Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information for paper

Reactions of CF₃-enones with arenes under superelectrophilic activation: a stereoselective pathway to *trans*-1,3-diaryl-1-trifluoromethyl indane scaffold as a new core for cannabinoid receptor ligand design

Roman O. Iakovenko,^a Anna N. Kazakova,^a Vasiliy M. Muzalevskiy,^b Alexander Yu. Ivanov,^c

Irina A. Boyarskaya,^a Andrea Chicca,^d Vanessa Petrucci,^d Jürg Gertsch,^d Mikhail Krasavin,*^a

Galina L. Starova,^a Andrey A. Zolotarev,^a Margarita S. Avdontceva,^a Valentine G.

Nenajdenko,*b and Aleksander V. Vasilyev*a,e

^aInstitute of Chemistry, Saint-Petersburg State University, 198504 Saint-Petersburg, Petrodvorets, Universitetsky pr., 26, Russia, E-mail: m.krasavin@spbu.ru

^bDepartment of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russia,

Fax: +7-495-9328846, Tel.: +7-495-9392276, E-mail: nen@acylium.chem.msu.ru

^cCenter for Magnetic Resonance, Research park, St. Petersburg State University, Universitetskiy pr. 26, Saint Petersburg, Petrodvorets, 198504, Russia

^dInstitute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland

^eDepartment of Chemistry, Saint Petersburg State Forest Technical University, Institutsky per., 5, Saint Petersburg, 194021, Russia, Fax: +7-812-6709390, Tel.: +7-812-6709352, E-mail: <u>aleksvasil@mail.ru</u>

*Corresponding authors: M. Krasavin, V.G. Nenajdenko, and A.V. Vasilyev.

Table of contents

Original NMR spectra (¹H, ¹³C, ¹⁹F, NOESY-HH and NOESY-HF) of compounds	2
Table with NMR data and NMR spectra of cations A1, A3, A4, A6, A7	37
MALDI-MS spectra of oligomers obtained from 1a, 1b, 1c, 1e	48
CIF-reports for compounds 2a, 2b, 2e, 2g, 2h, 13	50
DFT-calculations of cations A1-A6, B1-B6, C1, G1	
and compounds cis-2a and trans-2a	56
Bioactivity studies	96
Procedures for synthesis of compounds 3c, 4a, 5a, 6a	98
References	103

Original NMR spectra (¹H, ¹³C, ¹⁹F, NOESY-HH and -HF)

Fig. S1 ¹H NMR (400 MHz, CDCl₃) spectrum of the compound **2a**.

Fig. S2 ¹³C NMR (75 MHz, CDCl₃) spectrum of the compound **2a**.

Fig. S3 ¹⁹F NMR (470 MHz CDCl₂) spectrum of the compound 2a

Fig. S4 ¹H NMR (400 MHz, CDCl₃) spectrum of the compounds **2a** and **cis-2a**.

Fig. S5 ¹³C NMR (100 MHz, CDCl₃) spectrum of the compounds **2a** and **cis-2a**.

Fig. S6 ¹⁹F NMR (376 MHz, CDCl₃) spectrum of the compounds **2a** and **cis-2a**.

Fig. S8 NOESY HH spectrum of the compounds 2a and cis-2a.

-46 - 48 - 50 - 52 - 54 - 56 - 58 - 60 - 62 - 64 - 66 - 68 - 70 + 72 - 74 - 76 - 78 - 80 - 82 - 84Fig. S12 ¹⁹F NMR (470 MHz, CDCl₃) spectrum of the compound **2b**.

7.6 7.4 7.2 7.0 6.8 6.4 6.0 5.6 5.2 Fig S13 NOESY NMR spectrum of the compound **2h**

Fig. S14 ¹H NMR (500 MHz, CDCl₃) spectrum of the compound **2c**.

Fig. S15⁻¹³C NMR (125 MHz. CDCl₂) spectrum of the compound 2c

Fig. S16 ¹⁹F NMR (470 MHz, CDCl₃) spectrum of the compound **2c**.

Fig. S17 NOESY NMR spectrum of the compound 2c.

Fig. S18 ¹H NMR (400 MHz, CDCl₃) spectrum of the compound **2d**.

Fig. S19¹³C NMR (100 MHz CDCl₂) spectrum of the compound 2d

Fig. S20 ¹⁹F NMR (376 MHz, CDCl₃) spectrum of the compound 2d.

Fig. S21⁻¹H NMR (400 MHz. CDCb) spectrum of the compound 2e

Fig. S22 ¹³C NMR (100 MHz, CDCl₃) spectrum of the compound **2e**.

Fig. S23 ¹⁹F NMR (376 MHz. CDCL) spectrum of the compound 2e.

Fig. S24 ¹H NMR (400 MHz, CDCl₃) spectrum of the compound **2f**.

Fig. S25 ¹³C NMR (100 MHz, CDCl₃) spectrum of the compound **2f**.

Fig. S26 ¹⁹F NMR (376 MHz, CDCl₃) spectrum of the compound **2f.**

Fig. S27 ¹H NMR (400 MHz, CDCl₃) spectrum of the compound **2g**.

Fig. S28 ¹³C NMR (100 MHz, CDCl₃) spectrum of the compound **2g**.

Fig. S29 ¹⁹F NMR (376 MHz, CDCl₃) spectrum of the compound **2g.**

Fig. S30 ¹H NMR (400 MHz, CDCl₃) spectrum of the compound **2h**.

Fig. S31 ¹³C NMR (100 MHz, CDCl₃) spectrum of the compound **2h**.

Fig. S32 ¹⁹F NMR (376 MHz, CDCl₃) spectrum of the compound **2h.**

Fig. S33 ¹H NMR (400 MHz, CDCl₃) spectrum of the compound **2i**.

Fig. S34 ¹³C NMR (100 MHz, CDCl₃) spectrum of the compound **2i**.

Fig. S35 19 F NMR (376 MHz, CDCl₃) spectrum of the compound **2i.**

Fig. S36 ¹H NMR (400 MHz, CDCl₃) spectrum of the compound **3a**.

Fig. S37 13 C NMR (100 MHz, CDCl₃) spectrum of the compound **3a**.

Fig. S38 ¹⁹F NMR (376 MHz, CDCl₃) spectrum of the compound **3a**.

Fig. S39 ¹H NMR (400 MHz, CDCl₃) spectrum of the compound **3b**.

Fig. S40 13 C NMR (100 MHz, CDCl₃) spectrum of the compound **3b**.

Fig. S41 ¹⁹F NMR (376 MHz, CDCl₃) spectrum of the compound **3b.**

Fig. S42 ¹H NMR (400 MHz, CDCl₃) spectrum of the compound **3c**.

Fig. S43 ¹³C NMR (100 MHz, CDCl₃) spectrum of the compound **3c**.

Fig. S44 ¹⁹F NMR (376 MHz, CDCl₃) spectrum of the compound **3c.**

Fig. S45 ¹H NMR (400 MHz, CDCl₃) spectrum of the compound 4a.

Fig. S46 ¹³C NMR (100 MHz, CDCl₃) spectrum of the compound **4a**.

Fig. S47 ¹⁹F NMR (376 MHz, CDCl₃) spectrum of the compound **4a**.

Fig. S48 ¹H NMR (400 MHz, CDCl₃) spectrum of the compound **5a**.

Fig. S49 ¹³C NMR (100 MHz, CDCl₃) spectrum of the compound **5a**.

Fig. S50 ¹⁹F NMR (376 MHz, CDCl₃) spectrum of the compound **5a**.

Fig. S52 NOESY-HF NMR spectrum of the compound **5a**.

Fig. S53 ¹H NMR (400 MHz, CDCl₃) spectrum of the compound **6a**.

Fig. S54 ¹³C NMR (100 MHz, CDCl₃) spectrum of the compound **6a**.

Fig. S55 19 F NMR (376 MHz, CDCl₃) spectrum of the compound **6a**.

Fig. S56 ¹H NMR (400 MHz, CDCl₃) spectrum of the compound **8**.

Fig. S57 ¹³C NMR (100 MHz. CDCL₂) spectrum of the compound **8**

Fig. S58 ¹H NMR (400 MHz, CDCl₃) spectrum of the compound **9**.

Fig. S59 ¹³C NMR (100 MHz, CDCl₃) spectrum of the compound **9**.

Fig. S60 ¹⁹F NMR (376 MHz, CDCl₃) spectrum of the compound **9**.

Fig. S61 ¹H NMR (400 MHz, CDCl₃) spectrum of the compound **11**.

Fig. S62 ¹³C NMR (100 MHz, CDCl₃) spectrum of the compound **11**.

Fig. S63 ¹H NMR (400 MHz, CDCl₃) spectrum of the compound **12**.

Fig. S64 ¹³C NMR (100 MHz, CDCl₃) spectrum of the compound **12**.

