SUPPORTING INFORMATION

<u>Manuscript title</u>: Synthesis and conformational studies of chiral macrocyclic [1.1.1]metacyclophanes containing benzofuran rings

<u>Author(s)</u>: Md. Monarul Islam,^{*a*} Tomiyasu Hirotsugu,^{*a*} Taisuke Matsumoto,^{*b*} Junji Tanaka,^{*b*} Shofiur Rahman,^{*c*} Paris E. Georghiou,^{*c*} Carl Redshaw^{*d*} and Takehiko Yamato^{**a*}

^a Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga 840–8502 Japan, E-mail: <u>yamatot@cc.saga-u.ac.jp</u>

^bInstitute of Material Chemistry and Engineering, Kyushu University, 6-1, Kasugakoen, Kasuga 816-8580, Japan

^cDepartment of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7, Canada ^dDepartment of Chemistry, The University of Hull, Cottingham Road, Hull, Yorkshire, HU6 7RX, UK

Table of Contents

		Page
Figure S1:	¹ H NMR spectrum of 3	S3
Figure S2:	¹³ C NMR spectrum of 3	S3
Figure S3:	¹ H NMR spectrum of 4a	S4
Figure S4:	¹³ C NMR spectrum of 4a	S4
Figure S5:	¹ H NMR spectrum of 4b	S5
Figure S6:	¹³ C NMR spectrum of 4b	S5
Figure S7:	¹ H NMR spectrum of 4c	S 6
Figure S8:	¹³ C NMR spectrum of 4c	S6
Figure S9:	¹ H NMR spectrum of 5a	S7
Figure S10:	¹³ C NMR spectrum of 5a	S7
Figure S11:	¹ H NMR spectrum of 5b	S 8
Figure S12:	¹³ C NMR spectrum of 5b	S 8
Figure S13:	¹ H NMR spectrum of 5b	S9
Figure S14:	¹ H NMR spectrum of 5b with Pirkle's reagent	S9
Figure S15:	FT-IR of compound 3	S10
Figure S16:	FT-IR of compound 4a	S10

Figure S17:	FT-IR of compound 4b	S11	
Figure S18:	Mass-spectra of compound 3	S11	
Figure S19:	Mass-spectra of compound 4a	S12	
Figure S20:	Mass-spectra of compound 4b	S12	
Figure S21:	Mass-spectra of compound 4c	S13	
Figure S22:	Mass-spectra of compound 5a	S13	
Figure S23:	Mass-spectra of compound 5b	S14	
Figure S24:	Conc. variation ¹ H NMR spectrum of 4a		
Figure S25:	Conc. variation ¹ H NMR spectrum of 4b	S15	
Figure S26:	Solvent variation ¹ H NMR spectrum of 4a	S15	
Figure S27:	Solvent variation ¹ H NMR spectrum of 4b	S16	
Figure S28:	Crystal structure of compound 3	S17	
Table S1:	Summary of crystal data for 3 , 4a and 5b	S18	
Computation	al Studies	S19	
Table S2:	DFT Calculated energies	S19	
Figure S29:	Geometry-optimized (B3LYP/6-31G(d)) structures of		
	4a–b and 5a–b (Ellipsoid)	S20	
Figure S30:	Geometry-optimized (\omegaB97xD/6-31G(d)) structures of		
	4a–b and 5a–b (Ellipsoid)	S20	
Figure S31:	Geometry-optimized (B3LYP/6-31G(d)) structures of		
	4a–band 5a–b (Ball-and-stick)	S21	
Figure S32:	Geometry-optimized (\omegaB97xD/6-31G(d)) structures of		
	4a–b and 5a–b (Ball-and-stick)	S22	
Figure S33:	Geometry-optimized (B3LYP/6-31G(d)) structures of		
	4a–b and 5a–b (Spacefill)	S23	
Figure S34:	Geometry-optimized (\omegaB97xD/6-31G(d)) structures of		
	4a–b and 5a–b (Spacefill)	S24	
Figure S35:	Partial VTNMR spectrum of 4b	S25	
Figure S36:	Partial VTNMR spectrum of 5b	S26	
References		S26	

Figure S2: ¹³C-NMR spectrum (100 MHz, 298 K, CDCl₃) of the compound **3**.

Figure S4: ¹³C-NMR spectrum (100 MHz, 298 K, CDCl₃) of the compound 4a.

Figure S6: ¹³C-NMR spectrum (100 MHz, 298 K, CDCl₃) of the compound 4b.

Figure S8: ¹³C-NMR spectrum (100 MHz, 298 K, CDCl₃) of the compound 4c.

Figure S10: ¹³C-NMR spectrum (100 MHz, 298 K, * CDCl₃) of the compound **5a**.

Figure S12: ¹³C-NMR spectrum (100 MHz, 298 K, CDCl₃) of the compound 5b.

