Enantioselective alkynykation of benzo[e][1,2,3]-oxathiazine 2,2-dioxides by (R)-VAPOL-Zn complexes: Synthesis of chiral propargylic cyclic sulfamidates

Lode De Munck^a, Alicia Monleón^a, Carlos Vila^a, M. Carmen Muñoz^b, José R. Pedro^{a*}

^{*a*} Departament de Química Orgànica, Facultat de Química, Universitat de València, C/Dr. Moliner, 50, E-46100 Burjassot (València), Spain

^b Departament de Física Aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 València (Spain)

SUPPORTING INFORMATION

Table of Contents:

General Experimental Methods	.S2
Typical procedures and characterization data for compounds 1	.S3
Typical procedures and characterization data for compounds 3	.S4
Procedures and characterization data for compounds 4 and 5	.S12
¹ H and ¹³ C NMR spectra	.S14
Chiral analysis chromatograms	.S44
X-Ray data for compound 3fd	.S69
References	.S70

General Experimental Methods

Reactions were carried out under nitrogen in test tubes or round bottom flasks oven-dried overnight at 120 °C. Dicloromethane, 1,2-dichloroethane and toluene were distilled from CaH₂. THF was distilled from sodium benzophenone ketyl. Reactions were monitored by TLC analysis using Merck Silica Gel 60 F-254 thin layer plates. Flash column chromatography was performed on Merck silica gel 60, 0.040-0.063 mm. Melting points were determined in capillary tubes. NMR spectra were run at 300 MHz for ¹H and at 75 MHz for ¹³C NMR using residual non-deuterated solvent as internal standard (CHCl₃: δ 7.26 and 77.0 ppm). Chemical shifts are given in ppm. The carbon type was determined by DEPT experiments. High resolution mass spectra (ESI) were recorded on a AB SCIEX Triple TOFTM spectrometer equipped with an electrospray source with a capillary voltage of 4.5 kV(ESI). Specific optical rotations were measured using sodium light (D line 589 nm). Chiral HPLC analyses were performed in a chromatograph equipped with a UV diode-array detector using chiral stationary columns from Daicel. Commercially available alkynes were used as received.

Typical procedures and characterization data for compounds 1

Benzoxathiazine 2,2-dioxides were prepared from the corresponding salicylaldehyde as described in the literature.¹ Products **1c**, **1d** and **1e** were not described in the literature:

8-methylbenzo-[*e*][1,2,3]oxathiazine 2,2-dioxide (1c)

White solid; mp 89.5-90.9 °C; ¹H NMR (300 MHz, CDCl₃) δ = 8.56 (s, 1H), 7.58 – 7.36 (m, 2H), 7.21 (t, *J* = 7.6 Hz, 1H), 2.25 (t, *J* = 0.8 Hz, 3H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ = 168.2 (CH), 152.1 (C), 139.1 (CH), 128.6 (CH), 127.98 (C), 125.5 (CH), 114.9 (C), 14.2 (CH₃) ppm; HRMS (ESI) m/z: 198.0212 [M + H] ⁺, C₈H₈NO₃S requires 198.0225.

6-(*tert*-butyl)benzo-[*e*][1,2,3]oxathiazine 2,2-dioxide (1d)

Yellow solid; mp 56.5-59.2 °; ¹H NMR (300 MHz, CDCl₃) δ = 8.60 (d, *J* = 0.6 Hz, 1H), 7.71 (dd, *J* = 8.7, 2.4 Hz, 1H), 7.59 (d, *J* = 2.5 Hz, 1H), 7.19 – 7.07 (m, 1H), 1.28 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ = 168.7 (CH), 152.5 (C), 150.2 (C), 135.7 (CH), 127.8 (CH), 118.5 (CH), 115.3 (C), 35.2 (C), 31.5 (CH₃) ppm; HRMS (ESI) m/z: 240.0678 [M + H] ⁺, C₁₁H₁₄NO₃S requires 240.0694.

8-(*tert*-butyl)benzo-[*e*][1,2,3]oxathiazine 2,2-dioxide (1e)

White solid; ¹H NMR (300 MHz, CDCl₃) $\delta = 8.56$ (s, 1H), 7.65 (dd, J = 7.9, 1.7 Hz, 1H), 7.45 (dd, J = 7.6, 1.6 Hz, 1H), 7.27 (d, J = 7.7 Hz, 1H), 1.35 (s, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃) $\delta = 169.3$ (CH), 153.5 (C), 140.7 (C), 135.8 (CH), 129.7 (CH), 126.4 (CH), 116.6 (C), 35.4 (C), 30.1 (CH₃) ppm; HRMS (ESI) m/z: 240.0682 [M + H] ⁺, C₁₁H₁₄NO₃S requires

240.0694.

Typical procedures and characterization data for compounds 3, 4 and 5

General procedure for the enantioselective alkynylation reaction

A 2 M Me₂Zn solution in toluene (0.18 mL, 0.360 mmol) was added dropwise on a solution of L7 (9.7 mg, 0.018 mmol) and alkyne 2 (0.360 mmol) in dichloroethane (0.3 mL) at room temperature under nitrogen. After stirring 1 hour, a solution of benzoxathiazine 2,2-dioxide 1 (0.090 mmol) in dichloroethane (1.0 mL) was added via syringe. The reaction was stirred until the reaction was complete (TLC). The reaction mixture was quenched with NH₄Cl (10 mL), extracted with dichloromethane (3x15 mL), washed with brine (10 mL), dried over MgSO₄ and dried under reduced pressure. Purification by flash chromatography on silica gel afforded compound 3.

General procedure for the racemic alkynylation reaction A 1 M Et₂Zn solution in hexane (0.30 mL, 0.300 mmol) was added dropwise on a solution of racemic BINOL (5.7 mg, 0.020 mmol) and alkyne **2** (0.720 mmol) in dichloroethane (0.4 mL) at room temperature under nitrogen. After stirring 1 hour, a solution of benzoxathiazine 2,2-dioxide **1** (0.100 mmol) in dichloroethane (1.0 mL) was added via syringe. The reaction was stirred until the reaction was complete (TLC). The reaction mixture was quenched with NH₄Cl (10 mL), extracted with dichloromethane (3x15 mL), washed with brine (10 mL), dried over MgSO₄ and dried under reduced pressure. Purification by flash chromatography on silica gel afforded compound **3**.