Fig. S65¹⁹F NMR (376 MHz CDCL) spectrum of the compound **12** {7.237,0.119} {3.168,0.126} {2.297,0.123} {7.563,0.117} {7.237,2.300 {4.368,2.301 Me₃SiO . ℃F₃ {4.365,3.179] {2.296.3.18 {7.237,4.362 {3.165,4 {6.965,4.417} 12 Ph {2.297,7.232} {4.387,7.234}

6.0 8.0 7.5 7.0 6.5 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 Fig. S66 NOESY NMR spectrum of the compound 12.

0.5

0.0

-2

-3

-5

Fig. S68 ¹H NMR (400 MHz, CDCl₃) spectrum of the compound **13**.

Fig. S69 ¹³C NMR (100 MHz, CDCl₃) spectrum of the compound **13**.

Fig. S70 ¹⁹F NMR (376 MHz, CDCl₃) spectrum of the compound **13**.
NMR Spectra of cations A1, A3, A4, A6, A7

Table S1. ¹H, ¹³C, and ¹⁹F NMR data of CF₃-enones 1a,c,d,f,h in CDCl₃ and cations A1, A3, A4, A6, A7 in superacids TfOH or FSO₃H

Compound or ion	Solvent,	Spectrum				
	T, ℃	$^{1}\mathrm{H}$	¹³ C	¹⁹ F		
0	CDCl ₃ ,	7.02 d (1H ³ , <i>J</i> 16 Hz),	116.7 q (C ¹ F ₃ , <i>J</i> 291	-77.7 s		
$Ph 4 2 CF_3$	20°C	$7.65 \text{ m} (3\text{H}, 2\text{H}_{\text{m}}+\text{H}_{\text{p}}),$	Hz), 116.9 (C ³), 127.2			
³ 1 ³		7.75 d (2H _o , <i>J</i> 8.4 Hz),	$(C_m), 127.4 (C_o),$			
la		7.98 d (1H ⁴ , <i>J</i> 16 Hz).	$129.0(C_p), 129.5(C_i),$			
			150.4 (C⁴) , 180.3 q			
			(C ² O, <i>J</i> 36 Hz).			
OH	FSO ₃ H,	7.77 (1H ³ , <i>J</i> 11 Hz),	110.7 (C ³), 116.8 q	-74.0 s		
$Ph 4 2 CF_3$	-45°C	7.90 m (2H _m), 8.32 m	$(C^{1}F_{3}, J 280 \text{ Hz}),$			
		$(2H, 1H_0 + H_p), 8.60 m$	131.45 (C _m), 131.64			
Al		$(1H_{o})$, 9.75 d $(1H^{4}, J 11)$	$(C_{\rm m}), 134.8 (C_{\rm o}),$			
		Hz).	$134.9 (C_i), 146.0 (C_p),$			
			148.2 (C _o), 178.2 q			
			(C ² O, <i>J</i> 38.8 Hz),			
0			183.6 (C ⁴).			
	CDCl ₃ ,	2.44 s (3H, Me), 7.00 d	21.7 (Me), 116.5 q	-80.7 s		
4 3 2 CF3	20°C	$(1H^3, J15.9 \text{ Hz}), 7.28 \text{ d}$	$(C^{1}F_{3}, J 291 Hz),$			
Me		(2H, J 8 Hz), 7.57 d	$115.6 (C^3), 129.3,$			
1c		(2H, J 8 Hz), 7 .98 d				
		$(1H^4, J 15.9 \text{ Hz}).$	$(C_p), 150.2 (C^4),$			
			180.0 q (C^2O , J 35.2			
<u>ОН</u>	FCO II	$\mathbf{O} = \mathbf{C} $	Hz). (14) 100 0 (C^{2})	72.7		
	FSO ₃ H,	2.75 s (3H, Me), 7.58	$23.9 \text{ (Me)}, 109.0 \text{ (C}^3),$	-/3./ S		
4 2 CF ₃	-20°C	$(1H^3, J 13./HZ), /./5 d$	$117.9 \text{ q} (C^{1}\text{F}_{3}, J 280)$			
Me		(2H, J 8 HZ), 8.15 d	HZ), 133.69 (C_m),			
A3		(1H, J / HZ), 8.50 d	$133.8/(C_m), 134.4$			
		(1H, J / HZ), 9.54 a	$(C_i), 136.4 (C_0), 147.5$			
		$(1H^{-}, J 13.7 HZ).$	$(C_0), 108.4 (C_p),$			
			$1/4.4 \text{ (C}^{2}\text{O}, J 38.3)$			
0	CDC1	$6.09.4(1U3 I 16 U_{-})$	(C), 101.0 (C').	777.		
L A L	20%	$0.70 \text{ u} (1 \Pi^2, J 10 \Pi Z),$	110.3	-//./ S		
$4 \frac{2}{3} CF_3$	20-0	$7.43 \text{ u} (2\Pi, J 0.3 \Pi Z),$	(C_{1}) , 117.2 (C ²), 129.8			
		$7.30 \text{ u} (2\Pi, J 0.3 \Pi Z),$	$(C_m), 130.3 (C_0), 122.0 (C_1), 128.6 (C_1)$			
1d		/.JLU(111, J 10 ΠΖ)	$152.0 (C_p), 150.0 (C_i),$ 148 7 (C4) 180.0 a			
			$(C^2 \cap I_{35} \circ H_7)$			
			$\left[\left(\begin{array}{c} 0, 5 \\ 5 \\ 5 \\ \end{array} \right) \right]$			

OH	FSO ₃ H,	7.66 (1H ³ , <i>J</i> 13.1 Hz),	111.3 (C ³), 117.9 q	-74.5 s
4 2 CF3	-40°C	7.83 d (2H, <i>J</i> 6 Hz),	$(C^{1}F_{3}, J 281 \text{ Hz}),$	
		8.16 m (1H), 8.48 m	132.9 (C _i), 133.3	
		(1H), 9.63 d (1H ⁴ , J	$(2C_{\rm m}), 134.2 (2C_{\rm o}),$	
Ат		13.5 Hz)	157.9 (C _p), 179.4 q	
			(C ² O, <i>J</i> 39.4 Hz),	
			182.0 (C ⁴)	
O II	CDCl ₃ ,	3.83 s (3H, OMe), 6.91	55.7 (OMe), 116.5 q	-77.5 s
4 2 CF ₂	20°C	d (1H ³ , <i>J</i> 15.8 Hz), 7.63	(C ¹ F ₃ , <i>J</i> 291 Hz),	
		d (2H, <i>J</i> 8.2 Hz), 7.98 d	115.6 (C ³), 129.3,	
MeO ~ 1f		(2H, <i>J</i> 8.2 Hz), 7.97 d	130.0, 130.7, 143.4,	
11		(1H ⁴ , <i>J</i> 15.9 Hz)	150.2 (C⁴) , 180.0 q	
			(C ² O, <i>J</i> 35.2 Hz)	
OH	CF ₃ SO ₃ H	4.31 s (3H, OMe), 7.24	59.9 (OMe), 106.7	-73.8 s
4 2 CF ₃	-35°C	(1H ³ , <i>J</i> 13.1 Hz), 7.39 d	(C ³), 117.9 q (C ¹ F ₃ , J	
		(2H, <i>J</i> 8.2 Hz), 8.24 d	280 Hz), 119.9 (C _m),	
		(1H, <i>J</i> 8.2 Hz), 8.58 d	122.2 (C _m), 132.5	
AU		(1H, <i>J</i> 8.5 Hz), 9.10 d	(C _i), 141.7 (C _o), 152.8	
		(1H ⁴ , <i>J</i> 13.1 Hz)	(C_0) , 166.7 q (C^2O, J)	
			39.2 Hz), 171.2(C⁴) ,	
			$181.6 (C_p)$	
OH	FSO ₃ H,	4.30 s (3H, OMe), 7.23	59.4 (OMe), 106.1	-74.6 s
4 2 CF3	-60°C	(1H ³ , <i>J</i> 11.5 Hz), 7.38 s	(C ³), 118.9 q (C ¹ F ₃ , J	
		(2H), 8.22 d (1H, <i>J</i> 6	277 Hz), 119.4 (C _m),	
		Hz), 8.55 d (1H, <i>J</i> 6	121.6 (C _m), 131.9	
AU		Hz), 9.07 d (1H ⁴ , <i>J</i> 11.5	$(C_i), 141.0 (C_o), 152.2$	
		Hz)	(C_o) , 165.5 q (C^2O, J)	
			37.3 Hz), 170.7 (C ⁴),	
			$180.8 (C_p)$	
O II	CDCl ₃ ,	2.94 s (3H, Me), 3.21 s	37.7 (Me), 45.8 (Me),	-77.7 s
$Me_2N 4 2 CF_3$	20°C	$(3H, Me), 5.26 d (1H^3,$	87.6 (C ³), 117.9 q	(89%)
		J 12.3 Hz), 7.85 d (1H ⁴ ,	$(C^{1}F_{3}, J 289 Hz),$	-75.4 s
l lh		J 12.3 Hz)	156.9 (C ⁴), 177.4 q	(11%) a
			(C ² O, <i>J</i> 32.7 Hz).	
	CF ₃ SO ₃ H	3.66 s (3H, Me), 3.85 s	41.4 (Me), 49.9 (Me),	-75.5 s
	20°C	$(3H, Me), 5.79 d (1H^3,$	95.6 q (C^3 , J 3.5 Hz),	
$Me_2N 4 3 2 CF_3$		J 10.7 Hz), 8.28 d (1H ⁴ ,	$ 120.9 \text{ q} (C^{1}\text{F}_{3}, J 275.3)$	
↓ 1 ▲ 7		J 10.7 Hz)	Hz), 164.2 (C ⁴), 161.8	
			q (C ² O, <i>J</i> 38 Hz).	
ОН				
Me_2N^{4} $3^{2}CF_3$				
A'7				

Note. ^aTwo signals are observed in ¹⁹F NMR, due to contribution of resonance structure with charge separation $Me_2N^+=CH-CH=C(O^-)CF_3$.

