Supporting Information for:

Highly Enantioselective Synthesis of Non-natural Aliphatic α-Amino Acids via Asymmetric Hydrogenation

Jianjian Ji,
† Caiyou Chen, † Jiayu Cai, Xinrui Wang, Kai Zhang, Liyang Shi, Hu
i Lv $\!\!\!$ and Xumu Zhang $\!\!\!\!$

Contents

Experimental Section	S2
General procedure for the synthesis of β -alkyl (Z)-N-acetyldehydroamino esters	S2
Experimental Procedure for the Synthesis of (R)-piperidine-3-amine chloride 7k	S11
References	S12
NMR Spectra	S13
HPLC results for determining the enantioselectivity	S38

Experimental Section

General Information Unless otherwise noted, all reagents and solvents were purchased from commercial suppliers and used without further purification. NMR spectra were recorded on Bruker Advance III (400 MHz) spectrometers for ¹H NMR and ¹³C NMR. CDCl₃ was used as the solvent for the NMR analysis, with tetramethylsilane as the internal standard. Chemical shifts were reported upfield to TMS (0.00 ppm) for ¹H NMR and relative to CDCl₃ (77.0 ppm) for ¹³C NMR. Optical rotation was determined using a Perkin Elmer 343 polarimeter. HPLC analysis was conducted on an Agilent 1260 Series instrument. Column chromatography was performed with silica gel Merck 60 (300-400 mesh). All new products were further characterized by HRMS. A positive ion mass spectrum of sample was acquired on a Thermo LTQ-FT mass spectrometer with an electrospray ionization source.

General procedure for the synthesis of β -alkyl (*Z*)-N-acetyldehydroamino esters

Tetramethylguanidine (13.5 mmol) was added to a solution of the phosphonate **4** (10 mmol) in distilled THF (35 mL) at -78 °C. After 15 min, aldehyde **3** (12 mmol) was added and the resulting solution was stirred at -78 °C for 2 h then allowed to warm to 25 °C over a period of 2 h. The mixture was quenched with water and extracted with EA (3×20 mL). The organic layer was combined and dried with MgSO₄ and concentrated under reduced pressure to give an oil. Purification by flash chromatography on silica gel using ethyl acetate and petroleum ether (1:1) gave the (Z)-esters **1** as a white solid.^[1] Results of the preparation of **1** were summarized in Table 1.

Table 1. Preparation of β-alkyl (Z)-N-acetyldihydroamino esters ^a

Entry	R	Product	Yield (%) ^b
1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1a	88
2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1b	90
3		1c	85
4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1d	82
5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1e	97
6	CI	1f	93
7	> 5	1g	85
8	, 5	1h	50
9	$\triangleright \mathbf{f}$	1i	82
10		1j	80
11	N 5 O	1k	57

[a] Unless otherwise mentioned, all reactions were carried out in THF at atemperature from -78 °C to rt for 2 h, all the product was determined as Z-configuration; [b] isolated yield.

(Z)-methyl 2-acetamidohex-2-enoate, 1a

White solid; Yield: 80 %; ¹H NMR (400 MHz, CDCl₃) δ 7.74 (br, 1H), 6.70 - 6.68 (m, 1H), 3.76 (s, 3H), 2.16 - 2.10 (m, 5H), 1.52 - 1.43 (m, 2H), 0.95 - 0.91 (m, 3H); ¹³C NMR(101 MHz, CDCl₃) δ 168.98, 165.05, 139.04, 125.17, 52.03, 30.35, 22.85, 21.24, 13.68. ESI-HRMS Calculated for C₉H₁₅NO₃⁺([M+H]⁺): 86.1125, found: 86.1127.

(Z)-methyl 2-acetamidooct-2-enoate, 1b

White solid; Yield: 90%; ¹H NMR(400 MHz, CDCl₃) δ 7.71 (s, 1H), 6.70 – 6.66 (m, 1H), 3.75 (s, 3H), 3.71 – 3.66 (m, 1H), 2.15 – 2.10 (m, 5H), 1.46 – 1.43 (m, 2H), 1.31 - 1.19 (m, 6H), 0.90 – 0.87 (m, 3H); ¹³C NMR(101MHz, CDCl₃) δ 168.97, 165.03, 139.37, 125.00, 57.71, 51.97, 51.87, 31.29, 28.33, 27.62, 22.77, 22.17, 18.01, 13.67. ESI-HRMS Calculated for C₁₁H₂₀NO₃⁺([M+H]⁺): 214.1438, found: 214.1442.

(Z)-methyl 2-acetamidonon-2-enoate, 1c

White solid; Yield: 84%; ¹H NMR (400 MHz, CDCl₃) δ 6.89 (br, 1H), 6.73 – 6.69 (m, 1H), 3.77 (s, 3H), 2.18 – 2.13 (m, 5H), 1.52 - 1.37 (m, 2H), 1.36 - 1.16 (m, 6H), 0.90 – 0.86 (m, 3H).; ¹³C NMR (101 MHz, CDCl₃) δ 168.35, 165.19, 139.46, 124.56, 52.33, 31.56, 29.07, 29.00, 28.14, 23.41, 22.51, 14.02. ESI-HRMS Calculated for C₁₁H₂₂NO₃⁺([M+H]⁺): 228.1594, found: 228.1595.

(Z)-methyl 2-acetamidododec-2-enoate, 1d

White solid; Yield: 93 %;¹H NMR (400 MHz, CDCl₃) δ 7.70 (br, 1H), 6.69 – 6.67 (m, 1H), 3.76 (s, 3H), 2.99 – 2.97 (m, 2H), 2.12 – 2.11 (m, 5H), 1.45 – 1.43(m, 2H), 1.31 – 1.21 (m, 9H), 0.89 – 0.87 (m, 3H); ¹³C NMR(101 MHz, CDCl₃) δ 168.88, 165.21, 139.42, 125.00, 52.13, 39.52, 31.70, 29.27, 29.13, 28.58, 28.07, 24.66, 23.01, 22.50, 13.95. ESI-HRMS Calculated for C₁₅H₂₇NO₃⁺([M+H]⁺): 270.2064, found: 270.2067.

(Z)-methyl 2-acetamidotetradec-2-enoate, 1e

White solid; Yield: 97 %;¹H NMR (400 MHz, CDCl₃) δ 7.15 (br, 1H), 6.72 – 6.68 (m, 1H), 3.77 (s, 3H), 2.17 – 2.12 (m, 5H), 1.46 – 1.43 (m, 2H), 1.33 – 1.21 (m, 17H), 0.90 – 0.86 (m, 3H); ¹³C NMR(101

MHz, CDCl₃) δ 168.51, 165.19, 139.48, 124.66, 52.27, 39.61, 31.83, 29.54, 29.47, 29.37, 29.36, 29.26, 28.88, 28.16, 23.29, 22.61, 14.05. ESI-HRMS Calculated for C₁₇H₃₁NO₃⁺([M+H]⁺):298.2377, found: 298.2367.

(Z)-methyl 2-acetamido-7-chlorohept-2-enoate, 1f

White solid; Yield: 82 %;¹H NMR (400 MHz, CDCl₃) δ 7.31 (br, 1H), 6.69 – 6.65 (m, 1H), 3.77 (s, 3H), 3.56 – 3.53 (m, 2H), 2.22 – 2.12 (m, 5H), 1.82 – 1.78 (m, 2H), 1.64 – 1.60 (m, 2H); ¹³C NMR(101 MHz, CDCl₃) δ 168.56, 164.95, 137.95, 125.12, 52.29, 44.54, 31.98, 27.95, 25.29, 23.21. ESI-HRMS Calculated for C₁₀H₁₆ClNO₃⁺([M+H]⁺):234.0891, found: 234.0897.

