Natural Nitric Oxide (NO) inhibitors from the rhizomes of Curcuma phaeocaulis

Supplementary Information

Jiang-Hao Ma,^{‡ab} Feng Zhao,^{‡c} Ying Wang,^b Yue Liu,^b Su-Yu Gao,^b Li-Qin Ding,^a Li-Xia Chen,^{*b} and Feng Qiu^{*a}

^aSchool of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, People's Republic of China.

^bDepartment of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China

°School of Pharmacy, Yantai University, Yantai 264005, People's Republic of China

*Corresponding author:

Feng Qiu, PHD

School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 312 Anshanxi Road, Nankai District, Tianjin 300193, People's Republic of China. Tel: +86-22-59596223. E-mail: fengqiu20070118@163.com

Lixia Chen, PHD

Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University. Tel: +86-24-23986515. E-mail: syzyclx@163.com

Contents of Supporting Information

No.	Contents:	Pages:
Figure S1-S8	¹³ C NMR, ¹ H NMR, ¹ H- ¹ H COSY, HSQC, HMBC, NOESY, Rh ₂ (OCOCF ₃) ₄ -induced CD spectra, HRESIMS spectra of phasalvione (1)	3-10
Figure S9-S16	¹³ C NMR, ¹ H NMR, ¹ H- ¹ H COSY, HSQC, HMBC, NOESY, Rh ₂ (OCOCF ₃) ₄ -induced CD spectra, HRESIMS spectra of phaeocaudione (2)	11-18
Figure S17-S22	¹³ C NMR, ¹ H NMR, HSQC, HMBC, NOESY, HRESIMS spectra of phaeocauone (3)	19-24
Figure S23-S27	¹³ C NMR, ¹ H NMR, HSQC, HMBC, HRESIMS spectra of 3- methyl-4-(3-oxobutyl)-benzoic acid (4)	25-29
Figure S28-S33	¹³ C NMR, ¹ H NMR, HSQC, HMBC, NOESY, HRESIMS spectra of 8β (H)-elema-1,3,7(11)-trien-8,12-lactam (5)	30-35
Figure S34-S39	¹³ C NMR, ¹ H NMR, HSQC, HMBC, NOESY, HRESIMS spectra of 8β -methoxy-isogerma furenolide (6)	36-41
Figure S40-S45	¹³ C NMR, ¹ H NMR, HSQC, HMBC, NOESY, CD, HRESIMS spectra of phaeusmane I (7)	42-47
Figure S46-S51	¹³ C NMR, ¹ H NMR, HSQC, HMBC, NOESY, HRESIMS spectra of phaeoheptanoxide (8)	48-53
Figure S52-S53	Chiral HPLC analytical chromatograms for compounds 5-7	54

Figure S2. ¹H NMR spectra of phasalvione (1)

Figure S3. ¹H-¹H COSY spectra of phasalvione (1)

Figure S5. HMBC spectra of phasalvione (1)

Figure S6. NOESY spectra of phasalvione (1)

Figure S7. Rh₂(OCOCF₃)₄-induced CD spectra of phasalvione (1)

Bio-Kine Software V4.62 Date : 2012-12-28 Time : 17:22:52

COMMENTS :

File name : d:US#Nje-16.bka_1 Savitzky-Golay Smooth of sav-golay Window Points=15 Polynomial Order=3 Derivative=0

Figure S8. HRESIMS spectra of phasalvione (1)

Figure S10. ¹H NMR spectra of phaeocaudione (2)

Figure S11. ¹H-¹H COSY spectra of phaeocaudione (2)

Figure S12. HSQC spectra of phaeocaudione (2)

Figure S13. HMBC spectra of phaeocaudione (2)

Figure S14. NOESY spectra of phaeocaudione (2)

0.00 Hz 0

Figure S15. Rh₂(OCOCF₃)₄-induced CD spectra of phaeocaudione (2)

Bio-Kine Software V4.71 Date : 2014-12-21 Time : 11:29:11

COMMENTS :

File name : sav-golay Savitzky-Golay Smooth of sav-golay Window Points=15 Polynomial Order=3 Derivative=0