110 100 Fig. S72 ¹³C NMR spectrum of the cation A1 generated from 1a in FSO₃H at -45°C (125 MHz).

Fig. S73 ¹⁹F NMR spectrum of the cation A1 generated from 1a in FSO₃H at -45°C (470 MHz). $\begin{array}{c} 8.6353 \\ -8.6199 \\ -8.5034 \\ -8.5034 \\ -8.4885 \\ -8.1570 \\ -8.1570 \\ -7.8451 \\ -7.7428 \\ -7.7428 \\ -7.5639 \\ -7.5625 \end{array}$ -9.5565 -9.5289 -9.3034 -9.2738 --5.3202

Fig. S78 ¹³C NMR spectrum of the cation A4 generated from 1d in FSO₃H at -40°C (125 MHz).

Fig. S80 ¹H NMR spectrum of the cation A6 generated from 1f in TfOH at -35°C (500 MHz).

Fig. S81 ¹³C NMR spectrum of the cation A6 generated from 1f in TfOH at -35°C (125 MHz).

Fig. S83 ¹H NMR spectrum of the cation A6 generated from 1f in FSO₃H at -60°C (400 MHz).

Fig. S85 ¹⁹F NMR spectrum of the cation A6 generated from 1f in FSO₃H at -60°C (376 MHz).

10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Fig. S86 ¹H NMR spectrum of the cation A7 generated from **1h** in TfOH at 20°C (500 MHz).

 $_{-69}^{-69}$ $_{-70}^{-70}$ $_{-71}^{-71}$ $_{-72}^{-73}$ $_{-74}^{-74}$ $_{-75}^{-76}$ $_{-77}^{-78}$ $_{-79}^{-79}$ $_{-80}^{-80}$ $_{-81}^{-81}$ $_{-82}^{-83}$ $_{-84}^{-84}$ $_{-85}^{-86}$ $_{-87}^{-87}$ Fig. S88 19 F NMR spectrum of the cation A7 generated from 1h in TfOH at 20°C (470 MHz).

Fig. S90 MALDI-MS spectrum of the oligomers obtained from 1b in CF₃SO₃H at 20°C.

Fig. S92 MALDI-MS spectrum of the oligomers obtained from 1e in CF₃SO₃H at 20°C.

Table S3	Crystal	data and	structure	refinement	for 2a
	•				

Empirical formula	$C_{22}H_{17}F_3$
Formula weight	338.36
Temperature/K	100(2)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	11.8946(17)
b/Å	9.7710(6)
c/Å	14.6459(14)
α/°	90.00
β/°	94.988(9)
γ/°	90.00
Volume/Å ³	1695.7(3)
Z	4
$\rho_{calc}mg/mm^3$	1.325
m/mm ⁻¹	1.099
F(000)	704
Crystal size/mm ³	$0.25\times0.15\times0.05$
2Θ range for data collection	2.70 to 31.87°
Index ranges	$-9 \le h \le 13, -10 \le k \le 10, -16 \le l \le 14$
Reflections collected	5528
Independent reflections	2365[R(int) = 0.0917]
Data/restraints/parameters	2365/0/226
Goodness-of-fit on F ²	0.981
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0605, wR_2 = 0.1158$
Final R indexes [all data]	$R_1 = 0.0984, wR_2 = 0.1186$
Largest diff. peak/hole / e Å-3	0.20/-0.27

Table S5	Crystal	data and	structure	refinement	for 2e
----------	---------	----------	-----------	------------	--------

Empirical formula	$C_{22}H_{16}F_3Cl$
Formula weight	372.80
Temperature/K	100(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	10.5842(4)
b/Å	9.2772(3)
c/Å	17.8208(6)
α/°	90.00
β/°	90.018(3)
γ/°	90.00
Volume/Å ³	1749.87(10)
Z	4
$\rho_{calc}mg/mm^3$	1.415
m/mm ⁻¹	2.222
F(000)	768
Crystal size/mm ³	$0.19 \times 0.15 \times 0.08$
2Θ range for data collection	4.18 to 67.50°
Index ranges	$-12 \le h \le 10, -9 \le k \le 11, -20 \le l \le 21$
Reflections collected	7629
Independent reflections	3031[R(int) = 0.0310]
Data/restraints/parameters	3031/0/235
Goodness-of-fit on F ²	1.029
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0356, wR_2 = 0.0894$
Final R indexes [all data]	$R_1 = 0.0442, wR_2 = 0.0983$
Largest diff. peak/hole / e Å-3	0.30/-0.30

Table S6	Crystal	data a	and	structure	refinement	for 2g
----------	---------	--------	-----	-----------	------------	--------

Empirical formula	$C_{26}H_{24}F_3Cl$
Formula weight	428.90
Temperature/K	100(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.3350(4)
b/Å	10.6357(5)
c/Å	11.4303(5)
α/°	73.153(4)
β/°	87.926(4)
$\gamma/^{\circ}$	76.728(4)
Volume/Å ³	1056.58(9)
Z	2
$\rho_{calc}mg/mm^3$	1.348
m/mm^{-1}	1.909
F(000)	448
Crystal size/mm ³	$0.26\times0.19\times0.15$
2Θ range for data collection	4.04 to 69.99°
Index ranges	$\text{-}11 \leq h \leq 11, \text{-}11 \leq k \leq 12, \text{-}12 \leq l \leq 13$
Reflections collected	7883
Independent reflections	3906[R(int) = 0.0212]
Data/restraints/parameters	3906/0/275
Goodness-of-fit on F ²	1.046
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0396, wR_2 = 0.1067$
Final R indexes [all data]	$R_1 = 0.0428, wR_2 = 0.1099$
Largest diff. peak/hole / e Å ⁻³	0.41/-0.47

Table 57 Crystal data and stru	cture remement for 2n
Empirical formula	$C_{26}H_{24}O_4F_3Cl$
Formula weight	492.90
Temperature/K	100(2)
Crystal system	triclinic
Space group	P-1
a/Å	8.9801 (3)
b/Å	11.8644(5)
c/Å	12.6622(6)
α/°	64.998(4)
β/°	71.043(4)
γ/°	80.660(3)
Volume/Å ³	1155.85(8)
Z	2
$\rho_{calc}mg/mm^3$	1.416
m/mm ⁻¹	1.956
F(000)	512
Crystal size/mm ³	$0.15\times0.12\times0.09$
2Θ range for data collection	4.02 to 76.31°
Index ranges	$-10 \le h \le 10, -14 \le k \le 14, -15 \le 1$
index ranges	≤ 15
Reflections collected	19213
Independent reflections	4787[R(int) = 0.0512]
Data/restraints/parameters	4787/0/311
Goodness-of-fit on F ²	1.073
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0424, wR_2 = 0.1067$
Final R indexes [all data]	$R_1 = 0.0530, wR_2 = 0.1106$
Largest diff. peak/hole / e Å ⁻³	0.31/-0.36

CCDC 1048565 - (**13**)

Table S8 Crystal data and structure refinement for 13

Empirical formula	$C_{19}H_{21}OF_3Si$
Formula weight	350.45
Temperature/K	100.01(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	14.1449(3)
b/Å	7.95800(16)
c/Å	16.5726(4)
α/°	90.00
β/°	99.274(2)
$\gamma/^{\circ}$	90.00
Volume/Å ³	1841.11(7)
Ζ	4
$\rho_{calc}mg/mm^3$	1.264
m/mm ⁻¹	1.410
F(000)	736
Crystal size/mm ³	$0.32 \times 0.26 \times 0.16$
2Θ range for data collection	3.17 to 72.5°
Index ranges	$-17 \le h \le 17, -9 \le k \le 9, -20 \le l \le 18$
Reflections collected	22298
Independent reflections	3653[R(int) = 0.0408]
Data/restraints/parameters	3653/0/220
Goodness-of-fit on F ²	1.036
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0327, wR_2 = 0.0880$
Final R indexes [all data]	$R_1 = 0.0363, wR_2 = 0.0923$
Largest diff. peak/hole / e Å-3	0.32/-0.23

DFT-calculations of cations A1-A6, B1-B6, G1 and compounds cis-2a and trans-2a

Table S9. Results of DFT calculations of cations A1-A6 and B1-B6 derived from CF3-enones1a-f, respectively

