Supporting Information

Selective sensing of pyrophosphate in physiological media using zinc(II)dipicolylamino-functionalised peptides

Vincent E. Zwicker, Benjamin M. Long and Katrina A. Jolliffe

School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia.

E-mail: kate.jolliffe@sydney.edu.au; Fax: +61 2 9351 3329; Tel: +61 2 9351 2297

Contents

1	NMR Spectra of compounds 1–5 and $1 \cdot Zn_2 - 5 \cdot Zn_2$			
2	Mass spectra of compounds 1–5 and $1 \cdot Zn_2 - 5 \cdot Zn_2$			
3	3 Anion binding studies conducted in Krebs buffer solution and artificial urir			
	3.1	Results of the titration of PV solutions with receptors $1-5 \cdot Zn_2 \cdot \ldots \cdot \cdot \cdot \cdot$. S28	
	3.2	Results of the titration of 1:1–receptor:PV mixtures with PPi, ATP, and ADP	. S30	
	3.3	Speciation plots for receptor–PPi titrations	. S31	
	3.4	General procedure for Job's plot analysis	. S32	
	3.5	Job's plots for receptors $1-5 \cdot Zn_2$ with PV $\dots \dots \dots$. S32	
	3.6	Molecular modelling	. S33	
	3.7	1D and 2D NMR spectroscopic studies	. S34	
	3.8	[PPi] calibration in Krebs buffer and artificial urine	. S39	
	3.9	Composition of Krebs buffer and of artificial urine	. S40	
References				

1 NMR Spectra of compounds 1–5 and $1 \cdot Zn_2 - 5 \cdot Zn_2$

Compound 1, ¹H NMR (CD_3OD , 500 MHz)

Compound $1 \cdot Zn_2$, ¹H NMR (CD₃OD, 500 MHz)

Compound 2, ¹H NMR (CD₃OD, 500 MHz)

Compound $2 \cdot \mathbf{Zn}_2$, ¹H NMR (CD₃OD, 400 MHz)

Compound 3, ¹H NMR (CD₃OD, 500 MHz)

Compound $3 \cdot Zn_2$, ¹H NMR (CD₃OD, 400 MHz)

Compound $4 \cdot \mathbf{Zn}_2$, ¹H NMR (CD₃OD, 400 MHz)

Compound 5, ¹H NMR (CD₃OD, 400 MHz)

S16

2 Mass spectra of compounds 1–5 and $1 \cdot Zn_2 - 5 \cdot Zn_2$

Compound 1, High-resolution mass spectrum

Compound $1 \cdot Zn_2$, High-resolution mass spectrum

Generic Display Report

Compound 2, High-resolution mass spectrum

Compound 2.Zn₂, High-resolution mass spectrum

Generic Display Report

Analysis Info
Analysis Name

Method

Acquisition Date 22/01/2015 1:55:50 PM D:\Data\Nick-2015-files\ESI_Positive\01-January\2015-01-22\2015-01-22-posesi-service_000018.d 1MW Positive ESI Operator

EZ_2-2ida_compl Comment

Instrument

Sample Name

apex-Ultra

MeOH 1M TOF delay 0.0007s, Q1 200 m/z

Compound 3, High-resolution mass spectrum

Compound 3.Zn₂, High-resolution mass spectrum

Generic Display Report

Analysis Info

Acquisition Date 22/01/2015 1:00:55 PM

Analysis Name
Method
Sample Name
Comment

D:\Data\Nick-2015-files\ESI_Positive\01-January\2015-01-22\2015-01-22-posesi-service_000016.d 1MW Positive ESI Operator EZ_3-7ida_compl Instrument apex-Ultra MeOH 1M TOF delay 0.0007s, Q1 200 m/z

Compound 4, High-resolution mass spectrum

Compound 4.Zn₂, High-resolution mass spectrum

Generic Display Report

Analysis Info

Acquisition Date 22/01/2015 2:19:39 PM

D:\Data\Nick-2015-files\ESI_Positive\01-January\2015-01-22\2015-01-22-posesi-service_000020.d Operator

Instrument

EZ_2-1ida_compl MeOH 1M TOF delay 0.0007s, Q1 200 m/z

1MW Positive ESI

Compound 5, High-resolution mass spectrum

Compound 5.Zn₂, High-resolution mass spectrum

- 3 Anion binding studies conducted in Krebs buffer solution and artificial urine
- 3.1 Results of the titration of PV solutions with receptors $1-5 \cdot Zn_2$

Figure S1: Absorbance changes for **PV** solution (20 μ M) in Krebs buffer upon addition of $1 \cdot \mathbf{Zn}_2$ (0 - 10 equiv.). Right: 1 : 1 fitting curve at 646 nm.

