H(18A)	119.4
C(17A)-C(18A)-H(18A)	119.4
C(13B)-C(18B)-C(17B)	122.1(9)
C(13B)-C(18B)-H(18B)	119.0
C(17B)-C(18B)-H(18B)	119.0
C(2)-N(1)-C(4)	114.7(2)
C(2)-N(1)-C(5A)	112.6(12)
C(4)-N(1)-C(5A)	112.1(10)
C(2)-N(1)-B(1)	103.97(19)
C(4)-N(1)-B(1)	104.04(19)
C(5A)-N(1)-B(1)	108.5(10)
C(1)-O(1)-B(1)	113.7(2)
C(3)-O(3)-B(1)	113.4(2)

Symmetry transformations used to generate equivalent atoms.

Table S4.Anisotropic displacement parameters (A^2 x 10^3) for 4aThe anisotropic displacement factor exponent takes the form:-2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
B(1)	26(1)	23(1)	33(2)	-5(1)	12(1)	-3(1)
C(1)	29(1)	39(2)	32(1)	-4(1)	10(1)	1(1)
C(2)	29(1)	34(2)	39(2)	-5(1)	11(1)	-3(1)
C(3)	37(1)	35(2)	33(2)	2(1)	16(1)	3(1)
C(4)	47(2)	38(2)	40(2)	-2(1)	24(1)	-9(1)
C(5A)	24(4)	28(4)	38(4)	3(3)	16(3)	-10(3)
C(5B)	34(5)	20(4)	53(4)	-9(3)	13(4)	6(4)
C(6A)	30(3)	29(3)	49(3)	5(3)	15(3)	-6(2)
C(6B)	31(2)	27(2)	45(2)	-7(2)	19(2)	-1(2)
C(7A)	36(3)	33(3)	75(4)	8(3)	16(3)	-1(3)
C(7B)	43(2)	39(2)	70(3)	-16(2)	31(2)	5(2)
C(8A)	25(3)	39(4)	81(4)	14(3)	16(3)	5(3)
C(8B)	44(3)	42(3)	71(3)	-8(2)	36(2)	10(2)
C(9A)	29(4)	41(4)	60(4)	19(4)	17(4)	-3(3)
C(9B)	39(3)	40(3)	44(3)	4(3)	27(3)	5(2)
C(10A)	28(3)	36(3)	45(3)	11(3)	12(2)	-6(3)

C(10B)	29(2)	31(2)	34(2)	0(2)	13(2)	3(2)
C(11A)	16(4)	26(4)	40(3)	-5(4)	18(3)	6(3)
C(11B)	27(4)	26(3)	36(3)	3(2)	13(3)	-9(3)
C(12A)	45(5)	60(6)	84(7)	26(5)	40(5)	8(4)
C(12B)	30(3)	53(3)	63(3)	0(3)	17(2)	14(2)
C(13B)	32(3)	30(3)	56(4)	9(4)	23(3)	8(2)
C(13A)	29(3)	32(3)	50(4)	7(4)	27(3)	-11(3)
C(14B)	37(3)	28(3)	68(4)	-5(3)	27(3)	-3(2)
C(14A)	45(4)	42(4)	62(4)	3(4)	28(3)	-1(3)
C(15A)	49(4)	42(5)	77(5)	7(4)	30(4)	0(4)
C(15B)	43(3)	35(4)	89(4)	-6(3)	33(3)	-3(3)
C(16A)	44(4)	32(4)	76(6)	10(4)	39(4)	-1(3)
C(16B)	41(4)	26(3)	95(5)	6(4)	32(4)	2(3)
C(17A)	44(4)	35(5)	76(4)	17(4)	28(3)	7(3)
C(17B)	39(3)	30(5)	90(6)	14(4)	25(4)	4(3)
C(18A)	33(3)	35(4)	63(4)	10(4)	18(3)	0(3)
C(18B)	33(3)	31(4)	76(3)	23(4)	24(2)	8(3)
N(1)	28(1)	26(1)	31(1)	-2(1)	14(1)	-2(1)
O(1)	32(1)	29(1)	36(1)	1(1)	12(1)	2(1)
O(2)	42(1)	52(1)	41(1)	3(1)	3(1)	3(1)
O(3)	39(1)	29(1)	35(1)	-5(1)	17(1)	-2(1)
O(4)	73(2)	49(1)	34(1)	0(1)	25(1)	3(1)