C	ation	-	_						k(C ²)	k(C ⁴)
		E _{HOMO} ,	E _{LUMO} ,	$\omega,^{a}$	$q(C^1), \mathbf{b}$	$q(C^2), \mathbf{b}$	$q(C^3), \mathbf{D}$	$q(C^4), b$	c	c
No	R	eV	eV	eV	e	e	e	e	LUMO	LUMO,
110.									%	%
A1	Н	-11.51	-8.14	14.3	1.04	0.43	-0.33	0.06	27.7	29.7
A2	3-Me	-11.15	-8.01	14.6	1.04	0.43	-0.33	0.07	27.7	29.7
A3	4-Me	-11.13	-7.88	13.9	1.04	0.42	-0.33	0.06	26.0	28.7
A4	4-Cl	-11.17	-8.10	15.1	1.04	0.43	-0.32	0.04	25.2	27.4
	_									
A5	3-MeO	-10.45	-7.98	17.2	1.04	0.43	-0.33	0.06	27.3	29.0
	4 MaO	10.62	7.5.4	12.4	1.04	0.40	0.22	0.02	22.7	26.5
AO	4-MeO	-10.03	-7.54	13.4	1.04	0.40	-0.32	0.02	23.7	20.5
B 1	Н	-15.61	-12.56	32.5	1.03	0.69	-0.59	0.08	26.2	5.3
B2	3-Me	-15.01	-12.40	35.9	1.03	0.67	-0.59	0.07	34.3	10.6
B3	4-Me	-15.35	-12.23	30.5	1.03	0.67	-0.58	0.04	18.2	4.4
_	_									
B4	4-Cl	-15.47	-12.32	30.6	1.03	0.67	-0.58	0.04	21.2	5.2
	2.14.0	14.6	10.01	477.5	1.02	0.7	0.50	0.05	24.0	
B5	3-MeO	-14.6	-12.31	47.5	1.03	0.67	-0.58	0.05	24.8	5.5
B6	4-MeO	-14.92	-11.95	30.3	1.03	0.66	-0.57	-0.02	34.6	11.2

^aGlobal electrophilicity index $\omega = (E_{HOMO} + E_{LUMO})^2/8(E_{LUMO} - E_{HOMO})$. ^bNatural charges.

^cContribution of atomic orbital into the molecular orbital.

Energy E= -760.599257565 h, G^{298} = -760.478645 h, μ =4.81 D

Ν	atom	X	У	Z
1	С	3.644609	-1.485215	-0.004202
2	С	2.321238	-1.109823	-0.007805
3	С	4.649318	-0.507672	0.004571
4	Н	1.553528	-1.869207	-0.014427
5	Н	5.686648	-0.813341	0.007552
6	С	1.971855	0.267770	-0.003243
7	С	4.331961	0.852295	0.009501
8	Н	5.117904	1.592964	0.016365
9	С	3.008712	1.239200	0.005413
10	Н	2.747645	2.288708	0.009029
11	Н	3.912990	-2.531457	-0.008004
12	С	0.638542	0.727856	-0.006613
13	Н	0.506507	1.803872	-0.003319
14	С	-0.522540	-0.043627	-0.013890
15	Н	-0.484989	-1.121680	-0.021437
16	С	-1.772109	0.528691	-0.014055
17	Ο	-1.960800	1.822714	-0.008833
18	С	-3.025416	-0.361484	0.002097
19	F	-4.116107	0.404364	-0.174543
20	F	-2.971105	-1.268346	-0.969327
21	F	-3.126871	-0.984268	1.176086
22	Н	-2.904104	2.054727	-0.035684

Energy E= -799.932288687 h, G^{298} = -799.787251 h, μ =4.27 D

Ν	atom	Х	У	Z
1	С	-3.465334	0.918134	-0.002299
2	С	-2.110439	0.656258	-0.006409
3	С	-4.346804	-0.183524	0.007953
4	Н	-1.418498	1.486194	-0.014194
5	Н	-5.413093	0.004093	0.011979
6	С	-1.616082	-0.676510	-0.002200
7	С	-3.893814	-1.501680	0.012740
8	Н	-4.603059	-2.316267	0.020576
9	С	-2.538457	-1.755224	0.006961
10	Н	-2.168739	-2.771281	0.010066
11	С	-0.242397	-0.990837	-0.007033
12	Н	0.004513	-2.046309	-0.007756
13	С	0.830849	-0.098839	-0.010130
14	Η	0.677404	0.968834	-0.008508
15	С	2.133401	-0.532944	-0.014759
16	0	2.461861	-1.800216	-0.019921
17	С	3.283306	0.486618	0.004042
18	F	4.454592	-0.161113	-0.129377
19	F	3.156419	1.357694	-0.993934
20	F	3.291466	1.148193	1.161110
21	Н	3.424970	-1.925548	-0.041905
22	С	-4.008612	2.320530	-0.008775
23	Η	-4.629754	2.498920	0.869748
24	Н	-3.210660	3.059390	-0.015038
25	Н	-4.633971	2.488835	-0.886329

Energy E= -799.936333762 h, G^{298} = -799.791868 h, μ =4.72 D

Ν	atom	X	У	Z
1	С	3.243086	-1.271179	-0.009508
2	С	1.910692	-0.952814	-0.011332
3	С	4.235359	-0.264474	-0.001079
4	Н	1.177786	-1.746048	-0.018165
5	С	1.496854	0.409344	-0.005879
6	С	3.834567	1.082245	0.003645
7	Н	4.585288	1.859561	0.007803
8	С	2.500709	1.416001	0.001695
9	Н	2.202323	2.455736	0.005076
10	Н	3.547401	-2.308725	-0.015449
11	С	0.151599	0.812647	-0.007630
12	Н	-0.026716	1.881795	-0.002594
13	С	-0.979361	-0.009075	-0.015156
14	Н	-0.894134	-1.084377	-0.025357
15	С	-2.249437	0.506982	-0.012785
16	Ο	-2.494890	1.795304	-0.001884
17	С	-3.462889	-0.434157	0.002291
18	F	-4.585571	0.283160	-0.185036
19	F	-3.368277	-1.345992	-0.962371
20	F	-3.548312	-1.055299	1.179608
21	Η	-3.447001	1.983535	-0.032061
22	С	5.680818	-0.640721	0.011749
23	Н	5.930139	-1.136726	0.953807
24	Η	5.901168	-1.355883	-0.782693
25	Н	6.330317	0.223080	-0.101161

Energy E= -1220.22243597 h, G^{298} = -1220.113695 h, μ =2.69 D

Ν	atom	X	У	Z
1	С	2.868435	-1.173988	-0.009227
2	С	1.530568	-0.873935	-0.011731
3	С	3.810221	-0.130338	0.001101
4	Η	0.815542	-1.683040	-0.019682
5	С	1.090244	0.478539	-0.004800
6	С	3.412416	1.212452	0.008478
7	Η	4.156502	1.994074	0.016478
8	С	2.070676	1.508362	0.005151
9	Η	1.751041	2.541505	0.010608
10	Н	3.208741	-2.198202	-0.015024
11	С	-0.266297	0.852008	-0.007118
12	Н	-0.467634	1.916997	-0.003247
13	С	-1.376795	0.006400	-0.013469
14	Н	-1.269567	-1.067028	-0.019498
15	С	-2.659777	0.495236	-0.013750
16	Ο	-2.932240	1.776208	-0.009382
17	С	-3.852421	-0.473349	0.003081
18	F	-4.991861	0.221560	-0.162134
19	F	-3.746954	-1.368854	-0.975342
20	F	-3.908307	-1.110977	1.172606
21	Η	-3.888625	1.944693	-0.035282
22	Cl	5.483082	-0.514268	0.004601

Energy E= -875.163494994 h, G^{298} = -875.015577 h, μ =3.03 D

Ν	atom	Х	У	Z
1	С	-3.308387	0.424555	0.001638
2	С	-1.930113	0.308050	-0.004584
3	С	-4.104304	-0.745802	0.010754
4	Η	-1.309977	1.188928	-0.011626
5	Η	-5.178528	-0.621511	0.016211
6	С	-1.335899	-0.982507	-0.003464
7	С	-3.533693	-2.009357	0.011992
8	Η	-4.166810	-2.884232	0.018764
9	С	-2.156779	-2.139043	0.004026
10	Η	-1.697175	-3.117026	0.004353
11	С	0.058235	-1.191932	-0.008697
12	Η	0.382879	-2.225618	-0.012365
13	С	1.061139	-0.221215	-0.007957
14	Η	0.826776	0.831810	-0.001452
15	С	2.392661	-0.554551	-0.012958
16	Ο	2.815725	-1.794019	-0.023251
17	С	3.461611	0.548845	0.005456
18	F	4.681765	-0.010673	-0.079058
19	F	3.297431	1.378939	-1.022764
20	F	3.388536	1.244044	1.140353
21	Η	3.785558	-1.846502	-0.036735
22	Ο	-3.998449	1.573298	-0.000243
23	С	-3.287172	2.816672	-0.011641
24	Η	-2.667627	2.915386	0.880677
25	Н	-2.677092	2.904189	-0.911625
26	Η	-4.049596	3.587260	-0.012409