(-)-4-(phenylethynyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3aa)

The enantiomeric excess (82%) was determined by chiral HPLC (Chiralpak ODH), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 15.82$ min, minor enantiomer $t_r = 13.68$ min.

3aa Orange oil; $[\alpha]_D^{20} = -32.6 (c 1.0, CHCl_3, 82\% ee)$; ¹H NMR (**300** MHz, **CDCl_3**) δ 7.61 (ddd, J = 7.8, 1.6, 1.1 Hz, 1H), 7.50 (dd, J = 7.8, 1.8 Hz, 2H), 7.44-7.33 (m, 4H), 7.28 (dd, J = 7.6, 1.3 Hz, 1H), 7.05 (dd, J = 8.2, 1.3 Hz, 1H), 5.94 (d, J = 10.0 Hz, 1H), 4.93 (d, J = 9.6 Hz, 1H); ¹³C NMR (**75.5** MHz, CDCl_3) δ 150.6 (C), 132 (CH), 130.4 (CH), 129.5 (CH), 128.5 (CH), 127.6 (CH), 125.6 (CH), 121.1 (C), 119.6 (C), 118.7 (CH), 87.7 (C), 82.3 (C), 50.3 (CH); IR 3258, 2234, 1579, 1421, 1365, 1199, 1160, 1099, 880, 780, 685 cm⁻¹; HRMS (ESI) m/z: 284.0376 [M - H]⁻⁻, C₁₅H₁₀NO₃S requires 284.0381.

(-)-6-methyl-4-(phenylethynyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3ba)

The enantiomeric excess (87%) was determined by chiral HPLC (Chiralpak IC), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 16.46$ min, minor enantiomer $t_r = 25.98$ min.

^{3ba} Orange oil; $[\alpha]_D^{20}$ -76.73 (*c* 1.0, CHCl₃, 87% *ee*); ¹H NMR (300 MHz, CDCl₃) δ 7.52-7.49 (m, 2H), 7.41-7.33 (m, 4H), 7.19-7.15 (m, 1H), 6.94 (d, *J* = 8.4 Hz,

1H), 5.90 (d, J = 9.9 Hz, 1H), 4.88 (d, J = 9.9 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ 148.5 (C), 135.5 (C), 132.0 (CH), 130.9 (CH), 129.5 (CH), 128.52 (CH), 127.7 (CH), 121.1 (C), 119.1 (C), 118.5 (CH), 87.6 (C), 82.5 (C), 50.3 (CH), 20.8 (CH₃); IR 3256, 2920, 2204, 1524, 1488, 1377, 1352, 1199, 1174, 1096, 1032, 864, 764, 680 cm⁻¹; HRMS (ESI) m/z: 298.0532 [M - H]⁻, C₁₆H₁₂NO₃S requires 298.0538.

(-)-8-methyl-4-(phenylethynyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3ca)

The enantiomeric excess (73%) was determined by chiral HPLC (Chiralpak IC), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 12.22$ min, minor enantiomer $t_r = 21.42$ min.

Orange oil; $[\alpha]_D^{20}$ -6.00 (*c* 1.0, CHCl₃, 73% *ee*); ¹H NMR (300 MHz,

CDCl₃) $\delta 7.51 - 7.48$ (m, 2H), 7.48 - 7.42 (m, 1H), 7.41 - 7.32 (m, 3H), 7.26 - 7.22 (m, 1H), 7.15 (t, J = 7.6 Hz, 1H), 5.92 (d, J = 10.2 Hz, 1H), 4.84 (d, J = 10.0 Hz, 1H), 3.30 (s, 3H); ¹³**C NMR** (**75.5 MHz**, **CDCl**₃) $\delta 149.1$ (C), 131.9 (CH), 131.8 (C), 129.4 (CH), 128.5 (CH), 128.1 (C), 125.0 (CH), 121.1 (C), 119.5 (CH), 87.8 (C), 82.6 (C), 50.3 (CH), 15.4 (CH₃); **IR** 3261, 2920, 2204, 1582, 1421, 1377, 1341, 1202, 1146, 863, 827, 705, 688 cm⁻¹; **HRMS** (ESI) m/z: 298.0545 [M - H]⁻, $C_{16}H_{12}NO_{3}S$ requires 298.0538.

(-)-6-(tert-butyl)-4-(phenylethynyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2dioxide (3da)

The enantiomeric excess (56%) was determined by chiral HPLC (Chiralpak IC), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 8.16$ min, minor enantiomer $t_r = 9.15$ min.

Brown oil; $[\alpha]_D^{20}$ -77.26 (*c* 1.0, CHCl₃, 56% *ee*); ¹H NMR (300 MHz, CDCl₃) δ 7.61 (dd, J = 2.4, 1.1, 1H), 7.55-7.45 (m, 2H), 7.43-7.30 (m, 4H), 6.98 (d, J = 8.7 Hz, 1H), 5.93 (d, J = 10 Hz, 1H), 4.83 (d, J = 10,0 Hz, 1H), 1.34 (s, 9H); ¹³C NMR (75.5 MHz, CDCl₃) δ 148.8 (C), 148.3 (C), 131.9 (CH), 129.4 (CH), 128.6 (CH), 127.4 (CH), 124.3 (CH), 121.2 (C), 118.7 (C), 118.1 (CH), 87.7 (C), 82.7 (C), 50.51 (CH), 34.6 (C), 31.3 (CH₃); **IR** 3264, 2948, 2201, 1873, 1488, 1424, 1365, 1210, 1166, 1116, 1093, 845, 780, 685 cm⁻¹; **HRMS** (ESI) m/z: 340.1007 [M - H] ⁻, C₁₉H₁₈NO₃S requires 340.1007.

(-)-8-(tert-butyl)-4-(phenylethynyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2dioxide (3ea)

The enantiomeric excess (81%) was determined by chiral HPLC (Chiralpak OD-H), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 10.08$ min, minor enantiomer $t_r = 8.42$ min.