Table S5. Hydrogen coordinates ($x 10^4$) and isotropic displacement parameters ($A^2 x 10^3$) for **4a**.

	Х	y	Z	U(eq)
$\mathbf{U}(\mathbf{2A})$	5111	2282	2756	42
H(2R)	5888	2138	3087	42
H(4A)	5322	2094	1305	47
H(4B)	4195	2798	698	47
H(5AA)	3382	3547	1722	34
H(5AB)	3476	3017	2911	34
H(5BA)	2840(40)	2800(50)	1400(40)	44
H(5BB)	3700(40)	3460(50)	2600(40)	44
H(6A)	2169	1868	732	43
H(7A)	1122	3329	1561	60
H(7B)	1690	3211	3039	57
H(8A)	-92	2094	1826	60
H(8B)	366	1931	3032	58

H(9A)	-16	-8	1457	52
H(9B)	802	-210	3278	46
H(10A)	1389	-85	847	44
H(10B)	2589	-238	3517	38
H(11A)	2637	740	2940	30
H(12A)	1445	300	3685	88
H(12B)	678	-849	3195	88
H(12C)	158	434	3295	88
H(12D)	-676	289	1588	74
H(12E)	-103	-958	1486	74
H(12F)	141	259	950	74
H(14B)	1695	-1187	690	51
H(14A)	1069	-2029	412	57
H(15A)	1491	-4142	660	65
H(6B)	3370(50)	1650(50)	3620(50)	65
H(11B)	2030(50)	780(50)	1350(50)	65
H(15B)	1467	-3223	34	64
H(16A)	2309	-4890	2498	55
H(16B)	1854	-4842	1340	63
H(17A)	2970	-3499	4020	60
H(17B)	2450	-4453	3233	63
H(18A)	2702	-1380	3644	53
H(18B)	2539	-2423	3870	54

Table S6.Torsion angles [deg] for 4a.

O(2)-C(1)-C(2)-N(1)	178.4(2)
O(1)-C(1)-C(2)-N(1)	-1.3(3)
O(4)-C(3)-C(4)-N(1)	171.3(3)
O(3)-C(3)-C(4)-N(1)	-7.8(3)
N(1)-C(5A)-C(6A)-C(7A)	167.4(9)
N(1)-C(5A)-C(6A)-C(11A)	49.2(17)
C(11A)-C(6A)-C(7A)-C(8A)	-21.1(15)
C(5A)-C(6A)-C(7A)-C(8A)	-139.8(13)
C(5B)-C(6B)-C(7B)-C(8B)	142.7(10)
C(11B)-C(6B)-C(7B)-C(8B)	25.8(10)
C(6A)-C(7A)-C(8A)-C(9A)	2.9(15)
C(6B)-C(7B)-C(8B)-C(9B)	-3.1(9)
C(7A)-C(8A)-C(9A)-C(12A)	115.6(11)
C(7A)-C(8A)-C(9A)-C(10A)	-12.8(15)
C(7B)-C(8B)-C(9B)-C(12B)	-115.4(6)