Energy E = -875.177238831 h, $G^{298} = -875.028566 h$,

μ=4.67 D

Ν	atom	X	У	Z
1	С	2.910916	-0.978865	-0.004992
2	С	1.567921	-0.723383	-0.009411
3	С	3.828819	0.102387	0.001640
4	Η	0.882505	-1.558047	-0.013996
5	С	1.065913	0.611194	-0.007168
6	С	3.356305	1.437516	0.003613
7	Н	4.081386	2.237653	0.008613
8	С	2.015303	1.680109	-0.000344
9	Н	1.654263	2.699555	0.001577
10	Н	3.265859	-1.996864	-0.006293
11	С	-0.295146	0.923326	-0.009439
12	Н	-0.543981	1.978132	-0.003516
13	С	-1.377368	0.029506	-0.019731
14	Η	-1.224870	-1.038150	-0.035881
15	С	-2.673127	0.462685	-0.013713
16	Ο	-3.000314	1.738266	0.008872
17	С	-3.825862	-0.547717	0.000915
18	F	-4.983483	0.089645	-0.257924
19	F	-3.644884	-1.496901	-0.915518
20	F	-3.924087	-1.123662	1.202170
21	Η	-3.960876	1.863918	-0.038253
22	0	5.138538	-0.036123	0.006609
23	С	5.751763	-1.344412	0.006327
24	Н	5.467021	-1.894524	0.901180
25	Η	5.474167	-1.890907	-0.892972
26	Н	6.818201	-1.153730	0.010957

- (1) $- (1)$ $- (1)$ $- (1)$ $- (1)$	Energy	E= -760.74315632 h,	G ²⁹⁸ = -760.614213 h,	μ=6.50 D
---------------------------------------	--------	---------------------	-----------------------------------	----------

Ν	atom	X	У	Z
1	С	3.698057	-1.486344	-0.107127
2	С	2.381015	-1.136169	-0.043332
3	С	4.693932	-0.481115	-0.082684
4	Н	1.623727	-1.907054	-0.064120
5	Н	5.734763	-0.776261	-0.136990
6	С	2.009727	0.258320	0.056304
7	С	4.374272	0.884992	0.007217
8	Н	5.161569	1.624810	0.022399
9	С	3.059922	1.258465	0.075554
10	Н	2.787527	2.302996	0.148132
11	Н	3.990639	-2.524047	-0.178839
12	С	0.720260	0.701220	0.148428
13	Н	0.565974	1.771244	0.228592
14	С	-0.507290	-0.160650	0.190323
15	Н	-0.470936	-1.009417	-0.507051
16	С	-1.808602	0.500635	-0.024812
17	Ο	-1.882551	1.736524	-0.224495
18	С	-3.128933	-0.334270	0.000214
19	F	-4.144209	0.498097	-0.204969
20	F	-3.060223	-1.234643	-0.964051
21	F	-3.227533	-0.910203	1.184418
22	Н	-2.802305	2.076588	-0.348174
23	Н	-0.597023	-0.660803	1.172912

Energy E=-800.081592441 h, G^{298} = -799.927625 h, μ =5.33 D

Ν	atom	X	У	Z
1	С	-3.514392	0.929920	-0.035454
2	С	-2.166277	0.685093	0.013523
3	С	-4.383475	-0.201102	-0.043622
4	Н	-1.482692	1.522913	0.021009
5	Η	-5.451978	-0.022380	-0.085251
6	С	-1.651660	-0.663130	0.059387
7	С	-3.929927	-1.528358	-0.001789
8	Н	-4.641389	-2.341505	-0.010155
9	С	-2.584988	-1.771837	0.049141
10	Н	-2.204809	-2.783852	0.083139
11	С	-0.322330	-0.974559	0.119116
12	Н	-0.055341	-2.024094	0.156692
13	С	0.806149	0.012800	0.170184
14	Н	0.685458	0.846651	-0.536668
15	С	2.172030	-0.504071	-0.027913
16	Ο	2.382803	-1.726261	-0.217554
17	С	3.393278	0.468936	0.002090
18	F	4.495683	-0.248533	-0.189189
19	F	3.236674	1.351653	-0.968603
20	F	3.419635	1.059644	1.183173
21	Н	3.335155	-1.963860	-0.330066
22	Η	0.832074	0.530793	1.146813
23	С	-4.096122	2.310810	-0.080664
24	Η	-4.754295	2.475810	0.774191
25	Η	-3.324845	3.076562	-0.072302
26	Н	-4.701404	2.441170	-0.979396

Energy E= -800.091334774 h, G^{298} = -799.939096 h, μ =5.25 D

580-0.063082.461-0.003680.270-0.053874.712-0.015348.1430.078774
.461-0.003680.270-0.053874.712-0.015348.1430.078774
270-0.053874712-0.0153481430.078774
6712-0.0153481430.078774
143 0.078774
460 0.024580
019 0.029634
488 0.088432
0.147752
533 -0.124006
600 0.160028
458 0.229760
0.202635
.0.486244
497 -0.028438
.817 -0.236956
6880 -0.008782
378 -0.223197
147 -0.970000
531 1.176004
0632 -0.368591
5685 1.188319
-0.108815
0.866651
0928 -0.828177
266 0.216021

Energy E = -1220.37271258 h, $G^{298} = -1220.255255 h$,

μ=3.45 D

Ν	atom	X	У	Z	
1	С	2.917605	-1.192553	-0.030878	
2	С	1.591342	-0.906500	0.017651	
3	С	3.866715	-0.129154	-0.020428	
4	Η	0.882731	-1.722472	0.009338	
5	С	1.133388	0.465128	0.085451	
6	С	3.460955	1.227048	0.041052	
7	Η	4.207967	2.007225	0.046940	
8	С	2.132825	1.516635	0.092451	
9	Η	1.807900	2.547320	0.141519	
10	Η	3.271483	-2.211982	-0.078929	
11	С	-0.178976	0.832003	0.152617	
12	Η	-0.399652	1.891029	0.210024	
13	С	-1.350701	-0.104616	0.193105	
14	Η	-1.260477	-0.951537	-0.502097	
15	С	-2.687918	0.470672	-0.031833	
16	Ο	-2.840643	1.699894	-0.234200	
17	С	-3.952388	-0.445364	-0.012511	
18	F	-5.018554	0.320621	-0.222266	
19	F	-3.824588	-1.340109	-0.976604	
20	F	-4.022164	-1.028106	1.170817	
21	Н	-3.779641	1.978368	-0.362210	
22	Н	-1.421076	-0.607896	1.175616	
23	Cl	5.506269	-0.500039	-0.084364	

Energy E=-875.315159412 h, G^{298} = -875.157419 h, μ =4.57 D

Ν	atom	Х	У	Z	
1	С	-3.360622	0.422886	-0.015907	
2	С	-1.983709	0.339928	0.017846	
3	С	-4.132719	-0.784094	-0.024408	
4	Н	-1.386191	1.237660	0.026194	
5	Н	-5.210457	-0.674573	-0.052977	
6	С	-1.361373	-0.952314	0.045297	
7	С	-3.549778	-2.049574	0.001952	
8	Н	-4.173106	-2.931922	-0.005159	
9	С	-2.181462	-2.148942	0.036422	
10	Н	-1.699405	-3.116591	0.057677	
11	С	-0.008282	-1.169132	0.082313	
12	Н	0.334575	-2.195618	0.103562	
13	С	1.039338	-0.099356	0.118147	
14	Н	0.874250	0.685289	-0.637013	
15	С	2.444419	-0.515462	-0.029058	
16	0	2.750971	-1.722880	-0.182011	
17	С	3.589209	0.545085	0.007142	
18	F	4.745502	-0.090305	-0.157055	
19	F	3.386237	1.404856	-0.975703	
20	F	3.552633	1.149114	1.181854	
21	Н	3.720625	-1.889633	-0.268312	
22	Н	0.998560	0.471244	1.063674	
23	Ο	-4.096264	1.519416	-0.043467	
24	С	-3.468079	2.819401	-0.040500	
25	Н	-2.885790	2.951448	0.871326	
26	Н	-2.846743	2.936369	-0.928320	
27	Н	-4.284975	3.530500	-0.064179	

Energy **E=-875.343981276 h**,

G²⁹⁸= -875.185979 h, µ

μ=3.33 D

Ν	atom	Х	У	Z	
1	С	2.948723	-1.002694	-0.011230	
2	С	1.620310	-0.755842	0.043064	
3	С	3.874974	0.099467	-0.018510	
4	Н	0.939370	-1.595385	0.049096	
5	С	1.103117	0.600124	0.099701	
6	С	3.395623	1.450260	0.031259	
7	Н	4.125451	2.247037	0.022941	
8	С	2.068618	1.688646	0.088140	
9	Н	1.703579	2.705932	0.128076	
10	Н	3.316438	-2.016279	-0.049632	
11	С	-0.218256	0.910266	0.171686	
12	Н	-0.483669	1.958821	0.222333	
13	С	-1.351877	-0.071611	0.230547	
14	Н	-1.218998	-0.944923	-0.423248	
15	С	-2.703126	0.438842	-0.041113	
16	Ο	-2.902053	1.654004	-0.291161	
17	С	-3.930939	-0.523259	-0.012124	
18	F	-5.024625	0.194122	-0.256652	
19	F	-3.758048	-1.438229	-0.951138	
20	F	-3.998915	-1.079960	1.184106	
21	Н	-3.848829	1.887202	-0.443186	
22	Н	-1.429612	-0.532927	1.233360	
23	Ο	5.154247	-0.031028	-0.068979	
24	С	5.838489	-1.327322	-0.121888	
25	Н	5.608519	-1.891463	0.778088	
26	Н	5.540494	-1.854169	-1.024471	
27	Н	6.890053	-1.072308	-0.156272	

Table S8. Calculated HOMO and LUMO pictures of cations A1, B1.