Figure S2: Absorbance changes for **PV** solution (20 μ M) in Krebs buffer upon addition of $2 \cdot \mathbf{Zn}_2$ (0 - 10 equiv.). Right: 1 : 1 fitting curve at 646 nm.

Figure S3: Absorbance changes for **PV** solution (20 μ M) in Krebs buffer upon addition of $3 \cdot \mathbf{Zn}_2$ (0 - 10 equiv.). Right: 1 : 1 fitting curve at 646 nm.

Figure S4: Absorbance changes for **PV** solution (20 μ M) in Krebs buffer upon addition of $4 \cdot \mathbf{Zn}_2$ (0 - 10 equiv.). Right: 1 : 1 fitting curve at 646 nm.

Figure S5: Absorbance changes for **PV** solution (20 μ M) in Krebs buffer upon addition of $5 \cdot \mathbf{Zn}_2$ (0 - 10 equiv.). Right: 1 : 1 fitting curve at 646 nm.

Figure S6: Absorbance changes for **PV** solution (20 μ M) in artificial urine upon addition of $3 \cdot \mathbf{Zn}_2$ (0 - 10 equiv.). Right: 1 : 1 fitting curve at 646 nm.

3.2 Results of the titration of 1:1–receptor:PV mixtures with PPi, ATP, and ADP

Figure S7: Normalised absorbance changes at 646 nm for the 1 : 1 mixture of (left) $1 \cdot \mathbf{Zn}_2 : \mathbf{PV}$ (20 μ M) and (right) $2 \cdot \mathbf{Zn}_2 : \mathbf{PV}$ (20 μ M) upon the addition of anions (0 - 9 equiv.).

Figure S8: Normalised absorbance changes at 646 nm for the 1 : 1 mixture of (left) $3 \cdot \mathbf{Zn}_2$: **PV** (20 μ M) and (right) $4 \cdot \mathbf{Zn}_2$: **PV** (20 μ M) upon the addition of anions (0 - 9 equiv.).

Figure S9: Normalised absorbance changes at 646 nm for the 1 : 1 mixture of $5 \cdot \mathbf{Zn}_2$: **PV** (20 μ M) upon the addition of anions (0 - 9 equiv.).

3.3 Speciation plots for receptor-PPi titrations

Figure S10: Speciation plot for the titration of (left) $1 \cdot \mathbf{Zn}_2 : \mathbf{PV}$ (20 μ M) and (right) $2 \cdot \mathbf{Zn}_2 : \mathbf{PV}$ (20 μ M) during the titration with PPi.

Figure S11: Speciation plot for the titration of (left) $3 \cdot \mathbf{Zn}_2 : \mathbf{PV}$ (20 μ M) and (right) $4 \cdot \mathbf{Zn}_2 : \mathbf{PV}$ (20 μ M) during the titration with PPi.

Figure S12: Speciation plot for the titration of (left) $3 \cdot \mathbf{Zn}_2 : \mathbf{PV}$ (20 μ M) and (right) $4 \cdot \mathbf{Zn}_2 : \mathbf{PV}$ (20 μ M) during the titration with PPi.

3.4 General procedure for Job's plot analysis

The overall concentration of the respective receptor and **PV** was adjusted to 40 μ M and the absorbance spectra (250 - 750 nm) were recorded in Krebs buffer at 25 °C.

3.5 Job's plots for receptors $1-5 \cdot Zn_2$ with PV

Figure S14: Job's plot for (left) 3. Zn₂ with PV and (right) 4. Zn₂ with PV.

Figure S15: Job's plot for $5 \cdot \mathbf{Zn_2}$ with **PV**.

3.6 Molecular modelling

Figure S16: DFT-optimised molecular structure of the $\mathbf{3}{\cdot}\mathbf{Zn_2}{-}\mathrm{PPi}$ complex.

3.7 1D and 2D NMR spectroscopic studies

Figure S17: ¹H NMR spectrum (500 MHz) of Receptor $3 \cdot \mathbf{Zn_2}$ in DMSO- d_6 .

Figure S18: ¹H NMR spectrum (500 MHz) of Receptor $\mathbf{3} \cdot \mathbf{Zn_2}$ in DMSO- d_6 with 1.0 equiv. HPPi.

