Supporting information

1. The synthesis procedure for resin-bound phthalonitrile 13.

Scheme S1. The procedure for the synthesis of resin-bound phthalonitrile 13.

1.1. Chemicals and materials

Rink Amide MBHA Resin, Fmoc-lys(Mtt)-OH, 1-hydroxybenzotriazole (HOBt) and O-(benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU) were obtained from GL Biochem Ltd. (Shanghai, China). Other chemical agents were from Alfa Aesar (Tianjin, China).

1.2. Synthesis procedure

Preparation of compound b. To a solution of 4-hydroxybenzoic acid (0.83 g, 6.0 mmol) in anhydrous DMSO (10 mL), 4- nitrophthalonitrile (1.0 g, 6.0 mmol) and finely ground K₂CO₃ (1.8 g, 12 mmol) were added. The mixture was stirred at room temperature for 18 h. As the reaction proceeded, a light yellow precipitate formed. The crude mixture was solidified by pouring into 400 mL of ice-water and the precipitate was collected by filtration. The crude mixture was dissolved in CH₃OH (~10 mL) and neutralized by a 1 N HCl solution. The light yellow colored precipitate was collected by filtration and was further washed with water to produce the product (1.26 g, 82% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.26 – 8.18 (m, 2H, Ar-H), 7.79 (d, J = 8.7 Hz, 1H, Ar-H), 7.38 (d, J = 2.5 Hz, 1H, Ar-H), 7.33 (dd, J = 8.7, 2.5 Hz, 1H, Ar-H), 7.20 - 7.13 (m, 2H, Ar-H).

Preparation of resin c. Rink Amide MBHA resin (0.50 g) with 0.5 mmol/g loading capacity was swelled in DCM (20 mL) for 30 min. The solvent was filtered off and Fmoc was removed with 20% piperidine in DMF (10 mL) by agitating for 30 min. The resin was then washed with DMF (5×8.0 mL). Fmoc-Lys(Mtt)-OH (0.038 mmol, 23 mg), HOBt (0.038 mmol, 5.0 mg), HBTU (0.038 mmol, 14 mg) and diisopropylethyl amine (DIEA) (0.075 mmol, 13 µL) were dissolved in DMF/DCM (10 mL, 1:9) and added to the resin. The reaction mixture was shaken at room temperature for 1 h and then washed with DMF (3×10 mL). The non-reacted amine group was blocked with Ac₂O (1 mL) in 10 mL of DMF, and the Fmoc group was removed with 20% piperidine in DMF (10 mL) for 30 min to afford resin **c** after washing with DMF (5×8.0 mL).

Preparation of resin-bound phthalonitrile 13. Resin **c** (0.50 g) with 0.075 mmol/g Fmoc-Lys-(Mtt)-OH loading was suspended in DMF (10 mL). HOBt (0.19 mmol, 25 mg), HBTU (0.19 mmol, 71 mg), DIEA (0.38 mmol, 64 μ L) and carboxylated phthalonitrile b (0.19 mmol, 47 mg) were dissolved in DMF (1.0 mL) and added to the resin **c.** The reaction mixture was shaken at room temperature for 2 h, followed by washing with DMF to afford resin-bound phthalonitrile **13**.

2. HPLC chromatogram for the synthesized Pcs

HPLC was performed using a 150×4.6 mm, C-18 column, with a 0.6 mL/min flow rate at λ = 680 nm. The column was initially held at 20% CH₃CN (0.14% TFA) - 80% H₂O (0.14% TFA). The concentration of CH₃CN was ramped to 60% in 10 min and then to 80% in 40 min. The column was washed with 95% CH₃CN for 15 min and allowed to equilibrate at the initial mobile phase conditions for 60 min before the next injection.

Fig. S1. HPLC trace of Pc **1-6**. Wavelength for detection: 680 nm. PcZn₁ (t_R =28.8 min), PcZn₁-lys (t_R =20.9 min), PcZn₁-lys-FA (t_R = 22.6 min), PcZn₂ (t_R =13.4 min), PcZn₂-lys (t_R =14.2 min), PcZn₂-lys-FA (t_R = 16.1 min).