(Z)-methyl 2-acetamido-4-methylpent-2-enoate, 1g

White solid; Yield: 87%; ¹H NMR (400 MHz, CDCl₃) δ 7.10 (br, 1H), 6.54 – 6.51 (m, 1H), 3.76 (s, 3H), 2.62 – 2.58 (m, 1H), 2.12 (s, 3H), 1.07 -1.02 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.17, 165.39, 145.87, 123.03, 52.30, 27.96, 23.16, 21.51.ESI-HRMS Calculated for C₁₁H₂₀NO₃⁺ ([M+H]⁺): 186.1125, found: 186.1127.

(Z)-methyl 2-acetamido-4-ethylhex-2-enoate, 1h

White solid; Yield: 87%; ¹H NMR (400 MHz, CDCl₃) δ 6.81 (br, 1H), 6.49 - 6.46 (m, 1H), 3.81 (s, 3H), 2.26 - 2.23 (m, 1H), 2.11 (s, 3H), 1.53 - 1.50 (m, 2H), 1.38 - 1.31 (m, 2H), 0.88 - 0.84 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 169.11, 165.15, 143.85, 125.75, 52.28, 41.42, 26.65, 23.14, 11.73, 11.60.ESI-HRMS Calculated for C₁₁H₂₀NO₃⁺([M+H]⁺): 214.1438, found: 214.1442.

(Z)-methyl 2-acetamido-3-cyclopropylacrylate, 1i

White solid; Yield: 85%; ¹H NMR (400 MHz, CDCl₃) δ 6.96 (br, 1H), 6.15 – 6.14 (m, 1H), 3.75 (s, 3H), 2.15 (s, 3H), 1.61 – 1.59 (m, 1H), 1.08 – 1.02 (m, 2H), 0.70 – 0.68 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 168.73, 164.98, 144.82, 123.14, 52.20, 23.41, 12.21, 8.84.ESI-HRMS Calculated for C₁₁H₂₀NO₃⁺([M+H]⁺): 184.0968, found: 184.0976.

(Z)-methyl 2-acetamido-3-cyclohexylacrylate, 1j

White solid; Yield: 85%; ¹H NMR (400 MHz, CDCl₃) δ 6.84 (br, 1H), 6.55 - 6.53 (m, 1H), 3.76 (s, 3H), 2.31 - 2.29 (m, 1H), 2.13 (s, 3H), 1.82 - 1.65 (m, 5H), 1.30 - 1.12 (m, 5H); ¹³C NMR (101 MHz, CDCl₃) δ 169.28, 165.44, 144.33, 123.44, 52.30, 37.58, 37.39, 32.96, 31.36, 25.75, 25.31, 23.16. ESI-HRMS Calculated for C₁₂H₂₀NO₃⁺ ([M+H]⁺): 226.1438, found: 226.1436.

(Z)-methyl 2-acetamido-5-(1,3-dioxoisoindolin-2-yl)pent-2-enoate, 1k

Light yellow solid; Yield: 57 %;¹H NMR (400 MHz, CDCl₃) δ 7.82 -7.85(m, 2H), 7.75 – 7.32(m, 2H), 7.27 (br, 1H), 6.69 – 6.65 (m, 1H), 3.85 – 3.80(m, 2H), 3.76 (s, 3H), 2.60 – 2.55 (m, 2H), 2.11 (s, 3H);¹³C NMR(101 MHz, CDCl₃) δ 168.39, 168.10, 164.71, 133.94, 132.80, 131.83, 126.76, 123.17, 52.46, 36.20, 28.30, 23.28. ESI-HRMS Calculated for C₆H₁₆N₂O₅⁺([M+H]⁺):317.1132, found: 317.1132.

General Procedure for Asymmetric Hydrogenation of compound 1

In a nitrogen-filled glove box, $[Rh(NBD)_2]BF_4$ (0.01 mmol) and Duanphos (0.011 mmol) were dissolved in MeOH (1 mL) and stirred for 30 min. 0.1 mL of the resulting solution was transferred by syringe into the vials charged with different substrates (0.1 mmol for each). Additional MeOH was added to bring the total reaction volume to 1 mL. The vials were subsequently transferred into an autoclave which was charged with hydrogen (100 psi). The reaction was then stirred at rt for 2 h. The hydrogen gas was released slowly and carefully. The solution was passed through a short column of silica gel (eluent: EtOAc) to remove the metal complex and concentrated to give compounds **2**. The *ee* values of compounds **2** were then determined by HPLC analysis on a chiral stationary phase.

(R)-methyl 2-acetamidohexanoate, 2a

White solid; 99.0% *ee*; $[\alpha]_D^{20} = -26.60$ (c = 0.5, CH₂Cl₂); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 205 nm; t_R = 5.5 min (major), 7.2 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 6.16 (br, 1H), 4.63 – 4.58 (m, 1H), 3.75 (s, 3H), 2.03 (s, 3H), 1.83 – 1.80 (m, 1H), 1.67 – 1.65 (m, 1H), 1.33 – 1.26 (m, 4H), 0.91 – 0.88 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.27, 169.79, 52.26, 52.07, 32.14, 27.25, 23.09

(R)-methyl 2-acetamidooctanoate, 2b

White solid; 99.2% *ee*; $[\alpha]_D^{20}$ = -29.80 (c = 0.5, CH₂Cl₂); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 205 nm; t_R = 5.4 min (major), 6.7 min (minor).¹H NMR(400 MHz, CDCl₃) δ 6.12 (br, 1H), 4.63 – 4.58 (m, 1H), 3.75(s, 3H), 2.03(s, 3H), 1.84- 1.79(m, 1H), 1.69 – 1.63(m,1H), 1.29 – 1.26(m, 8H), 0.89 – 0.86(m, 3H); ¹³C NMR(101MHz, CDCl₃) δ 173.28, 169.77, 52.28, 52.09, 32.44, 31.51, 28.81, 25.09, 23.13, 22.47, 13.98. ESI-HRMS Calculated for C₁₁H₂₁NO₃⁺([M+H]⁺): 216.1600, found: 216.1589

(R)-methyl 2-acetamidononanoate, 2c

White solid; 99.5% *ee*; $[\alpha]_D^{20} = -26.00$ (c = 0.5, CH₂Cl₂); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 205 nm; t_R = 5.2 min (major), 6.2 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 6.09 (br, 1H), 4.63 – 4.58 (m, 1H), 3.75 (s, 3H), 2.03 (s, 3H), 1.84 – 1.79 (m, 1H), 1.68 – 1.64 (m, 1H), 1.38 – 1.19 (m, 10H), 0.89 – 0.86(m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.28, 169.73, 52.27, 52.11, 32.46, 31.66, 29.11, 29.00, 25.14, 23.14, 22.55, 14.02. ESI-HRMS Calculated for C₁₂H₂₃NO₃⁺ ([M+H]⁺): 230.1756, found: 230.1744.

