Supporting Information

Rhenium-Catalyzed C-H Aminocarbonylation of Azobenzenes with

Isocyanates

Xiaoyu Geng and Congyang Wang*
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular

Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190,
China.
Emails: wangcy@iccas.ac.cn

Table of Contents

1. General information S2
2. General procedure for the preparation of azobenzenes S3
3. General procedure for the preparation of isocyanates S5
4. Rhenium-catalyzed C-H aminocarbonylation of azobenzenes S11
4.1 Optimization of reaction conditions S11
4.2 Typical procedure for $\mathrm{C}-\mathrm{H}$ aminocarbonylation S13
4.3 Characterization of o-azobenzamides. S14
5. Mechanistic studies S32
6. Synthetic transformations of o-azobenzamides S47
7. References S51
8. Spectra of products S51

1. General Information

Unless otherwise noted, all Re-catalyzed reactions were carried out in oven-dried vessels with Teflon screw caps under a nitrogen atmosphere by using standard Schlenk techniques. Reaction temperatures are recorded on the temperature of the oil bath. Anhydrous solvents were purified and dried following standard procedures. Air-sensitive liquids and solutions were transferred via syringes. Anilines were purchased from J\&K Chemicals, Inc. and sodium acetate and bromobenzene-d5 were purchased from Alfa Aesar. The catalysts, $\mathrm{Re}_{2}(\mathrm{CO})_{10}, \operatorname{Re}(\mathrm{CO})_{5} \mathrm{Br}, \mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}$ were obtained from Strem Chemicals, Inc., USA. All purchased chemicals were used as received without further purification. TLC analysis was performed on pre-coated, glass-backed silica gel plates and visualized with UV light. Flash column chromatography was performed on silica gel (200-300 mesh).
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker AV 400 spectrometer and calibrated using TMS ($0 \mathrm{ppm}{ }^{1} \mathrm{H}$) or $\mathrm{CDCl}_{3}\left(77.16 \mathrm{ppm}{ }^{13} \mathrm{C}\right)$. Abbreviations are used in the description of NMR data as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet $)$, coupling constant $(\mathrm{J}, \mathrm{Hz})$. Melting points acquired by an electrothermal melting point apparatus, were uncorrected. The infrared spectra (IR) were recorded on FT-IR spectrometer Thermo Fisher Nicolet 6700. The mass spectra (MS) were recorded on a SHIMADZU QP-2010SE GC-MS spectrometer. The high resolution mass spectra were measured on a Bruker APEX IV FTMS mass spectrometer (ESI) in positive-ion mode and a Bruker BIFLEX III mass spectrometer (MALDI-TOF).

2. General procedure for the preparation of azobenzenes

General procedure A for the synthesis of azobenzenes

$\mathrm{CuBr}(0.6 \mathrm{mmol})$, pyridine (1.8 mmol), and aniline (20 mmol) were mixed in toluene (80 mL) under air (1 atm) or $\mathrm{O}_{2}(1 \mathrm{~atm})$. The mixture was stirred vigorously at $60{ }^{\circ} \mathrm{C}$ for 24 h . After cooling down to room temperature and concentrating under vacuum, the residue was purified by flash chromatography on a short silica gel (eluent: petroleum ether/ethyl acetate) to afford azobenzenes.

General procedure B for the synthesis of azobenzenes

To a round bottom flask equipped with a stir bar was combined aniline (12 mmol , 1.2 equiv) and nitrosobenzene ($10 \mathrm{mmol}, 1.0$ equiv) in acetic acid (100 mL) as solvent. The flask was covered with aluminum foil and the mixture was stirred at room temperature for 48 h . The reaction mixture was diluted with hexane and washed with water $(250 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated. The residue was subjected to flash column chromatography to afford the azobenzenes $(\mathrm{PE} / \mathrm{EA}=20: 1)$.