Mp 119 °C; $[α]_D^{20}$ +8.08 (*c* 1.0, CHCl₃, 81% *ee*); ¹H NMR (300 MHz, CDCl₃) δ 7.52-7.48 (m, 3H), 7.42-7.34 (m, 4H), 7.20 (t, *J* = 7.8Hz, 1H), 5.90 (d, *J* = 10.1Hz, 1H), 4.86 (d, *J* = 10.1Hz, 1H), 1.44 (s, 9H); ¹³C NMR (75.5 MHz, CDCl₃) δ 149,9 (C), 140.1 (C), 131.9 (CH), 129.4 (CH), 128.5 (CH), 128.0 (CH), 125.4 (CH), 125.1 (CH), 121.3 (C), 121.2 (C), 87.8 (C), 82.6 (C), 50.1 (CH), 35.0 (C), 30.0 (CH₃); **IR** 3217, 2961, 2249, 2208, 1596, 1485, 1427, 1391, 1357, 1182, 1154, 1093, 1032, 872, 733, 689 cm⁻¹; **HRMS** (ESI) m/z: 342.1159 [M + H] ⁺, C₁₉H₂₀NO₃S requires 342.1164.

(-)-6-bromo-4-(phenylethynyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3fa)

The enantiomeric excess (80%) was determined by chiral HPLC (Chiralpak AD-H), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 10.63$ min, minor enantiomer $t_r = 12.47$ min.

^{3fa} Aceite naranja; $[\alpha]_D^{20}$ -114.82 (*c* 1.0, CHCl₃, 80% *ee*); ¹H NMR (300 MHz, CDCl₃) δ 7.73 (dd, J = 2.4, 1.1 Hz, 1H), 7.58-7.46 (m, 3H), 7.45-7.33 (m, 3H), 6.94 (d, J = 8.8Hz, 1H), 5.91 (d, J = 10.0 Hz, 1H), 4.94 (d, J = 10.0 Hz, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 149.6 (C), 133.4 (CH), 132.1 (CH), 130.4 (CH), 129.7 (CH), 128.6 (CH), 121.5 (C), 120.7 (C), 120.4 (CH), 118.3 (C), 88.4 (C), 81.4 (C), 49.9 (CH); IR 3276, 2914, 2237, 2196, 1596, 1427, 1366, 1210, 1185, 1107, 874, 753, 686 cm⁻¹; HRMS (ESI) m/z: 361.9472 [M - H]⁻, C₁₅H₉BrNO₃S requires 361.9487.

(-)-4-((4-methoxyphenyl)ethynyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3ab)

The enantiomeric excess (83%) was determined by chiral HPLC (Chiralpak IC), hexane-iPrOH 90:10, 1 mL/min, major enantiomer t_r = 23.85 min, minor enantiomer t_r = 32.73 min.

^{3ab} Yellow oil; $[\alpha]_D^{20}$ -26.13 (*c* 1.0, CHCl₃, 83% *ee*); ¹H NMR (300 MHz, CDCl₃) δ 7.61 (dt, J = 7.9, 1.4 Hz, 1H), 7.48 – 7.37 (m, 2H), 7.37 (ddd, J = 8.3, 1.7, 0.8Hz, 1H), 7.31 (td, J = 7.5, 1.2 Hz, 1H), 7.05 (dd, J = 8.2, 1.2 Hz, 1H), 6.87 (dt, J = 9.2, 2.7 Hz, 2H), 5.92 (d, J = 10.0 Hz, 1H), 4.85 (d, J = 10.0 Hz, 1H), 3.83 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ 160.5 (C), 150.6 (C), 133.5 (CH), 130.3 (CH), 127.6 (CH), 125.6 (CH), 119.9 (C), 118.7 (CH), 114.2 (CH), 113.0 (C), 87.9 (C), 81.1 (C), 55.35 (CH), 50.40 (CH₃); IR 3256, 2925, 2234, 2181, 1596, 1507, 1418, 1371, 1246, 1160, 1093, 1021, 758 cm⁻¹; HRMS (ESI) m/z: 316.0638 [M + H] ⁺, C₁₆H₁₄NO4S requires 316.0644.

(-)-4-((4-methoxyphenyl)ethynyl)-6-methyl-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3bb)

The enantiomeric excess (87%) was determined by chiral HPLC (Chiralpak IC), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 29.96$ min, minor enantiomer $t_r = 40.36$ min.

^{3bb} Yellow oil; $[\alpha]_D^{20}$ -47.60 (*c* 1.0, CHCl₃, 87% *ee*); ¹H NMR (300 MHz, CDCl₃) δ 7.47 – 7.39 (m, 2H), 7.36 (dt, *J* = 2.1, 0.9 Hz, 1H), 7.17 (ddt, *J* = 8.4, 2.2, 0.8 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 6.92 – 6.83 (m, 1H), 5.88 (d, *J* = 9.9 Hz, 1H), 4.78 (d, *J* = 9.9 Hz, 1H), 3.83 (s, 3H), 2.37 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ 160.5 (C), 148.5 (C), 135.5 (C), 133.6 (CH), 130.9 (CH), 127.7 (CH), 119.3 (C), 118.4 (CH), 114.2 (CH), 113.1 (C), 87.6 (C), 81.3 (C), 55.4 (CH₃), 50.4 (CH), 20.8 (CH₃); IR 3253, 2920, 2184, 1604, 1510, 1426, 1363, 1247, 1169, 1102, 824, 752, 690 cm⁻¹; HRMS (ESI) m/z: 330.0793 [M + H] ⁺, C₁₇H₁₆NO₄S requires 330.0800.

(-)-4-((2-methoxyphenyl)ethynyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3ac)

The enantiomeric excess (65%) was determined by chiral HPLC (Chiralpak IC), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 19.21$ min, minor enantiomer $t_r = 28.89$ min.