C(7B)-C(8B)-C(9B)-C(10B)	11.8(9)
C(12A)-C(9A)-C(10A)-C(11A)	-80.8(15)
C(8A)-C(9A)-C(10A)-C(11A)	45.5(16)
C(12A)-C(9A)-C(10A)-C(13A)	45.0(12)
C(8A)-C(9A)-C(10A)-C(13A)	171.4(8)
C(12B)-C(9B)-C(10B)-C(13B)	-49.1(8)
C(8B)-C(9B)-C(10B)-C(13B)	-173.3(6)
C(12B)-C(9B)-C(10B)-C(11B)	82.8(9)
C(8B)-C(9B)-C(10B)-C(11B)	-41.4(9)
C(9A)-C(10A)-C(11A)-C(6A)	-69.3(18)
C(13A)-C(10A)-C(11A)-C(6A)	163.9(12)
C(9A)-C(10A)-C(11A)-B(1)	-178.2(17)
C(13A)-C(10A)-C(11A)-B(1)	55(2)
C(7A)-C(6A)-C(11A)-C(10A)	57.6(19)
C(5A)-C(6A)-C(11A)-C(10A)	-179.3(16)
C(7A)-C(6A)-C(11A)-B(1)	-173.9(9)
C(5A)-C(6A)-C(11A)-B(1)	-50.8(15)
O(3)-B(1)-C(11A)-C(10A)	39(2)
O(1)-B(1)-C(11A)-C(10A)	-95(2)
N(1)-B(1)-C(11A)-C(10A)	152.6(19)
O(3)-B(1)-C(11A)-C(6A)	-79.4(12)
O(1)-B(1)-C(11A)-C(6A)	146.5(8)
N(1)-B(1)-C(11A)-C(6A)	33.9(13)
C(5B)-C(6B)-C(11B)-C(10B)	179.2(9)
C(7B)-C(6B)-C(11B)-C(10B)	-52.7(10)
C(13B)-C(10B)-C(11B)-C(6B)	-169.7(7)
C(9B)-C(10B)-C(11B)-C(6B)	61.0(10)
C(9B)-C(10B)-C(13B)-C(18B)	-94.0(10)
C(11B)-C(10B)-C(13B)-C(18B)	136.7(10)
C(9B)-C(10B)-C(13B)-C(14B)	90.3(9)
C(11B)-C(10B)-C(13B)-C(14B)	-39.0(12)
C(11A)-C(10A)-C(13A)-C(18A)	50(2)
C(9A)-C(10A)-C(13A)-C(18A)	-72.4(14)
C(11A)-C(10A)-C(13A)-C(14A)	-136.4(16)
C(9A)-C(10A)-C(13A)-C(14A)	100.9(12)
C(18B)-C(13B)-C(14B)-C(15B)	6.9(13)
C(10B)-C(13B)-C(14B)-C(15B)	-177.1(7)
C(18A)-C(13A)-C(14A)-C(15A)	-7.1(19)
C(10A)-C(13A)-C(14A)-C(15A)	179.3(10)
C(13A)-C(14A)-C(15A)-C(16A)	8.3(17)
C(13B)-C(14B)-C(15B)-C(16B)	-4.7(10)
C(14A)-C(15A)-C(16A)-C(17A)	-5.1(19)
C(14B)-C(15B)-C(16B)-C(17B)	-0.5(12)