The following azobenzenes displayed spectroscopic properties fully in accord with those published.
(E)-1,2-Diphenyldiazene (1a) ${ }^{1 \mathrm{a}}$ from aniline according to general procedure A.
(E)-1,2-Di-p-tolyldiazene (1b) ${ }^{1 a}$ from p-toluidine according to general procedure A .
(E)-1,2-Di-p-tert-butyldiazene (1c) ${ }^{1 b}$ From 4-tert-butylaniline following general procedure A.
(E)-1,2-Bis(4-methoxyphenyl)diazene (1d) ${ }^{1 \text { a }}$ from p-anisidine according to general procedure A.
(E)-1,2-Bis(4-(trifluoromethoxy)phenyl)diazene (1e) ${ }^{\text {1a }}$ from 4-trifluoromethoxyaniline according to general procedure A.
(E)-1,2-Di-p-trifluoromethyldiazene (1f) ${ }^{\text {1b }}$ from 4-trifluoromethylaniline following general procedure A .
(E)-1,2-Di-o-tolyldiazene (1g) ${ }^{1 \mathrm{a}}$ from o-toluidine according to general procedure A . (E)-1,2-Di-o-methoxydiazene (1h) ${ }^{1 \mathrm{~b}}$ from o-anisidine following general procedure A using O_{2} as oxidant.
(E)-1,2-Bis(2,4-dimethylphenyl)diazene (1i) ${ }^{\text {1a }}$ from 2,4-dimethylaniline according to general procedure A.
(E)-1,2-Bis(3,5-dimethylphenyl)diazene (1j) ${ }^{\text {1a }}$ from 2,4-dimethylaniline according to general procedure A .
(E)-1,2-Di-m-tolyldiazene (1k) ${ }^{1 a}$ from m-toluidine according to general procedure A . (E)-1-(2,4,6-trimethylphenyl)-2-phenyldiazene (11) ${ }^{2}$ from nitrosobenzene and 2,4,6-trimethylaniline according to general procedure B.
(E)-1-(3,5-dimethylphenyl)-2-phenyldiazene (1m) from nitrosobenzene and 3,5-dimethylaniline according to general procedure B.

3. General procedure for the preparation of isocyanates.

General procedure A for the synthesis of isocyanates.

To a stirred DCM $(50 \mathrm{~mL})$ solution of triphosgene $(22 \mathrm{mmol})$ was added a DCM $(10 \mathrm{~mL})$ solution of aniline (20 mmol) dropwise. After 30 min the mixture was cooled to $-35^{\circ} \mathrm{C}$ and $\mathrm{Et}_{3} \mathrm{~N}(6 \mathrm{~mL})$ was added dropwise. The mixture was warmed to room temperature slowly and stirred for 2 hours. After removal of solvent under vacuum, the slurry residue was partially distilled or sublimed to give isocyanates.

General procedure B for the synthesis of isocyanates.

To a stirred DCM (50 mL) solution of triphosgene (22 mmol) was added a DCM $(10 \mathrm{~mL})$ solution of aniline (20 mmol) dropwise, after $30 \mathrm{~min}, n-\mathrm{Hex}_{3} \mathrm{~N}(22 \mathrm{mmol})$ was added dropwise. The mixture was stirred for 3 hours. After concentrating under vacuum, the oily mixture was partially distilled to give isocyanates.

The following isocyanates, which are commercially available from Alfa Aesar, were used as received: 4-Biphenyl isocyanate (2c), 2-Nathphyl isocyanate (20), n-Butyl isocyanate (2p), Cyclopentyl isocyanate (2q), Benzyl isocyanate (2r).

Characterization data for isocyanates.

Phenyl isocyanate (2a) ${ }^{3 a}$

According to method B : aniline (20 mmol), triphosgene (22 $\mathrm{mmol})$ in DCM (10 mL) were stirred at room temperature. After workup, partial distillation afforded the title compound as
colorless liquid in 60% yield.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{M H z}\right) \boldsymbol{\delta} 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.06$ (m, 2H).
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{M H z}\right) \boldsymbol{\delta} 133.6,129.6,125.8,124.8$.
p-Tolyl isocyanate (2b) ${ }^{3 b}$

According to method A: p-toluidine (20 mmol), triphosgene (22 mmol) in DCM $(10 \mathrm{~mL})$ were stirred at $-35^{\circ} \mathrm{C}$. After workup, partial distillation afforded the title compound as colorless liquid in 61% yield.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 2.31 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z}\right) \boldsymbol{\delta} 135.6,130.8,130.2,124.6,21.0$.

p-Methoxyphenyl isocyanate (2d) ${ }^{3 \mathrm{c}}$

According to method A: p-anisidine (20 mmol), triphosgene $(22 \mathrm{mmol})$ in DCM $(10 \mathrm{~mL})$ were stirred at $-35^{\circ} \mathrm{C}$. After workup, partial distillation afforded the title compound as colorless liquid in 57% yield.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 7.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.78 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{M H z}\right) \boldsymbol{\delta} 157.5,126.1,125.7,114.9,55.6$.
p-Trifluoromethoxyphenyl isocyanate (2e)

