Supporting Information

Self-Immolative Base Mediated Conjugate Release from Triazolylmethylcarbamates

Christopher A. Blencowe,^a David W. Thornthwaite,^b Wayne Hayes*^a and Andrew T. Russell*^a

^a Department of Chemistry, University of Reading, Reading, Berkshire, RG6 6AD, UK

^b Unilever Research and Development, Quarry Road East, Bebington, Wirral, CH63 3JW, UK

E-mail: a.t.russell@rdg.ac.uk

Contents

Materials and Methods	S-3
Degradation experimental procedure	S-3
General method for the synthesis of propargyl N-methylbenzylcarbamates 5b , 5d – 5j and analytical data	S-4
Figure S1 ¹ H and ¹³ C NMR spectra for 5b	S-7
Figure S2 ¹ H and ¹³ C NMR spectra for 5d	S-8
Figure S3 ¹ H and ¹³ C NMR spectra for 5e	S-9
Figure S4 ¹ H and ¹³ C NMR spectra for 5f	S-10
Figure S5 ¹ H and ¹³ C NMR spectra for 5g	S-11
Figure S6 ¹ H and ¹³ C NMR spectra for 5h	S-12
Figure S7 ¹ H and ¹³ C NMR spectra for 5i	S-13
Figure S8 ¹ H and ¹³ C NMR spectra for 5j	S-14
General method for the synthesis of pivaloyloxymethyl protected triazoles $6a - j$ and analytical data	S-15
Figure S9 ¹ H and ¹³ C NMR spectra for 6a	S-18
Figure S10 ¹ H and ¹³ C NMR spectra for 6b	S-19
Figure S11 ¹ H and ¹³ C NMR spectra for 6c	S-20
Figure S12 ¹ H and ¹³ C NMR spectra for 6d	S-21
Figure S13 ¹ H and ¹³ C NMR spectra for 6e	S-22
Figure S14 ¹ H and ¹³ C NMR spectra for 6f	S-23
Figure S15 ¹ H and ¹³ C NMR spectra for 6g	S-24
Figure S16 ¹ H and ¹³ C NMR spectra for 6h	S-25
Figure S17 ¹ H and ¹³ C NMR spectra for 6i	S-26
Figure S18 ¹ H and ¹³ C NMR spectra for 6j	S-27
$Method \ for \ the \ synthesis \ of \ ((1-(Pivaloyloxymethyl)-1H-1,2,3-triazol-4-yl)-1-phenyl) methyl \ ether \ and \ analytical \ data$	S-28
Figure S19 ¹ H and ¹³ C NMR spectra for ((1-(Pivaloyloxymethyl)-1 <i>H</i> -1,2,3-triazol-4-yl)-1-phenyl)methyl	S-29

methyl ether

Method for the synthesis of $((1-(Pivaloyloxymethyl)-1H-1,2,3-triazol-4-yl)-1-phenyl)$ methyl alcohol and analytical data	S-30
Figure S20 ¹ H and ¹³ C NMR spectra for ((1-(Pivaloyloxymethyl)-1 <i>H</i> -1,2,3-triazol-4-yl)-1-phenyl)methyl alcohol	S-31
General method for the synthesis of benzyl protected triazoles $7a - d$ and analytical data	S-32
Figure S21 ¹ H and ¹³ C NMR spectra for 7a	S-34
Figure S22 ¹ H and ¹³ C NMR spectra for 7b	S-35
Figure S23 ¹ H and ¹³ C NMR spectra for 7c	S-36
Figure S24 ¹ H and ¹³ C NMR spectra for 7d	S-37
Method for the synthesis, and characterisation data of methyl N-methylbenzylcarbamate	S-38
Figure S25 ¹ H and ¹³ C NMR spectra for methyl <i>N</i> -methylbenzylcarbamate	S-39
Figure S26 Comparative ¹ H NMR spectra of the pivaloyloxymethyl deprotection of triazole 6d to give triazole anion 9 <i>in situ</i> .	S-40
Figure S27 Comparative ¹ H NMR spectra of the base mediated degradation of triazole 6d via triazole anion 9	S-41
Figure S28 Comparative ¹ H NMR spectra of the base mediated degradation of a mixture of triazole 6d and (1 (pivaloyloxymethyl)-1H-1,2,3-triazol-4-yl)-1-phenylmethyl methyl ether	S-42
Figure 29 Comparative ¹ H NMR spectra of the base mediated degradation of a mixture of triazole 6d and (1-(pivaloyloxymethyl)-1H-1,2,3-triazol-4-yl)-1-phenylmethyl alcohol	S-43
Figure 30 Comparative ¹ H NMR spectra of the base mediated deuteration of triazole 7d	S-44
Figure S31 HMBC spectrum of partially degraded triazole 6h highlighting the formation of <i>N</i> -methylbenzylcarbamate anion	S-45
Figure S32 Proposed reaction mechanism for the based mediated degradation of triazoles $6a - j$	S-46
References	S-47

Materials and Methods

Chemicals were purchased from the Sigma-Aldrich Corporation or Acros Organics and were used without any further purification. Dichloromethane was stored over and distilled from CaH₂ and used immediately. THF was distilled from sodium and benzophenone and used immediately.

Melting points were recorded using a Stuart MP10 melting point apparatus and are uncorrected. Thin layer chromatography was carried out on aluminium-backed plates coated with Merck silica gel 60 F_{254} . Column chromatography was performed using Merck silica gel 60 (40 – 63 µm particle size) and a mobile phase as specified. IR spectra were recorded using a Perkin Elmer IRX FT-IR spectrometer as thin films between NaCl plates, or featuring an attenuated total reflectance (ATR) attachment and germanium crystal. NMR spectra were recorded on a Bruker DPX 250 spectrometer at 250 MHz (¹H) or 62.5 MHz (¹³C) or on a Bruker AMX 400 spectrometer at 400 MHz (¹H) or 100 MHz (¹³C). ¹H/¹³C resonances corresponding to the triazole moiety have been distinguished (Ar', *c.f.* Ar) from other aromatic systems for clarity. Rotameric signals have been assigned as r_a (most abundant) and r_b . Mass spectrometric (MS) analysis was conducted on a Finnigan MAT95 instrument operating in chemical ionisation mode or on a ThermoFisher Scientific Orbitrap XL mass spectrometer operating in electrospray ionisation mode (ESI).

Degradation experimental procedure

An aliquot of triazole stock solution (0.5 mL, 0.0097 mmol) containing TMS (0.25 %) was transferred to an NMR tube and an ¹H NMR spectrum obtained for t = 0. An aliquot of NaOMe- d_3 solution (0.125 mL, 0.0427 mmol) was added using an auto-pipette, the NMR tube subjected to turbulent mixing for 5 seconds and analysed using ¹H NMR spectroscopy at regular time intervals. The reaction was continued until high conversion (typically > 90 %) had been reached. Stability experiments were conducted over a period of typically 8 – 12 weeks. Each NMR degradation experiment was conducted in triplicate. ¹H NMR spectra were processed with Mestrelabs Mnova suite 5.0 (or later versions) software. ¹H NMR spectra were calibrated to the TMS signal, which was set to $\delta_{\rm H}$ 0.00 ppm. Reaction conversion and component concentrations were calculated by integration of sample resonances against TMS or a component resonance that was unchanged throughout the reaction. Standard deviation errors were calculated. The integral method of analysis was used to evaluate the kinetics of self-immolative elimination.

General method for the synthesis of propargyl *N*-methylbenzylcarbamates **5b**, **5d** – **j**, and characterisation data/spectra of propargyl *N*-methylbenzylcarbamates **5b**, **5d** – **j**.¹

The corresponding propargyl alcohol (1 equiv.) and pyridine (2 equiv.) were sequentially added to *p*-nitrophenyl chloroformate (1 – 1.25 equiv.) dissolved in dichloromethane (10 – 50 mL) under argon. After stirring at room temperature for 12 – 20 hours *N*-methylbenzylamine (1 – 2 equiv.) was added. After stirring for a further 16 – 24 hours the reaction mixture was washed with water (200 mL) and saturated aqueous ammonium chloride (200 mL) or aqueous sodium carbonate (10 % w/v, 200 mL), dried (MgSO₄), filtered and concentrated *in vacuo*. Purification by column chromatography (EtOAc:hexane) afforded the desired propargyl benzylcarbamate.

