Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Dinaphtho[8,1,2-*cde*:2',1',8'-*uva*]pentacene derivative and its analogues: synthesis, structures, photophysical and electrochemical properties

Xiao-Jun Li,^{*a,b*} Meng Li,^{*a,b*} Hai-Yan Lu,^{*,*a*} and Chuan-Feng Chen^{*,*b*}

^aUniversity of Chinese Academy of Sciences, Beijing 100049, China. ^bBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Email: haiyanlu@ucas.ac.cn; cchen@iccas.ac.cn

Contents

- **S1. Experimental procedures**
- S2. ¹H NMR and ¹³C NMR spectra of new compounds
- S3. UV-vis spectra of 5c
- S4. The torsion angle of 5c
- **S5.** Cyclic voltammogram
- **S6. DFT calculations**
- **S7.** Crystal data

S1. Experimental procedures

Synthesis of compound 3. To a solution of 1-tetralone (14.5 g, 57 mmol) and Zn power (7.4 g, 114 mmol) in THF at -78 °C was added trimethylsillylcholoride (21 mL, 171 mmol) and conc. HCl (42 mL) over 10 min with vigorous stirring. After the temperature was warmed to room temperature, the mixture was stirred overnight. The white precipitate **3** was filtered (9.4 g, 70%). Mp: 206-207 °C. ¹H NMR (400 MHz, CDCl₃): δ 7.12 (d, *J* = 8.2 Hz, 2H), 6.72 (d, *J* = 8.2 Hz, 2H), 6.10 (t, *J* = 5.2 Hz, 2H), 3.84 (s, 6H), 2.82–2.69 (m, 4H), 2.26–2.09 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 155.3, 138.8, 136.2, 133.8, 130.4, 126.6, 111.6, 109.5, 56.5, 29.0, 23.2. HR MS (ESI): *m/z* calcd for [M + H]⁺ C₂₂H₂₁Br₂O₂: 474.9908, found 474.9903.

Synthesis of compound 4a. The mixture of **3** (4 g, 8.48 mmol) and 1, 4anthraquinone (5.28 g, 25.44 mmol) in AcOH was refluxed for 48 h. After cooling, the solvents were evaporated under reduced pressure. The residue was then subjected to flash column chromatography with CH₂Cl₂: petroleum ether (2:1, v/v) as eluent to afford yellow solids **4a** (3.2 g, 56%). Mp: > 300 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.73 (s, 2H), 8.08 (dd, *J* = 6.1, 3.3 Hz, 2H), 7.67 (dd, *J* = 6.2, 3.2 Hz, 2H), 7.27 (s, 2H), 6.84 (d, *J* = 8.1 Hz, 2H), 4.29 (d, *J* = 14.4 Hz, 2H), 3.76 (s, 6H), 3.01-2.94 (m, 2H), 2.82-2.76 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 185.8, 155.1, 143.9, 140.2, 137.3, 136.7, 135.1, 132.1, 131.3, 129.9, 129.0, 128.5, 126.1, 112.3, 112.2, 56.7, 30.2, 28.2. HR MS (ESI): *m/z* calcd for [M + H]⁺ C₃₆H₂₅Br₂O₄:679.0119, found 679.0079.

Synthesis of compound 4b. NiCl₂·6H₂O (225 mg, 0.95 mmol), Ph₃P (987 mg, 3.76 mmol), and Zn powder (158 mg, 2.44 mmol) were placed in a 100 mL two-necked flask, which was evacuated and refilled three times with argon. Then, anhydrous DMF was added, and the mixture was stirring at 50 °C for 1 h. To the mixture was added a solution of 4a (250 mg, 0.36 mmol) in DMF, and the mixture was continued to be stirred for 5 h at 80°C. After the solvents were evaporated under reduced pressure, CH₂Cl₂ and water were added. The organic phase was dried by anhydrous MgSO₄. Then the solvent was removed, and the crude product was purified by flash column chromatography with CH₂Cl₂ : petroleum ether (2:1, v/v) as eluent to afford yellow solids 4b (136 mg, 73%). Mp: > 300 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.74 (s, 2H), 8.09 (dd, *J* = 6.1, 3.3 Hz, 2H), 7.66 (dd, *J* = 6.3, 3.2 Hz, 2H), 7.39 (d, *J* = 8.2 Hz, 2H), 7.17 (d, *J* = 8.2 Hz, 2H), 4.02 (s, 6H), 3.89 (s, 4H), 3.16 (t, *J* = 7.5 Hz, 4H). ¹³C NMR(101 MHz, CDCl₃): δ 186.5, 156.1, 137.6, 135.2, 131.7, 131.5, 131.3, 129.9, 129.0, 128.6, 128.4, 127.3, 126.4, 118.6, 111.3, 56.0, 27.8, 26.0. HR MS (ESI): *m/z* calcd for [M + H]⁺ C₃₆H₂₅O₄: 521.1752, found 521.1746.