(R)-methyl 2-acetamidododecanoate, 2d

White solid; 99.2% *ee*; $[\alpha]_D^{20} = -49.40$ (c = 0.5, CH₂Cl₂); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 95:5; flow rate = 1.0 mL/min; UV detection at 205 nm; t_R = 6.9 min (major), 8.2 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 6.38 (br, 1H), 4.61 – 4.59 (m, 1H), 3.74 (s, 3H), 2.03 (s, 3H), 1.84 – 1.78 (m, 1H), 1.68 – 1.63 (m, 1H), 1.30 – 1.17 (m, 16H), 0.89 – 0.86 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.29, 169.85, 77.32, 77.00, 76.68, 52.16, 52.05, 32.30, 31.77, 29.44, 29.40, 29.27, 29.19, 29.09, 25.13, 22.96, 22.55, 13.99. ESI-HRMS Calculated for C₁₅H₂₉NO₃⁺ ([M+H]⁺): 272.2226, found 272.2213.

(R)-methyl 2-acetamidotetradecanoate, 2e

White solid; 99.5% *ee*; $[\alpha]_D^{20} = -36.60$ (c = 0.5, CH₂Cl₂); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 205 nm; t_R = 4.5 min (major), 5.0 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 6.29 (br, 1H),4.63 - 4.58 (m, 1H), 3.74 (s, 3H), 2.03 (s, 3H), 1.84 - 1.79 (d, *J* = 8.3 Hz, 1H), 1.70 - 1.61 (s, 1H), 1.32 - 1.25 (m, 20H), 0.90 - 0.86 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.29, 169.81, 52.20, 52.07, 32.35, 31.82, 29.56, 29.54, 29.52, 29.44, 29.30, 29.26, 29.12, 25.14, 23.02, 22.60, 14.03. ESI-HRMS Calculated for C₁₁H₁₅N₂O₃⁺ ([M+H]⁺):300.2539, found: 300.2526.

(R)-methyl 2-acetamido-7-chloroheptanoate, 2f

White solid; 99.7% *ee*; $[\alpha]_D^{20} = -64.80$ (c = 0.5, CH₂Cl₂); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 205 nm; t_R = 8.7 min (major), 10.0 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 6.27 (br, 1H), 6.64 – 4.59 (m, 1H), 3.75 (s, 3H), 3.54 - 3.51 (m, 2H), 2.03 (s, 3H), 1.85 – 1.66 (m, 4H), 1.48 – 1.32 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 173.03, 169.86, 52.31, 51.90, 44.76, 32.25, 32.16, 26.32, 24.47, 23.04. ESI-HRMS Calculated for C₁₀H₁₈ClNO₃⁺ ([M+H]⁺): 236.1053, found: 236.1042.

(R)-methyl 2-acetamido-4-methylpentanoate, 2g

White solid; 98.5% *ee*; $[\alpha]_D^{20} = -4.00$ (c = 0.5, CH₂Cl₂); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 205 nm; t_R = 5.0 min (major), 6.7 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 6.10 (br, 1H), 4.65 – 4.63 (m, 1H), 3.74 (s, 3H), 2.02 (s, 3H), 1.67 – 1.60 (m, 2H), 1.55 – 1.50 (m, 1H), 0.95 – 0.93 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.75, 169.96, 52.23, 50.65, 41.57, 24.79, 23.04, 22.72, 21.89.. ESI-HRMS Calculated for C₉H₁₇NO₃⁺([M+H]⁺): 188.1287, found: 188.1275.

(R)-methyl 2-acetamido-4-ethylhexanoate, 2h

White solid; 96.5% *ee*; $[\alpha]_{D}^{20} = -3.80$ (c = 0.5, CH₂Cl₂); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 205 nm; t_R = 5.0 min (major), 7.2 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 6.07 (br, 1H), 4.66 – 4.61 (m, 1H), 3.74 (s, 3H), 2.02 (s, 3H), 1.70 – 1.64 (d, *J* = 6.7 Hz, 1H), 1.56 – 1.50 (m, 1H), 1.39 - 1.26 (m, 5H), 0.87 – 0.82 (m, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 173.89, 169.89, 52.21, 50.46, 36.61, 36.18, 25.28, 24.55, 23.06, 10.60, 10.10. ESI-HRMS Calculated for C₁₁H₂₁NO₃⁺ ([M+H]⁺): 216.1600, found: 216.1587.

(R)-methyl 2-acetamido-3-cyclopropylpropanoate, 2i

White solid; 99.7% *ee*; $[\alpha]_D^{20} = -19.4$ (c = 0.5, CH₂Cl₂); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 205 nm; t_R = 6.3 min (major), 8.2 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 6.29 (s, 1H), 4.72 – 4.67 (m, 1H), 3.76 (s, 3H), 2.04 (s, 3H), 1.76 – 1.65 (m, 2H), 0.70 – 0.66 (m, 1H), 0.49 –0.46 (m, 2H), 0.08 – 0.06 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 173.06, 169.67, 52.51, 52.21, 37.00, 23.08, 6.78, 4.09, 3.97.. ESI-HRMS Calculated for C₉H₁₅NO₃⁺([M+H]⁺): 186.1130, found: 186.1118.

(R)-methyl 2-acetamido-3-cyclohexylpropanoate, 2j

White solid; 99.5% *ee*; $[\alpha]_D^{20} = -2.80(c = 0.5, CH_2Cl_2)$; The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 90:10; flow rate = 1.0 mL/min; UV detection at 205 nm; $t_R = 6.9$ min (major), 10.7 min (minor). ¹H NMR(400 MHz, CDCl_3) δ 6.04 (br, 1H), 4.67 – 4.64 (m, 1H), 3.73 (s, 3H), 2.03 (s, 3H), 1.71 – 1.65 (m, 6H), 1.54 – 1.51 (m, 1H), 1.26 – 1.14 (m, 4H), 0.96 – 0.88 (m, 2H); ¹³C NMR(101 MHz, CDCl_3) δ 173.83, 169.87, 52.22, 50.04, 40.10, 34.03, 33.41, 32.49, 26.28, 26.10, 25.92, 23.09. ESI-HRMS Calculated for C₁₂H₂₁NO₃⁺ ([M+H]⁺):228.1600, found: 228.1584.

(R)-methyl 2-acetamido-7-chloroheptanoate, 2k

White solid; 99.8% *ee*; $[\alpha]_D^{20} = -21.75$ (c = 0.4, CH₂Cl₂); The enantiomeric excess was determined by HPLC on Chiralpak AD-H column, hexane: isopropanol = 80:20; flow rate = 1.0 mL/min; UV detection at 205 nm; t_R = 14.1 min (major), 22.3 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.83 (m, 2H),7.75 – 7.72 (m, 2H), 6.33 (br, 1H), 3.74 – 3.68 (m, 5H), 2.03 (s, 3H), 1.90 – 1.88 (m, 1H), 1.77 – 1.69 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 172.68, 169.92, 168.28, 133.97, 131.86, 123.18, 52.43, 51.71, 37.32, 29.54, 24.64, 23.06. ESI-HRMS Calculated for C₁₆H₁₈N₂O₅⁺([M+H]⁺): 319.1294, found: 319.1285.