1-Methylpropargyl N-methylbenzylcarbamate 5b

Pale yellow oil (2.10 g, 62 %, $R_f = 0.38$ (1:6)). ¹H NMR (400 MHz, CDCl₃) $\delta_H 1.53$ (3H, t, J = 7.6 Hz, CCH₃), 2.46 (1H, s, C=CH), 2.84 (3H, s, r_a , NCH₃) + 2.88 (3H, s, r_b , NCH₃), 4.42 – 4.54 (2H, m, NCH₂), 5.46 (1H, q, J = 6.2 Hz, CHCH₃), 7.24 – 7.28 (3H, m, ArH), 7.31 – 7.35 (2H, m, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_C 21.63$ (CCH₃), 33.53 (r_a , NCH₃) + 34.25 (r_b , NCH₃), 52.29 (r_b , NCH₂) + 52.60 (r_a , NCH₂), 61.25 (CHO), 72.62 (C=CH), 82.97 (C=CH), 127.45 (2 × ArCH), 127.88 (ArCH), 128.59 (2 × ArCH), 137.25 (ArCC), 155.24 (r_b , C=O) + 155.71 (r_a , C=O) ppm; FTIR (thin film) v 3287, 3249, 3070, 3030, 2985, 2935, 2118, 1700, 1449, 1404, 1234, 1118, 1094, 1024 cm⁻¹; CIMS calculated for (C₁₃H₁₆NO₂)⁺ 218.1176, found 218.1177 m/z.

1-Phenylpropargyl N-methylbenzylcarbamate 5d

Pale yellow viscous oil (1.13 g, 69 %, $R_f = 0.22$ (1:9)). ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) $\delta_H 2.66$ (1H, s, C=CH), 2.85 (3H, s, r_b , NCH₃) + 2.89 (3H, s, r_a , NCH₃), 4.46 (2H, s, r_a , NCH₂) + 4.50 (2H, s, r_b , NCH₂), 6.48 (1H, s, r_a , CHO) + 6.49 (1H, s, r_b , CHO), 7.17 – 7.41 (8H, m, ArH), 7.50 – 7.57 (2H, m, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_C 33.64$ (r_b , NCH₃) + 34.47 (r_a , NCH₃), 52.40 (r_a , NCH₂) + 52.79 (r_b , NCH₂), 66.57 (r_b , CHO) + 66.63 (r_a , CHO), 75.26 (r_b , C=CH) + 75.34 (r_a , C=CH), 80.90 (r_a , C=CH) + 81.08 (r_b , C=CH), 127.49 (2 × ArCH), 127.55 (ArCH), 127.91 (ArCH), 128.62 (4 × ArCH), 128.85 (2 × ArCH), 137.05 (r_a , ArC) + 137.26 (r_b , ArC), 137.11 (ArC), 155.12 (r_b , C=O) + 155.64 (r_a , C=O) ppm; FTIR (ATR, Ge) v 3279, 3059, 3026, 2922, 2119, 1696, 1396, 1131, 696 cm⁻¹; ESIMS calculated for (C₁₈H₁₈NO₂)⁺ 280.1332, found 280.1333 m/z.

1-(p-Bromophenyl)propargyl N-methylbenzylcarbamate 5e

Yellow viscous oil (1.470 g, 50 %, $R_f = 0.22$ (1:6)). ¹H NMR (400 MHz, CDCl₃) $\delta_H 2.67$ (1H, s, C=CH), 2.85 (3H, s, r_a, NCH₃) + 2.91 (3H, s, r_b, NCH₃), 4.46 (2H, AB system, r_b, NCH₂) + 4.49 (2H, AB system, r_a, NCH₂), 6.43 (1H, s, r_b, CHO) + 6.43 (1H, s, r_a, CHO), 7.15 – 7.53 (9H, m, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ_C 33.61 (r_a, NCH₃) + 34.61 (r_b, NCH₃), 52.39 (r_b, NCH₂) + 52.80 (r_a, NCH₂), 65.90 (CHO), 75.59 (r_a, C=CH) + 75.65 (r_b, C=CH), 80.31 (r_b, C=CH) + 80.48 (r_a, C=CH), 122.98 (ArCBr), 127.37 (ArCH), 127.52 (ArCH), 127.86 (ArCH), 128.62 (2 × ArCH), 129.19 (2 × ArCH), 131.75 (r_b, 2 × ArCH) + 131.79 (r_a, 2 × ArCH), 136.11 (r_b, ArCCH) + 136.30 (r_a, ArCCH), 136.95 (ArCCH₂), 154.90 (r_b, C=O) + 155.40 (r_a, C=O) ppm; FT-IR (thin film, KBr) v 3291, 3063, 3029, 2927, 2123, 1705, 1487, 1454, 1402, 1231, 1136, 1012, 700 cm⁻¹; CIMS calculated for (C₁₈H₁₆BrNO₂Na)⁺ 380.0257, found 380.0249 m/z.

1-(p-Fluorophenyl)propargyl N-methylbenzylcarbamate 5f

Pale yellow viscous oil (2.030 g, 67 %, $R_f = 0.20$ (1:6)). ¹H NMR (400 MHz, CDCl₃) $\delta_H 2.67$ (1H, s, C=CH), 2.85 (3H, s, r_a , NCH₃) + 2.90 (3H, s, r_b , NCH₃), 4.46 (2H, s, r_a , NCH₂) + 4.49 (2H, AB system, r_b , CNH₂), 6.45 (1H, s, r_b , CHO) + 6.46 (1H, s, r_a , CHO), 7.00 – 7.10 (2H, AA'XX' system, ArH), 7.15 – 7.16 (1H, m, ArH),

7.23 – 7.33 (4H, m, Ar**H**), 7.46 – 7.57 (2H, AA'XX' system, Ar**H**) ppm; ¹³C NMR (100 MHz, CDCl₃) δ_{C} 33.61 (r_{a} , NCH₃) + 34.54 (r_{b} , NCH₃), 52.38 (r_{b} , NCH₂) + 52.78 (r_{a} , NCH₂), 65.90 (C≡CH), 75.44 (r_{a} , CHO) + 75.51 (r_{b} , CHO), 80.62 (r_{b} , C≡CH) + 80.80 (r_{a} , C≡CH), 115.52 (d, *J* = 21.5 Hz, 2 × ArCH), 127.42 (r_{a} , 2 × ArCH) + 127.50 (r_{b} , 2 × ArCH), 127.87 (ArCH), 128.61 (2 × ArCH), 129.48 (d, *J* = 8.4 Hz, 2 × ArCH), 133.01 (r_{b} , ArCCHO) + 133.18 (r_{a} , ArCCHO), 137.01 (ArCCH₂), 154.99 (r_{b} , C=O) + 155.49 (r_{a} , C=O), 162.93 (d, *J* = 246.4 Hz, ArCF) ppm; FTIR (ATR, Ge) v 3285, 3240, 3028, 2921, 2118, 1696, 1604, 1507, 1397, 1221, 1130, 1039, 833, 700 cm⁻¹; ESIMS calculated for ($C_{18}H_{16}FNO_{2}Na$)⁺ 320.1057, found 320.1053 m/z.