Synthesis of compound 4c. The mixture of **4a** (250 mg, 0.36 mmol), Cu powder (800 mg) and naphthalene was heated at 200°C for 4 h. After cooling, the reaction mixture was treated with ethanol, and then performed by filtration. The crude product was purified by flash column chromatography with CH₂Cl₂ as eluent to afford black powder **4c** (71 mg, 55%). Mp: > 300 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.67 (d, *J* = 9.3 Hz, 2H), 8.86 (s, 2H), 8.29 (dd, *J* = 16.8, 9.0 Hz, 4H), 8.16 (dd, *J* = 6.1, 3.2 Hz, 2H), 7.86 (d, *J* = 8.6 Hz, 2H), 7.72 (dd, *J* = 6.3, 3.2 Hz, 2H), 4.28 (s, 6H). ¹³C NMR (126 MHz, CDCl₃): δ 187.7, 156.2, 135.2, 131.7, 130.6, 130.0, 129.2, 129.1, 128.9, 128.3, 128.2, 127.2, 126.9, 125.6, 123.4, 115.8, 113.7, 56.4. HR MS (ESI): *m/z* calcd for [M + H]⁺ C₃₆H₂₁O₄: 517.1439, found 517.1429.

General procedure for synthesis of 5a-5c.

To an oven-dried 25 mL two-necked flask at 0°C under argon atmosphere was added THF (10 mL), then trimethylsilylacetylene (6 eq), *n*-BuLi (5 eq, 2.4 M in cyclohexane) was added dropwise. The mixture was stirred for 4 h at room temperature, and then was transferred to a THF solution of **4** (1.0 eq) at 0°C. After stirring overnight, the reaction was quenched with water, and added DCM. The organic layer was separated, dried over MgSO4, and then concentrated. The residue was dissolved in acetone, and SnCl₂·2H₂O in 10% HCl was added. After the reaction proceeded for 12 h and wrapped in foil to block ambient light, the reaction mixture was filtered, and washed with water. The crude product was purified by flash column chromatography with CH₂Cl₂: petroleum ether (1:2, v/v) as eluent to afford **5**.

5a. Purple powder, 65% yield. Mp: 173-174 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.30 (s, 2H), 8.04 (dd, *J* = 6.4, 3.2 Hz, 2H), 7.47 (dd, *J* = 6.6, 3.1 Hz, 2H), 7.23 (s, 2H), 6.80 (d, *J* = 8.1 Hz, 2H), 4.35 (d, *J* = 15.4 Hz, 2H), 3.77 (s, 6H), 3.27-3.20 (m, 2H), 2.94-2.90 (m, 2H), 2.77-2.70 (m, 2H), 0.41 (s, 18H). ¹³C NMR (101 MHz, CDCl₃): δ 154.9, 139.1, 138.9, 136.1, 134.3, 133.0, 132.6, 131.1, 128.8, 126.3, 126.1, 125.3, 117.1, 114.2, 112.2, 110.9, 105.5, 56.8, 32.4, 31.0, 0.0. HR MS (ESI): *m/z* calcd for [M + H]⁺ C₄₆H₄₃Br₂O₂Si₂: 841.1168, found: 841.1128.