Figure S14: ¹H NMR spectra (CDCl₃; 500 MHz) **5b** + Pirkle's reagent.

Figure S15: FT-IR spectrum of the compound 3.

Figure S16: FT-IR spectrum of the compound 4a.

Figure S17: FT-IR spectrum of the compound 4b.

Figure S18: Mass spectrum of the compound 3.

Figure S19: Mass spectrum of the compound 4a.

Figure S20: Mass spectrum of the compound 4b.

Figure S22: Mass spectrum of the compound 5a.

Figure S23: Mass spectrum of the compound 5b.

Figure S24: ¹H NMR Spectra of **4a** concentration studies 0.5 mM–30 mM (298 K, CDCl₃, 400 MHz).

Figure S25: ¹H NMR Spectra of 4b concentration studies 0.5 mM–30 mM (298 K, CDCl₃, 400 MHz).

Figure S26: ¹H NMR spectra of 4a (298 K, 5 mM; 400 MHz); (A) CDCl₃; (B) CD₃COCD₃.

Figure S27: ¹H NMR spectra of 4b (298 K, 5 mM; 400 MHz); (A) CDCl₃, (B) CD₃COCD₃.

Figure S28: X-ray crystal structure of compound 3.

X-ray crystallography

Parameter	3	4a	5b
Empirical formula	$C_{40} H_{52} O_5$	$C_{37} H_{42} O_3$	C ₃₈ H ₄₄ O ₃
Formula weight [g	612.43	534.71	548.76
mol^{-1}]			
Crystal system	monoclinic	orthorhombic	monoclinic
Space group	$P 2_{1}/c$	Pcnn	C2/c
A [Å]	12.237(3)	25.2718(5)	17.5245(3)
<i>B</i> [Å]	15.005(4)	13.4859 (3)	13.6997(3)
C [Å]	20.068(5)	17.4972 (4)	26.7366(5)
α [°]	90.0000	90.0000	90.0000
β [°]	101.798(18)	90.0000	104.033(7)
γ [°]	90.0000	90.0000	90.0000
Volume [Å ³]	3606.97	3343.9(3)	6227.3(3)
Ζ	4	8	8
Density, calcd [g m ⁻³]	1.106	1.191	1.171
Temperature [K]	123	123	123
Unique reflns	6548	5469	5695
Obsd reflns	4547	4089	4654
Parameters	418	362	370
$R_{\rm int}$	0.0603	0.0417	0.0471
$R[I>2\sigma(I)]^{a}$	0.0769	0.0444	0.0629
$wR[I>2\sigma(I)]^{b}$	0.2516	0.1018	0.1639
$GOF \text{ on } F^2$	1.097	1.016	1.041
^{<i>a</i>} Conventional <i>R</i> on F _h	$_{kl}$: $\Sigma F_o - F_c $	$ /\sigma F_o $. ^b Weigh	ted R on $ F_{hk} $
Σ [w	$(F_0^2 - F_c^2)^2]/\Sigma$	$[w(F_0^2)^2]^{1/2}$	

 Table S1 Summary of crystal data for 3, 4a and 5b.^{a,b}

General description for the computational study:

Density functional theory (DFT) computational studies were carried out to determine the geometry-optimized energies of compounds **4a–b** and **5a–b**. The starting structures were generated with the geometries based upon the X-ray structures of **4a** and **5b** and from the presumed structures of **4b** (derived from **4a**) and **5a** using SpartanPro'10 with the MMFF94 method.¹The generated structures were then imported into Gaussian-09² and were geometry optimized in gas-phase with either the B3LYP or ω B97xD with 6-31G(d) basis set. The calculated energies (kJ mole⁻¹) for compounds **4a**, **4b**, **5a** and **5b** are shown in Table 2.As can be seen in Figure S30(4a), for compound **4a**the O1---H3 distance is 2.026 Å, which is shorter than that for the O2---H3 (2.460 Å) distance and is very close to the distance (2.182 Å) calculated from the single crystal X-ray analysis.

The results presented in Table S2 show that **4b** and **5b** were energetically more-favoured (in the gas-phase) by 3.792 or 3.083 and 89.974 or 74.718 kJ mole⁻¹ than the corresponding structures of **4a** and **5a**, using B3LYP/6-31G(d) or ω B97xD/6-31G(d), respectively. As well, it can be noted that the *exo*-situated methoxy groups in **5a** and **5b** are energetically more-favoured than their corresponding *endo*-methoxy structures by 4.650 and 7.951 kJ mole⁻¹, respectively.