^{3ac} Mp 104 °C; $[\alpha]_D^{20}$ -25.47 (*c* 1.0, CHCl₃, 65% *ee*); ¹H NMR (300 MHz, **CDCl**₃) δ 7.69 (dt, J = 7.7, 1.5 Hz, 1H), 7.43 (dd, J = 7.5, 1.7 Hz, 1H), 7.42 – 7.34 (m, 2H), 7.26 (td, J = 7.5, 1.2 Hz, 1H), 7.04 (dd, J = 8.2, 1.2 Hz, 1H), 6.96 – 6.90 (m, 2H), 5.99 (d, J = 10.1 Hz, 1H), 4.91 (d, J = 10.1 Hz, 1 H), 3.89 (s, 3H); ¹³C NMR (75.5 MHz, **CDCl**₃) δ 160.5 (C), 150.6 (C), 133.7 (CH), 130.9 (CH), 130.2 (CH), 127.8 (CH), 125.5 (CH), 120.5 (CH), 119.8 (C), 118.5 (CH), 110.8 (CH), 110.3 (C), 86.2 (C), 84.2 (C), 55.7 (CH₃), 50.5 (CH); **IR** 3203, 2902, 2237, 2193, 1590, 1485, 1443, 1349, 1318, 1279, 1252, 1185, 1149, 1116, 932, 874, 771 cm⁻¹; **HRMS** (ESI) m/z: 316.0638 [M + H] ⁺, C₁₆H₁₄NO4S requires 316.0644.

(-)-4-((2-methoxyphenyl)ethynyl)-6-methyl-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3bc)

The enantiomeric excess (68%) was determined by chiral HPLC (Chiralpak IC), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 25.23$ min, minor enantiomer $t_r = 41.05$ min.

Mp 158 °C; $[\alpha]_D^{20}$ -58.26 (*c* 1.0, CHCl₃, 68% *ee*); ¹H NMR (300 MHz, CDCl₃) δ 7.48 – 7.43 (m, 2H), 7.40 – 7.32 (m, 1H), 7.19 – 7.15 (m, 1H),

6.98 - 6.88 (m, 3H), 5.94 (d, J = 10.2 Hz, 1H), 4.85 (d, J = 10.0 Hz, 1H), 3.90 (s, 3H), 2.37 (s, 3H); ¹³**C NMR** (**75.5 MHz**, **CDCl**₃) $\delta 160.6$ (C), 148.5 (C), 135.5 (C), 133.7 (CH), 130.9 (CH), 130.8 (CH), 129.0 (CH), 120.5 (CH), 119.4 (C), 118.3 (CH), 110.7 (CH), 110.4 (C), 86.3 (C), 84.2 (C), 55.7 (CH₃), 50.5 (CH), 20.9 (CH₃); **IR** 3222, 2845, 2234,

2193, 1565, 1482, 1460, 1426, 1349, 1174, 1157, 1035, 785, 680 cm⁻¹; **HRMS** (ESI) m/z: 330.0804 [M + H] ⁺, C₁₇H₁₆NO₄S requires 330.0800.

(-)-4-((3,5-dimethoxyphenyl)ethynyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2dioxide (3ad)

The enantiomeric excess (80%) was determined by chiral HPLC (Chiralpak ADH), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 12.32$ min, minor enantiomer $t_r = 19.33$ min.

^{3ad} Mp 127 °C; $[\alpha]_D^{20}$ -25.50 (*c* 1.0, CHCl₃, 80% *ee*); ¹H NMR (300 MHz, CDCl₃) δ 7.61 – 7.57 (m, 1H), 7.42 – 7.36 (m, 1H), 7.27 (td, *J* = 7.6, 1.3 Hz, 1H), 7.05 (dd, *J* = 8.1, 1.3 Hz, 1H), 6.63 (d, *J* = 2.3 Hz, 2H), 6.48 (dt, *J* = 10.1, 2.3 Hz, 1H), 5.92 (d, *J* = 9.87 Hz, 1H), 4.96 (d, *J* = 9.9 Hz, 1H), 3.79 (s, 6H); ¹³C NMR (75.5 MHz, CDCl₃) δ 160.6 (C), 150.5 (C), 130.4 (CH), 127.6 (CH), 125.6 (CH), 122.3 (C), 119.5 (C), 118.7 (CH), 109.8 (CH), 102.6 (CH), 87.6 (C), 81.8 (C), 55.5 (CH₃), 50.2 (CH); IR 3233, 2945, 2248, 2217, 1576, 1415, 1388, 1357, 1191, 1152, 1071, 932, 846, 746, 672 cm⁻¹; HRMS (ESI) m/z: 346.0757 [M + H] ⁺, C₁₇H₁₆NO₅S requires 346.0749.

(-)-4-((3,5-dimethoxyphenyl)ethynyl)-6-methyl-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3bd)

The enantiomeric excess (82%) was determined by chiral HPLC (Chiralpak ADH), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 12.10$ min, minor enantiomer $t_r = 19.93$ min.

^{bMe} Mp 135 °C; $[\alpha]_D^{20}$ -65.18 (*c* 1.0, CHCl₃, 82% *ee*); ¹H NMR (300 MHz, CDCl₃) δ 7.36 – 7.34 (m, 1H), 7.20 – 7.15 (m, 1H), 6.93 (d, *J* = 8.4 Hz, 1H), 6.64 (d, *J* = 2.3 Hz, 2H), 6.50 (t, *J* = 2.3 Hz, 1H), 5.87 (d, *J* = 10.0 Hz, 1H), 4.91 (d, *J* = 9.9 Hz, 1H), 3.79 (s, 6H), 2.37 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ 160.6 (C), 148.4 (C), 135.5 (C), 130.9 (C), 127.6 (CH), 122.4 (C), 119.0 (C), 118.4 (CH), 109.8 (CH), 102.6 (CH), 87.4 (C), 82.0 (C), 55.5 (CH₃), 50.2 (CH), 20.8 (CH₃); IR 3253, 2950, 2245, 2221, 1587, 1424, 1365, 1340, 1204, 1177, 1149, 1102, 1038, 838, 799, 677 cm⁻¹; HRMS (ESI) m/z: 360.0905 [M + H] ⁺, C₁₈H₁₈NO₅S requires 360.0906.