Experimental Procedure for the Synthesis of (R)-piperidin-3-amine

chloride 7k

(R)-2,5-diaminopentanoic acid chloride, 5k

6 M HCl (40 ml) was added to a stirred solution of (*R*)-methyl 2-acetamido-7-chloroheptanoate (2.8 g, 8.8 mmol). The reaction mixture was heated to reflux for 10 h. After the solution was cooled to room temperature, insoluble solid was filtered off, and washed with 6M HCl three times. The solvent was evaporated and dried in vacuum 24 h to give the product, 1.5 g ; Yield: 85%; $[\alpha]_D^{20} = -13.40$ (c = 0.5, H₂O); ¹H NMR (400 MHz, D₂O) δ 3.95 – 3.92(t, *J*=8 Hz, 4 Hz, 1H), 2.93 – 2.90 (t, *J*=8 Hz, 4Hz, 2H), 1.91 – 1.83 (m, 2H), 1.76 – 1.64 (m, 2H); ¹³C NMR(101 MHz, D₂O) δ 171.81, 52.43, 38.62, 26.78, 22.60

(*R*)-3-aminopiperidin-2-one^[2], 6k

(*R*)-2,5-diaminopentanoic acid chloride (10 g, 0.059 mol) was added to a stirred solution of sodium hydroxide pellets (2.38 g, 0.059 mol) in water (100 ml) at 25 °C. After 15 min, this solution was added to a stirred mixture of alumina (30 g) and toluene (100 ml) and heated under reflux for 1.5 h. The water produced during the reaction was collected in a Dean-Stark trap. The reaction mixture was allowed to cool and the alumina was filtered off and washed with 10% MeOH/CH₂Cl₂(30 ml). The filtration was combined and the solvent was removed under vacuum to leave **6k**, 5.8 g, Yield: 86 %;[α]_D²⁰ = -3.40 (c = 0.5, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.20 (br, 1H) 3.29 – 3.23(m, 3H), 2.15– 2.14 (m, 1H), 1.87– 1.85 (m, 1H), 1.80– 1.72 (m, 3H), 1.58 – 1.49 (m, 1H); ¹³C NMR (101 MHz, D₂O) δ 175.11, 51.21, 42.07, 29.53, 21.19

(*R*)-piperidin-3-amine chloride, 7k

7k

THF (27 ml) was added to lithium aluminum hydride (0.252 g, 6.64 mmol). To the resulting suspension, (*R*)-3-aminopiperidin-2-one (0.4 g, 2.66 mmol) was gradually added while ensuring the temperature range of 5 °C to 16 °C. Ten minutes after the completion of the addition, the

mixture was warmed to room temperature and further vigorously stirred for 3 h. Lithium aluminum hydride (20.2 mg, 0.532 mmol) was added to the mixture, and the mixture was stirred for 50 min. The mixture was ice cooled, and water (0.91 ml) was added to the cooled mixture. The mixture was warmed to room temperature and vigorously stirred for 1.5 h. The precipitated inorganic material was filtered through Celite and was then washed with THF. The filtration was combined and dried over anhydrous Na₂SO₄. Aqueous HCl (4 M) in AcOEt (1.33 ml, 5.3 mmol) was added to the mixture, and the solvent was removed by distillation under reduced pressure. The residue was subjected to azeotropic distillation with MeOH to give hydrochloride salt of **7K**, 0.26 g; Yield: 56 %; $[\alpha]_D^{20} = -0.80$ (c = 0.5, CH₃OH); ¹H NMR (400 MHz, D₂O) δ 3.73(m, 2H), 3.47 – 3.44 (m, 1H), 3.20 – 3.17 (m, 1H), 3.05 – 3.04 (m, 1H), 2.30 – 2.28 (m, 1H), 2.14 – 2.10 (m, 1H), 1.97–1.94 (m, 1H), 1.84–1.82 (m, 1H); ¹³C NMR(101 MHz, D₂O) δ 44.91, 44.55, 43.23, 26.28, 20.17.

References:

- [1](a)H. Rodr guez-Solla, J. Concell n, C. Concell n, P. Tuya, Synlett 2008, 2008, 402-404;(b)E. Teoh,
 E. M. Campi, W. R. Jackson, A. J. Robinson, New J. Chem. 2003, 27, 387-394.
- Itans S. Hutchinson.; Stephen A. Matlin.; Antonio Mete. The synthesis and chemistry of 3-diazo-piperidin-2-one.*Tetrahedron*, 2002, 58, 3137-3143

NMR Spectra

HPLC results for determining the enantioselectivity

Data File E:\DATA\JJJ\JJJ-2-68\JJJ-2-68 2013-11-17 21-23-26\014-1501.D Sample Name: JJJ-2-57-7

1260HPLC-DAD 5/5/2014 11:03:17 AM SYSTEM

Data File E:\DATA\JJJ\JJJ-2-68\JJJ-2-68 2013-11-17 21-23-26\015-1601.D Sample Name: JJJ-2-68-8

Data File E:\DATA\JJJ\JJJ-2-50\JJJ-2-50 2013-09-23 11-53-50\037-0201.D Sample Name: JJJ-2-50

1260HPLC-VWD 8/16/2014 12:22:40 PM SYSTEM

1260HPLC-DAD 5/5/2014 10:44:03 AM SYSTEM

Data File E:\DATA\JJJ\JJJ-2-68\JJJ-2-68 2013-11-17 21-23-26\004-0501.D Sample Name: JJJ-2-57-2

1260HPLC-DAD 5/5/2014 10:55:53 AM SYSTEM

Data File E:\DATA\JJJ\JJJ-2-68\JJJ-2-68 2013-11-17 21-23-26\005-0601.D Sample Name: JJJ-2-68-3

1260HPLC-DAD 5/5/2014 10:56:27 AM SYSTEM

1260HPLC-DAD 5/12/2014 6:58:18 PM SYSTEM

1260HPLC-DAD 5/12/2014 6:56:28 PM SYSTEM

Data File E:\DATA\JJJ\JJJ-2-77\VWD-AD-90-10-JJJ-2-77 2014-01-11 11-04-48\012-0301.D Sample Name: JJJ-2-77-6

1260HPLC-DAD 5/5/2014 11:09:18 AM SYSTEM

Data File E:\DATA\JJJ\JJJ-2-77\VWD-AD-90-10-JJJ-2-77 2014-01-11 11-04-48\011-0201.D Sample Name: JJJ-2-77-2

_____ Acq. Operator : SYSTEM Seq. Line : 2 Acq. Instrument : 1260HPLC-VWD Location : Vial 11 Injection Date : 1/11/2014 11:17:22 AM Inj: 1 Inj Volume : 5.000 µl : E:\DATA\JJJ\JJJ-2-77\VWD-AD-90-10-JJJ-2-77 2014-01-11 11-04-48\VWD-ADH-90-Acq. Method 10-1ML-205NM-15MIN.M Last changed : 1/11/2014 11:04:48 AM by SYSTEM Analysis Method : E:\DATA\JJJ\JJJ-2-77\VWD-AD-90-10-JJJ-2-77 2014-01-11 11-04-48\VWD-ADH-90-10-1ML-205NM-15MIN.M (Sequence Method) : 5/5/2014 11:06:24 AM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated VWD1 A, Wavelength=205 nm (E:\DATA\JJJ\JJJ-2-77\VWD-AD-90-10-JJJ-2-77 2014-01-11 11-04-48\011-0201.D) mAU⁻ 489 80 HN 60 2e 40 -1. rea. 1. 79703 20 -309 0 4.2 4.4 4.8 5 5.2 5.4 5.6 5.8 4.6 min _____ _____ Area Percent Report _____ ------Signal Sorted By : : 1.0000 Multiplier Dilution . Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=205 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] 8 ----|-----|----|-----| 1 4.489 VB 0.1488 709.08209 74.65593 99.7472 2 5.309 MM T 0.0713 1.79703 4.19863e-1 0.2528 710.87913 75.07579 Totals : *** End of Report ***