Cation G1 Energy E= -916.544162576 h, G^{298} = -916.354128, μ =5.99 D

Ν	atom	X	У	Z
1	С	-4.737672	-0.680966	0.698076
2	С	-4.518113	-0.699452	-0.675585
3	С	-3.231340	-0.522439	-1.179778
4	С	-2.154091	-0.326476	-0.316025
5	С	-2.381822	-0.306729	1.063182
6	С	-3.665554	-0.484083	1.566886
7	С	-0.752696	-0.153874	-0.875117
8	С	-0.028680	1.089301	-0.447897
9	С	1.326388	0.786460	-0.058950
10	С	1.490551	-0.576238	-0.135097
11	С	0.255905	-1.278817	-0.536504
12	С	-0.474034	2.394663	-0.424105
13	С	0.424440	3.386258	-0.039493
14	С	1.764618	3.107071	0.326359
15	С	2.233268	1.823423	0.323153
16	С	2.773548	-1.344870	0.104375
17	F	2.513966	-2.585649	0.538284
18	F	3.444135	-1.444168	-1.058793
19	F	3.574780	-0.755318	0.999082
20	Η	3.255442	1.603512	0.602385
21	Η	-1.490593	2.650780	-0.702326
22	Η	0.089689	4.419981	-0.021982
23	Η	2.414488	3.926585	0.611651
24	Η	-0.086482	-1.901478	0.301123
25	Η	-0.831873	-0.102343	-1.971621
26	Η	-3.063724	-0.537696	-2.252056
27	Η	-1.555763	-0.154889	1.752272
28	Η	-5.346591	-0.851587	-1.358545
29	Η	-3.829060	-0.468109	2.638823
30	Η	-5.738524	-0.818764	1.091954
31	Η	0.438763	-1.979173	-1.359715

Atom	No	Charge	Core	Valence	Rydberg	Total
с	 1	-0.20850	1.99915	4.18896	0.02039	 6.20850
С	2	-0.20405	1.99915	4.18460	0.02031	6.20405
С	3	-0.20043	1.99903	4.18272	0.01868	6.20043
С	4	-0.04142	1.99897	4.02212	0.02033	6.04142
С	5	-0.21133	1.99903	4.19388	0.01842	6.21133
С	6	-0.20278	1.99916	4.18315	0.02047	6.20278
С	7	-0.28200	1.99906	4.25641	0.02654	6.28200
С	8	0.18175	1.99900	3.79950	0.01975	5.81825
С	9	-0.11698	1.99859	4.09519	0.02320	6.11698
С	10	0.21322	1.99883	3.76701	0.02094	5.78678
С	11	-0.44095	1.99914	4.42309	0.01872	6.44095
С	12	-0.23562	1.99896	4.21639	0.02027	6.23562
С	13	-0.01610	1.99920	3.99899	0.01792	6.01610
С	14	-0.20946	1.99917	4.18992	0.02036	6.20946
С	15	-0.07896	1.99893	4.06071	0.01932	6.07896
С	16	1.06021	1.99909	2.88823	0.05247	4.93979
F	17	-0.33937	1.99991	7.33173	0.00773	9.33937
F	18	-0.33589	1.99992	7.32827	0.00771	9.33589
F	19	-0.33937	1.99991	7.33051	0.00894	9.33937
H	20	0.25405	0.00000	0.74426	0.00169	0.74595
H	21	0.25754	0.00000	0.73989	0.00258	0.74246
H	22	0.24773	0.00000	0.75087	0.00140	0.75227
H	23	0.25227	0.00000	0.74625	0.00149	0.74773
H	24	0.29262	0.00000	0.70525	0.00214	0.70738
H	25	0.29466	0.00000	0.70280	0.00255	0.70534
H	26	0.22678	0.00000	0.77148	0.00173	0.77322
H	27	0.22520	0.00000	0.77305	0.00174	0.77480
H	28	0.22502	0.00000	0.77332	0.00166	0.77498
H	29	0.22522	0.00000	0.77313	0.00166	0.77478
H	30	0.22425	0.00000	0.77423	0.00152	0.77575
H	31	0.28274	0.00000	0.71522	0.00204	0.71726

Sum of internal angles - 539,5°, different from flat 5-membered cycle by 0,5°.

НОМО

LUMO

40

41

42

F

F

F

-0.864851

-2.801733

-2.083186

 G^{298} = -1148.207302 h, Energy E = -1148.48415864 h, μ=3.01 D Calculated for solution with $\varepsilon = 78.39$ (water) Cartesian coordinates, Å Ν atom X У Z 1 С -1.0984522.181132 -1.215469 2 С -0.4292861.241235 -0.4330983 С 0.959334 1.289787 -0.313626 4 С 1.695088 2.242500 -1.012019 5 С 1.029380 3.161146 -1.818739 6 С -0.362343 3.136146 -1.912235 7 С -1.024533 0.143104 0.456313 8 С 0.253284 -0.629879 0.934255 9 Η -2.179144 2.183434 -1.28707510 Η 2.775803 2.275231 -0.924289 11 Η 1.594051 3.906225 -2.368553 12 Η -0.876698 3.863962 -2.529771 13 Η 0.346558 -1.518535 0.313934 14 Η 0.843033 1.627194 1.685329 15 С 1.477603 0.292459 0.703748 16 С -2.018917-0.827466 -0.210914С 17 -2.367357 -0.725924-1.558956 С 18 -2.532140-1.9102820.517726 19 С -3.220084 -1.654126 -2.15492920 С -3.385699 -2.834631 -0.074263 С 21 -3.740046 -1.414893-2.70867622 Η -1.967172 0.068097 -2.169632 23 Η -2.259914 -2.0518031.554718 24 Η -3.470958-1.547129-3.204594 25 Η -3.768204 -3.660249 0.515890 26 Η -4.404547-3.430038 -1.877328 27 С 2.744969 -0.453798 0.333473 28 С 3.815874 -0.503059 1.228247 29 С 2.868878 -1.122702-0.889259С 30 4.979627 -1.2047130.917275 С 31 4.028460 -1.823415 -1.20442532 С 5.089463 -1.867993-0.300888 33 Η 3.737492 0.013607 2.179623 34 Η 2.056011 -1.094373 -1.607272 35 Η 5.799105 -1.229984 1.627352 36 Η 4.105613 -2.334198 -2.15820337 Η 5.993524 -2.413708 -0.547306 38 Η 0.176632 -0.9648451.966981 39 С -1.695693 0.845860 1.652820

2.243309

1.285736

2.638450

1.739236

1.533706

0.003841

Envelope conformation. Sum of internal angles 536.1°

41

42

Η

Η

6.439556

0.818151

-1.478363

-0.405530

0.435592

1.662671

 G^{298} = -1148.209047 h, Energy E = -1148.48663463 h, μ=3.45 D Calculated for solution with $\varepsilon = 78.39$ (water) Cartesian coordinates, Å atom Ν X Z У -1.827115 1 С 3.297061 -0.807890 2 С 2.676360 -0.721120-0.222597 3 С 3.438903 0.107413 0.607676 4 С 4.783327 -0.1624140.843359 5 С 5.391217 -1.269554 0.253239 6 С 4.642941 -2.102093-0.573355 7 С 1.203871 -0.461512 -0.463607 8 С 0.798067 0.960974 -0.799825 9 С 1.279689 -0.228960 -0.435152С 10 -0.987201 0.075693 0.541561 11 С 0.310596 -0.761811 0.766001 С 12 1.467783 1.887378 -1.591250 С 13 0.903236 3.145963 -1.790348С 14 -0.319695 3.470641 -1.20462215 С -1.0002032.536665 -0.42444916 С -2.053699 -0.720774-0.243855 С 17 -2.437649-1.996910 0.187440 С 18 -3.393341 -2.730654-0.507401 19 С -3.983955 -2.207151 -1.654614 20 С -3.608630 -0.943610 -2.095300 С 21 -2.653689 -0.208588-1.395385 22 С -1.568552 0.505129 1.893461 23 F -2.746702 1.159726 1.770491 24 F -1.799155 -0.5442142.717407 25 F -0.7398671.335202 2.569220 26 Η -1.953594 2.801520 0.016701 27 Η 2.424643 1.641751 -2.03877828 Η 1.420817 -2.3995493.878902 29 Η -0.7476434.455185 -1.356874 30 Η 0.112172 -1.8223700.891031 31 Η 0.885478 -1.106927 -1.29097032 -1.763852 Η -2.3795040.768918 33 Η -1.992003-2.4339921.071725 34 Η -4.055762 -0.522290 -2.98902335 Η -3.672005 -3.716325 -0.151178 36 Η -4.725750 -2.780473-2.199456 37 Η 2.983290 0.975701 1.071583 38 Η 2.720410 -2.478496-1.45710439 Η 5.358205 0.494206 1.487430 40 Η 5.105478 -2.965261 -1.039693

Envelope conformation. Sum of internal angles 529.3°

Bioactivity studies

Fig. S93 Results of enzymatic assays relevant to endocannabinoid system: fatty acid amide hydrolase (FAAH) for AEA and monoacylglycerol lipase (MAGL) and α/β hydrolase domain (ABHDs) for 2-AG.