		Mas	s Spe	ctrum M	Nole	cular	Formu	ula R	epo	rt		
Analysis Info							40	misition	Data	5/34/3/	043.4.69	-35 DM
Analysis Name Method Sample Name Comment	D:1Data MA250- JN-3	/201305 550PO:	i31iJN-3.d 5.m				Op	erator Arument	/ Serl	Bruker micrOT	Custom TOF-Q	er 125
Acquisition Pa	rameter											
Source Type Focus Scan Begin Scan End	ESI Not a 50 m 3000	idive Vz I m/z		ion Polarity Set Capillary Set End Plate (Set Collision C	Offset ell RF	Positive 4500 V -500 V 450.0 Vp	¢	Set N Set D Set D Set D	ebulizer ry Heate ry Gas wert Va	er Ive	0.3 Bar 180 °C 4.0 lim	n
Generate Mole	cular Form	nula Pa	rameter									
Formula, min. Formula, max. Measured miz Check Valance Niropes Bule	C14H20 C178 287.126 no	O3Na		Toleran Minimur	ce (n (i ppr		Chi Ma	arge simum	1		
Filter HIC Ratio Estimate Carbon	na yes			Minimul	n (araken bot	n	Ma	imum.	3		
Intens.											-645	. 0.3min #17
4000												
3000					259,130	8						
2000												
1000												
250	252	264	256	258	-d-	200	262	264	-	206	268	m/z
G 15 H 20	Formula Na 1 O 4	5igma -1.000	mia 267.1254	Err (ppm) -0.77	Mean I	irr (ppm) 0.00	Err (mDa) -0.22	rdb 5.50	N Rule	e'		

Figure S16. HRESIMS spectra of phaeocaudione (2)

printed: 7/10/2013 4:11:21 PM

Figure S17. ¹³C NMR spectra of phaeocauone (3)

Figure S18. ¹H NMR spectra of phaeocauone (3)

Figure S21. NOESY spectra of phaeocauone (3)

GB

0

Figure S22. HRESIMS spectra of phaeocauone (3)

Mass Spectrum Molecular Formula Report

Figure S24. ¹H NMR spectra of 3-methyl-4-(3-oxobutyl)-benzoic acid (4)

Figure S25. HSQC spectra of 3-methyl-4-(3-oxobutyl)-benzoic acid (4)

Figure S26. HMBC spectra of 3-methyl-4-(3-oxobutyl)-benzoic acid (4)

Figure S27. HRESIMS spectra of 3-methyl-4-(3-oxobutyl)-benzoic acid (4)

Analysis Info							
Analysis Imo Analysis Name Wethod Sample Name Somment	D1/Data/20121221UE LIU 250-550POS.m JE-100POS	100POS.d		Acquisition Date Operator Instrument / Sent	12/21 Bruke micrO	/2012 10:36:56 r Customer (TOF-Q 125	S AM
Acquisition Para	ameter						
Source Type Focus Scien Begin Scien End	ESI Not active 50 m/z 3000 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 150.0 Vpp	Set Nebulos Set Dry Hea Set Dry Gas Set Divert W	er Ker sive	0.3 Bar 180 °C 4.0 limin Source	
Senerate Molec	ular Formula Paramet	9 r					
formula, min.	C12H14O8H						
deasured m/z	207.102	Tolerance	5 ppm	Charge			
Sheck Valence	no	Minimum	0	Maximum	0		
Ther HVC Ratio	10	Minimum	D	Maximum	3		
istimate Carbon	yes				-		
x10 ⁴ 2.0	4			9		+MS, 2.7ml	n #158
1.5			229.08	44			
1.0							
0.5	207.1024						
1							
0.0	ale to all the second						
200	200 210	215 220	226 22	50 235	240	245	and a
Sum Form	rula Sigma m/z	Err (ppm) Mean Err (opm) Err (mDa	d rdb N Rule	e* .		
O LE H IOV	0.5 0.015 207.1016	-9-89	-3.34 -0.8	0 5.50 ok e	ven		
	1.						
achos Plattanian I	Data Analysis 3.4	evinted:	12/21/2012	2-16-36 DM		Base 1 of 1	_

Figure S28. ¹³C NMR spectra of 8β (H)-elema-1,3,7(11)-trien-8,12-lactam (5)

Figure S29. ¹H NMR spectra of 8β (H)-elema-1,3,7(11)-trien-8,12-lactam (5)

Figure S30. HSQC spectra of 8β (H)-elema-1,3,7(11)-trien-8,12-lactam (5)

Figure S31. HMBC spectra of 8β (H)-elema-1,3,7(11)-trien-8,12-lactam (5)