5b. Dark blue powder, 77% yield. Mp: 254-255 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.24 (s, 2H), 8.06 (dd, J = 6.4, 3.1 Hz, 2H), 7.46 (dd, J = 6.6, 3.0 Hz, 2H), 7.22 (d, J =

8.2 Hz, 2H), 7.04 (d, J = 8.2 Hz, 2H), 3.98 (s, 6H), 2.92 (s, 4H), 2.21 (dd, J = 36.8, 15.7 Hz, 3H), 0.40 (s, 18H). ¹³C NMR (101 MHz, CDCl₃): δ 156.3, 133.1, 132.5, 130.8, 130.4, 128.8, 128.5, 127.7, 126.6, 126.4, 125.9, 125.6, 118.3, 116.6, 113.1, 111.8, 105.3, 56.1, 28.3, 27.4, 0.0. HR MS (ESI): m/z calcd for [M + H]⁺ C₄₆H₄₃O₂Si₂: 683.2801, found: 683.2788.

5c. Dark green powder, 82% yield. Mp: 264-265 °C. ¹H NMR (400 MHz, CDCl₃): δ 9.84 (d, *J* = 9.0 Hz, 2H), 9.35 (s, 2H), 8.11 (dd, *J* = 6.4, 3.1 Hz, 2H), 7.86 (dd, *J* = 20.0, 8.9 Hz, 4H), 7.55–7.46 (m, 4H), 4.05 (s, 6H), 0.40 (s, 18H). ¹³C NMR (101 MHz, CDCl₃): δ 155.7, 132.5, 131.6, 130.2, 129.4, 128.7, 127.6, 127.2, 126.7, 126.2, 126.0, 125.5, 125.1, 124.8, 115.9, 115.4, 115.0, 108.5, 105.8, 56.5, 0.0. HR MS (ESI): *m/z* calcd for [M + H]⁺ C₄₆H₃₉O₂Si₂: 679.2488, found: 679.2472.

Fig. S2 13 C NMR spectrum (101 MHz, CDCl₃) of 3.

Fig. S6 13 C NMR spectrum (101 MHz, CDCl₃) of **5a**.

S9

S10

S3. UV-vis spectra of 5c

Fig. S15 UV-vis spectra of **5c** in cyclohexane ($c = 1.0 \times 10^{-5}$ M) in the presence of light and air at different periods of time.

S4. The torsion angle of 5c

Fig. S16 The torsion angle of 5c.

S5. Cyclic voltammogram

Fig. S17 Cyclic voltammograms of **5a** in 0.1 M n-Bu₄NPF₆ of CH₂Cl₂ solution at a scan rate of 100 mV/s, and with ferrocene/ferrocenium couple as standard.

Fig. S18 Cyclic voltammograms of **5b** in 0.1 M n-Bu₄NPF₆ of CH₂Cl₂ solution at a scan rate of 100 mV/s, and with ferrocene/ferrocenium couple as standard.

S6. DFT calculations

Calculations were performed with the DFT method at the B3LYP/6-31G(d) level with Gaussian 09 program

Cartesian Coordinates (Å), SCF Energies and Free Energies at 298.15 K and 1 atm for the Optimized

Structure of 5a.

B3LYP/6-31G* SCF energy: -2533.888793 a.u;

B3LYP/6-31G*free energy: -2533.236367a.u.

	Х	Y	Z
Br	3.211872	0.643026	2.567933
Br	3.213713	-0.667912	-2.568200
Si	-2.899837	-5.864886	0.018993
Si	-2.827300	5.887756	-0.018645
О	5.562179	-2.235120	-1.715757
О	5.571722	2.196883	1.722289
С	-6.135054	0.744422	-0.033768
С	-7.389331	1.435752	-0.065254
Н	-7.381361	2.521884	-0.115767
С	-8.570875	0.746156	-0.032141
Н	-9.516466	1.281053	-0.055793
С	-8.576285	-0.682320	0.034171
Н	-9.525900	-1.209970	0.059288
С	-7.399994	-1.380911	0.065619
Н	-7.400017	-2.467052	0.116308
С	-6.140581	-0.699020	0.032337
С	-4.913427	1.414989	-0.071602
Н	-4.908703	2.497401	-0.135257
С	-3.682555	0.731922	-0.052217
С	-3.688126	-0.705544	0.047750
С	-4.924217	-1.379149	0.068659
Н	-4.928349	-2.461527	0.132662
С	-2.429966	1.423333	-0.172325
С	-1.199562	0.709897	-0.175043
С	-1.204955	-0.703410	0.168653
С	-2.440952	-1.406838	0.166864
С	-2.498627	2.845128	-0.179085
С	-2.656859	4.057588	-0.115892
С	-4.169536	6.308954	1.245622
Н	-5.139056	5.886238	0.957763
Н	-4.292067	7.395855	1.333555
Н	-3.917148	5.918993	2.238183
С	-3.310781	6.548989	-1.724290