Concentrations of the controls used: URB597, JZL184 and MAFP – at 1 μ M; THL – at 20 μ M and WWL70 – at 10 μ M. Data shown are Mean ± SD (N: 2-3, n: 4-6)

Fig. S94 Inhibition of human cyclooxygenase-2 (hCOX-2) for 2-AG and arachidonic acid (screening concentration – 5 μ M).

Reference standard DuP-697 was used at concentration of 0.1 μ M. Substrate – (a) arachidonic acid (10 μ M) or (b) 2-arachidonyl glycerine (2-AG, 10 μ M). Data shown are Mean ± SD (N: 2-3, n: 4-6).

Fig. S95 Inhibition of the putative endocannabinoid membrane transporter: AEA uptake assay (10 μ M in U937 cells).

Reference standard UCM707 used at 10 μ M concentration. Data shown are Mean \pm SD (N: 2-3, n: 4-6).

Procedures for synthesis of compounds 3c, 4a, 5a, 6a

Scheme S1. Synthesis of compounds 3c, 4a, 5a, 6a (see Experimental).

Schemes of synthesis of compounds **3c**, **4a**, **5a**, **6a** are presented in Scheme S1 and procudures are given below.

Synthesis of 3c from 8 (see Scheme S1).

1,3,3-Triphenylpropan-1-one (**8**) was synthesized via known procedure by Friedel-Crafts arylation of chalcone 7.^{S1} Yield 7.3 g, 53%. Colorless solid, m. p. 90-91°C (lit.^{S1} 92°C) ¹H NMR (CDCl₃, 400 MHz) δ , ppm: 3.76 (d, 2H, *J* = 7.3 Hz), 4.85 (t, 1H, *J* = 7.3 Hz), 7.19 (m, 2H), 7.29 (m, 8H), 7.45 (t, 2H, *J* = 7.6 Hz), 7.56 (t, 1H, *J* = 7.4 Hz), 7.95 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ , ppm: 44.9 (CH₂), 46.1 (CH), 126.5, 128.0, 128.2, 128.7, 128.7, 133.2, 137.2, 144.3, 198.1.

1,1,1-Trifluoro-4,4-diphenylbutan-2-one $(3c)^{S2}$ was obtained by modification of the known procedure.^{S3} Ethyl trifluoroacetate (0.89 g, 6.3 mmol) was added to a suspension of NaH (0.15 g, 6.3 mmol) in absolute THF (6 mL) with cooling in ice-water bath under argon. The mixture was stirred 10 min, then a solution of **8** (1.5 g, 5.24 mmol) in absolute THF (6 mL) was slowly added. Then the reaction mixture was slowly heated to boiling and was heated under

reflux for 16 h, until the conversion ratio was constant (80% by NMR). The mixture was cooled down to 0 °C and 2 mL of 1M aqueous HCl was added and after 15 min of vigorous stirring the mixture was neutralized with saturated aqueous solution of NaHCO₃. Reaction product was extracted with CH₂Cl₂ (3×50 mL), the combined extracts were dried with Na₂SO₄, and concentrated in vacuum. The residue was purified by column chromatography on silica gel using mixture of hexanes-ethyl acetate as eluent. Yield 0.46 g, 31%. Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ , ppm: 3,50 (d, 2H, *J* = 7.5 Hz), 4.68 (t, 1H, *J* = 7.5 Hz), 7.20-7.25 (m, 6H), 7.29-7.33 (m, 4H). ¹³C NMR (CDCl₃, 100 MHz) δ , ppm: 42.5 (CH₂), 44.8 (CH), 115.6 (q, CF₃, *J* = 292 Hz), 127.1, 127.7, 129.0, 142.6, 189.5 (q, COCF₃, *J* = 35.4 Hz). ¹⁹F NMR (CDCl₃, 376 MHz) δ , ppm: -79.40 (s, CF₃).

Synthesis of 4a from 8 (see Scheme S1).

1,1,1-Trufluoro-2-trimethylsilyloxy-2,4,4-triphelylbutane (9) was obtained from **8** by modification of the known procedure.^{S4} CF₃TMS (0.254 g, 1.80 mmol) was added to a solution of **8** (0.5 g, 1.75 mmol) in absolute Et₂O (15 mL), then 1 mol% of dry CsF (ca. 3mg, 0.002 mmol) was added. The reaction mixture was stirred at r. t. overnight and one more portion of CF₃TMS was added (102 mg, 0.72 mmol) followed by addition of CsF (ca. 3mg, 0.002 mmol), and the mixture was stirred for next 24 h. Then the mixture was poured into 15 mL of water and extracted with CH₂Cl₂ (3×50 mL), the combined extracts were dried with Na₂SO₄, and concentrated in vacuum. The residue was purified by column chromatography on silica gel using mixture of hexanes-ethyl acetate as eluent. Yield 0.55 g, 70% . Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ , ppm: 0.07 (s, 9H, TMS), 2.96 2dd, AB-system (2H, *J* = 14.2 Hz, *J_I* = 5.3 Hz, *J₂* = 6.7 Hz, *Δ_{AB}* 40 Hz), 3.89 (t, 1H, *J* = 6.0 Hz), 6.85-6.9 (m, 2H), 6.92-7.15 (m, 3H), 7.1-7.25 m (8H), 7.3-7.35 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ , ppm: 1.6 (d, *J* = 1.5 Hz), 41.5 (CH₂), 46.4, 80.9 (q, <u>C</u>-CF₃, *J* = 27 Hz), 125.7, 126.2, 127.0 (d, <u>CH</u>-C-CF₃, *J* = 1.4 Hz), 127.7, 127.8, 128.0, 128.3, 128.7, 137.5, 145.6, 145.8. ¹⁹F NMR (CDCl₃, 376 MHz) δ , ppm: -76.53 (s, CF₃). HRMS: C₂₅H₂₇F₃OSi found 428.1782 *M*+; calcd. 428.1785.

1,1,1-Trifluoro-2,4,4-triphenylbutan-2-ol (4a) was synthesized from **9** by the known procedure.^{S5} Anhydrous SnCl₂ (72 mg, 0.38 mmol) was added to a solution of **9** (0.164 g, 0.38 mmol) in MeCN (1 mL). The reaction mixture was stirred for 24 h, then poured into 25 ml of 10% aqueous HNO₃ and extracted with CHCl₃ (3×20 mL). The combined extracts were dried with Na₂SO₄, and concentrated in vacuum. Yield 0.13 g, 96%. Colorless oil. ¹H NMR (CDCl₃, 400 MHz) δ , ppm: 1.98 (s, 1H, OH), 2.95-3.03 m, AB-system (2H), 3.90 (dd, 1H, *J* = 4.6 Hz, 9.4 Hz), 7.10-7.19 (m, 5H), 7.20-7.26 (m, 3H), 7.29-7.33 m (2H), 7.37-7.43 (m, 3H), 7.50-7.54 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ , ppm: 40.3 (CH₂), 46.1 (CH), 78.3 (q, <u>C</u>-CF₃, *J* = 27.8 Hz), 126.6, 126.91, 126.92, 127.3, 127.4, 128.1, 128.5, 128.7, 128.8, 129.4, 136.7, 143.8, 144.6. ¹⁹F NMR (CDCl₃, 376 MHz) δ , ppm: -80.44 (s, CF₃). HRMS: C₂₂H₁₈F₃O found 355.1311 *M*+; calcd. 355.1310.

Synthesis of 5a from cinnamic acid 10 (see Scheme S1).