(-)-6-bromo-4-((3,5-dimethoxyphenyl)ethynyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3fd)

The enantiomeric excess (82%) (96% ee after crystalization) was determined by chiral HPLC (Chiralpak ODH), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 22.01$ min, minor enantiomer $t_r = 39.14$ min.

Orange oil; $[\alpha]_D^{20}$ -109.36 (*c* 1.0, CHCl₃, 82% *ee*); **NMR** ¹**H** (**300 MHz**, **CDCl₃**) δ 7.71 (dd, J = 2.5, 1.2 Hz, 1H), 7.49 (dd, J = 8.8, 2.4 Hz, 1H), 6.93 (d, J = 9.1 Hz, 1H), 6.64 (d, J = 2.2 Hz, 2H), 6.51 (t, J = 2.3 Hz, 1H), 5.88 (d, J = 7.0 Hz, 1H), 4.97 (d, J = 8.0 Hz, 1H), 3.80 (s, 6H); ¹³**C** (**75,5 MHz, CDCl₃**) δ 160.6 (C), 149.6 (C), 133.4 (CH), 130.4 (CH), 121.9 (C), 121.4 (C), 120.4 (CH), 118.3 (C), 109.9 (CH), 102.8 (CH), 88.3 (C), 81.0 (C), 55.5 (CH₃), 49.9 (CH); **HRMS** (ESI) m/z: 423.9851 [M + H] ⁺, C₁₇H₁₅BrNO₅S requires 422.9854.

(-)-4-((4-chlorophenyl)ethynyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3ae)

The enantiomeric excess (81%) was determined by chiral HPLC (Chiralpak IC), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 11.95$ min, minor enantiomer $t_r = 19.02$ min.

^{3ae} Mp 93 °C; $[\alpha]_D^{20}$ -26.41 (*c* 1.0, CHCl₃, 81% *ee*); ¹H NMR (300 MHz, CDCl₃) δ 7.57 (dt, J = 7.8, 1.2 Hz, 1H), 7.45 – 7.39 (m, 3H), 7.37 – 7.32 (m, 2H), 7.27 (td, J = 7.8, 1.5 Hz, 1H), 7.05 (dd, J = 8.2, 1.2 Hz, 1H), 5.93 (d, J = 9.9 Hz, 1H), 4.98 (d, J = 9.9 Hz, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 150.5 (C), 135.7 (C), 133.2 (CH), 130.4 (CH), 128.9 (CH), 127.5 (CH), 125.6 (CH), 119.5 (C), 119.4 (C), 118.8 (CH), 86.5 (C), 83.4 (C), 50.2 (CH); IR 3226, 2920, 2234, 2206, 1525, 1485, 1421, 1371, 1185, 1160, 1088, 941, 855, 655 cm⁻¹; HRMS (ESI) m/z: 317.9993 [M - H]⁻, C₁₅H₉ClNO₃S requires 317.9992.

(-)-4-((4-chlorophenyl)ethynyl)-6-methyl-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3be)

The enantiomeric excess (86%) was determined by chiral HPLC (Chiralpak IC), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 14.06$ min, minor enantiomer $t_r = 20.77$ min.

3be Brown oil; $[α]_D^{20}$ -46.06 (*c* 1.0, CHCl₃, 86% *ee*); ¹**H** NMR (300 MHz, CDCl₃) δ 7.46 – 7.41 (m, 2H), 7.36 – 7.33 (m, 3H), 7.20 – 7.16 (m, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 5.88 (d, *J* = 9.6 Hz, 1H), 4.82 (d, *J* = 9.8 Hz, 1H), 2.37 (s, 3H); ¹³C NMR (75.5 MHz, CDCl₃) δ148.4 (C), 135.7 (C), 135.6 (C), 133.2 (CH), 131.0 (CH), 128.9 (CH), 127.6 (CH), 119.6 (C), 118.9 (C), 118.6 (CH), 86.4 (C), 83.6 (C), 50.2 (CH), 20.9 (C); IR 3256, 2926, 2206, 1530, 1485, 1418, 1360, 1177, 1105, 1015, 852, 824, 780 cm⁻¹; HRMS (ESI) m/z: 332.0141 [M - H]⁻, C₁₆H₁₁ClNO₃S requires 332.0148.

(-)-4-(thiophen-2-ylethynyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3af)

The enantiomeric excess (79%) was determined by chiral HPLC (Chiralpak IC), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 8.82$ min, minor enantiomer $t_r = 11.89$ min.

^{3af} Brown oil; $[\alpha]_D^{20} = -13.4$ (*c* 1.0, CHCl₃, 79% *ee*); ¹H NMR (300 MHz, CDCl₃) δ 7.58 (dt, J = 7.8, 1.4 Hz, 1H), 7.46 – 7.34 (m, 1H), 7.35 (dd, J = 5.2, 1.2 Hz,

1H), 7.32 (dd, J = 3.6, 1.2 Hz, 1H), 7.27 (td, J = 7.6, 1.3 Hz, 1H), 7.06 (dd, J = 8.2, 1.3 Hz, 1H), 7.02 (dd, J = 5.1, 3.7 Hz, 1H), 5.96 (d, J = 9.8 Hz, 1H), 4.93 (d, J = 9.9 Hz, 1H); ¹³C NMR (75.5 MHz, CDCl₃) δ 150.5 (C), 133.7 (CH), 130.4 (CH), 128.7 (CH), 127.6 (CH), 127.2 (C), 125.7 (CH), 120.7 (C), 119.3 (C), 118.8 (CH), 86.2 (C), 81.2 (C), 50.5 (CH); IR 3256, 3097, 2228, 2182, 1579, 1418, 1369, 1191, 1163, 1093, 1021, 877, 752 cm⁻¹; HRMS (ESI) m/z: 289.9946 [M - H]⁻, C₁₃H₈NO₃S₂ requires 289.9946.

(-)-6-methyl-4-(thiophen-2-ylethynyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3bf)

The enantiomeric excess (86%) was determined by chiral HPLC (Chiralpak IC), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 17.86$ min, minor enantiomer $t_r = 24.74$ min.