C(15A)-C(16A)-C(17A)-C(18A)	0.9(18)
C(15B)-C(16B)-C(17B)-C(18B)	3.2(15)
C(14A)-C(13A)-C(18A)-C(17A)	2.5(18)
C(10A)-C(13A)-C(18A)-C(17A)	175.4(9)
C(16A)-C(17A)-C(18A)-C(13A)	0.5(15)
C(14B)-C(13B)-C(18B)-C(17B)	-4.1(14)
C(10B)-C(13B)-C(18B)-C(17B)	-179.9(9)
C(16B)-C(17B)-C(18B)-C(13B)	-0.8(15)
C(1)-C(2)-N(1)-C(4)	-106.0(2)
C(1)-C(2)-N(1)-C(5A)	124.2(9)
C(1)-C(2)-N(1)-B(1)	6.9(2)
C(3)-C(4)-N(1)-C(2)	120.3(2)
C(3)-C(4)-N(1)-C(5A)	-109.7(12)
C(3)-C(4)-N(1)-B(1)	7.4(3)
C(6A)-C(5A)-N(1)-C(2)	-136.8(10)
C(6A)-C(5A)-N(1)-C(4)	92.1(11)
C(6A)-C(5A)-N(1)-B(1)	-22.3(15)
O(3)-B(1)-N(1)-C(2)	-125.4(2)
O(1)-B(1)-N(1)-C(2)	-9.9(2)
C(11A)-B(1)-N(1)-C(2)	112.0(10)
O(3)-B(1)-N(1)-C(4)	-5.0(2)
O(1)-B(1)-N(1)-C(4)	110.5(2)
C(11A)-B(1)-N(1)-C(4)	-127.6(10)
O(3)-B(1)-N(1)-C(5A)	114.5(12)
O(1)-B(1)-N(1)-C(5A)	-130.0(12)
C(11A)-B(1)-N(1)-C(5A)	-8.1(16)
O(2)-C(1)-O(1)-B(1)	174.2(2)
C(2)-C(1)-O(1)-B(1)	-6.1(3)
O(3)-B(1)-O(1)-C(1)	119.2(2)
N(1)-B(1)-O(1)-C(1)	9.9(3)
C(11A)-B(1)-O(1)-C(1)	-104.3(10)
O(4)-C(3)-O(3)-B(1)	-174.7(3)
C(4)-C(3)-O(3)-B(1)	4.4(3)
O(1)-B(1)-O(3)-C(3)	-108.6(2)
N(1)-B(1)-O(3)-C(3)	0.5(3)
C(11A)-B(1)-O(3)-C(3)	115.2(10)

Symmetry transformations used to generate equivalent atoms.

Table S8. Crystal data and structure refinement for 7i.

Identification code	7i
Empirical formula	C25 H30 B N O2
Formula weight	387.31
Temperature	296(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)
Unit cell dimensions	a = 9.835(4) A alpha = 90 deg.
	b = 10.412(4) A beta = 97.195(6) deg.
	c = 10.568(4) A gamma = 90 deg.
Volume	1073.8(7) A^3
Z, Calculated density	2, 1.198 Mg/m^3
Absorption coefficient	0.074 mm^-1
F(000)	416
Crystal size	0.17 x 0.15 x 0.03 mm
Theta range for data collection	1.94 to 24.66 deg.
Limiting indices	-11<=h<=11, -11<=k<=12, -10<=l<=12
Reflections collected / unique	6277 / 3511 [R(int) = 0.0361]
Completeness to theta $= 24.66$	98.4 %
Max. and min. transmission	0.9975 and 0.9877
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3511 / 1 / 264

Goodness-of-fit on F ²	1.041
Final R indices [I>2sigma(I)]	R1 = 0.0537, wR2 = 0.0798
R indices (all data)	R1 = 0.0909, wR2 = 0.0903
Absolute structure parameter	-1.5(16)
Largest diff. peak and hole	0.187 and -0.190 e.A^-3

Table S9. Atomic coordinates ($x \ 10^{4}$) and equivalent isotropic displacement parameters(A^2 x \ 10^3) for 7i.

