Supplementary information for

The first proton sponge-based amino acids: synthesis, acid-base properties and some reactivity

Valery A. Ozeryanskii, *^a Anastasia Yu. Gorbacheva,^a Alexander F. Pozharskii,^a Marina P. Vlasenko,^a Alexander Yu. Tereznikov^b and Margarita S. Chernov'yants^b

^a Department of Organic Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostov-on-Don, Russian Federation. E-mail: vv_ozer2@sfedu.ru ^b Department of Analytical Chemistry, Southern Federal University, Zorge str. 7, 344090 Rostovon-Don, Russian Federation

Table of Contents

Details of potentiometric titration of salt 6a	S2
MS of compound $2a$ and the main fragmentation pathways of $2a^{+}$ under EI (Fig. S1)	S3
DFT quantum-chemical calculations of amino acid 2a (Table S1)	S4
Thermolysis of 2b in DMSO-d ₆ (Fig. S2)	S6
Distribution of reaction products on thermolysis of 2a and 2b (Table S2)	S6
Crystal data and structure refinement for compounds 6a and 12a (Table S3)	S7
Copies of ¹ H and ¹³ C NMR spectra	S8–S19

Potentiometric titration

Protolytic equilibrium constants were estimated by potentiometric alkalymetric titration of hydrobromide **6a** preliminary protonated by 0.1 M aqueous HCl solution. The acidity (pK_a) and protonation ($pK_{BH_2^+}$) constants of the studied amino acid were calculated by the least-squares method according to eq. (1):

$$\lg \frac{(1-a)C_{R} - [H^{+}] + [OH^{-}]}{aC_{R} + [H^{+}] - [OH^{-}]} = pK_{a} - pH_{i},$$
(1)

where C_L – the total concentration of proton sponge amino acid, a (degree of neutralization) is found using $a = C_{\text{NaOH}} \cdot V_{\text{NaOH}} / v_{spoge}$

0.2 mmol of the compound was dissolved in the ethanol–water 1:1 (v/v) mixture (with addition of 0.2 mmol aqueous HCl) and were titrated with 0.100 M aqueous NaOH. The ionic strength was maintained at 0.100 M by adding KCl. pH-Millivoltmeter (pH-150 M) with a glass and reference electrodes (Ag–AgCl) was used. The electrode was calibrated before each titration. The solution was titrated at least three times, and the reported data represent the average values (maximal deviation for the calculated pK_a values was ±0.05).

[M. S. Chernov'yants, E. V. Khohlov, G. I. Bondarenko and I. V. Burykin, *Spectrochim. Acta*, 2011, A81, 640–644.]

Fig. S1 Mass-spectrum of compound 2a and the main fragmentation pathways of 2a⁺⁻ under electron impact (70 eV).

DFT quantum-chemical calculations of amino acid 2a (total energies and relative stability in gas phase and selected solvents)

Table S1 Total energies (in a.u.) of neutral (**2a**) and zwitterionic (**2aZ**) forms and their relative stabilities ($\Delta E = E_{2a} - E_{2aZ}$) calculated in the gas phase and in DMSO and H₂O solutions (B3LYP/6-31G**)^{*a*} (the inserts with coloured ball and stick models are for the gas phase with indicated H-bond lengths, Å)

^a Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A.

Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.

^b Calculations of specific solvation with one water molecule as a proton carrier from the carboxylate functionality to the nitrogen atoms. For close examples (NH₃ and CH₃OH as bifunctional catalysts) see: O. N. Burov, M. E. Kletskii and A. V. Gulevskaya, *Russ. Chem. Bull.*, 2013, **62**, 1156–1163; M. E. Kletskii, O. N. Burov, I. L. Dalinger and S. A. Shevelev, *Comp. Theor. Chem.*, 2014, **1033**, 31–42.

Fig. S2 Thermolysis of **2b** in DMSO-d₆ (6 h at 125 °C, ¹H NMR plots with indication of reaction products, 250 MHz; see also Table S2 below).

Table S2 Distribution of reaction products on thermolysis of **2a** and **2b** in DMSO-d6(¹H NMR yields, %)

<i>T</i> , °C	<i>t</i> , h	2a	3	9	10	<i>T</i> , ºC	<i>t</i> , h	2b	3	9	10
125	6	59	2	17	22	120	2	82	6	6	6
125	36	30	1	9	54	125	6	53	24	13	10
125 ^a	40	9	2	19	65	125	30	6	35	0	59

^a Additional 4 h with 0.5 equivs. of powdered K₂CO₃ added to low the overall acidity.

Table S3 Crystal data and structure refinement for compounds 6a and 12a

6a

12a

Parameter	6a	12a
Empirical formula	$C_{15}H_{19}BrN_2O_2$	$C_{14}H_{21}BrN_2O_2$
Formula weight	339.23	329.24
<i>T</i> (K)	100(2)	120(2)
Crystal system	monoclinic	orthorhombic
Space group	$P2_{1}/c$	$P2_{1}2_{1}2_{1}$
<i>a</i> (Å)	7.4871(8)	7.0938(3)
<i>b</i> (Å)	12.1721(12)	11.5502(5)
<i>c</i> (Å)	16.4565(17)	18.1965(9)
$eta^{(\circ)}$	94.653(2)	90
$V(Å^3)$	1494.8(3)	1490.93(12)
$Z, D_c ({ m Mg}\ { m m}^{-3})$	4, 1.507	4, 1.467
μ (mm ⁻¹)	2.753	2.758
Reflections collected/unique	10993/3567	25728/4383
<i>R</i> (int)	0.0629	0.0361
R_1 , wR_2 (all data)	0.0580, 0.1213	0.0275, 0.0476
R factor (%)	4.48	2.28
CCDC reference number	1400689	1400690

S9

(ppm)

S18