1-(m-Fluorophenyl)propargyl N-methylbenzylcarbamate 5g

Pale yellow viscous oil (1.820 g, 66 %, $R_f = 0.20$ (1:10)). ¹H NMR (400 MHz, CDCl₃) $\delta_H 2.68$ (1H, s, $C \equiv CH$), 2.87 (3H, s, r_a , NCH₃) + 2.92 (3H, s, r_b , NCH₃), 4.48 (2H, s, r_a , NCH₂) + 4.51 (2H, AB system, r_b , NCH₂), 6.46 (1H, s, r_b , CHO) + 6.47 (1H, s, r_a , CHO), 7.02 – 7.07 (1H, m, ArH), 7.17 – 7.19 (1H, m, ArH), 7.22 – 7.39 (7H, m, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ_C 33.63 (r_a , NCH₃) + 34.62 (r_b , NCH₃), 52.42 (r_b , NCH₂) + 52.83 (r_a , NCH₂), 65.81 (C=CH), 75.57 (r_a , CHO) + 75.65 (r_b , CHO), 80.27 (r_b , C=CH) + 80.46 (r_a , C=CH), 114.33 (d, *J* = 22.0 Hz, r_b , ArCH) + 114.55 (d, *J* = 22.0 Hz, r_a , ArCH), 115.78 (d, *J* = 21.0 Hz, ArCH), 123.04 (ArCH), 127.42 (r_b , ArCH) + 127.88 (r_a , ArCH), 127.54 (2 × ArCH), 128.64 (2 × ArCH), 130.14 (d, *J* = 8.5 Hz, r_a , ArCH) + 130.22 (d, *J* = 8.5 Hz, r_b , ArCH), 136.96 (ArCCH₂), 139.41 (d, *J* = 21.0 Hz, r_a , ArCCH) + 139.62 (d, *J* = 21.0 Hz, r_b , ArCCH) 154.90 (r_b , C=O) + 155.40 (r_a , C=O), 162.77 (d, *J* = 242.4 Hz, ArCF) ppm; FTIR (ATR, Ge) v 3299, 3059, 3028, 2930, 2118, 1696, 1398, 1224, 1135, 907, 730 cm⁻¹; ESIMS calculated for ($C_{18}H_{16}FNO_2Na$)⁺ 320.1057, found 320.1058 m/z.

1-(p-Methylphenyl)propargyl N-methylbenzylcarbamate 5h

Pale yellow oil (1.63 g, 58 %, $R_f = 0.50$ (1:8)). ¹H NMR (400 MHz, CDCl₃) $\delta_H 2.35$ (3H, s, ArCH₃), 2.64 (1H, s, C=CH), 2.84 (3H, s, r_a, NCH₃) + 2.88 (3H, s, r_b, NCH₃), 4.45 (2H, AB system, r_b, NCH₂) + 4.49 (2H, AB system, r_a, NCH₂), 6.44 (1H, s, r_b, OCH) + 6.46 (1H, s, r_a, OCH), 7.16 – 7.34 (7H, m, ArH), 7.43 (2H, AA'XX' system, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_C 21.21$ (ArCH₃), 33.59 (r_a, NCH₃) + 34.36 (r_b, NCH₃), 52.34 (r_b, NCH₂) + 52.73 (r_a, NCH₂), 66.44 (r_a, CHO) + 66.52 (r_b, CHO), 75.03 (r_a, C=CH) + 75.09 (r_b, C=CH), 81.05 (r_b, C=CH) + 81.22 (r_a, C=CH), 127.46 (3 × ArCH), 127.55 (ArCH), 127.88 (ArCH), 128.57 (2 × ArCH), 129.21 (2 × ArCH), 134.16 (r_b, ArCCH) + 134.35 (r_a, ArCCH), 137.11 (ArCCH₂), 138.75 (ArCCH₃), 155.15 (r_b, C=O) + 155.66 (r_a, C=O) ppm; FT-IR (thin film, KBr) v 3286, 3058, 3028, 2923, 2117, 1699, 1451, 1398, 1231, 1137, 1043 cm⁻¹; CIMS calculated for (C₁₉H₁₉NO₂Na)⁺ 316.1308, found 316.1309 m/z.

1-(2-Naphthyl)propargyl N-methylbenzylcarbamate 5i

Pale brown amorphous solid (1.49 g, 55 %, $R_f = 0.49$ (1:2)). m.p. 63 – 66 °C (EtOAc); ¹H NMR (400 MHz, CDCl₃) $\delta_H 2.72$ (1H, s, C=CH), 2.86 (3H, s, r_a , NCH₃) + 2.91 (3H, s, r_b , NCH₃), 4.44 – 4.55 (2H, m, NCH₂), 6.65 (1H, d, J = 2.2 Hz, CHO), 7.13 – 7.33 (5H, m, ArH), 7.48 – 7.51 (2H, m, ArH), 7.65 – 7.67 (1H, m, ArH), 7.82 – 7.88 (3H, m, ArH), 7.97 – 8.03 (1H, m, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) δ_C 33.64 (r_a , NCH₃) + 34.52 (r_b , NCH₃), 52.40 (r_b , NCH₂) + 52.72 (r_a , NCH₂), 66.75 (CHO), 75.59 (C=CH), 80.84 (r_b , C=CH) + 81.00 (r_a , C=CH), 124.93 (ArCH), 126.37 (2 × ArCH), 126.59 (ArCH), 126.84 (ArCH), 127.47 (2 × ArCH), 127.67 (ArCH), 127.87 (ArCH), 128.30 (2 × ArCH), 128.58 (2 × ArCH), 133.07 (ArCCAr), 133.40 (ArCCAr), 134.34 (r_b , ArCCH) + 134.50 (r_a , ArCCH), 137.07 (ArCCH₂), 155.11 (r_b , C=O) + 155.62 (r_a , C=O) ppm; FT-IR (thin film, KBr) v 3286, 3238, 3058, 3028, 2926, 2121, 1703, 1453, 1402, 1229, 1134, 1044 cm⁻¹; ESIMS calculated for ($C_{22}H_{19}NO_2Na$)⁺ 352.1308, found 352.1304 m/z.

1-(Biphenyl-p-yl)propargyl N-methylbenzylcarbamate 5j

Pale yellow viscous oil (1.55 g, 53 %, $R_f = 0.14$ (1:10)). ¹H NMR (400 MHz, Acetone- d_6) $\delta_H 2.90$ (3H, s, NCH₃), 3.34 (1H, d, J = 2.3 Hz, C=CH), 4.54 (2H, s, r_a , NCH₂) + 4.54 (2H, s, r_b , NCH₂), 6.58 (1H, d, J = 2.3 Hz, CHO),

7.27 – 7.36 (5H, m, ArH), 7.40 (1H, tt, J = 7.4 Hz, J' = 1.2 Hz, ArH), 7.47 – 7.51 (2H, m, ArH), 7.64 – 7.75 (6H, m, ArH) ppm; ¹³C NMR (100 MHz, Acetone- d_6) δ_C 33.97 (r_b , NCH₃) + 34.65 (r_a , NCH₃), 52.70 (r_b , NCH₂) + 53.10 (r_a , NCH₂), 66.77 (r_a , CHO) + 66.81 (r_b , CHO), 77.23 (C=CH), 81.84 (r_b , C=CH) + 81.95 (r_a , C=CH), 127.84 (2 × ArCH), 128.02 (2 × ArCH), 128.23 (ArCH), 128.52 (3 × ArCH), 128.82 (2 × ArCH), 129.41 (2 × ArCH), 129.82 (2 × ArCH), 137.67 (r_a , ArCCH) + 137.81 (r_b , ArCCH), 138.57 (ArCCH₂), 141.20 (ArCCAr), 142.38 (ArCCAr), 155.41 (r_a , C=O) + 156.06 (r_b , C=O) ppm; FT-IR (thin film, KBr) v 3286, 3058, 3030, 2925, 2122, 1698, 1485, 1400, 1136, 1008 cm⁻¹; ESIMS calculated for (C₂₄H₂₁NO₂Na)⁺ 378.1465, found 378.1464 m/z.