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	х	У	Z	U(eq)
D(1)	5108(2)	5154(2)	6661(2)	26(1)
D(1) N(1)	3108(3)	5134(3)	6001(3)	20(1)
N(1)	4102(2)	651/(2)	6248(2)	24(1)
O(1)	4026(2)	4194(2)	5534(2)	30(1)
O(2)	6001(2)	5100(2)	5690(2)	28(1)
C(1)	8916(3)	1779(3)	8204(3)	44(1)
C(2)	7899(3)	974(3)	8516(3)	45(1)
C(3)	6669(3)	1490(3)	8735(3)	41(1)
C(4)	6462(3)	2796(3)	8676(3)	36(1)
C(5)	7481(3)	3642(3)	8410(3)	26(1)
C(6)	8716(3)	3098(3)	8161(3)	34(1)
C(7)	7318(3)	5079(3)	8447(3)	26(1)
C(8)	7894(3)	5638(3)	9766(3)	32(1)
C(9)	7413(3)	6993(3)	9962(3)	35(1)
C(10)	6491(3)	7621(3)	9175(3)	34(1)
C(11)	5900(3)	7022(3)	7941(3)	27(1)
C(12)	5860(3)	5554(2)	8028(3)	23(1)
C(13)	7586(3)	4808(3)	10891(3)	42(1)
C(14)	4464(3)	7406(3)	7360(3)	28(1)
C(15)	2718(3)	6028(3)	6009(3)	30(1)
C(16)	2798(3)	4799(3)	6792(3)	34(1)
C(17)	4741(3)	6967(3)	5081(3)	32(1)
C(18)	5420(3)	5774(3)	4582(3)	32(1)
C(19)	6544(3)	6130(3)	3796(3)	44(1)
C(21)	1614(3)	6997(3)	6192(3)	28(1)
C(21)	753(3)	6841(3)	7125(3)	20(1) 40(1)
C(22)	289(3)	771A(3)	7240(3)	$\tau \sigma(1)$
C(24)	-209(3)	7714(3)	6/29(2)	47(1)
C(24)	-402(3)	0/40(3)	0430(3) 5522(2)	42(1)
U(23)	3/2(3)	8923(3)	3322(3)	43(1)

C(26)	1404(3)	8051(3)	5404(3)	40(1)

B(1)-O(2)	1.433(3)
B(1)-O(1)	1.454(4)
B(1)-C(12)	1.594(4)
B(1)-N(1)	1.723(4)
N(1)-C(14)	1.496(3)
N(1)-C(17)	1.497(3)
N(1)-C(15)	1.501(3)
O(1)-C(16)	1.413(3)
O(2)-C(18)	1.421(3)
C(1)-C(2)	1.376(4)
C(1)-C(6)	1.387(4)
C(2)-C(3)	1.370(4)
C(3)-C(4)	1.375(4)
C(4)-C(5)	1.390(4)
C(5)-C(6)	1.394(4)
C(5)-C(7)	1.505(4)
C(7)-C(12)	1.530(3)
C(7)-C(8)	1.551(4)
C(8)-C(9)	1.511(4)
C(8)-C(13)	1.531(4)
C(9)-C(10)	1.324(4)
C(10)-C(11)	1.496(4)
C(11)-C(14)	1.521(4)
C(11)-C(12)	1.532(4)
C(15)-C(21)	1.512(4)
C(15)-C(16)	1.521(4)
C(17)-C(18)	1.535(4)
C(18)-C(19)	1.509(4)
C(21)-C(26)	1.378(4)
C(21)-C(22)	1.388(4)
C(22)-C(23)	1.386(4)
C(23)-C(24)	1.367(4)
C(24)-C(25)	1.371(4)
C(25)-C(26)	1.379(4)
O(2)-B(1)-O(1)	115.2(3)
O(2)-B(1)-C(12)	113.8(2)
O(1)-B(1)-C(12)	120.1(2)

Table S10	Bond lengths	[A] an	d angles	[deg] for 7i
Table 510.	Dona longins	L	ia ungres	