Table. S1 Cartesian coordinates (Å) of $\mathbf{5a}$

Н	-2.552477	6.304822	-2.476999
Н	-3.420258	7.640582	-1.700662
Н	-4.263359	6.124157	-2.060989
С	-1.170959	6.622408	0.522837
Н	-0.872185	6.243875	1.506960
Н	-1.233267	7.715906	0.588791
Н	-0.372034	6.375896	-0.185945
С	-2.522221	-2.827901	0.174527
С	-2.694542	-4.038434	0.112376
С	-4.748258	-6.267075	0.034299
Н	-5.227660	-5.903039	0.950419
Н	-4.911046	-7.350855	-0.019122
Н	-5.263522	-5.810520	-0.818692
С	-2.054863	-6.650658	1.518533
Н	-0.985889	-6.410144	1.547010
Н	-2.151117	-7.743334	1.490082
Н	-2.501688	-6.299544	2.455724
С	-2.108551	-6.488898	-1.580949
Н	-2.581970	-6.037135	-2.460016
Н	-2.211483	-7.578022	-1.666244
Н	-1.039739	-6.249386	-1.618410
С	0.066661	1.351743	-0.442096
С	0.165774	2.686634	-1.167325
Н	-0.724497	2.836453	-1.779202
Н	0.216077	3.535378	-0.473586
С	1.410359	2.684559	-2.071265
Н	1.316986	1.878041	-2.812163
Н	1.482756	3.629837	-2.621060
С	2.621309	2.491562	-1.201510
С	3.766623	3.266835	-1.306436
Н	3.853501	3.985032	-2.117878
С	4.804492	3.151824	-0.380644
Н	5.695950	3.757406	-0.493396
С	4.658149	2.305832	0.721154
С	3.483148	1.534932	0.831304

2.496952	1.535784	-0.163301
1.258852	0.699351	-0.158911
6.747953	2.983913	1.649543
6.517392	4.057634	1.644583
7.344796	2.738969	0.760860
7.320610	2.741672	2.546576
1.253598	-0.711183	0.154246
2.486085	-1.555902	0.161237
3.474994	-1.561095	-0.830660
4.645161	-2.338830	-0.717223
4.783396	-3.185723	0.384939
5.670976	-3.796513	0.500139
3.742211	-3.294668	1.307745
3.822457	-4.013471	2.119336
2.601835	-2.512548	1.199692
1.387219	-2.698779	2.065822
1.296604	-1.892396	2.807213
1.451931	-3.645030	2.614882
0.145420	-2.692050	1.158113
-0.747515	-2.839628	1.766415
0.194192	-3.539315	0.462268
0.056355	-1.355182	0.435285
6.734321	-3.027856	-1.639078
7.311115	-2.788445	-2.534219
6.498579	-4.100463	-1.634862
7.329374	-2.785755	-0.748418
	2.496952 1.258852 6.747953 6.517392 7.344796 7.320610 1.253598 2.486085 3.474994 4.645161 4.783396 5.670976 3.742211 3.822457 2.601835 1.387219 1.296604 1.451931 0.145420 -0.747515 0.194192 0.056355 6.734321 7.311115 6.498579 7.329374	2.4969521.5357841.2588520.6993516.7479532.9839136.5173924.0576347.3447962.7389697.3206102.7416721.253598-0.7111832.486085-1.5559023.474994-1.5610954.645161-2.3388304.783396-3.1857235.670976-3.7965133.742211-3.2946683.822457-4.0134712.601835-2.5125481.387219-2.6987791.296604-1.8923961.451931-3.6450300.145420-2.692050-0.747515-2.8396280.194192-3.5393150.056355-1.3551826.734321-3.0278567.311115-2.7884456.498579-4.1004637.329374-2.785755

Cartesian Coordinates (Å), SCF Energies and Free Energies at 298.15 K and 1 atm for

the Optimized

Structure of **5b**.