Figure S1 ¹H and ¹³C NMR spectra for 5b

Figure S2 ¹H and ¹³C NMR spectra for 5d

Figure S4 ¹H and ¹³C NMR spectra for 5f

Figure S5 ¹H and ¹³C NMR spectra for 5g

General method for the synthesis of pivaloyloxymethyl protected triazoles 6a - j, and characterisation data/spectra of pivaloyloxymethyl protected triazoles 6a - j, ((1-pivaloyloxymethyl)-1*H*-1,2,3-triazol-4-yl)-1-phenyl)methyl ether and ((1-(pivaloyloxymethyl)-1*H*-1,2,3-triazol-4-yl)-1-phenyl)methyl alcohol.^{1,2}

Pivaloyloxymethyl azide (1 equiv.) dissolved in pyridine (1 - 2 mL) was added to a mixture of the corresponding alkyne (1 equiv.) and copper (I) iodide (0.05 - 0.1 equiv.) and the resulting mixture stirred under argon at room temperature. After 2 – 24 hours the reaction mixture was diluted with toluene (*ca* 10 mL) and concentrated *in vacuo*. Purification by column chromatography (EtOAc:hexane) afforded the desired 1,4-disubstituted-1*H*-1,2,3-triazole.

(1-(Pivaloyloxymethyl)-1H-1,2,3-triazol-4-yl)methyl N-methylbenzylcarbamate 6a

Colourless oil (0.220 g, 67 %, $R_f = 0.15$ (1:2)). ¹H NMR (400 MHz, CDCl₃) $\delta_H 1.19$ (9H, s, C(CH₃)₃), 2.82 (3H, s, r_a, NCH₃) + 2.89 (3H, s, r_b, NCH₃), 4.44 (2H, s, r_b, NCH₂) + 4.48 (2H, s, r_a, NCH₂), 5.29 (2H, s, CH₂O), 6.23 (2H, s, OCH₂N), 7.15 – 7.32 (5H, m, ArH), 7.81 (1H, s, r_b, Ar'H) + 7.90 (1H, s, r_a, Ar'H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ_C 26.81 (C(CH₃)₃), 33.65 (r_a, NCH₃) + 34.43 (r_b, NCH₃), 38.80 (C(CH₃)₃), 52.37 (r_b, NCH₂) + 52.62 (r_a, NCH₂), 58.45 (CH₂O), 69.70 (OCH₂N), 125.09 (Ar'CH), 127.42 (2 × ArCH), 127.80 (ArCH), 128.62 (2 × ArCH), 137.19 (ArC), 144.30 (Ar'C), 156.00 (r_b, C=O) + 156.47 (r_a, C=O), 177.62 (C=O) ppm; FT-IR (ATR, Ge) v 3158, 3097, 3068, 3035, 2980, 2953, 2878, 1747, 1705, 1455, 1407, 1130, 1036, 994 cm⁻¹; CIMS calculated for (C₁₈H₂₅N₄O₄)⁺ 361.1870, found 361.1872 m/z.

((1-(Pivaloyloxymethyl)-1H-1,2,3-triazol-4-yl)-1-methyl)methyl N-methylbenzylcarbamate 6b

Pale brown viscous oil (0.780 g, 79 %, $R_f = 0.15$ (1:3)). ¹H NMR (400 MHz, CDCl₃) δ_H 1.18 (9H, s, C(CH₃)₃), 1.70 (3H, d, J = 6.9 Hz, CHCH₃), 2.83 (3H, s, r_a , NCH₃) + 2.90 (3H, s, r_b , NCH₃), 4.40 – 4.53 (2H, m, NCH₂), 6.03 (1H, q, J = 6.3 Hz, CHCH₃), 6.21 (2H, AB system, OCH₂N), 7.19 – 7.34 (5H, m, ArH), 7.61 (1H, s, r_b , Ar'H) + 7.78 (1H, s, r_a , Ar'H) pm; ¹³C NMR (100 MHz, CDCl₃) δ_C 19.89 (CHCH₃), 26.81 (C(CH₃)₃), 33.59 (r_a , NCH₃) + 34.50 (r_b , NCH₃), 38.79 (C(CH₃)₃), 52.38 (r_b , NCH₂) + 52.53 (r_a , NCH₂), 65.94 (r_a , CHCH₃) + 66.00 (r_b , CHCH₃), 69.71 (OCH₂N), 123.07 (r_b , Ar'CH) + 123.22 (r_a , Ar'CH), 127.40 (2 × ArCH), 127.81 (ArCH), 128.61 (2 × ArCH), 137.34 (r_a , ArC) + 137.46 (r_b , ArC), 148.99 (Ar'C), 155.61 (r_b , C=O) + 156.09 (r_a , C=O), 177.72 (C=O) ppm; FTIR (ATR, Ge) v 3147, 2976, 2930, 2868, 1740, 1690, 1398, 1217, 1119, 1031 cm⁻¹; ESIMS calculated for ($C_{19}H_{27}N_4O_4$)⁺ 375.2027, found 375.2025 m/z.

 $((1-(Pivaloyloxymethyl)-1H-1,2,3-triazol-4-yl)-1,1-dimethyl) methyl N-methylbenzylcarbamate \ \mathbf{6c}$

Pale yellow viscous oil (0.840 g, 54 %, $R_f = 0.03$ (1:6)). ¹H NMR (400 MHz, CDCl₃) $\delta_H 1.18$ (9H, s, C(CH₃)₃), 1.86 (6H, s, r_a , C(CH₃)₂) + 1.90 (6H, s, r_b , C(CH₃)₂), 2.79 (3H, s, r_a , NCH₃) + 2.84 (3H, s, r_b , NCH₃), 4.38 (2H, s, r_b , NCH₂) + 4.46 (2H, s, r_a , NCH₂), 6.21 (2H, AB system, OCH₂N), 7.16 – 7.18 (1H, m, ArH), 7.23 – 7.33 (4H, m, ArH), 7.66 (1H, s, r_a , Ar'H) + 7.77 (1H, s, r_b , Ar'H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ_C 26.79 (C(CH₃)₃), 27.76 (C(CH₃)₂), 33.92 (r_b , NCH₃) + 34.04 (r_a , NCH₃), 38.78 (C(CH₃)₃), 51.95 (r_b , NCH₂) + 52.71 (r_a , NCH₂), 69.74 (OCH₂N), 76.15 (r_b , C(CH₃)₂) + 76.35 (r_a , C(CH₃)₂), 122.37 (r_a , Ar'CH) + 122.45 (r_b , Ar'CH), 127.27 (2 × ArCH), 127.58 (ArCH), 128.59 (2 × ArCH), 137.53 (r_b , ArC) + 137.76 (r_a , ArC), 152.64 (Ar'C), 154.92 (r_a , C=O) + 155.40 (r_b , C=O), 177.74 (C=O) ppm; FTIR (ATR, Ge) v 3147, 2978, 2930, 2873, 1741, 1691, 1390, 1227, 1118, 1024, 983 cm⁻¹; ESIMS calculated for ($C_{20}H_{28}N_4O_4Na$)⁺ 411.2003, found 411.2001 m/z.

((1-(Pivaloyloxymethyl)-1H-1,2,3-triazol-4-yl)-1-phenyl)methyl N-methylbenzylcarbamate 6d

Colourless viscous oil (0.810 g, 85 %, $R_f = 0.23$ (1:4)). ¹H NMR (400 MHz, CDCl₃) δ_H 1.17 (9H, s, C(CH₃)₃), 2.91 (3H, s, NCH₃), 4.45 – 4.58 (2H, m, NCH₂), 6.18 (2H, AB system, OCH₂N), 7.01 (1H, s, CHO), 7.18 – 7.37 + 7.50 (10H, m, ArH), 7.47 (1H, s, r_a , Ar'H) + 7.68 (1H, s, r_b , Ar'H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ_C 26.79 (C(CH₃)₃), 33.67 (r_b , NCH₃) + 34.79 (r_a , NCH₃), 38.78 (C(CH₃)₃), 52.55 (r_a , NCH₂) + 52.70 (r_b , NCH₂), 69.67 (OCH₂N), 71.12 (r_b , CHO) + 71.25 (r_a , CHO), 123.45 (r_a , Ar'CH) + 123.60 (r_b , Ar'CH), 127.05 (r_b , 2 × ArCH) + 127.15 (r_a , 2 × ArCH), 127.30 (ArCH), 127.43 (2 × ArCH), 127.84 (ArCH), 128.35 (2 × ArCH), 128.61 (2 × ArCH), 137.15 (r_a , ArC) + 137.38 (r_b , ArC), 138.63 (r_a , ArC) + 138.76 (r_b , ArC), 148.48 (Ar'C), 155.19 (r_a , C=O) + 155.72 (r_b , C=O), 177.77 (C=O) ppm; FTIR (ATR, Ge) v 3142, 3028, 2972, 2930, 2868, 1741, 1695, 1398, 1115, 1031, 983, 694 cm⁻¹; ESIMS calculated for (C₂₄H₂₉N₄O₄)⁺ 437.2183, found 437.2183 m/z.