3. Fluorescence spectra in DMSO

Fig. S2. Fluorescence emission spectra of $PcZn_1$ (A), $PcZn_1$ -lys (B), $PcZn_1$ -lys-FA (C), $PcZn_2$ (D), $PcZn_2$ -lys (E) and $PcZn_2$ -lys-FA (F) at various concentrations in DMSO. The inset plots the intensity at 692 nm versus the concentration of the corresponding compound.

4. Fluorescence lifetimes :

Fluorescence lifetime (τ_F) refers to the average time a molecule stays in its excited state before returning to the ground state, and its value is directly related to that of Φ_F . The longer the lifetime, the higher the quantum yield of fluorescence. The fluorescence lifetime of Pc **1-6** in DMSO was measured directly by fluorescence spectrometer.

Fig. S3. Fluorescence decay curve of compound **1-6**. PcZn₁: 3.33 ns, PcZn₁-lys: 3.20 ns, PcZn₁-lys-FA: 3.06 ns, PcZn₂: 3.73 ns, PcZn₂-lys: 3.19 ns, PcZn₂-lys-FA: 3.49 ns.

5. Singlet oxygen quantum yields

The singlet oxygen quantum yields (Φ_{Δ}) give an indication of the efficiency of the potential photosensitizers in applications where singlet oxygen is required. The Φ_{Δ} values were determined using a chemical method (1,3-diphenylisobenzofuran (DPBF) in DMSO. The disappearance of DPBF was monitored using a UV-vis spectrophotometer.

Fig. S4. A typical spectrum for the determination of the singlet oxygen quantum yield of $PcZn_1$ (A), $PcZn_1$ -lys (B), $PcZn_1$ -lys-FA (C), $PcZn_2$ (D), $PcZn_2$ -lys (E) and $PcZn_2$ -lys-FA (F) in DMSO using DPBF as a singlet oxygen quencher. Concentration = 4×10^{-6} M. Inset: Plots of DPBF absorbance vs. time.

Table S2. The absorbance and consumption rate of DPBF for $PcZn_1(1)$, $PcZn_1$ -lys (2), $PcZn_1$ -lys-FA (3), $PcZn_2$ (4), $PcZn_2$ -lys (5) and $PcZn_2$ -lys-FA (6) in DMSO. Non-substituted PcZn was used for reference. $A_{680 nm}$: absorbance at 680 nm; R_{DPBF}/s^{-1} : the consumption rate of DPBF (Initial concentration: 2.5×10^{-5} mol/L).

	PcZn	1	2	3	4	5	6
A _{680 nm}	0.26	0.45	0.44	0.47	0.43	0.50	0.43
R _{DPBF} /s ⁻¹ (10 ⁻³)	-2.86	-3.04	-3.18	-3.17	-3.34	-3.18	-3.26

7. Absorption and fluorescence spectra of non-substituted PcZn

Fig. S5. Absorption spectra (A) and fluorescence spectra (B) of PcZn at various concentrations in DMSO. The inset plots Q-band absorbance (A) and fluorescence intensities (B) versus the concentration of the corresponding compounds.

Fig. S6. $PcZn_1$ (ESI-HRMS calcd for $C_{60}H_{72}N_8NaO_{16}Zn [M+Na]^+ 1247.4250$, found: m/z 1247.4251; calcd for $C_{60}H_{73}N_8O_{16}Zn [M+H]^+ 1225.4431$, found: m/z 1225.4407).

Fig. S7. $PcZn_2$ (ESI-HRMS calcd for $C_{44}H_{41}N_8O_{12}Zn [M+H]^+$ 937.2130, found 937.2102).

Fig. S8. $PcZn_1$ -lys (ESI-HRMS calcd for $C_{66}H_{75}N_{11}NaO_{15}Zn [M+Na]^+$ 1348.4628, found 1348.4632).

Fig. S9. $PcZn_2$ -lys (ESI-HRMS calcd for $C_{54}H_{51}N_{11}NaO_{12}Zn^+$ [M+Na]⁺ 1132.2902, found 1132.2908).

Fig. S10. $PcZn_1$ -lys-FA (ESI-HRMS calcd for $C_{85}H_{92}N_{18}NaO_{20}Zn^+$ [M+Na]⁺ 1771.5919, found 1771.5925).

Fig. S11. PcZn₂-lys-FA (ESI-HRMS calcd for $C_{73}H_{69}N_{18}O_{17}Zn^+$ [M+H]⁺ 1533.4374, found 1533.4370).