1260HPLC-DAD 5/5/2014 11:08:31 AM SYSTEM

Data File E:\DATA\JJJ\JJJ-2-77\VWD-AD-90-10-JJJ-2-77 2014-01-11 11-04-48\016-0701.D Sample Name: JJJ-2-77-8

_____ Acq. Operator : SYSTEM Seq. Line : 7 Acq. Instrument : 1260HPLC-VWD Location : Vial 16 Injection Date : 1/11/2014 12:36:06 PM Inj: 1 Inj Volume : 5.000 µl : E:\DATA\JJJ\JJJ-2-77\VWD-AD-90-10-JJJ-2-77 2014-01-11 11-04-48\VWD-ADH-90-Acq. Method 10-1ML-205NM-15MIN.M Last changed : 1/11/2014 11:04:48 AM by SYSTEM Analysis Method : E:\DATA\JJJ\JJJ-2-77\VWD-AD-90-10-JJJ-2-77 2014-01-11 11-04-48\VWD-ADH-90-10-1ML-205NM-15MIN.M (Sequence Method) : 5/5/2014 11:24:58 AM by SYSTEM Last changed (modified after loading) Additional Info : Peak(s) manually integrated VWD1 A, Wavelength=205 nm (E:\DATA\JJJJJ2-77\VWD-AD-90-10-JJJ2-77 2014-01-11 11-04-48\016-0701.D) mAU 7 0 ΗN 250 3.686 CL 200 -10.042 Ο 2f (racemic) 150 · 100 · 50 · 0 10 10.5 11 8.5 9.5 mir _____ _____ Area Percent Report _____ _____ Signal Sorted By : : 1.0000 Multiplier Dilution . Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=205 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] Ŷ ----|-----|-----|------|------| 1 8.686 VB 0.2478 3503.48950 218.82393 52.5610 2 10.042 BB 0.2814 3162.08496 168.91719 47.4390 6665.57446 387.74112 Totals : *** End of Report ***

1260HPLC-DAD 5/5/2014 11:25:14 AM SYSTEM

Data File E:\DATA\JJJ\JJJ-2-77\VWD-AD-90-10-JJJ-2-77 2014-01-11 11-04-48\015-0601.D Sample Name: JJJ-2-77-4

1260HPLC-DAD 5/5/2014 11:10:28 AM SYSTEM

1260HPLC-DAD 5/5/2014 10:58:28 AM SYSTEM

Data File E:\DATA\JJJ\JJJ-2-68\JJJ-2-68 2013-11-17 21-23-26\009-1001.D Sample Name: JJJ-2-68-5

1260HPLC-DAD 5/5/2014 10:59:18 AM SYSTEM

Data File E:\DATA\JJJ\JJJ-2-68\JJJ-2-68 2013-11-17 21-23-26\010-1101.D Sample Name: JJJ-2-57-5

1260HPLC-DAD 5/5/2014 10:59:51 AM SYSTEM

Data File E:\DATA\JJJ\JJJ-2-68\JJJ-2-68 2013-11-17 21-23-26\011-1201.D Sample Name: JJJ-2-68-6

Acq. Operator :	SYSTEM		Seq. Line	: 12	
Acq. Instrument :	1260HPLC-VWD		Location	: Vial 11	
Injection Date :	11/18/2013 12:13:32	2 AM	Inj	: 1	
			Inj Volume	: 5.000 µl	
Acq. Method :	E:\DATA\JJJ\JJJ-2-6	58\JJJ-2-68	2013-11-17	21-23-26\VWD-ADH	H-90-10-1ML-205NM
	15MIN.M				
Last changed :	11/17/2013 9:23:26	PM by SYSTE	CM		
Analysis Method :	E:\DATA\JJJ\JJJ-2-6	58\JJJ-2-68	2013-11-17	21-23-26\VWD-ADH	H-90-10-1ML-205NM
	15MIN.M (Sequence M	(ethod)			
Last changed :	5/5/2014 10:59:48 A	AM by SYSTEM	1		
	(modified after loa	ading)			
Additional Info :	Peak(s) manually in	ntegrated			
VWD1 A, Wave	length=205 nm (E:\DATA\JJJ\JJJ-2	2-68\JJJ-2-68 2013	3-11-17 21-23-26\0	11-1201.D)	
mAU					
	Z				
400 -	4.9			•	
	Λ			Ö	
	11		~	,⊥	
-	1 \		→ HN	\sim	
300 -				0	
		>	\checkmark	\searrow $^{\cup}$	
200				0	
			2 h		
1			211		
100 -					
1					Les Contraction of the second s
1					4 °°°°,
					NARES
0					
4	4.5 5	5.5	6	6.5 7	7.5
	Area Percent	Report			
Sorted By	: Signal				
Multiplier	: 1.0000				
Dilution	: 1.0000				
Do not use Multin	lier & Dilution Fact	or with TST	'Ds		
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
Signal 1: VWD1 A.	Wavelength=205 nm				
,					
Peak RetTime Type	Width Area	Height	Area		
# [min]	[min] [mll*e]	[mAII]	* *		
" [m±11]	[min] [mio.s]	[mero]	•		
1 4 944 57	0 1400 2675 02071	296 27014	00 2250		
1 4.944 BV	0.1490 30/5.928/1	300.2/914	90.2258		
2 7.244 MM T	0.1928 66.39699	5.74056	1.7742		
	0.040 0.000	200 01070			
Totals :	3742.32570	392.01970			
		Descent date			
	*** End of	Report ***			
	11 00 10				
HPLC-DAD 5/5/2014	11:00:13 AM SYSTEM				Page 1 of 1

1260HPLC-DAD 5/5/2014 11:01:27 AM SYSTEM

1260HPLC-DAD 5/5/2014 11:02:08 AM SYSTEM

1260HPLC-DAD 5/5/2014 10:50:16 AM SYSTEM

Data File E:\DATA\JJJ\JJJ-2-68\JJJ-2-68 2013-11-17 21-23-26\003-0401.D Sample Name: JJJ-2-68-2