B3LYP/6-31G* SCF energy: -2507.612499 a.u;

B3LYP/6-31G*free energy: -2506.953289a.u.

Table S2. Cartesian coordinates (Å) of 5b

Х

Y

Ζ

Si	2.162623	5.844839	0.681629
Si	2.177798	-5.843243	-0.669199
Ο	-6.453833	0.171710	1.276353
Ο	-6.454346	-0.181436	-1.277654
С	-7.609892	-0.036932	2.063612
Н	-8.065670	-1.016903	1.866709
Н	-8.311162	0.749870	1.777874
Н	-7.393467	0.047845	3.137459
С	-7.611120	0.025195	-2.064391
Н	-7.395095	-0.059447	-3.138324
Н	-8.068355	1.004476	-1.867449
Н	-8.310995	-0.762665	-1.778146
С	-5.401026	-0.681519	1.414139
С	-5.365828	-1.681799	2.388290
Н	-6.238887	-1.889570	2.995240
С	-4.185785	-2.389847	2.624273
Н	-4.168082	-3.151571	3.400628
С	-3.019264	-2.081076	1.938108
С	-1.687341	-2.669030	2.328938
Н	-1.819945	-3.680924	2.730743
С	-0.696854	-2.700529	1.161164
Н	-1.014129	-3.456821	0.428769
С	-0.612264	-1.337403	0.497718
С	0.633165	-0.717960	0.120181
С	1.861877	-1.423974	0.013824
С	3.110073	-0.717471	-0.041602
С	4.343382	-1.391793	-0.108337
Н	4.343028	-2.474524	-0.175552
С	5.561899	-0.714880	-0.062819
С	6.819582	-1.398323	-0.116851
Н	6.816718	-2.482377	-0.201830
С	7.998139	-0.704645	-0.062563
Н	8.946165	-1.234102	-0.105202

С	7.996788	0.720720	0.050595
Н	8.943807	1.252034	0.092473
С	6.816910	1.412065	0.105968
Н	6.811917	2.496087	0.191216
С	5.560555	0.726094	0.052993
С	4.340738	1.400559	0.099647
Н	4.338234	2.483279	0.167051
С	3.108760	0.723696	0.033961
С	1.859261	1.427829	-0.019778
С	0.631813	0.719646	-0.125778
С	-0.614817	1.337195	-0.502255
С	-0.702388	2.700390	-1.165303
Н	0.269354	3.022697	-1.535606
С	-1.692778	2.666582	-2.333121
Н	-1.258991	2.064398	-3.147701
С	-3.023640	2.076554	-1.941733
С	-4.190967	2.383276	-2.627440
Н	-4.174847	3.144812	-3.404018
С	-5.369769	1.673438	-2.390639
Н	-6.243497	1.879656	-2.997161
С	-5.402902	0.673347	-1.416217
С	-4.278522	0.459755	-0.573077
С	-4.277436	-0.466051	0.570421
С	-3.060828	-1.105420	0.919058
С	-1.796889	-0.635784	0.337705
С	-1.798161	0.633543	-0.341711
С	-3.063149	1.101051	-0.922440
С	1.912977	-2.837433	-0.139118
С	2.035650	-4.037562	-0.350219
С	1.780698	-6.181820	-2.487110
Н	0.762680	-5.862015	-2.736997
Н	1.860278	-7.253580	-2.708723
Н	2.470050	-5.649365	-3.152155