^{3bf} Brown oil; $[\alpha]_D^{20}$ -24.1 (*c* 1.0, CHCl₃, 86% *ee*); ¹H NMR (**300** MHz, **CDCl₃**) δ 7.36 (dd, J = 5.1, 1.2 Hz, 1H), 7.33 (dt, J = 3.7, 1.2 Hz, 1H), 7.20 – 7.16 (m, 1H), 7.03 (dd, J = 5.1, 3.7 Hz, 1H), 6.94 (d, J = 8.4 Hz, 1H), 5.91 (Br s, 1H), 4.84 (br s, 1H), 2.37 (s, 3H); ¹³C NMR (**75.5** MHz, CDCl₃) δ 148.4 (C), 135.6 (C), 133.7 (CH), 131.0 (CH), 128.6 (CH), 127.6 (CH), 127.2 (CH), 120.9 (C), 118.8 (C), 118.5 (CH), 86.4 (C), 81.0 (C), 50.4 (CH), 20.8 (CH₃); **IR** 3256, 2978, 2229, 2184, 1488, 1421, 1365, 1166, 1105, 1035, 846, 791, 652 cm⁻¹; **HRMS** (ESI) m/z: 304.0107 [M - H]⁻, C₁₄H₁₀NO₃S₂ requires 304.0102.

(-)-4-(4-phenylbut-1-yn-1-yl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3ag)

The enantiomeric excess (60%) was determined by chiral HPLC (Chiralpak IC), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 14.04$ min, minor enantiomer $t_r = 16.72$ min.

^{3ag} Brown oil; $[\alpha]_D^{20}$ -30.34 (*c* 1.0, CHCl₃, 60% *ee*); ¹H NMR (300 MHz, **CDCl**₃) δ 7.37 – 7.27 (m, 4H), 7.24 – 7.15 (m, 4H), 7.00 (dd, *J* = 8.2, 1.1 Hz, 1H), 5.64 (d, *J* = 8.2 Hz, 1H), 4.64 (d, 8.3 Hz, 1H), 2.88 (t, *J* = 7.3 Hz, 2H), 2.61 (td, *J* = 7.2, 2.2 Hz, 2H); ¹³C NMR (75.5 MHz, CDCl₃) δ 150.4 (C), 139.9 (C), 130.1 (C), 128.5 (CH), 127.6 (CH), 126.6 (CH), 125.4 (CH), 119.9 (C), 118.5 (CH), 88.1 (C), 74.9 (C), 49.9 (CH), 34.4 (CH₂), 20.7 (CH₂); **IR** 3275, 2928, 2245, 2226, 1576, 1421, 1396, 1360,1191, 1160, 1085, 1021, 871, 749, 699 cm⁻¹; **HRMS** (ESI) m/z: 312.0689 [M - H]⁻, C₁₇H₁₄NO₃S requires 312.0694.

(-)-6-methyl-4-(4-phenylbut-1-yn-1-yl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3bg)

The enantiomeric excess (65%) was determined by chiral HPLC (Chiralpak IC), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 16.53$ min, minor enantiomer $t_r = 19.80$ min.

Mp 84 °C; $[\alpha]_D^{20}$ -55.94 (*c* 1.0, CHCl₃, 65% *ee*); ¹H NMR (**300** MHz, CDCl₃) δ 7.35 – 7.29 (m, 2H), 7.27 – 7.21 (m, 3H), 7.15 – 7.11 (m, 2H), 6.89 (d, J = 9 Hz, 1H), 5.60 (d, J = 9.9 Hz, 1H), 4.57 (d, J = 10 Hz, 1H), 2.88 (t, J = 7.3 Hz, 2H), 2.61 (dt, J = 6.9, 2.4 Hz, 2H), 2.32 (s, 3H); ¹³C NMR (**75.5** MHz, CDCl₃) δ 148.3 (C), 140.0 (C), 135.3 (C), 130.7 (CH), 128.5 (CH), 127.7 (CH), 126.6 (CH), 119.4 (C), 118.3 (C), 87.9 (C), 75.0 (C), 49.9 (CH), 34.4 (CH₂), 20.81 (CH₂), 20.8 (C); IR 3259, 2925, 2235, 1404, 1352, 1207, 1179, 1143, 1099, 849, 749, 696 cm⁻¹; HRMS (ESI) m/z: 345.1262 [M + NH₄] +, C₁₈H₂₁N₂O₃S requires 345.1273.

(-)-4-(cyclopropylethynyl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3ah)

The enantiomeric excess (74%) was determined by chiral HPLC (Chiralpak ADH), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 9.49$ min, minor enantiomer $t_r = 11.12$ min.

Mp 85 °C; $[\alpha]_D^{20}$ -57.19 (*c* 1.0, CHCl₃, 74% *ee*); ¹H NMR (**300** MHz, **CDCl**₃) δ 7.50 (dt, J = 7.7, 1.2 Hz, 1H), 7.38 – 7.32 (m, 1H), 7.23 (td, J = 7.6, 1.4 Hz, 1H), 5.64 (d, J = 10.0 Hz, 1H), 4.70 (d, J = 9.9 Hz, 1H), 1.36 – 1.28 (m, 1H), 0.90 – 0.83 (m, 2H), 0.79 – 0.74 (m, 2H); ¹³C NMR (**75.5** MHz, CDCl₃) δ 150.5 (C), 130.1 (CH), 127.6 (CH), 125.4 (CH), 120.1 (C), 118.5 (CH), 92.1 (C), 68.9 (C), 50.0 (CH), 8.5 (CH₂), 8.4 (CH₂), 0.7 (CH); **IR** 3239, 2925, 2245, 2201, 1574, 1415, 1363, 1185, 1157, 1088, 885, 774, 647 cm⁻¹; **HRMS** (ESI) m/z: 248.0374 [M - H] ⁻, C₁₂H₁₀NO₃S requires 248.0381.

(-)-4-(cyclopropylethynyl)-6-methyl-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2dioxide (3bh)

The enantiomeric excess (78%) was determined by chiral HPLC (Chiralpak ADH), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 10.76$ min, minor enantiomer $t_r = 9.49$ min.