((1-(Pivaloyloxymethyl)-1H-1,2,3-triazol-4-yl)-1-(p-bromophenyl))methyl N-methylbenzylcarbamate 6e

Colourless viscous oil (0.500 g, 78 %, $R_f = 0.21$ (1:2)). ¹H NMR (400 MHz, CDCl₃) $\delta_H 1.17$ (9H, s, C(CH₃)₃), 2.91 (3H, s, r_a , NCH₃) + 2.92 (3H, s, r_b , NCH₃), 4.47 (2H, s, r_a , NCH₂) + 4.52 (2H, AB system, r_b , NCH₂), 6.18 (2H, AB system, OCH₂N), 6.94 (1H, s, CHO), 7.16 – 7.53 (10H, m, ArH + r_a , Ar'H), 7.72 (1H, s, r_b , Ar'H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ_C 26.79 (C(CH₃)₃), 33.68 (r_a , NCH₃) + 34.98 (r_b , NCH₃), 38.78 (C(CH₃)₃), 52.57 (r_b , NCH₂) + 52.72 (r_a , NCH₂), 69.66 (OCH₂N), 70.50 (r_a , CHO) + 70.61 (r_b , CHO), 122.44 (ArCBr), 123.51 (r_b , Ar'CH) + 123.67 (r_a , Ar'CH), 127.13 (ArCH), 127.49 (ArCH), 127.83 (ArCH), 128.63 (r_b , 2 × ArCH) + 128.70 (r_a , 2 × ArCH), 128.85 (r_b , 2 × ArCH) + 128.92 (r_a , 2 × ArCH), 131.74 (2 × ArCH), 136.99 (r_a , ArC) + 137.28 (r_b , ArC), 137.64 (r_b , ArC) + 137.77 (r_a , ArC), 147.81 (Ar'C), 154.99 (r_b , C=O) + 155.50 (r_a , C=O), 177.69 (C=O) ppm; FTIR (ATR, Ge) v 3126, 2966, 1745, 1701, 1398, 1211, 1107, 986 cm⁻¹; ESIMS calculated for ($C_{24}H_{28}Br^{79}N_4O_4$)⁺ 515.1289 and ($C_{24}H_{28}Br^{81}N_4O_4$)⁺ 517.1268, found 515.1284 and 517.1263 m/z.

((1-(Pivaloyloxymethyl)-1H-1,2,3-triazol-4-yl)-1-(p-fluorophenyl))methyl N-methylbenzylcarbamate 6f

Yellow-brown viscous oil (0.670 g, 74 %, $R_f = 0.08$ (1:6)). ¹H NMR (400 MHz, CDCl₃) δ_H 1.17 (9H, s, C(CH₃)₃), 2.92 (3H, s, NCH₃), 4.47 (2H, s, r_a, NCH₂) + 4.52 (2H, AB system, r_b, NCH₂), 6.18 (2H, AB system, OCH₂N), 6.97 (1H, s, CHO), 6.99 – 7.08 (2H, m, ArH), 7.16 – 7.49 (7H, m, ArH), 7.52 (1H, s, r_a, Ar'H) + 7.71 (1H, s, r_b, Ar'H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ_C 26.79 (C(CH₃)₃), 33.68 (r_b, NCH₃) + 34.92 (r_a, NCH₃), 38.79 (C(CH₃)₃), 52.56 (r_a, NCH₂) + 52.72 (r_b, NCH₂), 69.67 (OCH₂N), 70.53 (r_b, CHO) + 70.64 (r_a, CHO), 115.53 (d, *J* = 21.7 Hz, 2 × ArCH), 123.43 (r_a, Ar'CH) + 123.59 (r_b, Ar'CH), 127.17 (ArCH), 127.48 (ArCH), 127.83 (ArCH), 128.63 (r_b, 2 × ArCH) + 128.69 (r_a, 2 × ArCH), 129.12 (m, 2 × ArCH), 136.99 (d, *J* = 11.1 Hz, ArC), 137.04 (r_b, ArC) + 137.33 (r_a, ArC), 148.18 (Ar'C), 155.09 (r_a, C=O) + 155.59 (r_b, C=O), 162.62 (d, *J* = 245.7 Hz, ArCF), 177.70 (C=O) ppm; FT-IR (thin film, KBr) v 3142, 3060, 3031, 2975, 2934, 2873, 1739, 1704, 1510, 1454, 1402, 1223, 1123, 1034 cm⁻¹; CIMS calculated for (C₂₄H₂₈FN₄O₄)⁺ 455.2089, found 455.2093 m/z; EA calculated, C 63.42, H 5.99, N 12.32, O 14.09, F 4.18; found, C 62.83, H 6.31, N 12.32, O 14.03, F 4.51 %.

((1-(Pivaloyloxymethyl)-1H-1,2,3-triazol-4-yl)-1-(m-fluorophenyl))methyl N-methylbenzylcarbamate 6g

Orange-brown viscous oil (0.550 g, 75 %, $R_f = 0.10 (1:6)$). ¹H NMR (400 MHz, CDCl₃) $\delta_H 1.17 (9H, s, C(CH_3)_3)$, 2.93 (3H, s, NCH₃), 4.48 (2H, s, r_a, NCH₂) + 4.54 (2H, AB system, r_b, NCH₂), 6.19 (2H, AB system, OCH₂N), 6.99 (1H, s, CHO), 7.01 – 7.06 (2H, m, ArH), 7.15 – 7.37 (7H, m, ArH), 7.52 (1H, s, r_a, Ar'H) + 7.72 (1H, s, r_b, Ar'H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_C 26.78 (C(CH_3)_3)$, 33.70 (r_b, NCH₃) + 34.98 (r_a, NCH₃), 38.79 (C(CH₃)₃), 52.59 (r_a, NCH₂) + 52.75 (r_b, NCH₂), 69.66 (OCH₂N), 70.39 (r_b, CHO) + 70.52 (r_a, CHO), 113.91 (d, *J* = 22.3 Hz, r_b, ArCH) + 114.13 (d, *J* = 22.3 Hz, r_a, ArCH), 115.30 (d, *J* = 21.0 Hz, ArCH), 122.74 (d, *J* = 9.0, ArCCHO), 123.53 (r_a, Ar'CH) + 123.70 (r_b, Ar'CH), 127.15 (ArCH), 127.52 (ArCH), 127.84 (ArCH),

128.64 (r_b , 2 × ArCH) + 128.72 (r_a , 2 × ArCH), 130.19 (d, *J* = 8.0 Hz, ArCH), 136.99 (r_b , ArC) + 137.25 (r_a , ArC), 141.07 (d, *J* = 19.0 Hz, r_a , ArCH) + 141.25 (d, *J* = 19.0 Hz, r_b , ArCH), 147.86 (Ar'C), 154.99 (r_a , C=O) + 155.49 (r_b , C=O), 162.62 (d, *J* = 247.6 Hz, ArCF), 177.70 (r_a , C=O) + 177.80 (r_b , C=O) ppm; FT-IR (thin film, KBr) v 3145, 3060, 3031, 2975, 2934, 2873, 1736, 1704, 1453, 1222, 1121, 1033 cm⁻¹; CIMS calculated for ($C_{24}H_{28}FN_4O_4$)⁺ 455.2089, found 455.2083 m/z; EA calculated, C 63.42, H 5.99, N 12.32, O 14.09, F 4.18; found, C 62.49, H 6.33, N 12.34, O 14.51, F 4.33 %.