Compound	B3LYP kJ mole ⁻¹	∆E (kJ mole ⁻¹)	ωB97xD kJ mole ⁻¹	∆E (kJ mole ⁻¹)
4a	-4360788.8	$\Delta E_{(4b-4a)} = -3.792$	-4359514.4	4E - 2.002
4b	-4360792.6		-4359517.5	$\Delta E_{(4b-4a)} = -3.083$
5a(<i>exo</i>)	-4463872.2	⊿E _(5b-5a) =-89.974	-4462581.9	$4\mathbf{E} \leftarrow \mathbf{\nabla} = 74.719$
5b(<i>exo</i>)	-4463962.2		-4462656.6	$\Delta E(5b-5a) = 74.718$
5a(<i>endo</i>)	-4463857.3	$\Delta E_{(5aexo-5aendo)} = -14.897$	-4462577.2	$\Delta E_{(5aexo-5aendo)} = -4.650$
5b(endo)	-4463947.5	$\Delta E_{(5bexo-5bendo)} = -14.685$	-4462648.6	$\Delta E_{(5bexo-5bendo)} = -7.951$

Table S2 DFT optimized energies of the synthesized MCPs.

Figure S29. Geometry-optimized (B3LYP/6-31G(d)) structures of **4a**–**b** and **5a**–**b** (Ellipsoid): *Top Left*: **4a**; *Top Right*: **4b**; *Bottom Left*: 5a*partial cone*; and *Bottom Right*: **5b**. Colour code: hydrogen = white, carbon = dark grey, oxygen atom = red, except phenolic hydrogen and methoxy hydrogen = light green and methoxy carbon = magenta. All hydrogens except those phenolic hydrogen and methoxy hydrogen (light green) are omitted for clarity.

Figure S30. Geometry-optimized (ω B97xD/6-31G(d)) structures of **4a–b** and **5a–b** (Ellipsoid): *Top Left*: **4a**; *Top Right*: **4b**; *Bottom Left*: 5apartial cone; and *Bottom Right*: **5b**. Colour code: hydrogen = white, carbon = dark grey, oxygen atom = red, except phenolic hydrogen and methoxy hydrogen = light green and methoxy carbon = magenta. All hydrogens except those phenolic hydrogen and methoxy hydrogen (light green) are omitted for clarity.

Figure S31. Geometry-optimized (B3LYP/6-31G(d)) structures of **4a–b** and **5a–b** (Ball-and-stick): *Top Left*: **4a**; *Top Right*: **4b**; *Bottom Left*: 5a*partial cone*; and *Bottom Right*: **5b**. Colour code: hydrogen = white, carbon = dark grey, oxygen atom = red, except phenolic hydrogen and methoxy hydrogen = light green and methoxy carbon = magenta. All hydrogens except those phenolic hydrogen and methoxy hydrogen (light green) are omitted for clarity.

FigureS32. Geometry-optimized (ω B97xD/6-31G(d)) structures of **4a–b** and **5a–b**(Ball-and-stick): *Top Left*: **4a**; *Top Right*: **4b**; *Bottom Left*: 5a *partial cone*; and *Bottom Right*: **5b**. Colour code: hydrogen = white, carbon = dark grey, oxygen atom = red, except phenolic hydrogen and methoxy hydrogen = light green and methoxy carbon = magenta. All hydrogens except those phenolic hydrogen and methoxy hydrogen (light green) are omitted for clarity.

Figure S33. Geometry-optimized (B3LYP/6-31G(d)) structures of **4a**–**b** and **5a**–**b** (Spacefill): *Top Left*: **4a**; *Top Right*: **4b**; *Bottom Left*: **5a** *partial cone*; and *Bottom Right*: **5b**. Colour code: hydrogen = white, carbon = dark grey, oxygen atom = red, except phenolic hydrogen and methoxy hydrogen = light green and methoxy carbon = magenta. All hydrogens except those phenolic hydrogen and methoxy hydrogen (light green) are omitted for clarity.

Figure S34. Geometry-optimized (ω B97xD/6-31G(d)) structures of **4a–b** and **5a–b** (Spacefill): *Top Left*: **4a**; *Top Right*: **4b**; *Bottom Left*: **5a***partial cone*; and *Bottom Right*: **5b**. Colour code: hydrogen = white, carbon = dark grey, oxygen atom = red, except phenolic hydrogen and methoxy hydrogen = light green and methoxy carbon = magenta. All hydrogens except those phenolic hydrogen and methoxy hydrogen (light green) are omitted for clarity.

Figure S35: Partial VT-¹H NMR (300 MHz; 9:1 (v/v) $CD_3CN:CD_2Cl_2$) for compound 4b at temperature 298 K to 348 K.

Figure S36: Partial VT-¹H NMR (300 MHz; 9:1 (v/v) $CD_3CN:CD_2Cl_2$) for compound **5b** at temperature 298 K to 358 K.

References

- 1. Initial molecular modeling calculations using the MMFF94 were performed using the *PC Spartan'10* software from Wavefunction Inc., Irvine CA.M.
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.: Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;

Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, Revision D.01*; Gaussian, Inc., Wallingford CT, 2013.