^{Me} **3bh** Orange oil; $[\alpha]_D^{20}$ -83.56 (*c* 1.0, CHCl₃, 78% *ee*). ¹**H MR** (**300 MHz**, **CDCl₃**) δ 7.26 (br s, 1H), 7.15 – 7.12 (m, 1H), 6.89 (d, *J* = 8.4 Hz, 1H), 5.59 (d, *J* = 9.9 Hz, 1H), 4.65 (d, *J* = 9.0 Hz, 1H), 2.36 (s, 3H), 1.36 – 1.31 (m, 1H), 0.90-0.8 (m, 2H), 0.80 - 0.74 (m, 2H). ¹³**C NMR** (**75.5 MHz**, **CDCl₃**) δ 148.4 (C), 135.3 (C), 130.7 (CH), 127.7 (CH), 119.6 (C), 118.3 (CH), 91.9 (C), 69.1 (C), 50.0 (CH), 20.81 (CH₃), 8.5 (CH₂), 8.4 (CH₂), 0.6 (CH). **IR** 3264, 2923, 2248, 2215, 1529, 1421, 1365, 1202, 1168, 1102, 846, 658 cm⁻¹; **HRMS** (ESI) m/z: 262.0523 [M - H]⁻, C₁₃H₁₂NO₃S requires 262.0538.

(-)-4-(3,3-dimethylbut-1-yn-1-yl)-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3ai)

The enantiomeric excess (79%) was determined by chiral HPLC (Chiralpak ADH), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 4.98$ min, minor enantiomer $t_r = 5.31$ min.

Orange oil; $[\alpha]_D^{20}$ -58.46 (*c* 1.0, CHCl₃, 79% *ee*); ¹H NMR (**300** MHz, CDCl₃) δ 7.49 (dt, J = 7.7, 1.6 Hz, 1H), 7.39 – 7.33 (m, 1H), 7.24 (dt, J = 7.5, 1.4 Hz, 1H), 7.01 (dd, J = 8.2, 1.2 Hz, 1H), 5.68 (d, J = 10.2 Hz, 1H), 4.67 (d, J = 10.1 Hz, 1H), 1.28 (s, 9H); ¹³C NMR (75.5 MHz, CDCl₃) δ 150.5 (C), 130.1 (CH), 127.5 (CH), 125.5 (CH), 120.3 (C), 118.5 (CH), 97.2 (C), 72.4 (C), 49.9 (CH), 30.6 (CH₃), 27.6 (C); IR 3259, 2967, 2240, 2212, 1418, 1369, 1193, 1160, 1071, 880, 752 cm⁻¹; HRMS (ESI) m/z: 264.0693 [M - H] ⁻, C₁₃H₁₅NO₃S requires 264.0694.

(-)-4-(3,3-dimethylbut-1-yn-1-yl)-6-methyl-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (3bi)

The enantiomeric excess (86%) was determined by chiral HPLC (Chiralpak ADH), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 4.70$ min, minor enantiomer $t_r = 5.33$ min.

^{3bi} Mp 103 °C; $[\alpha]_D^{20}$ -93.85 (*c* 1.0, CHCl₃, 86% *ee*); ¹H NMR (300 MHz, CDCl₃) δ 7.27 – 7.25 (m, 1H), 7.14 – 7.12 (m, 1H), 6.90 (d, *J* = 8.4 Hz, 1H), 5.63 (d, *J* = 10.2 Hz, 1H), 4.81 (d, *J* = 10.2 Hz, 1H), 2.36 (s, 3H), 1.28 (s, 9H); ¹³C NMR (75.5 MHz, CDCl₃) δ 148.4 (C), 135.3 (C), 130.7 (CH), 127.9 (CH), 119.8 (C), 118.2 (CH), 97.0 (C), 72.6 (C), 49.8 (CH), 30.6 (CH₃), 27.6 (C), 20.9 (CH₃); IR 3256, 2967, 2242, 2220, 1492, 1410, 1371, 1202, 1177, 1141, 1081, 863, 688 cm⁻¹; HRMS (ESI) m/z: 278.0842 [M - H] ⁻, C₁₄H₁₆NO₃S requires 278.0851.

Procedures and characterization data for compounds 4 and 5

(-)-4-phenethyl-3,4-dihydrobenzo[e][1,2,3]oxathiazine 2,2-dioxide (4)

A solution of **3aa** (23.09mg, 0.081 mmol) in absolute EtOH (7.5ml) is stirred under H_2 in the presence of Pd/CaCO₃ (5%) (10.5 mg) during 1h. Afterwards, the mixture is filtered over silica gel using EtOAc as eluent, and the solvent is removed under reduced pressure. Purification by flash chromatography on silica gel afforded compound **4** (98%).

The enantiomeric excess (80%) was determined by chiral HPLC (Chiralpak ADH), hexane-iPrOH 80:20, 1 mL/min, major enantiomer $t_r = 10.55$ min, minor enantiomer $t_r = 9.01$ min.

Orange oil; $[\alpha]_D{}^{20}$ –33.7 (*c* 1.0, CHCl₃, 80% *ee*); **NMR** ¹**H** (**300 MHz, CDCl₃**) 87.36 (m, 3H), 7.26-7.23 (m, 3H), 7.18-7.16 (m, 2H), 7.02-6.99 (m, 1H), 4.73-4.64 (m, 2H), 2.97 (ddd, *J* = 13.5, 7.6, 5.7 Hz, 1H), 2.81 (dt, *J* = 13.9, 8.3 Hz, 1H), 2.42-2.34 (m, 2H); ¹³**C** (**75,5 MHz, CDCl₃**) 8151.18 (C), 140.3 (C), 129.4 (CH), 128.8 (CH), 128.5 (CH), 126.5 (CH), 126.3 (CH), 125.3 (CH), 122.5 (C), 118.9 (CH), 56.6 (CH), 35.6 (CH), 31.3 (CH); **HRMS** (ESI) m/z: 307.1113 [M + NH₄] ⁺, C₁₅H₁₉N₂O₃S requires 307.1116.

tert-butyl (-)-(1-(2-hydroxyphenyl)-3-phenylpropyl)carbamate (5)