Figure S32. NOESY spectra of 8β (H)-elema-1,3,7(11)-trien-8,12-lactam (5)

Figure S33. HRESIMS spectra of 8β (H)-elema-1,3,7(11)-trien-8,12lactam (5) Qualitative Analysis

		Report		
Sample Type Instrument Name Acq Method IRM Calibration Status Comment	Semple Instrument 1 HR(+).m Success	Position User Name Acquired Time DA Method	19 P1-P1 S/17/2014 10:30:24 AM 1.m	
Sample Group Into. User Chromatograms User Spectra				
Fragmentor Voltage 175	Collision Energy 0	Ionization Mode ESI		
x10 4 +ESI Scan (0.164 5 2 4 3 2 1	min) Frag=175.0V 19 32.1704 233.1716	.d		

Formula Calculator Results										
Formula	Best	Hass	Tgt Mass	Diff (ppm)	Ion Species	Score				
C15 H21 N O	TRUE	231.1631	231,1623	-3.45	C15 H22 N O	91.63				

--- End Of Report ----

Figure S35. ¹H NMR spectra of 8β -methoxy-isogerma furenolide (6)

/// BRUK ÉR =0 Ē NAME EXTRO FRACIO DUTE_ Time Time Time TUSTRUM FROMED FULFROG TD SOLVENT NS DS SOLVENT NS DS SOLVENT NS SOLVENT SOLVENT NS SOLVENT S njh-32 1013 ppm 16.53 spect 5 mm PABBO BB-hagcetgps12 1024 145-14 MeCD 9 9 15-14 10.0539476 sec 174.552042 0.0539476 sec 124.80 usec 239.9 K 145.0000200 sec 0.00072414 sec 0.0002000 sec 0.0002000 sec 0.0002000 sec PIDRES AQ DE DE TE CNST2 D0 D1 D1 D13 D13 D14 D24 IN0 200PTNS -150.9141 MHz 97.652046 Hz 165.650 ppm Echo-Antiecho 600.1299948 MHz QGINE 0.00 Hz 1.40 1024 echo-antiecho 150.9025561 MHz QSINK азы. 0.00 на 0 -120 -140 ppm

Figure S36. HSQC spectra of 8β -methoxy-isogerma furenolide (6)

Figure S37. HMBC spectra of 8β -methoxy-isogerma furenolide (6)