Acq. Operator :	SYSTEM		Seq. Line	: 4	
Acq. Instrument :	1260HPLC-VWD		Location	: Vial 3	
Injection Date :	11/17/2013 10:	07:28 PM	Inj	: 1	
			Inj Volume	: 5.000 µl	
Acq. Method :	E:\DATA\JJJ\JJ	JJ-2-68\JJJ-2-68	2013-11-17	21-23-26\VWD-AD	H-90-10-1ML-205NM-
	15MIN.M				
Last changed :	11/17/2013 9:2	23:26 PM by SYSTE	EM	01 00 00 000	
Analysis Method :	E:\DATA\JJJ\JJ	JJ-2-68 \JJJ-2-68	2013-11-17	21-23-26\VWD-AD	H-90-10-1ML-205NM-
Last changed .	5/5/2014 10.53	ROO AM by SYSTEM	л		
Last changed .	(modified afte	er loading)	-		
Additional Info :	Peak(s) manual	ly integrated			
VWD1 A, Wave	length=205 nm (E:\DATA\	JJJ\JJJ-2-68\JJJ-2-68 2013	3-11-17 21-23-26\0	03-0401.D)	
mAU					
250 -					
	8				
-	6.9				
200 -	/\		\sim		
				HN `U	
150				人。	
150 -			\sim	$\sim \gamma$	
-				Ó,	
100 -					
1				2j	
1					
50 -					- 1985
					229
o					2 pre
		7 8			
5	6		9	10	
5	6		9	10	
5			9		
5	6 Area Pe	ercent Report	9		
	6 Area Pe	ercent Report			
5	Area Pe : Sig	ercent Report	9		
Sorted By Multiplier	Area Pe : Sig : 1.0	mal	9		
Sorted By Multiplier Dilution	Area Pe : Sig : 1.0 : 1.0	prcent Report mal 0000	9		
Sorted By Multiplier Dilution Do not use Multip	Area Pe : Sig : 1.0 : 1.0 : 1.0	mal 0000 Factor with IST	9 		
Sorted By Multiplier Dilution Do not use Multip	Area Pe : Sig : 1.0 : 1.0 : 1.0	mal 0000 Factor with IST	9 		
Sorted By Multiplier Dilution Do not use Multip	Area Pe : Sig : 1.0 : 1.0 : 1.0 Wavelength=205	mal 0000 1 Factor with IST	9		
Sorted By Multiplier Dilution Do not use Multip Signal 1: VWD1 A,	Area Pe : Sig : 1.0 : 1.0 Diler & Dilution Wavelength=205	mal 0000 0000 n Factor with IS7	9		
Sorted By Multiplier Dilution Do not use Multip Signal 1: VWD1 A, Peak RetTime Type	Area Pe : Sig : 1.0 : 1.0 Dier & Dilution Wavelength=205 Width Are	arcent Report mal 0000 0000 n Factor with IST 5 nm ea Height	9 TDs Area		
Sorted By Multiplier Dilution Do not use Multip Signal 1: VWD1 A, Peak RetTime Type # [min]	Area Pe : Siq : 1.0 : 1.0 lier & Dilutior Wavelength=205 Width Area [min] [mAU*	arcent Report mal 0000 0000 n Factor with IST 5 nm ea Height (s) [mAU]	9 IDs Area %		
Sorted By Multiplier Dilution Do not use Multip Signal 1: VWD1 A, Peak RetTime Type # [min]	Area Pe : Siq : 1.0 : 1.0 lier & Dilution Wavelength=205 Width Area [min] [mAU*	arcent Report mal 0000 n Factor with IST 5 nm ea Height (s] [mAU]	9 9 FDs Area &		
Sorted By Multiplier Dilution Do not use Multip Signal 1: VWD1 A, Peak RetTime Type # [min] 1 6.900 BB	Area Pe : Siq : 1.0 : 1.0 lier & Dilutior Wavelength=205 Width Area [min] [mAU* 0.2180 2890.2	ercent Report anal 0000 0000 1 Factor with IS7 5 nm ea Height (s] [mAU] 	9 TDs Area % 99.7508		
Sorted By Multiplier Dilution Do not use Multip Signal 1: VWD1 A, Peak RetTime Type # [min] 	Area Pe : Siq : 1.0 : 1.0 lier & Dilution Wavelength=205 Width Area [min] [mAU* 0.2180 2890.2 0.2679 7.2	ercent Report anal 0000 0000 1 Factor with IS7 5 nm ea Height (s] [mAU] 	9 TDs Area % 99.7508 0.2492		
Sorted By Multiplier Dilution Do not use Multip Signal 1: VWD1 A, Peak RetTime Type # [min] 1 6.900 BB 2 10.670 MM T	Area Pe : Siç : 1.0 : 1.0 lier & Dilutior Wavelength=205 Width Area [min] [mAU* 0.2180 2890.2 0.2679 7.2	ercent Report and 0000 0000 a Factor with IST 5 nm ea Height (mAU) 	9 TDs Area % 99.7508 0.2492		
Sorted By Multiplier Dilution Do not use Multip Signal 1: VWD1 A, Peak RetTime Type # [min] 1 6.900 BB 2 10.670 MM T Totals :	Area Pe : Siq : 1.0 : 1.0 lier & Dilution Wavelength=205 Width Area [min] [mAU* 0.2180 2890.2 0.2679 7.2 2897.4	ercent Report and and and and and and and and	9 TDs Area % 99.7508 0.2492		
Sorted By Multiplier Dilution Do not use Multip Signal 1: VWD1 A, Peak RetTime Type # [min] 1 6.900 BB 2 10.670 MM T Totals :	Area Pe : Siq : 1.0 : 1.0 lier & Dilution Wavelength=205 Width Area [min] [mAU* 0.2180 2890.2 0.2679 7.2 2897.4	ercent Report anal 2000 2000 2000 2000 2000 2000 2000 2007 210.69270 21995 4.49148e-1 22967 211.14185	9 TDs Area % 99.7508 0.2492		
Sorted By Multiplier Dilution Do not use Multip Signal 1: VWD1 A, Peak RetTime Type # [min] 1 6.900 BB 2 10.670 MM T Totals :	Area Pe : Sig : 1.0 : 1.0 lier & Dilution Wavelength=205 Width Area [min] [mAU* 0.2180 2890.2 0.2679 7.2 2897.4	ercent Report anal 2000 2000 a Factor with IST 5 nm 20072 210.69270 21995 4.49148e-1 22967 211.14185	9 TDs Area % 99.7508 0.2492		

Data File E:\DATA\JJJ\JJJ-2-85\JJJ-2-85-11 2014-03-29 14-27-52\062-0101.D Sample Name: JJJ-2-87-1

Acq. Operator	: SYSTEM Seq. Line : 1
Acq. Instrument	: 1260HPLC-VWD Location : Vial 62
Injection Date	: 3/29/2014 2:28:34 PM Inj : 1
	Inj Volume : 5.000 µl
Acq. Method	: E:\DATA\JJJ\JJJ-2-85\JJJ-2-85-11 2014-03-29 14-27-52\VWD-AD-80-20-1ML-5UL-
	205NM-35MIN.M
Last changed	: 3/29/2014 2:57:01 PM by SYSTEM
	(modified after loading)
Analysis Method	: E:\DATA\JJJ\JJJ-2-85\JJJ-2-85-11 2014-03-29 14-27-52\VWD-AD-80-20-1ML-5UL-
	205NM-35MIN.M (Sequence Method)
Last changed	: 5/5/2014 11:30:08 AM by SYSTEM
	(modified after loading)
Additional Info	: Peak(s) manually integrated
VWD1 A, Wav	elength=205 nm (E:\DATA\JJJ\JJJ-2-85\JJJ-2-85-11 2014-03-29 14-27-52\062-0101.D)
140 –	
	0
120 7	
100	
	0 l
80 -	
60 -	\sim (1) $2\mathbf{k}$ (racemic)
	O R
40 -	
20-	
-	
12	14 16 18 20 22 24 26 min
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Do not use Multip	plier & Dilution Factor with ISTDs
Signal 1. WWD1 A	Navolength=205 nm
Signai I: VWDI A,	, waverength-205 him
Poak RotTime Time	e Width Area Height Area
# [min]	[min] [mAII*s] [mAII] %
" [-
1 14.011 BB	0.3819 2517.44092 101.66602 46.6356
2 22.967 BB	0.8249 2880.66455 49.14392 53.3644
Totals :	5398.10547 150.80994

1260HPLC-DAD 5/5/2014 11:30:17 AM SYSTEM

Data File E:\DATA\JJJ\JJJ-2-85\JJJ-2-85-11 2014-03-26 09-55-30\061-0101.D Sample Name: JJJ-2-85-1