O(2)-B(1)-N(1)	102.2(2)
O(1)-B(1)-N(1)	100.4(2)
C(12)-B(1)-N(1)	100.9(2)
C(14)-N(1)-C(17)	113.3(2)
C(14)-N(1)-C(15)	115.6(2)
C(17)-N(1)-C(15)	114.7(2)
C(14)-N(1)-B(1)	105.2(2)
C(17)-N(1)-B(1)	102.55(19)
C(15)-N(1)-B(1)	103.4(2)
C(16)-O(1)-B(1)	108.2(2)
C(18)-O(2)-B(1)	110.6(2)
C(2)-C(1)-C(6)	120.4(3)
C(3)-C(2)-C(1)	119.0(3)
C(2)-C(3)-C(4)	120.6(3)
C(3)-C(4)-C(5)	122.0(3)
C(4)-C(5)-C(6)	116.6(3)
C(4)-C(5)-C(7)	122.9(3)
C(6)-C(5)-C(7)	120.5(3)
C(1)-C(6)-C(5)	121.4(3)
C(5)-C(7)-C(12)	114.4(2)
C(5)-C(7)-C(8)	111.6(2)
C(12)-C(7)-C(8)	111.3(2)
C(9)-C(8)-C(13)	108.9(2)
C(9)-C(8)-C(7)	112.8(2)
C(13)-C(8)-C(7)	113.6(2)
C(10)-C(9)-C(8)	125.3(3)
C(9)-C(10)-C(11)	120.2(3)
C(10)-C(11)-C(14)	118.8(2)
C(10)-C(11)-C(12)	111.9(2)
C(14)-C(11)-C(12)	104.9(2)
C(7)-C(12)-C(11)	108.1(2)
C(7)-C(12)-B(1)	119.3(2)
C(11)-C(12)-B(1)	102.7(2)
N(1)-C(14)-C(11)	103.7(2)
N(1)-C(15)-C(21)	115.6(2)
N(1)-C(15)-C(16)	102.2(2)
C(21)-C(15)-C(16)	118.7(2)
O(1)-C(16)-C(15)	105.4(2)
N(1)-C(17)-C(18)	104.9(2)
O(2)-C(18)-C(19)	109.2(2)
O(2)-C(18)-C(17)	105.3(2)
C(19)-C(18)-C(17)	111.7(2)
C(26)-C(21)-C(22)	117.6(3)

C(26)-C(21)-C(15)	120.7(3)	
C(22)-C(21)-C(15)	121.7(3)	
C(23)-C(22)-C(21)	120.6(3)	
C(24)-C(23)-C(22)	120.5(3)	
C(23)-C(24)-C(25)	119.6(3)	
C(24)-C(25)-C(26)	119.9(3)	
C(21)-C(26)-C(25)	121.8(3)	

Symmetry transformations used to generate equivalent atoms.

Table S11. Anisotropic displacement parameters (A^2 x 10^3) for 7i.The anisotropic displacement factor exponent takes the form: $-2 pi^2 [h^2 a^{*2} U11 + ... + 2 h k a^* b^* U12]$

	U11	U22	U33	U23	U13	U12	
B(1)	33(2)	18(2)	28(2)	4(2)	8(2)	7(2)	
N(1)	28(1)	22(1)	20(2) 22(1)	-1(1)	8(1)	7(2) 2(1)	
O(1)	32(1)	19(1)	40(1)	-3(1)	5(1)	-1(1)	
O(2)	32(1) 38(1)	26(1)	23(1)	1(1)	10(1)	9(1)	
C(1)	41(2)	39(2)	54(2)	-1(2)	8(2)	18(2)	
C(2)	52(2)	28(2)	56(3)	5(2)	7(2)	11(2)	
C(3)	47(2)	22(2)	57(2)	4(2)	14(2)	-3(2)	
C(4)	38(2)	30(2)	40(2)	1(2)	11(2)	4(2)	
C(5)	29(2)	29(2)	19(2)	-1(2)	2(1)	2(1)	
C(6)	30(2)	36(2)	38(2)	1(2)	11(2)	6(2)	
C(7)	27(2)	22(2)	31(2)	-1(2)	11(1)	-1(1)	
C(8)	30(2)	40(2)	27(2)	-6(2)	7(1)	-1(2)	
C(9)	32(2)	39(2)	35(2)	-12(2)	8(2)	-2(2)	
C(10)	31(2)	29(2)	43(2)	-14(2)	13(2)	-3(2)	
C(11)	28(2)	23(2)	32(2)	-5(2)	14(1)	1(1)	
C(12)	24(2)	20(2)	29(2)	0(1)	13(1)	-1(1)	
C(13)	49(2)	50(2)	29(2)	-1(2)	9(2)	2(2)	
C(14)	34(2)	20(2)	32(2)	-4(2)	15(1)	1(1)	
C(15)	30(2)	26(2)	32(2)	-7(2)	2(1)	0(1)	
C(16)	32(2)	27(2)	42(2)	1(2)	6(2)	-1(1)	
C(17)	37(2)	27(2)	34(2)	6(2)	12(1)	5(2)	
C(18)	44(2)	32(2)	23(2)	0(2)	10(2)	6(2)	
C(19)	63(2)	37(2)	37(2)	4(2)	27(2)	14(2)	
C(21)	26(2)	27(2)	29(2)	-4(2)	1(1)	1(1)	