((1-(Pivaloyloxymethyl)-1H-1,2,3-triazol-4-yl)-1-(p-methylphenyl))methyl N-methylbenzylcarbamate 6h

White sticky solid (0.586 g, 72 %, $R_f = 0.06$ (1:6)). m.p. 71 – 72 °C; ¹H NMR (400 MHz, CDCl₃) δ_H 1.17 (9H, s, C(CH₃)₃), 2.34 – 2.35 (3H, m, ArCH₃), 2.90 (3H, s, NCH₃), 4.43 (2H, s, r_a, NCH₂) + 4.51 (2H, AB system, r_b, NCH₂), 6.17 (2H, AB system, OCH₂N), 6.96 (1H, s, CHO), 7.13 – 7.39 (9H, m, ArH), 7.49 (1H, s, r_a, Ar²H) + 7.67 (1H, s, r_b, Ar²H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ_C 21.20 (ArCH₃), 26.80 (C(CH₃)₃), 33.66 (r_b, NCH₃) + 34.73 (r_a, NCH₃), 38.78 (C(CH₃)₃), 52.52 (r_a, NCH₂) + 52.66 (r_b, NCH₂), 69.66 (OCH₂N), 71.06 (r_b, CHO) + 71.21 (r_a, CHO), 123.38 (r_a, Ar²CH) + 123.53 (r_b, Ar²CH), 127.08 (r_b, 2 × ArCH) + 127.16 (r_a, 2 × ArCH), 127.40 (2 × ArCH), 127.85 (ArCH), 128.63 (2 × ArCH), 219.30 (2 × ArCH), 135.69 (r_b, ArC) + 135.81 (r_a, ArC), 137.18 (r_b, ArC) + 137.42 (r_a, ArC), 138.16 (ArC), 148.65 (Ar²C), 155.23 (r_a, C=O) + 155.76 (r_b, C=O), 177.67 (r_a, C=O) + 177.78 (r_b, C=O) ppm; FT-IR (thin film, KBr) v 3142, 3027, 2975, 2934, 2868, 1744, 1703, 1454, 1402, 1229, 115, 1034 cm⁻¹; CIMS calculated for (C₂₅H₃₀N₄O₄Na)⁺ 473.2159, found 473.2156 m/z; EA calculated, C 66.65, H 6.71, N 12.43, O 14.21; found, C 66.95, H 6.74, N 12.48, O 13.83 %.

((1-(Pivaloyloxymethyl)-1H-1,2,3-triazol-4-yl)-1-(2-naphthyl))methyl N-methylbenzylcarbamate 6i

Orange-brown viscous oil (0.370 g, 71 %, $R_f = 0.02$ (1:5)). ¹H NMR (400 MHz, CDCl₃) δ_H 1.16 (9H, s, C(CH₃)₃), 2.93 (3H, s, r_a , NCH₃) + 2.96 (3H, s, r_b , NCH₃), 4.48 (2H, s, r_a , NCH₂) + 4.58 (2H, AB system, r_b , NCH₂), 6.18 (2H, AB system, OCH₂N), 7.17 (1H, s, CHO), 7.20 – 7.94 (13H, m, ArH + Ar'H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ_C 26.79 (C(CH₃)₃), 33.73 (r_b , NCH₃) + 34.90 (r_a , NCH₃), 38.78 (C(CH₃)₃), 52.60 (r_a , NCH₂) + 52.72 (r_b , NCH₂), 69.68 (OCH₂N), 71.40 (CHO), 123.55 (r_a , Ar'CH) + 123.67 (r_b , Ar'CH), 124.76 (ArCH), 126.34 (2 × ArCH), 127.24 (ArCH), 127.44 (2 × ArCH), 127.67 (ArCH), 127.84 (ArCH), 128.22 (2 × ArCH), 128.50-128.71 (m, 2 × ArCH), 133.12 (ArC), 133.22 (ArC), 135.97 (r_a , ArC) + 136.09 (r_b , ArC), 137.12 (r_b , ArC) + 137.42 (r_a , ArC), 148.41 (Ar'C), 155.19 (r_a , C=O) + 155.71 (r_b , C=O), 177.67 (r_a , C=O) + 177.77 (r_b , C=O) ppm; FT-IR (thin film, KBr) v 3142, 3060, 3027, 2974, 2928, 2868, 1744, 1704, 1454, 1402, 1229, 1124, 1034 cm⁻¹; CIMS calculated for ($C_{28}H_{30}N_4O_4Na$)⁺ 509.2159, found 509.2151 m/z; EA calculated, C 69.12, H 6.21, N 11.51, O 13.16; found, C 69.21, H 6.49, N 11.39, O 12.91 %.

((1-(Pivaloyloxymethyl)-1H-1,2,3-triazol-4-yl)-1-(biphenyl-p-yl))methyl N-methylbenzylcarbamate 6j

Yellow viscous oil (0.580 g, 90 %, $R_f = 0.02$ (1:5)). ¹H NMR (400 MHz, CDCl₃) $\delta_H 1.17$ (9H, s, C(CH₃)₃), 2.93 (3H, s, r_a , NCH₃) + 2.94 (3H, s, r_b , NCH₃), 4.49 (2H, s, r_a , NCH₂) + 4.56 (2H, AB system, r_b , NCH₂), 6.19 (2H, AB system, OCH₂N), 7.05 (1H, s, CHO), 7.19 – 7.62 (15H, m, ArH + r_a , Ar'H), 7.74 (1H, s, r_b , Ar'H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_C 26.82$ (C(CH₃)₃), 33.73 (r_b , NCH₃) + 34.87 (r_a , NCH₃), 38.81 (C(CH₃)₃), 52.59 (r_a , NCH₂) + 52.73 (r_b , NCH₂), 69.70 (OCH₂N), 70.97 (r_b , CHO) + 71.10 (r_a , CHO), 123.52 (r_a , Ar'CH) + 123.68 (r_b , Ar'CH), 127.18 (2 × ArCH), 127.29 (ArCH), 127.44 (4 × ArCH), 127.56 (ArCH), 127.65 (ArCH), 127.87 (ArCH), 128.63 (r_b , 2 × ArCH) + 128.69 (r_a , 2 × ArCH), 128.79 (2 × ArCH), 137.14 (r_b , ArC) + 137.40 (r_a , ArC), 137.61 (r_a , ArC) + 137.74 (r_b , ArC), 140.71 (ArC), 141.34 (ArC), 148.38 (Ar'C), 155.24 (r_b , C=O) + 155.74 (r_a , C=O), 177.71 (r_a , C=O) + 177.81 (r_b , C=O) ppm; FT-IR (thin film, KBr) v 3142, 3060, 3027, 2975, 2934, 2868, 1744, 1704, 1482, 1454, 1402, 1229, 1124, 1034 cm⁻¹; CIMS calculated for ($C_{30}H_{32}N_4O_4Na$)⁺ 535.2316, found 535.2310 m/z; EA calculated, C 70.29, H 6.29, N 10.92, O 12.50; found, C 70.02, H 6.37, N 10.97, O 12.64 %.

S-18

S-20

S-21

S-22

S-25

S-26

S-27

((1-(Pivaloyloxymethyl)-1H-1,2,3-triazol-4-yl)-1-phenyl)methyl methyl ether²

Pivaloyloxymethyl azide (0.595 g, 3.95 mmol), 1-phenylpropargyl methyl ether (0.499 g, 3.41 mmol) and Amberlyst.A21.CuI (0.235 g, 0.341 mmol, 1.45 g mol⁻¹) were combined in dichloromethane (5 mL) and stirred under argon at room temperature. After 6 hours, the reaction mixture was filtered and concentrated *in vacuo*. Purification of the residue by column chromatography (EtOAc:hexane 1:9 \rightarrow 1:6) afforded ((1-(pivaloyloxymethyl)-1*H*-1,2,3-triazol-4-yl)-1-phenyl)methyl methyl ether as a colourless oil (0.770 g, 74 %, R_f = 0.03 (1:9)). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 1.18 (9H, s, C(CH₃)₃), 3.40 (3H, s, OCH₃), 5.49 (1H, s, CHO), 6.17 (2H, AB system, CH₂), 7.29-7.41 (5H, m, ArH), 7.59 (1H, s, ArCH) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 26.79 (C(CH₃)₃), 38.78 (C(CH₃)₃), 57.05 (OCH₃), 69.69 (CH₂), 78.31 (CHO), 122.91 (Ar²CH), 126.90 (2 × ArCH), 128.15 (ArCH), 128.65 (2 × ArCH), 139.78 (ArC), 150.38 (Ar²C), 177.70 (C=O) ppm; FTIR (ATR, Ge) v 3147, 2972, 2935, 2823, 1742, 1453, 1276, 1116, 1095, 1030, 986, 696 cm⁻¹; ESIMS calculated for (C₁₆H₂₂N₃O₃)⁺ 304.1656, found 304.1648 m/z.