ÉR В

	11 00	
NAME	mjn=32	
EXPNO	1049	
PROCNO	1	
Date	20140108	
Time	8,12	
INSTRUM	apect	
PROBID	5 mm 24880 88a	
DUIL DROC	S In Prano ha	
FOLFROM	noesydphuhh	
10	2040	
SOLVENT	NeOD	
2015	8	
DS	32	
SWH	6127.451	Hz
FIDRES	2,991920	Hz
AO	0.1671668	aec
RG	88.31	
-	81 600	
	61.000	usec
LOL	6.50	usec
10	299.8	ĸ
DO	0.00006571	sec
D1	2.00000000	aec
DB	1.00000000	aec
D11	0.03000000	aec
D12	0.00002000	aec
D16	0.00020000	
7300	0.00016320	
		960
	CHANNEL 61	
	CHANNEL f1	
NUCI	CHANNEL f1	
NUC1 P1	CHANNEL f1	usec
NUC1 P1 P2	CHANNEL £1	usec usec
NUC1 P1 P2 P17	CHANNEL f1	usec usec usec
NUC1 P1 P2 P17 ND0	CHANNEL £1	usec usec usec
NUC1 P1 P2 P17 ND0 TD	CHANNEL f1 1H 12.48 24.96 2500.00 1 128	usec usec usec
NUC1 P1 P2 P17 ND0 TD SF01	CHANNEL f1 IH 12.48 24.96 2500.00 1 128 600.1328	usec usec usec
NUC1 P1 P2 P17 ND0 TD SF01 F10PES	CHANNEL f1 1H 12.48 24.96 2500.00 1 128 600.1328 47.870712	usec usec usec Milz Hz
NUC1 P1 P2 P17 ND0 TD SF01 FIDRES SM	CHANNEL f1	usec usec usec Milz liz
NUC1 P1 P2 P17 ND0 TD SF01 F1DRES SM S-MCDF	CHANNEL f1 1H 12.48 24.96 2500.00 1 128 600.1328 47.870712 10.210 510000000000000000000000000000000000	usec usec usec MHz Hz ppm
NUC1 P1 P2 P17 ND0 TD SF01 F1DRES SM FnMQDE	CHANNEL f1	usec usec usec MMIz Hz ppm
NUC1 P1 P2 P17 ND0 TD SF01 FIDRES SM FnNODE SI	CHANNEL f1	usec usec usec Milz Ilz ppm
NUC1 P1 P2 P17 ND0 TD SF01 FIDRES SM FnMODE SI SF	CHANNEL f1 1H 12.48 24.96 2500.00 1 128 600.1328 47.870712 10.210 States-TPPI 1024 600.1300000	usec usec usec Miz Iiz ppn Miz
NUC1 P1 P2 P17 ND0 TD SF01 FIDRES SM F=NGDE SI SI MDW	CHANNEL f1	usec usec usec Miz Iz ppm Miz
NUC1 P1 P2 P17 ND0 TD SF01 F1DRES SW FnMODE SI SI SI SSB	CHANNEL f1 1H 12,48 24,96 2500.00 1 128 600.1328 47.870712 10.210 States-TPPT 1024 600.1300000 QSING	usec usec Milz Ilz ppn Milz
NUC1 P1 P2 P17 NDÖ TD SF01 FIDRES SM FnMODE SI SF MDW SSB LB	CHANNEL f1	usec usec NHz Hz ppm MHz Hz
NUC1 P1 P2 P17 ND0 TD SF01 F1DRES SM FANGUE SI SF MDW SSB LB GB	CHANNEL f1	usec usec Miz Hz ppm Miz Iiz
NUC1 P1 P2 P17 ND0 TD SF01 F1DRE5 SM FnMODE S1 S5F MDW SSB LB GB GB PC	CHANNEL f1 1H 12.48 24.96 2500.00 1 128 600.1328 47.870712 10.210 States-TPPI 1024 600.1300000 QSINE 2 0.00 0 1.00 0 1.00 0 0 0 0 0 0 0 0 0 0 0 0	usec usec Miz Iz ppm Miz Iz
NUC1 P1 P2 P17 ND0 TD SF01 FIDRES SM FNNODE SI SSB LB GB PC SI	CHANNEL f1 im 12.48 2500.00 1 128 600.1328 47.870712 1024 600.1300000 States-TPPI 1024 600.1300000 0,00 0,00 1,00	usec usec Milz Ilz ppn Milz Ilz
NUC1 P1 P2 P17 ND0 TD SF01 F1DRES SW FnNQDE SI SSB LB GB PC SI SSC SSB LB GB PC SI SSC SSC SSB LB SSC SSC SSC SSC SSC SSC SSC SS	CHANNEL f1	uzec uzec Milz Hz ppn Milz Hz
NUC1 P1 P2 P17 NDÖ SF01 FIDRES SW FnNODE SI SF MDW SSB LB GB PC SI SI SI SI SI SI SI SI SI SI SI SI SI	CHANNEL f1 im 12.48 24.96 2500.00 1 128 600.1328 47.870712 10.210 States-TPPI 1024 600.1300000 QSINE 2 0.00 0 1.00 1024 States-TPPI 600.1300000	usec usec usec Miz Iz ppm Miz Iz
NUC1 P1 P2 P17 ND0 TD SF01 FIDRES SM FANGUE SI SF MDW SSB LB GB PC SI SI NC2 SF MDW	CHANNEL f1	usec usec Miz Iz ppn Miz Iz Miz
NUC1 P1 P2 P17 NDÖ TD SFO1 FIDRES SW FnMODE SI SF MDW SSB LB GB PC SI MC2 SF WDW SF SF MDW	CHANNEL f1	usec usec lusec Miz Hz Miz Hz
NUC1 P1 P2 P17 ND0 TD SF01 FIDRES SM FNNODE SI SF MDW SSB LB GB PC SI MC2 SF MDW SSB SI MDW SSB	CHANNEL f1 iH 12.48 2500.00 1 128 600.1328 47.870712 1024 600.130000 QSINE 2 0.00 0 1.00 1024 States=TPPI 600.1300000 QSINE	usec usec NNIz Hz ppm NNIz Hz
NUC1 P1 P2 P17 ND0 TD SF01 F1DRES SM FnNQDE SI SF MDW SSB LB SF MDW SSB LB	CHANNEL f1	usec usec Miz Hz ppm Miz Iz Miz