C(22)	39(2)	30(2)	53(2)	6(2)	15(2)	1(2)
C(23)	31(2)	44(2)	60(2)	0(2)	18(2)	5(2)
C(24)	28(2)	38(2)	58(2)	-5(2)	1(2)	10(2)
C(25)	39(2)	47(2)	45(2)	10(2)	-1(2)	15(2)
C(26)	36(2)	49(2)	37(2)	8(2)	7(2)	11(2)

Table S12. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3)for 7i.

	x	У	Z	U(eq)
H(1)	9743	1437	8021	53
H(2)	8045	93	8577	54
H(3)	5967	952	8924	49
H(4)	5614	3122	8818	43
H(6)	9419	3629	7963	41
H(7)	7888	5429	7833	31
H(8)	8893	5672	9794	39
H(9)	7795	7420	10694	42
H(10)	6211	8437	9390	40
H(11)	6517	7236	7313	32
H(12)	5278	5311	8677	28
H(13A)	7969	5205	11676	63
H(13B)	7983	3972	10826	63
H(13C)	6612	4726	10878	63
H(14A)	3811	7289	7966	33
H(14B)	4440	8295	7084	33
H(15)	2566	5767	5111	35
H(16A)	2819	4992	7692	40
H(16B)	2015	4253	6528	40
H(17A)	5410	7643	5291	38
H(17B)	4021	7288	4449	38
H(18)	4732	5239	4080	39
H(19A)	7227	6629	4306	66
H(19B)	6164	6624	3070	66
H(19C)	6955	5363	3513	66
H(22)	875	6145	7678	48
H(23)	-861	7597	7867	53
H(24)	-1187	9325	6513	50
H(25)	256	9630	4981	53

										1			· .		1 1		· .	· .	· · · ·	
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$$-7.260 - 7.260 - 7.260 - 7.260 - 7.27 - 7.260 - 7.27 - 7.260 - 0.01 - 7.25 -$$

6 7 7 7 7 7 7 7 7 7 7	63 2 2 2 2 2 3 5 5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	67 61 61 61 61 61 61 61 61 61 61 61 61 61	46 47 42 42 42	47 57 41 41 17
5 .000 5 .0000 5 .0000 5 .0000 5 .0000 5 .0000 5 .00000 5 .00000 5 .000000000000000000000000000000000000	5 5 5 5 5 4	8 8 8 8 6 C C C C C C C C C C C C C C C	60 010 10 00 010	1.1

			- I						.			- L			- 1			
170	<mark>16</mark> 0	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-1 0

o /⁹⁰

 	~134.161 ~132.201	 	77.478 77.160 76.843	-41.058	
			0		
			CDCI ₃		
	ĺ				
		 an stand and stand and a st		l Hummond instrumentation and a second statements of the second statements of the second statements of the second	

1	1	1	1			1	1	10 a			1		1		82	3	1		1					10		
180		170	10	50	150	140	1	30	120)	110	100	/ 1	90		80		70		60	50	40	30		20	10

										221 221					1										
1									· .	- <u>1</u>	ч. <u>1</u>									1 1	<u> </u>	- <u>-</u>	- C	<u>у </u>	
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-	10	