С	0.952288	-6.759023	0.444022
Н	1.154931	-6.566057	1.503696
Н	1.016239	-7.842543	0.282850
Н	-0.079650	-6.451307	0.239405
С	3.945274	-6.390935	-0.273993
Н	4.675709	-5.865510	-0.900145
Н	4.068702	-7.466946	-0.450061
Н	4.198326	-6.192621	0.773853
С	1.907317	2.841046	0.135949
С	2.026582	4.040844	0.350737
С	1.413216	6.215672	2.378217
Н	0.357672	5.923515	2.418444
Н	1.473713	7.287453	2.606027
Н	1.939173	5.673498	3.172221
С	1.223447	6.787584	-0.663642
Н	1.643447	6.589573	-1.656448
Н	1.275379	7.869414	-0.487544
Н	0.165091	6.503264	-0.685584
С	3.991385	6.328279	0.654671
Н	4.559366	5.783336	1.417563
Н	4.113930	7.400926	0.850301
Н	4.445598	6.112666	-0.319335
Н	-1.254598	-2.066684	3.143960
Н	0.275641	-3.020105	1.531849
Н	-1.022038	3.455444	-0.432557
Н	-1.827129	3.677935	-2.735740

Cartesian Coordinates (Å), SCF Energies and Free Energies at 298.15 K and 1 atm for the Optimized

Structure of 5c

B3LYP/6-31G* SCF energy: -2505.222106 a.u;

B3LYP/6-31G*free energy: -2504.60819a.u.

	Х	Y	Z
Si	2.125692	5.853401	0.654954
Si	2.125907	-5.853457	-0.653954
Ο	-6.479669	-0.109567	1.272064
Ο	-6.479251	0.109030	-1.273210
С	-7.651200	-0.498125	1.965271
Н	-8.089423	-1.413609	1.545911
Н	-8.355658	0.326820	1.841088
Н	-7.460902	-0.647925	3.036440
С	-7.651413	0.498183	-1.964995
Н	-7.462210	0.648439	-3.036305
Н	-8.088974	1.413575	-1.544752
Н	-8.355934	-0.326664	-1.840488
С	-5.413047	-0.952611	1.236948
С	-5.389871	-2.154822	1.978165
Н	-6.281928	-2.491127	2.492971
С	-4.234850	-2.901537	2.068075
Н	-4.229470	-3.832073	2.629904
С	-3.033358	-2.433320	1.497477
С	-1.793047	-3.091099	1.708210
Н	-1.778638	-3.999956	2.305258
С	-0.623113	-2.574276	1.221813
Н	0.303919	-3.079180	1.448704
С	-0.595943	-1.342694	0.501842
С	0.669846	-0.715045	0.113585
С	1.885100	-1.423667	0.000795
С	3.141145	-0.718178	-0.050638
С	4.368860	-1.393850	-0.125686
Н	4.367011	-2.475581	-0.207870
С	5.591214	-0.718302	-0.069432
С	6.846225	-1.402462	-0.133706

Table S3. Cartesian coordinates (Å) of $\mathbf{5c}$

Н	6.842156	-2.485033	-0.235695
С	8.026752	-0.710782	-0.068308
Н	8.973910	-1.241088	-0.119006
С	8.026776	0.710829	0.066814
Н	8.973952	1.241127	0.117285
С	6.846270	1.402520	0.132489
Н	6.842240	2.485089	0.234484
С	5.591235	0.718373	0.068517
С	4.368902	1.393936	0.125067
Н	4.367077	2.475668	0.207247
С	3.141164	0.718271	0.050299
С	1.885103	1.423767	-0.000864
С	0.669833	0.715147	-0.113593
С	-0.595960	1.342808	-0.501814
С	-0.623141	2.574469	-1.221655
Н	0.303883	3.079451	-1.448415
С	-1.793059	3.091275	-1.708104
Н	-1.778659	4.000209	-2.305037
С	-3.033347	2.433370	-1.497594
С	-4.234809	2.901530	-2.068318
Н	-4.229449	3.832130	-2.630041
С	-5.389760	2.154660	-1.978701
Н	-6.281740	2.490862	-2.493705
С	-5.412892	0.952353	-1.237646
С	-4.290778	0.555233	-0.478838
С	-4.290830	-0.555395	0.478342
С	-3.053371	-1.225360	0.736020
С	-1.810734	-0.657599	0.299398
С	-1.810738	0.657639	-0.299515
С	-3.053353	1.225340	-0.736267
С	1.937131	-2.838968	-0.148571
С	2.055107	-4.040698	-0.348688
С	1.391034	-6.212053	-2.358937