To a solution of the cyclic sulfamate 4 (0.08 mmol, 23 mg) in THF (1 ml), LiAlH₄ (1.0 M in THF, 3,3 equivalents, 0.264 mmol, 0.26 ml) was added dropwise at r.t. over 4 min. The mixture was heated to 60°C for 2,5 hours, allowed to cool down to r.t., and then

cooled with an ice bath. The reaction was quenched with EtOAc (1 ml), followed by the addition of EtOH (1 ml) and H₂O (1 ml). To the resulting turbid mixture Boc₂O (3 equivalents, 52 mg, 0.24 mmol) was added in one portion and the resulting mixture was stirred at r.t. for 1 hour. The mixture was diluted with EtOAc (15 ml) and acidified with aq 2 M HCl until the aqueous layer became clear. The aqueous layer was then separated and extracted with EtOAc (2 x 15 ml). The combined organic layers were dried (MgSO₄), filtered, and concentrated in vacuo. Purification of the residue by flash chromatography afforded compound **5**.²

OH NHBoc

The enantiomeric excess (80%) was determined by chiral HPLC (Chiralpak ADH), hexane-iPrOH 90:10, 1 mL/min, major enantiomer $t_r = 8.11$ min, minor enantiomer $t_r = 10.23$ min.

Yellow solid; $[\alpha]_D^{20} -31.7$ (*c* 1.0, CHCl₃, 80% *ee*);**NMR** ¹**H** (**300 MHz, CDCl₃**) δ 8.38 (s, 1H), 7.31 – 7.25 (m, 2H), 7.20 (t, J = 7.3 Hz, 1H), 7.20 – 7.13 (m, 4H), 6.95 – 6.91 (m, 1H), 6.88 (td, J = 7.5, 1.3 Hz, 1H), 5.02 (s, 1H), 4.81 (s, 1H), 2.77 – 2.60 (m, 2H), 2.26 – 2.16 (m, 2H), 1.44 (s, 9H); ¹³C (**75,5 MHz, CDCl₃**) δ 157.4 8 (C), 156.1 (C), 141.1 (C), 128.9 (CH), 128.5 (CH), 128.4 (CH), 126.1 (C), 120.3 (CH), 80.9 (C), 35.6 (CH₂), 33.0 (CH₂), 28.3 (CH₃); 211.1120 [M -H]⁻, C₁₅H₁₅O requires 211.1123.

8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 fl (ppm)

- 8.624 - 8.63 7.855 7.855 7.855 7.855 7.855 7.827 7.827 7.821 7.811 7.811 7.811 7.811 7.811 7.811 7.811 7.820 7.822 7.822 7.822 7.822 7.822 7.822 7.822 7.822 7.822 7.822 7.822 7.822 7.822 7.822 7.822 7.822 7.822 7.822 7.822 7.785 7.825 7.822 7.785 7.822 7.785 7.822 7.785 7.822 7.785 7.822 7.785 7.822 7.785 7.822 7.785 7.822 7.785 7.822 7.785 7.822 7.785 7.787 7.721

4.946
4.914
4.911
4.911

1.345 1.344 1.338 1.331

65 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 f1 (ppm)

7, 591 7, 567 7, 567 7, 568 7, 568 7, 568 7, 568 7, 7, 568 7, 7, 568 7, 7, 442,

S32

~ 4.992 ~ 4.959

2.900 2.851 2.851 2.641 2.634 2.638 2.533 2.593 2.593

0___0

7.13 4.73 4.73 4.684 4.684 4.684 4.684 4.685 4.685 2.018

Recention lime	Alea	Area Percent
16,46	280553252	93,475
25,98	19584947	6,525

I: ZSU MM, 4 MM Results		
Retention Time	Area	Area Percent
8,42	40718544	9,142
10,08	404694852	90,858

Retention Time	Area	Area Percent
19,21	399785143	82,148
28,89	86878970	17,852

1: ZIZ nm, 4 nm Results		
Retention Time	Area	Area Percent
25,23	507736811	84,096
41,05	96023903	15,904

Retention Time	Area	Area Percent
11,95	229404235	90,804
19,02	23232088	9,196

Retention Time	Area	Area Percent
14,06	251590977	92,985
21,24	18980214	7,015

1: ZI6 nm, 4 nm Results		
Retention Time	Area	Area Percent
14,04	153461868	80,047
16,72	38251645	19 , 953

Retention Time	Area	Area Percent
4,70	7927622	7,091
5,33	103873680	92,909

X-ray data for compound 3fd

X-ray data for compound **3fd**: crystallized from CH₂Cl₂/n-hexane; C₁₇H₁₄BrNO₅S; Mr= 424,26; orthorhombic; space group=P212121; a=10.47600(10), b=8.88300(10); c=18.1540(2) Å; V=1689.38(3) Å³; Z=4; pcalcd=1.668 Mg m⁻³; μ =2.585 mm⁻¹; F(000)=856. A colourless crystal of 0.06x0.08x0.08 mm³ was used; 3868

[R(int)=0.0185] independent reflections were collected on a Enraf Nonius CCD diffractomer by using graphite-monochromated MoKa radiation $(\lambda=0.71073 \text{ Å})$ operating at 50 kV and 30 mA. The structure was solved by direct methods and Fourier synthesis and refined by full matrix least-squares procedures on F^2 (SHELXL-97).³ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included in calculated positions and refined riding on the respective carbon atoms. The H1 and H1N atoms were located in a difference map and refined isotropically. Final R(ω R) values were R=0.0285 and ω R=0.0799. CCDC 1401764 contains the supplementary crystallographic data for this paper. These data can be obtained free of from The Crystallographic charge Cambridge Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Figure 1. ORTEP plot for the X-ray structure of compound 3fd.

References

- ¹ Luo, Y.; Carnell, A. J.; Lam, H. W. Angew. Chem Int. Ed. **2012**, 51, 6762.
- ² Hepburn, H.B., Chotsaeng, N., Luo, Y., Lam, H.W., Synthesis, **2013**, 45, 2649-2661

³G. M. Sheldrick, Acta Cryst. 2008, A64, 112-122