8/

 $<^{170.583}_{170.452}$ -158.688	$\angle 137.555$ $\angle 137.294$ -129.900 -125.006	-69.967 -69.967 -63.962 -55.323 -55.323 -43.219 -38.079 -38.079 -16.749
		$ \begin{array}{c} $

318 312 297 072 049 027	810 801 794 777 777 777 777 771 716	328 328 261 261 257 215 215 064 051 051 036	243 210 197 181 167 844	564 482	060 055 050 045	287 257 228	543 525	.004
7.7.	<u>v.v.v.v.v.v</u> .v.	4 4 4 4 4 4 4 4 4	5	15	10 10 10 10	-1- -1-	-0. -0.	0-

206.203		 $\angle 141.415$ $\angle 141.384$ -137.333 -130.603 -125.096	$<^{115.225}_{115.017}$		-45.628 -43.121 -37.850 -37.850 29.840	L29.455
				F Me 4f Acetone	0 N d ₆	
	#1264.11:#11:#10:#11:#10:#10:#10:#10:#10:#10:#		¢urungtong/donatongoru/ogonghangadaus			1 mentahihalikapatahihannanananananan

Acetone-d₆

4m Acetone-d₆

	-137.131	$ \int_{125.554}^{128.355} \sqrt{125.554} \\ \sqrt{125.554} $		$\frac{77.478}{77.160}$	63.230 62.134 61.857 60.451 58.762	-45.511 -42.562 -37.534 -31.054	
						Me 7a CDCl ₃	
150 145 1	40 135	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	110 105 100 95	90 85 80 75		50 45 40 35 30 25	20 15 10

11/

-151.209			77.478 77.160 76.842	63.196 62.021 61.893 60.475 58.742	45.780 42.256 36.979	-16.298
					$ \begin{array}{c} $	
155 145	135 125 115	105 95 90 85	5 80 75 7	70 65 60 55 5	50 45 40 35 30 25	20 15

	-129.120 -125.510	-113.299	77.478 77.160 76.845	$\int_{-60.388}^{63.200}$	
	1				Me 7f CDCl ₃

L0400L000L0		100000000000000	v 4 0 m 4 4 0 44 0 0 8 9 N 9 9 L 0 8 L N 8	m 4
00000000000000	9	00109400-0100	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	r v
~~~~~~~~~	6	00000000000000000	HH00668466646666666666666666666666666666	66
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	$\alpha$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00
				52
			ר א אוורר או ור או ור	11

7h Acetone-d₆

7.092	5.811 5.786 5.718 5.694	4.278 4.160 4.1146 4.118 4.094 4.067 3.655 3.655	$\frac{1}{2.763}$	2.495 2.433 2.342 2.342 2.175 2.044		0.980	0.001
-------	----------------------------------	---	-------------------	--	--	-------	-------

- 1. J. Xu, E. J. Caro-Diaz, L. Trzoss and E. A. Theodorakis, J. Am. Chem. Soc., 2012, 134, 5072.
- 2. X.-C. Su, B. Man, S. Beeren, H. Liang, S. Simonsen, C. Schmitz, T. Huber, B, A. Messerle and G. Otting, J. Am. Chem. Soc., 2008, 130, 10486.
- 3. G. Huerta, G. Contreras Ordo ñez, C. Alvarez Toledano, V. Santes, E. Gómez and R. A. Toscano, Synth. Commun., 2004, 34, 2393.
- 4. J.-E. Lee, J. Kown and J. Yun, Chem. Commun., 2008, 6, 733.
- 5. K. S. Yoo, C. H. Yoon and K. W. Jung, J. Am. Chem. Soc., 2006, 128, 16384.
- 6. M. G. Suero, E. D. Bayle, B. S. Collins and M. J. Gaunt, J. Am. Chem. Soc., 2013, 135, 5332.
- 7. G. A. Molander, L. N. Cavalcanti, B. Canturk, P. S. Pan and L. E. Kennedy, J. Org. Chem., 2009, 74, 7364.