3-Phenylindan-1-one (11) was synthesized by combination of the known procedures^{56, 57} via Friedel-Crafts arylation of cinnamic acid **10**. Anhydrous AlCl₃ (27 g, 0.203 mol) was added in portions to a rapidly stirred suspension of **10** (10 g, 67.6 mmol) in 45 mL of absolute benzene. The resulting mixture was heated under reflux for 14 h, then cooled down to r. t. and slowly poured into 2M aqueous HCl (240 mL), then extracted with CH₂Cl₂ (3×200 mL). The combined extracts were filtrated through a layer of celite to break the emulsion, celite was additionally washed with 50 ml of CH₂Cl₂. Then combined organic phases were consequently washed with aqueous solution of 5% K₂CO₃ (200 mL), water (200 mL), dried with Na₂SO₄ and concentrated in vacuum. The resulting red oily residue was extracted with boiling hexanes (3×50 mL). The combined extracts were partially evaporated in vacuum (nearly to 1/5 of original volume), that gave crystals that were recrystallized from MeOH (12 mL). Yield 2.9 g, 20%. Colorless solid, m. p. 75-77°C (lit.^{S7} 78°C). ¹H NMR (CDCl₃, 400 MHz) δ , ppm: 2.69 (dd, 1H, *J* = 19.2 Hz, *J* = 3.9 Hz), 3.23 (dd, 1H, *J* = 19.2 Hz, 8.1 Hz), 4.58 (dd, 1H, *J* = 8 Hz, 3.8 Hz), 7.13 d+s overlap (2H, *J* = 8.4 Hz), 7.2-7.35 (m, 4H), 7.57 td (1H, *J* = 7.6 Hz, 1.1 Hz), 7.81 (d, 1H, *J*

= 7.7 Hz). ¹³C NMR (CDCl₃, 100 MHz) δ, ppm: 44.6 (CH), 47.0 (CH₂), 123.5, 127.0, 127.1, 127.8 128.0, 129.0, 135.2, 136.9, 143.8, 158.1, 206.1. See lit.^{S8} spectral data.

(1RS,3RS)-1-Trifluoromethyl-1-trimethylsilyloxy-3-phenylindane (12). CF₃TMS (0.35 g, 2.46 mmol) was added to a solution of ketone 11 (0.5 g, 2.4 mmol) in absolute Et₂O (15 mL). Then 1 mol% of dry CsF (ca. 4 mg, 0.0024 mmol) was added. The reaction mixture was stirred at r. t. 24 h and one more portion of CF₃TMS (105 mg, 0.74 mmol) followed by addition of CsF (ca. 3mg, 0.002 mmol), and the mixture was stirred for next 24 h. This addition was repeated one more time, and the mixture was stirred for next 24 h. Then the mixture was poured into 15 mL of water and extracted with CH₂Cl₂ (2×40 ml), the combined extracts was dried with Na₂SO₄ and concentrated in vacuum. Yield 0.80 g, 95%. Colorless oil. Relative stereo chemical configuration was revealed from NOESY-HH and NOESY-HF spectra (see above in SI). $^{1}\mathrm{H}$ NMR (CDCl₃, 400 MHz) δ , ppm: 0.12 (s, 9H, TMS), 2.30 ddd (1H, J_{HH} = 13.9 Hz, 9.7 Hz, J_{HF} = 1.6 Hz,), 3.18 (dd, 1H, J = 13.9 Hz, 7.7 Hz), 4.38 (t, 1H, J = 8.6 Hz), 6.96 (m, 1H), 7.23 (m, 2H), 7.25-7.4 m (5H), 7.64 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ, ppm: 2.1, 47.2 (CH₂), 48.6 (d, CH, J = 0.7 Hz), 84.3 (q, <u>C</u>-CF₃, J = 30 Hz), 125.3, 125.5, 126.0 (q, CF₃, J = 285 Hz), 127.2, 127.4 (d, CH, J = 3.7 Hz), 128.4, 129.0, 130.1, 140.8, 143.8, 146.8. ¹⁹F NMR (CDCl₃, 376 MHz) δ , ppm: -81.54 (s, CF₃). HRMS: C₁₉H₂₂F₃OSi found 351.1390 *M*+; calcd. 351.1392.

(1RS,3RS)-1-Trifluoromethyl-1-hydroxy-3-phenylindane (5a).

Anhydrous SnCl₂ (72 mg, 0.38 mmol) was added to a solution of **12** (0.225 g, 0.65 mmol) in MeCN (1 mL). The reaction mixture was stirred for 24 h, then poured into 25 ml of 10% aqueous HNO₃ and extracted with CHCl₃ (3×20 mL). The combined extracts were dried with Na₂SO₄, and concentrated in vacuum. Yield 0.161 g, 95%.Yellow oil. Relative stereo chemical configuration was revealed from NOESY-HH and NOESY-HF spectra (see SI). ¹H NMR (CDCl₃, 400 MHz) δ , ppm: 2.27 ddd (1H, J_{HH} = 14.2 Hz, 8.4 Hz, J_{HF} = 1.6 Hz), 2.67 br (s, 1H, OH), 3.22 (dd, 1H, J = 14.2 Hz, J = 8.2 Hz), 4.43 (t, 1H, J = 8.3 Hz), 6.97-7.02 (m, 1H), 7.19-7.24 (m, 2H), 7.26-7.29 (m, 1H), 7.30-7.39 (m, 4H), 7.53-7.59 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ , ppm: 46.5 (CH₂), 48.7 (CH), 82.7 (q, <u>C</u>-CF₃, J = 30.5 Hz), 124.7, 125.7, 126.1 (q, CF₃, J = 284 Hz), 127.1, 127.9, 128.3, 128.9, 130.6, 139.3, 143.8, 147.8. ¹⁹F NMR (CDCl₃, 376 MHz) δ , ppm: -81.08 (s, CF₃). HRMS: C₁₆H₁₃F₃O found 278.0921 *M*+; calcd. 278.0918.

Synthesis of 6a from chalcone 7 (see Scheme S1).

1-Trifluoromethyl-1-trimethylsilyloxy-1,3-diphenylhrop-2-ene (13). CF₃TMS (2.1 g, 14.8 mmol) was added to a solution of ketone 7 (3 g, 14.4 mmol) in absolute Et₂O (50 mL). Then 1 mol% of dry CsF (ca. 24 mg, 0.15 mmol) was added. The reaction mixture was stirred at r. t. 24 h and one more portion of CF₃TMS (0.4 g, 2.8 mmol) followed by addition of CsF (ca. 24 mg, 0.15 mmol), and the mixture was stirred for next 24 h. Then the mixture was poured into 15 mL of water and extracted with Et₂O (2×50 ml), the combined extracts was dried with Na₂SO₄ and concentrated in vacuum. Reaction product was recrystallized from Et₂O. Yield 4.16 g, 82%. Colorless solid, mp 39-41°C (Et₂O). ¹H NMR (CDCl₃, 400 MHz) δ , ppm: 0.16 (s, 9H, TMS), 6.56 (d, 1H, *J* = 16.4 Hz), 6.71 (d, 1H, *J* = 16.4 Hz), 7.30-7.43 (m, 8H), 7.55-7.63 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz) δ , ppm: 2.1, 80.1 (q, <u>C</u>-CF₃, *J* = 29 Hz), 125.2 (q, CF₃, *J* = 287 Hz), 126.98, 127.07, 128.07, 128.10, 128.69, 128.77, 129.0, 135.4 (CH, *J* = 0.7 Hz), 135.9, 138.2. ¹⁹F NMR (CDCl₃, 376 MHz) δ , ppm: -77.40 (s, CF₃). See lit.⁵⁴ spectral data.

1,1,1-Trifluoro-2,4-diphenylbut-3-ene-2-ol (6a).^{S9} Anhydrous SnCl₂ (0.76 g, 4 mmol) was added to a solution of **13** (1.4 g, 4 mmol) in MeCN (4 mL). The reaction mixture was stirred for 24 h, then poured into 75 ml of 10% aqueous HNO₃ and extracted with CHCl₃ (3×20 mL). The combined extracts were dried with Na₂SO₄, and concentrated in vacuum. Yield 0.946 g, 85%. Yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ , ppm: 2.69 (s, 1H, OH), 6.73 (d, 1H, *J* = 16.1 Hz), 6.89 (d, 1H, *J* = 16.1 Hz), 7.30-7.38 (m, 3H), 7.40-7.45 (m, 5H), 7.66 (dd, 2H, *J* = 7.6 Hz, 0.7 Hz). ¹⁹F NMR (CDCl₃, 376 MHz) δ , ppm: -78.50 (s, CF₃). See lit.^{S9} spectral data.

References

- S1. Shildneck, P. R. Org. Synt., 1937, 17, 51.
- S2. Laub, H. A.; Gladow, D.; Reissig, H.-U.; Mayr, H. Org. Lett. 2012, 14, 3990-3993.
- S3. Yang, D.; Zhou, Y.; Xue, N.; Qu, J. J. Org. Chem. 2013, 78, 4171-4176.
- S4. Singh, R. P.; Kirchmeier, R. L.; Shreeve, J. M. Org. Lett. 1999, 1, 1047-1049.
- S5. Cort A. D. Synth. Commun. 1990, 20, 757-760.
- S6. Baker, W.; McOmie, J. F. W.; Pafitt, S. D.; Watkins, D. A. M. J. Chem. Soc. 1957, 4026-4037.
- S7. Kohler, E. P. Amer. Chem. J. 1904, 31, 642-661.
- S8. Vasu, D.; Hung, H.-H.; Brunia, S.; Gawade, S. A.; Das, A.; Liu, R.-S. Angew. Chem. Int.
- *Ed.*, **2011**, *50*, 6911-6914.
- S9. Prakash, G. K. S.; Jog, P. V.; Batamack, P. T. D.; Olah, G. A. Science 2012, 338, 1324-1327.