Figure S19: $^{13}\mathrm{C}$ NMR spectrum (125 MHz) of receptor $\mathbf{3}{\cdot}\mathbf{Zn_2}$ in DMSO- $d_6.$

Figure S20: COSY spectrum (DMSO- $d_6)$ of receptor $\mathbf{3}{\cdot}\mathbf{Zn_2}.$

Figure S21: ¹H – ¹³C HSQC spectrum (DMSO- d_6) of receptor **3**·**Zn**₂.

Figure S22: ¹H – ¹³C HMBC spectrum (DMSO- d_6) of receptor **3**·**Zn**₂.

Figure S23: Stack plot of ¹H spectra of $3 \cdot \mathbb{Z}n_2$ (20 mM) upon addition of HPPi as the TBA salt (0.0 - 2.0 equiv.) in DMSO at 300 K. The red rectangle highlights the emerging NH signal at 6.9 ppm.

Figure S24: Stack plot of ¹H spectra of $1 \cdot \mathbf{Zn}_2$ (20 mM) upon addition of HPPi as the TBA salt (0.0 - 2.2 equiv.) in DMSO at 300 K.

Figure S25: Stack plot of ¹H spectra of $3 \cdot \mathbb{Z}n_2$ (20 mM) containing 1.0 equiv. of HPPi as the TBA salt upon the addition of 0-5 vol% D₂O in DMSO at 300 K. The characteristic NH signal at 6.9 ppm decreases with an increasing amount of D₂O due to proton exchange.

Figure S26: Stack plot of ³¹P NMR spectra of PPi (20 mM) upon addition of $3 \cdot \mathbf{Zn}_2$ (0-2 equiv.) in D₂O at 300 K.

3.8 [PPi] calibration in Krebs buffer and artificial urine

All calibrations were repeated three times. Data analysis was performed according to a statistical treatment originally described by Hibbert and Gooding.¹

18

17

Figure S27: [PPi] calibration for $3 \cdot \mathbf{Zn}_2 : \mathbf{PV}$ (20 μM) in Krebs buffer.

Figure S28: [PPi] calibration for $3 \cdot \mathbf{Zn}_2 : \mathbf{PV}$ (20 μM) in Krebs buffer and in the presence of 10 equiv. ATP.

Figure S29: [PPi] calibration for $3 \cdot \mathbf{Zn}_2 : \mathbf{PV}$ (20 μM) in artificial urine.

3.9 Composition of Krebs buffer and of artificial urine

Component	M (g mol ^{-1})	$m (g L^{-1})$	c (mM)
NaCl	58.4	8.01	137
KCl	74.6	0.40	5.4
$CaCl_2$	111.0	0.31	2.8
$MgSO_4.7H_2O$	246.5	0.30	1.2
$\mathrm{KH}_{2}\mathrm{PO}_{4}$	136.1	0.054	0.4
NaH_2PO_4	138.0	0.041	0.3
Glucose	180.2	1.80	10
TRIS	121.1	1.21	10

Table 1: Composition of Krebs buffer^a

^a The pH was adjusted to 7.4 with conc. HCl.

Component	$M (g mol^{-1})$	m (g L^{-1})	c (mM)	
Peptone L37		1		
Yeast extract powder		0.01		
Lactic acid	90.1	0.10	1.1	
Citric acid. H_2O	210.1	0.44	2.1	
NaHCO ₃	84.0	2.1	25	
Urea	60.1	10	166	
Uric acid ^c	168.1	0.035	0.2	
Creatinine	113.1	0.80	7.1	
$CaCl_2$ (dried)	111.0	0.28	2.5	
NaCl	58.4	5.2	89	
$\rm FeSO_4.7H_2O$	278.0	0.0012	0.004	
$MgSO_4.7H_2O$	246.5	0.49	2.0	
Na_2SO_4 (anhydrous)	142.0	1.41	9.9	
$\mathrm{KH}_2\mathrm{PO}_4$	136.1	0.95	7.0	
K_2HPO_4	174.2	1.20	6.9	
NH ₄ Cl	53.5	1.3	24	

Table 2: Composition of artificial urine^{2,b}

^b The pH was adjusted to 7.4 with KOH. ^c The original recipe suggests the addition of 0.07 g L^{-1} of uric acid; due to solubility issues we reduced the amount of uric acid to 0.035 g L^{-1} .

References

- [1] Hibbert, D. B.; Gooding, J. J. Data analysis for chemistry; Oxford University Press, 2005.
- [2] Brooks, T.; Keevil, C. Lett. Appl. Microbiol. 1997, 24, 203–206.