<pre>Acq. Instrument : 1260HPLC-WD Location : Vial 61 Injection Date : 3/26/2014 9:56:13 AM Inj : 1 Inj Volume : 5.000 µl Acq. Method : E: (DATA/JJJJ-265/JJJ-265-11 2014-03-26 09-55-30/WD-AD-80-20-1ML 205NN-35MIN.M (Sequence Method) Last changed : 9/26/2014 9:55:30 AM by SYSTEM Analysis Method : C: VARAUJUJJ-2-85/JJJ-24-55-11 2014-03-26 09-55-30/WD-AD-80-20-1ML 205NN-35MIN.M (Sequence Method) Last changed : 9/26/2014 11:31:40 AM by SYSTEM Additional Info : Peak (s) manually integrated WO1A Washinghr020 rm (E: CATAUJUJJJ-265/JJJ-245-11 2014-03-26 09-55-300(-0101D) MU 300 40 40 40 40 40 40 40 40 40 40 40 40 4</pre>				
Injection Date : 3/26/2014 9:56:13 AM Inj : 1 Inj Volume 5.000 µl Acg. Method : E:\DATA\JJJ\JJJ-2-85.JJJ-2-85.11 2014-03-26 09-55-30\VMD-AD-80-20-1ML 205MM-35MIN.M Last changed : 3/26/2014 9:55:30 AM by SYSTEM Analysis Method : E:\DATA\JJJ\JJJ-2-85.JJJ-2-85.1 2014-03-26 09-55-30\VMD-AD-80-20-1ML 205MM-35MIN.M (Kedguence Method) Last changed : 5/5/2014 µl:31:04 AM by SYSTEM (Kedguence Method) Additional Info : Peak(s) manually integrated Model and the second secon	Acq. Instrument	: 1260HPLC-VWD Location : Vial 61		
<pre>Ind Volume : 5.000 µl Acq. Method : E:\DATA\JUJ\JUJ-2-85\JUJ-2-45-11 2014-03-26 09-55-30\WWD-AD-80-20-1ML 205NM-35MIN.M Analysis Method : E:\DATA\JUJ\JUJ-2-85\JUJ-2-45-11 2014-03-26 09-55-30\WWD-AD-80-20-1ML 205NM-35MIN.M (Sequence Method) Last changed : 5/5/2014 11:31:42 AM SYSTEM (modified after loading) Additional Info : Peak (8) manually integrated WDIA Waeeeguh=205 nm (EDATAJJUJJ-245JJJJ-245-11 2014-03-26 0555 30001-0101D) multiplier : Signal Multiplier : Signal Multiplier : 1.0000 Do not use Multiplier 5 Dilution Factor with ISTDs Signal 1: VMDI A, Waeeeguh=205 nm Peak RetTime Type Width Area Height Area + [min] [min] [mAU'] [mAU] + ===================================</pre>	Injection Date	: 3/26/2014 9:56:13 AM Inj : 1		
<pre>Acq. Nethod :: F:(DBTA(JU)/JU)/2-2-55/JU)/2-455-11 2014-03-26 09-55-30(VWD-AD-80-20-1ML 205MM-35MIN.M (Sequence Method) Last changed :: 3/26/2014 11:31:04 AM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated</pre>		Inj Volume : 5.000 µl		
Last changed :: 3/26/2014 9:55:30 AM by SYSTEM Analysis Method :: TrINERALUJUJUJ-2-85\JJJ-2-85\J 2014-03-26 09-55-30\VWD-AD-80-20-IMI 203NN-35MIN.M (Sequence Method) Last changed :: 5/5/2014 11:31:04 AM by SYSTEM (modified after loading) Additional Info : Peak (s) manually integrated	Acq. Method	: E:\DATA\JJJ\JJJ-2-85\JJJ-2-85-11 2014-03-26 09-55-30\VWD-AD-80-20-1ML-5U 205NM-35MIN.M		
Analysis Method : F:\DATA\JJJ-2-85\JJJ-2-85-11 2014-03-26 09-55-30\VWD-AD-80-20-1MI 205MM-35MIN.M (Sequence Method) Last changed : 5/5/2014 11:31:04 AM by STSTM (modified after loading) Additional Info : Peak (9) manually integrated WOTA Wavelength=205 mm (#: OATAJJJJJ-285JJJ-285-11 2014-03-26 09-65-30081-0101.D)	Last changed	: 3/26/2014 9:55:30 AM by SYSTEM		
205NM-35NTN.M (Sequence Method) Last changed :: 5/5/2014 11:31:04 AM by SYSTEM (modified after loading) Additional Info : Peak (s) manually integrated	Analysis Method	: E:\DATA\JJJ\JJJ-2-85\JJJ-2-85-11 2014-03-26 09-55-30\VWD-AD-80-20-1ML-501		
Last changed : 5/5/2014 11;31:04 AM by SYSTEM (motified after loading) Additional Info : Peak(s) manually integrated WD1A.Wawkengh-205 nm (E-DATAUJUJU-285JUJ-285J12014-03-20.09-55J0081-0101D) mail and a straight of the		205NM-35MIN.M (Sequence Method)		
Additional Info : Feak (a) manually integrated WD1A Wavelength-205 nm (E:DATALUJULI-285.11204-05.26 09-55.30051-0101D)	Last changed	: 5/5/2014 11:31:04 AM by SYSTEM		
Additional Info : Peak(s) menually integrated $\begin{bmatrix} MU \\ 380 \\ 300 \\ 300 \\ 400 \\ 300 \\ 300 \\ 400 \\ 300 \\ 300 \\ 400 \\ 300 $		(modified after loading)		
$I = \frac{1}{14} \frac{1}{14} \frac{1}{16} \frac{1}{1$	Additional Info	: Peak(s) manually integrated		
$I = \frac{1}{300} \int_{200}^{200} $	VWD1 A, Wa	avelength=205 nm (E:\DATA\JJJ\JJJ-2-85\JJJ-2-85-11 2014-03-26 09-55-30\061-0101.D)		
$I = \frac{1}{1000} \int_{100}^{100} \int_{100}^{100}$	mAU -	25		
$I = \frac{1}{14.054 \text{ BB}} = 0.3925 \text{ BITO}.12256 S20.44247 99.9020 \\ I = 0.3926 S175 S20.92111 \\ I = 0.3926 S175 S20.92111 \\ I = 0.3926 S175 S20.92111 \\ I = 0.3926 S175 S175 S20.92111 \\ I = 0.3925 S175 S175 S175 S175 S175 S20.92111 \\ I = 0.3925 S175 S175 S175 S175 S175 S175 S175 S17$	350 -	2.41		
300 400 400 400 400 400 400 400 400 400		Ο \		
$\frac{1}{200} \frac{1}{100} \frac{1}$	300 -			
250 20 0 <td>1</td> <td></td>	1			
200 100 100 100 100 100 100 100 100 100	250	\bigcup_{n}		
200 0 0 0 0 2k 100 0 0 0 0 0 0 60 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0 0 60 0	200			
200 100 2k 90 100 100 90 100 100 90 100 100 90 100 100 90 100 100 90 100 100 90 100 100 91 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 10000 11 10.054 BB 0.3925 8170.12256 320.44247 99.9020 2 22.264 MM T 0.2791 8.01460 4.78639e-1 0.0980 Totals : 8178.13715 320.92111 1000000000000000000000000000000000000	200	` `N'		
150 2k 100 2k 100 14 16 18 20 22 24 Area Percent Report Area Percent Report Sorted By :: Signal Multiplier :: 1.0000 Dilution :: 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=205 nm Peak RetTime Type Width Area Height Area # (min) (min) (mAU*s) (mAU) % 1 14.054 BB 0.3325 8170.12256 320.44247 99.9020 2 222.264 MM T 0.2791 8.01460 4.78639e-1 0.0980 Totals : 8178.13715 320.92111 **** End of Report ****	200			
Image: Second State Image: Second State Area Percent Report Area Percent Report Area Percent Report Multiplier : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=205 nm Peak RetTime Type Width Area Height Area * [min] [mAU*s] 1 14.054 BB 0.3925 8170.12256 320.44247 99.9020 2 22.264 MM T 0.2791 8178.13715 320.92111	150	2k		
100 100 100 100 100 100 100 100 100 1000 1000 10000 <t< td=""><td>150 -</td><td>U</td></t<>	150 -	U		
100 100 100 100 100 100 100 100 100 100 100 100 10000 10000 10	100			
50 1 16 18 20 22 24 Area Percent Report Area Percent Report Sorted By :: Signal Multiplier : Signal Multiplier : 1.0000 Di lution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=205 nm Peak RetTime Type Width Area Height Area # [min] [mAU]*s] [mAU] %		24		