Н	0.349318	-5.876974	-2.417789
Н	1.411340	-7.287783	-2.574996
Н	1.950978	-5.700079	-3.149717
С	1.118290	-6.730042	0.686359
Н	1.535851	-6.547348	1.683223
Н	1.109743	-7.814689	0.520614
Н	0.078502	-6.383302	0.689604
С	3.930388	-6.416498	-0.584661
Н	4.535975	-5.911453	-1.346063
Н	4.007135	-7.496826	-0.760176
Н	4.376974	-6.204898	0.393743
С	1.937120	2.839043	0.148731
С	2.054962	4.040735	0.349168
С	1.390366	6.211568	2.359826
Н	0.348040	5.878266	2.417768
Н	1.412448	7.287059	2.576954
Н	1.948980	5.697861	3.150419
С	1.118579	6.730438	-0.685447
Н	1.536221	6.547658	-1.682260
Н	1.110505	7.815088	-0.519618
Н	0.078642	6.384179	-0.688867
С	3.930167	6.416531	0.586434
Н	4.535641	5.910939	1.347570
Н	4.006798	7.496721	0.762803
Н	4.377000	6.205713	-0.392029

S7. Crystal Data

Table S4. Crystal data of **5a** (CCDC: 1058255)

Identification code	mx3431_sq
Empirical formula	$C_{46}H_{42}Br_2O_2Si_2$

Formula weight	842.79	
Temperature	173.1500 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 11.917(3) Å	a= 72.399(15)°.
	b = 15.959(4) Å	b= 76.618(15)°.
	c = 25.657(5) Å	g = 71.646(12)°.
Volume	4364.2(17) Å ³	
Ζ	4	
Density (calculated)	1.283 Mg/m ³	
Absorption coefficient	1.947 mm ⁻¹	
F(000)	1728	
Crystal size	0.41 x 0.36 x 0.05 mm ³	
Theta range for data collection	1.433 to 27.483°.	
Index ranges	-15<=h<=15, -20<=k<=15, -	
	33<=l<=33	
Reflections collected	50951	
Independent reflections	19925 [R(int) = 0.0768]	
Completeness to theta = 26.000°	99.8 %	
Absorption correction	Semi-empirical from	
	equivalents	
Max. and min. transmission	1.0000 and 0.5226	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	19925 / 0 / 953	
Goodness-of-fit on F^2	1.087	
Final R indices [I>2sigma(I)]	R1 = 0.0741, wR2 = 0.1773	
R indices (all data)	R1 = 0.0906, wR2 = 0.1898	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.100 and -0.648 e.Å ⁻³	

Table S5. Crystal data of **5c** (CCDC 1058256).

Identification code	mx3830	
	inx 5050	
Empirical formula	C ₄₉ H ₄₄ O ₃ Si ₂	
Formula weight	737.02	
Temperature	173.1500 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 11.361(5) Å	= 72.031(18)°.

	b = 12.402(5) Å	= 82.67(2)°.
	c = 15.056(5) Å	= 89.49(3)°.
Volume	2000.4(14) Å ³	
Ζ	2	
Density (calculated)	1.224 Mg/m ³	
Absorption coefficient	0.131 mm ⁻¹	
F(000)	780	
Crystal size	$0.26 \ge 0.24 \ge 0.04 \text{ mm}^3$	
Theta range for data collection	1.808 to 25.198°.	
Index ranges	-13<=h<=13, -14<=k<=14, -	
	18<=l<=18	
Reflections collected	15133	
Independent reflections	7149 [R(int) = 0.0843]	
Completeness to theta = 25.198°	99.2 %	
Absorption correction	Semi-empirical from	
	equivalents	
Max. and min. transmission	1.0000 and 0.5001	
Refinement method	Full-matrix least-squares on	
	F ²	
Data / restraints / parameters	7149 / 0 / 497	
Goodness-of-fit on F^2	1.114	
Final R indices [I>2sigma(I)]	R1 = 0.1175, wR2 = 0.3062	
R indices (all data)	R1 = 0.1480, wR2 = 0.3362	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.462 and -0.735 e.Å ⁻³	