Figure S19 ¹H and ¹³C NMR spectra for ((1-(Pivaloyloxymethyl)-1*H*-1,2,3-triazol-4-yl)-1-phenyl)methyl methyl ether

((1-(Pivaloyloxymethyl)-1*H*-1,2,3-triazol-4-yl)-1-phenyl)methyl alcohol¹

Pivaloyloxymethyl azide (1.429 g, 9.09 mmol), 1-phenylpropargyl alcohol (1.098 g, 8.27 mmol) and copper (I) iodide (0.079 g, 0.41 mmol) were combined in pyridine (2 mL) and stirring under argon at room temperature. After 12 hours, the reaction was diluted with toluene (10 mL) and concentrated *in vacuo*. Purification of the residue by column chromatography (EtOAc:petroleum ether 40-60 °C, 1:4 \rightarrow 1:1) afforded ((1-(pivaloyloxymethyl)-1*H*-1,2,3-triazol-4-yl)-1-phenyl)methyl alcohol as a pale orange waxy solid (1.790 g, 75 %, R_f = 0.04 (1:4)). m.p. 74 – 77 °C (EtOAc); ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 1.16 (9H, s, C(CH₃)₃), 3.61 (1H, d, *J* = 4.0 Hz, CHO), 6.15 (2H, s, CH₂), 7.30-7.44 (5H, m, ArCH), 7.54 (1H, s, Ar'CH) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 26.78 (C(CH₃)₃), 38.76 (C(CH₃)₃), 68.98 (CHO), 69.72 (CH₂), 122.64 (Ar'CH), 126.42 (2 × ArCH), 128.07 (ArCH), 128.61 (2 × ArCH), 141.72 (ArC), 151.87 (Ar'C), 177.68 (C=O) ppm; FTIR (ATR, Ge) v 3236 br, 3147, 2976, 2868, 1745, 1446, 1274, 1217, 1116, 1033, 698 cm⁻¹; ESIMS calculated for (C₁₅H₂₀N₃O₃)⁺ 290.1499, found 290.1490 m/z.

Figure S20 ¹H and ¹³C NMR spectra for ((1-(Pivaloyloxymethyl)-1*H*-1,2,3-triazol-4-yl)-1-phenyl)methyl alcohol

General method for the synthesis of benzyl protected triazoles, and characterisation data/spectra of benzyl protected triazoles 7a - d.¹

Benzyl azide (1 equiv.) dissolved in pyridine (1 - 2 mL) was added to a mixture of the corresponding alkyne (1 equiv.) and copper (I) iodide (0.05 - 0.1 equiv.) and the resulting mixture stirred under argon at room temperature. After 2 – 24 hours the reaction mixture was diluted with toluene (*ca.* 10 mL) and concentrated *in vacuo*. Purification by column chromatography (EtOAc:hexane) afforded the desired 1,4-disubstituted-1*H*-1,2,3-triazole.

(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl N-methylbenzylcarbamate 7a

Pale yellow amorphous solid (0.520 g, 68 %, $R_f = 0.06$ (1:2)). m.p. 66 – 68 °C (CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_H 2.80$ (3H, s, r_a , NCH₃) + 2.87 (3H, s, r_b , NCH₃), 4.41 (2H, s, r_b , NCH₂) + 4.45 (2H, s, r_a , NCH₂), 5.25 (2H, s, CH₂O), 5.49 (2H, s, r_b , CH₂NAr') + 5.51 (2H, s, r_a , CH₂NAr'), 7.14 – 7.37 (10H, m, ArH), 7.47 (1H, s, r_b , Ar'H) + 7.59 (1H, s, r_a , Ar'H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_C 33.67$ (r_a , NCH₃) + 34.44 (r_b , NCH₃), 52.37 (r_b , NCH₂) + 52.60 (r_a , NCH₂), 54.16 (CH₂NAr'), 58.65 (CH₂O), 123.62 (r_b , ArCCH₂N) + 123.81 (r_a , ArCCH₂N), 127.40 (2 × ArCH), 127.73 (ArCH), 128.11 (ArCH), 128.57 (2 × ArCH), 128.77 (ArCH), 129.12 (2 × ArCH), 134.55 (ArC), 137.26 (ArC), 144.14 (Ar'C), 156.12 (r_b , C=O) + 156.60 (r_a , C=O) ppm; FTIR (ATR, Ge) v 3111, 3023, 2919, 1690, 1450, 1211, 1137, 1049, 693 cm⁻¹; ESIMS calculated for (C₁₉H₂₁N₄O₂)⁺ 337.1659, found 337.1663 m/z.

((1-Benzyl-1*H*-1,2,3-triazol-4-yl)-1-methyl)methyl *N*-methylbenzylcarbamate 7b

Pale grey amorphous solid (0.659 g, 75 %, $R_f = 0.12$ (1:3)). m.p. 80 – 81 °C (CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ_H 1.68-1.73 (3H, m, CHCH₃), 2.80 (3H, s, r_a, NCH₃) + 2.89 (3H, s, r_b, NCH₃), 4.38 – 4.49 (2H, m, NCH₂), 5.41 – 5.56 (2H, m, CH₂NAr'), 6.00 – 6.01 (1H, m, CHCH₃), 7.15 – 7.39 (11H, m, ArH + r_b, Ar'H) + 7.48 (1H, s, r_a, Ar'H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ_C 19.72 (r_a, CHCH₃) + 19.83 (r_b, CHCH₃), 33.60 (r_a, NCH₃) + 34.57 (r_b, NCH₃), 52.35 (r_b, NCH₂) + 52.46 (r_a, NCH₂), 54.05 (CH₂NAr'), 66.01 (r_a, CHCH₃) + 66.19 (r_b, CHCH₃), 121.69 (r_b, Ar'CH) + 121.98 (r_a, Ar'CH), 127.26 (r_a, 2 × ArCH) + 127.32 (r_b, 2 × ArCH), 127.75 (2 × CH), 128.05 (ArCH) + 128.69 (ArCH), 128.54 (2 × ArCH) + 129.07 (2 × ArCH), 134.61 (ArC), 137.35 (r_a, ArC) + 137.53 (r_b, ArC), 148.72 (Ar'C), 155.66 (r_b, C=O) + 156.17 (r_a, C=O); FTIR (ATR, Ge) v 3128, 3080, 2971, 1679, 1433, 1207, 1147, 1069, 702, 694 cm⁻¹; ESIMS calculated for (C₂₀H₂₃N₄O₂)⁺ 351.1816, found 351.1814 m/z.