Solution Area Percent Report Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=205 nm Peak RetTime Type Width Area + [min] 1 14.054 BB 0.3925 8170.12256 320.44247 99.9020 2 22.264 MM T 0.2791 8178.13715 320.92111		25 °°.		
Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system Image: Control of the system	50 -	, Shee		
01 12 14 16 18 20 22 24 Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=205 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU] %				
12 14 16 18 20 22 24 Area Percent Report Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=205 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] %				
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=205 nm Peak RetTime Type Width Area # [min] [mAU] %	0-			
Area Percent Report Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=205 nm Peak RetTime Type Width Area # [min] [mAU] %	0	14 16 18 20 22 24 26		
<pre>Sorted By :: Signal Multiplier :: 1.0000 Dilution :: 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=205 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % </pre>	0-1	14 16 18 20 22 24 26		
Sorted By : Signal Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=205 nm Peak RetTime Type Width Area # [min] [min] [mAU] %	0-1	14 16 18 20 22 24 26		
Multiplier : 1.0000 Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=205 nm Peak RetTime Type Width Area # [min] [mau] * [min] [mAU] * [min] [mAU] * 1.4.054 BB 0.3925 8170.12256 2.22.264 MM T 0.2791 8.01460 4.78639e=1 0.0980 Totals : 8178.13715 **** End of Report ***	0 - 12	14 16 18 20 22 24 26 Area Percent Report		
Dilution : 1.0000 Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=205 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 	0 12	14 16 18 20 22 24 26 Area Percent Report : Signal		
Do not use Multiplier & Dilution Factor with ISTDs Signal 1: VWD1 A, Wavelength=205 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 	0 12 Sorted By Multiplier	14 16 18 20 22 24 26 Area Percent Report : Signal : 1.0000		
Signal 1: VWD1 A, Wavelength=205 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 	0 12 Sorted By Multiplier Dilution	14 16 18 20 22 24 26 Area Percent Report : Signal : 1.0000 : 1.0000		
Signal 1: VWD1 A, Wavelength=205 nm Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 	0 12 Sorted By Multiplier Dilution Do not use Multi	14 16 18 20 22 24 26 Area Percent Report . Signal . Signal . . </td		
Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 14.054 BB 0.3925 8170.12256 320.44247 99.9020 2 22.264 MM T 0.2791 8.01460 4.78639e-1 0.0980 Totals : 8178.13715 320.92111 *** End of Report *** HPLC-DAD 5/5/2014 11:31:42 AM SYSTEM	0 12 Sorted By Multiplier Dilution Do not use Multi	14 16 18 20 22 24 26 Area Percent Report . Signal . Signal . 1.0000 . 1.0000 .		
Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] %	0 12 Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 P	14 16 18 20 22 24 26 Area Percent Report : Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs A, Wavelength=205 nm		
<pre># [min] [min] [mAU*s] [mAU] * </pre>	0 12 Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 P	14 16 18 20 22 24 26 Area Percent Report . Signal . 1.0000 . 1.0000 .		
1 14.054 BB 0.3925 8170.12256 320.44247 99.9020 2 22.264 MM T 0.2791 8.01460 4.78639e-1 0.0980 Totals : 8178.13715 320.92111 *** End of Report *** HPLC-DAD 5/5/2014 11:31:42 AM SYSTEM Page 1	0 12 Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 P Peak RetTime Typ	14 16 18 20 22 24 26 Area Percent Report . Signal . 1.0000 . 1.0000 . <td <="" colspan="2" td=""></td>		
2 22.264 MM T 0.2791 8.01460 4.78639e-1 0.0980 Totals : 8178.13715 320.92111 *** End of Report ***	0 12 Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 P Peak RetTime Typ # [min]	14 16 18 20 22 24 26 Area Percent Report : Signal : 1.0000 : 1.0000 : 1.0000 : 1.0000 : Dilution Factor with ISTDs A, Wavelength=205 nm pe Width Area Height Area [min] [mAU] %		
Totals : 8178.13715 320.92111 	o 12 Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 P Peak RetTime Typ # [min] 	14 16 18 20 22 24 26 Area Percent Report . Signal : Signal : 1.0000 : 1.0000 : 1.0000 : 1.0000 : I.0000		
Totals : 8178.13715 320.92111 	0 12 Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 P Peak RetTime Typ # [min] 	14 16 18 20 22 24 26 Area Percent Report . Signal : 1.0000 : : : : : : : : : : : 1.0000 <td :<="" colspan="2" td="" td<=""></td>		
*** End of Report ***	0 12 Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 P Peak RetTime Typ # [min] 	14 16 18 20 22 24 26 Area Percent Report : Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs A, Wavelength=205 nm pe Width Area [min] [mAU] 0.3925 8170.12256 320.44247 99.9020 T 0.2791 8.01460 4.78639e=1 0.0980		
+** End of Report ***	0 12 Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 P Peak RetTime Typ # [min] 	14 16 18 20 22 24 26 Area Percent Report		
*** End of Report *** HPLC-DAD 5/5/2014 11:31:42 AM SYSTEM Page 1	o 12 Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 P Peak RetTime Typ # [min] 	14 16 18 20 22 24 26 Area Percent Report . Signal . 1.0000 . 1.0000 iplier & Dilution Factor with ISTDs A, Wavelength=205 nm pe Width Area Height Area [min] [mAU*s] [mAU] %		
HPLC-DAD 5/5/2014 11:31:42 AM SYSTEM Page 1	o 12 Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 P Peak RetTime Typ # [min] 	14 16 18 20 22 24 26 Area Percent Report Area Percent Report : Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs A, Wavelength=205 nm pe Width Area [min] [mAU] 0.3925 8170.12256 320.44247 99.9020 T 0.2791 8.01460 4.78639e-1 0.0980 8178.13715 320.92111		
HPLC-DAD 5/5/2014 11:31:42 AM SYSTEM Page 1	o 12 Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 P Peak RetTime Typ # [min] 1 14.054 BB 2 22.264 MM Totals :	14 16 18 20 22 24 26 Area Percent Report . Signal : Signal : 1.0000		
	o 12 Sorted By Multiplier Dilution Do not use Multi Signal 1: VWD1 P Peak RetTime Typ # [min] 	14 16 18 20 22 24 26 Area Percent Report . Signal : 1.0000 : 1.0000 iplier & Dilution Factor with ISTDs A, Wavelength=205 nm pe Width Area Height Area [min] [mAU*s] [mAU] %		