Figure S38. NOESY spectra of 8β -methoxy-isogerma furenolide (6)

Figure S39. HRESIMS spectra of 8β -methoxy-isogerma furenolide (6)

Single M Tolerance = Element pr Number of Monoisotop 47 formulat Elements C	ass Analysi = 5.0 mDa / rediction: Off isotope peaks bic Mass, Even (e) evaluated w Jsed:	S DBE: n s used fo Electron ith 1 resu	nin = -1.5, m r i-FIT = 3 lons ults within lim	nax = 50 nits (up to).0 o 50 best isotopic i	matches for	each mass)										
Mass	Calc. Mass	mDa	PPM	DBE	Formula	i-FIT	i-FIT Norm	Fit Cont	:% C	н	0		 				
263. 1647 M6+ 31 (0.13	263. 1647	0.0	0.0	5.5	C16 H23 O3	40.5	n/a	n/a	16	23	3		 				
1: TOF MS E	8+							263.1	647								3.95e+003
100-									263.18	23							
0-4	262.9	50	263.00	0	263.050	263	.100	263.150		263.200)	263.250	 263.300	26	3.350	263.400	• • • • • • m/z

Figure S40. ¹³C NMR spectra of phaeusmane I (7)

Figure S43. HMBC spectra of phaeusmane I (7)

Figure S44. NOESY spectra of phaeusmane I (7)

Figure S45. HRESIMS spectra of phaeusmane I (7) Qualitative Analysis

Report Sample Type Sample Position P1-52 Instrument Name Instrument 1 User Name Acquired Time 5/17/2014 10:32:23 AM Acg Method HR(+).m **IRM Calibration Status** DA Hethod Lm Success Comment Sample Group Info. **User Chromatograms User Spectra** Fragmentor Voltage **Collision Energy Jonization Mode** 651 125 0 +ESI 8can (0.173 min) Frag=175.0V 20.d x10.8 266.]767 2.5 $\mathbf{2}$ 1.51 267.1789 0.50 205 206 207 Counts vs. Mass-to-Charge (m/z) 262 263 264269 270 268

Formula Calculator Results										
Formula	Best	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score				
C15 H23 N 03	TRUE	265.1684	265.1676	-2.45	C15 H24 N C5	95.22				

---- End Of Report ----

Figure S46. ¹³C NMR spectra of phaeoheptanoxide (8)

Figure S47. ¹H NMR spectra of phaeoheptanoxide (8)

Figure S51. HRESIMS spectra of phaeoheptanoxide (8)

Mass Spectrum Molecular Formula Report

Analysis Info Acquisition Date 12/31/2012 10:01:16 AM Analysis Name D3Data/20121231UE-61.d Method. LIU 250-550POS.m Bruker Customer Operator. Instrument / Ser# micrOTOF-Q 125 Sample Name JE-61 Comment. Acquisition Parameter 0.3 Bar 180 °C Source Type 051 Ion Polarity Positive Set Nebulkter 4500 V Set Dry Heater Fecus Not active. Set Capillary Set End Plate Offset Scan Begin 50 mitz -500 V Set Dry Gas 4.0 Umin Scan End 3000 m/z. Set Collsion Cell RF 500.0 Vpp Set Divert Valve Source Generate Molecular Formula Parameter Formula, min. C19H22O5Na Formula, max. Measured mit: 353,136 Tolerance 5 Charge ppm **Check Valence** Minimum. 0 Ö, no. Maximum Nirogen Rule Electron Configuration 56ft np. Filter H/C Ratio Minimum. Maximum 3 ne. 0 Estimate Carbon yes intens. +MS, 2.7min #198 x10⁴ 6 353,1360 4 2° 0+ 330 335 340 345 350 355 360 365 m/z Sum Formula Sigma Err [som] Mean Err [pprn] Err [mDa] rdb. N Rule mbr. 67 -0.07 C 19H 22 Na 1 O 5 0.123 353, 1359 8.50 -0.200.25 68 even

Bruker Daltonics DataAnalysis 3.4

printed: 12/31/2012 3:59:25 PM

Page 1 of 1

Figure S52. Chiral HPLC analytical chromatograms for compounds 5 and 6

(Daicel, Chiralpak AD-RH, 5 µm, 150 × 4.6 mm; MeCN/H2O 45:55; flow rate 1.0 ml/min; 220 nm)

Figure S53. Chiral HPLC analytical chromatogram for compound 7