((1-Benzyl-1*H*-1,2,3-triazol-4-yl)-1,1-dimethyl)methyl *N*-methylbenzylcarbamate 7c

White crystalline solid (0.258 g, 55 %, $R_f = 0.06$ (1:4)). m.p. 86 – 87 °C (CHCl₃); ¹H NMR (400 MHz, CDCl₃) $\delta_H 1.84$ (6H, s, r_a , C(CH₃)₂) + 1.88 (6H, s, r_b , C(CH₃)₂), 2.80 (3H, s, r_a , NCH₃) + 2.82 (3H, s, r_b , NCH₃), 4.37 (2H, s, r_b , NCH₂) + 4.43 (2H, s, r_a , NCH₂), 5.48 (2H, s, r_a , CH₂NAr') + 5.51 (2H, s, r_b , CH₂NAr), 7.14 – 7.39 (10H, m, ArH + r_b , Ar'H) + 7.48 (1H, s, r_a , Ar'H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_C 27.79$ (C(CH₃)₂), 33.95 (r_a , NCH₃) + 34.15 (r_b , NCH₃), 51.95 (r_a , NCH₂) + 52.73 (r_b , NCH₂), 54.01 (CH₂NAr'), 76.34 (C(CH₃)₂), 121.10 (r_b , Ar'CH) + 121.29 (r_a , Ar'CH), 127.23 (2 × ArCH), 127.55 (2 × ArCH), 127.99 (ArCH), 128.53 (ArCH), 128.58 (2 × ArCH), 129.04 (2 × ArCH), 134.81 (ArC), 137.59 (r_a , ArC) + 137.87 (r_b , ArC), 152.37 (Ar'C), 155.04 (r_b , C=O) + 155.50 (r_a , C=O); FTIR (ATR, Ge) v 3116, 3023, 2976, 1684, 1391, 1217, 1128, 1048, 859, 694 cm⁻¹; ESIMS calculated for ($C_{21}H_{24}N_4O_2Na$)⁺ 387.1791, found 387.1790 m/z.

((1-Benzyl-1*H*-1,2,3-triazol-4-yl)-1-phenyl)methyl *N*-methylbenzylcarbamate 7d

Pink viscous oil (0.260 g, 57 %, $R_f = 0.15$ (1:4)). ¹H NMR (400 MHz, CDCl₃) $\delta_H 2.80$ (3H, s, NCH₃), 4.46 (2H, s, r_a, NCH₂) + 4.51 (2H, s, r_b, NCH₂), 5.39 – 5.53 (2H, m, CH₂NAr), 6.97 (1H, s, r_a, CHO) + 6.99 (1H, s, r_b, CHO), 7.11 – 7.51 (16H, m, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_C 33.72$ (r_a, NCH₃) + 34.88 (r_b, NCH₃), 52.54 (r_b, NCH₂) + 52.66 (r_a, NCH₂), 54.10 (CH₂NAr'), 71.23 (r_a, CHO) + 71.41 (r_b, CHO), 121.99 (r_b, Ar'CH) + 122.25 (r_a, Ar'CH), 127.08 (ArCH) 127.17 (ArCH), 127.22 (ArCH), 127.83 (ArCH), 128.03 (ArCH) + 128.19 (2 × ArCH), 128.54 (2 × ArCH), 128.57 (2 × ArCH), 128.72 (ArCH), 129.0927 (2 × ArCH), 134.51 (ArC), 137.51 (ArC) + 138.88 (ArC), 148.20 (Ar'C), 155.24 (C=O) ppm; FT-IR (thin film, KBr) v 1047, 1138, 1226, 1402, 1454, 1495, 1699, 2930, 3031, 3064, 3134 cm⁻¹; CIMS calculated for (C₂₅H₂₄N₄O₂Na)⁺ 435.1791, found 435.1790 m/z.

Figure S21 ¹H and ¹³C NMR spectra for 7a

Figure S22 ¹H and ¹³C NMR spectra for 7b

Figure S23 ¹H and ¹³C NMR spectra for 7c

Figure S24 ¹H and ¹³C NMR spectra for 7d

Method for the synthesis, and characterisation data/spectra of methyl N-methylbenzylcarbamate.¹

Methyl chloroformate (0.72 mL, 9.33 mmol) and pyridine (0.63 mL, 7.77 mmol) were added sequentially dropwise to a stirred solution of *N*-methylbenzylamine (1.00 mL, 7.77 mmol) in dichloromethane (10 mL) under argon at room temperature. After 18 hours continued stirring the mixture was diluted with diethyl ether (20 mL) and washed with water (2 × 25 mL) and saturated aqueous NH₄Cl (25 mL), dried (MgSO₄), filtered and concentrated *in vacuo* to afford methyl *N*-methylbenzylcarbamate as a colourless liquid (1.280 g, 92 %). ¹H NMR (400 MHz, CDCl₃) $\delta_{\rm H}$ 2.83 (3H, s, r_a, NCH₃) + 2.89 (3H, s, r_b, NCH₃), 3.75 (3H, s, CH₃O), 4.46 (2H, s, r_b, NCH₂) + 4.48 (2H, s, r_a, NCH₂), 7.21 – 7.29 (3H, m, ArH), 7.32 – 7.35 (2H, m, ArH) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta_{\rm C}$ 33.55 (r_a, NCH₃) + 34.37 (r_b, NCH₃), 52.24 (r_b, NCH₂) + 52.58 (r_a, NCH₂), 52.77 (CH₃O), 127.22 (r_a, 2 × ArCH) + 127.36 (r_b, 2 × ArCH), 127.84 (ArCH), 128.58 (2 × ArCH), 137.50 (ArC), 157.08 (r_b, C=O) + 157.43 (r_a, C=O) ppm; FTIR (ATR, Ge) v 3023, 2948, 1695, 1388, 1216, 1140 cm⁻¹; ESIMS calculated for (C₁₀H₁₄NO₂)⁺ 180.1019, found 180.1012 m/z.

Figure S25 ¹H and ¹³C NMR spectra for methyl *N*-methylbenzylcarbamate

Figure S26 Comparative ¹H NMR spectra of the pivaloyloxymethyl deprotection of triazole 6d to give triazole anion 9 *in situ*. a) t = 0; b) t = 5 minutes, MeOD- d_4 ; insert – proposed structure that gives rise to the appearance of rotameric resonances.

Figure S27 Comparative ¹H NMR spectra of the base mediated degradation of triazole **6d** *via* triazole anion **9**. Transient species (e.g. *N*-methylbenzylcarbamate anion **8** and *N*-benzylamine) were observed by this analytical technique. a) t = 5 minutes; b) t = 15 minutes; c) t = 45 minutes; d) t = 100 minutes, MeOD- d_4 .

Figure S28 Comparative ¹H NMR spectra of the base mediated degradation of a mixture of triazole **6d** and (1-(pivaloyloxymethyl)-1*H*-1,2,3-triazol-4-yl)-1-phenylmethyl methyl ether. Formation of a common triazole fragment is evidenced by the convolution of α -methine signals at 5.51 ppm. a) triazole **6d**; b) triazole **6d** and (1-(pivaloyloxymethyl)-1*H*-1,2,3-triazol-4-yl)-1-phenylmethyl methyl ether, t = 0; c) t = 30 hours, MeOD- d_4 .

Figure 29 Comparative ¹H NMR spectra of the base mediated degradation of a mixture of triazole **6d** and (1-(pivaloyloxymethyl)-1*H*-1,2,3-triazol-4-yl)-1-phenylmethyl alcohol. Formation of distinct triazole fragments is evidenced by the occurrence of multiple α -methine signals at 5.51 and 5.98 ppm. a) triazole **6d**; b) triazole **6d** and (1-(pivaloyloxymethyl)-1*H*-1,2,3-triazol-4-yl)-1-phenylmethyl alcohol, t = 0; c) t = 2 hours, MeOD- d_4 .

Figure S30 Comparative ¹H NMR spectra of the base mediated deuteration of triazole **7d**. a) t = 0; b) t = 1 day; c) t = 7 days; d) t = 28 days, MeOD- d_4 .

Figure S31 HMBC spectrum of partially degraded triazole 6h highlighting the formation of *N*-methylbenzylcarbamate anion 8. t = 4 mins, MeOD-d4.

Figure S32 Proposed reaction mechanism for the based mediated degradation of triazoles 6a - j.

References

- 1. P. Bertrand and J. P. Gesson, J. Org. Chem., 2007, 72, 3596.
- 2. C. Girard, E. Onen, M. Aufort, S. Beauviere, E. Samson and J. Herscovici, Org. Lett., 2006, 8, 1689.