According to method A : p-trifluoromethoxyaniline (20 mmol), triphosgene (22 mmol) in DCM (10 mL) were stirred at $-35^{\circ} \mathrm{C}$. After workup, partial distillation afforded the title compound as colorless liquid in 56% yield.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z}\right) \boldsymbol{\delta} 146.8,132.4,126.1,122.4,120.5\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=257.6\right.$ Hz).
${ }^{19}{ }^{\mathrm{F}}$ NMR ($\mathrm{CDCl}_{3}, \mathbf{5 6 5} \mathbf{M H z}$) $\boldsymbol{\delta}$-58.1.
HRMS (ESI-MS): calculated for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{NF}_{3}\left([\mathrm{M}+\mathrm{H}]^{\dagger}\right)$: 204.02667, found: 204.02651 .
p-Trifluoromethylphenyl isocyanate (2f)

According to method A: p-trifluoromethylaniline (20 mmol), triphosgene (22 mmol) in DCM (10 mL) were stirred at -35 ${ }^{\circ} \mathrm{C}$. After workup, partial distillation afforded the title compound as colorless liquid in 60% yield.
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.\mathbf{C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1 ~ M H z}\right) \boldsymbol{\delta} 137.2,128.1\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=33.2 \mathrm{~Hz}\right), 126.9\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.8\right.$ $\mathrm{Hz}), 125.1,124.0\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=273.8 \mathrm{~Hz}\right)$.
${ }^{19}$ F NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 6 5} \mathbf{~ M H z}\right) \boldsymbol{\delta}$-62.1.
HRMS (ESI-MS): calculated for $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{ONF}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$188.03178, found: 188.03189.
\boldsymbol{p}-Fluorophenyl isocyanate (2g) ${ }^{\text {3d }}$

According to method B : p-fluoroaniline (20 mmol), triphosgene $(22 \mathrm{mmol})$ in $\mathrm{DCM}(10 \mathrm{~mL})$ were stirred at $-35^{\circ} \mathrm{C}$. After workup, partial distillation afforded the title compound as colorless liquid in 50% yield.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z) ~ \delta ~} 7.07-6.98(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z}\right) \boldsymbol{\delta} 160.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=247.5 \mathrm{~Hz}\right), 129.6,126.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=\right.$ $9.1 \mathrm{~Hz}), 116.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23.2 \mathrm{~Hz}\right)$.

[^0]
p-Chlorophenyl isocyanate (2h) ${ }^{3 \mathrm{c}}$

According to method A: p-chloroaniline (20 mmol), triphosgene (22 mmol) in DCM $(10 \mathrm{~mL})$ were stirred at $-35^{\circ} \mathrm{C}$. After workup, partial distillation afforded the title compound as colorless liquid in 50% yield.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z}\right) \boldsymbol{\delta} 132.1,131.3,129.7,125.9$.
p-Bromophenyl isocyanate (2i) ${ }^{3 \mathrm{~d}}$

According to method A: p-bromoaniline (20 mmol), triphosgene (22 mmol) in DCM (10 mL) were stirred at -35 ${ }^{\circ} \mathrm{C}$. After workup, partial distillation afforded the title compound as colorless liquid in 63 \% yield.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} 7.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z}\right) \boldsymbol{\delta} 132.7,132.7,126.4,119.1$.
p-Iodophenyl isocyanate (2j) ${ }^{3 \mathrm{e}}$

According to method A: p-iodoaniline (20 mmol), triphosgene $(22 \mathrm{mmol})$ in DCM $(10 \mathrm{~mL})$ were stirred at $-35{ }^{\circ} \mathrm{C}$. After workup, sublimation afforded the title compound as colorless solid in 60% yield.
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} 7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z}\right) \boldsymbol{\delta} 138.7,133.4,126.7,89.9$.
o-Tolyl isocyanate ($2 k$) ${ }^{3 f}$

According to method A: o- toluidine (20 mmol), triphosgene (22 $\mathrm{mmol})$ in DCM (10 mL) were stirred at $-35^{\circ} \mathrm{C}$. After workup, partial distillation afforded the title compound as colorless liquid
in 50% yield.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} 7.19-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.07$ (m, 1H), 7.06-7.04 (m, 1H), 2.32 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{\mathbf{3}}, \mathbf{1 0 1} \mathbf{M H z}$) $\boldsymbol{\delta} 133.0,132.5,130.8,127.1,125.9,125.1,18.4$.
o-Chlorophenyl isocyanate (2l) ${ }^{3 \mathrm{~d}}$

According to method A: o-chloroaniline (20 mmol), triphosgene $(22 \mathrm{mmol})$ in DCM $(10 \mathrm{~mL})$ were stirred at $-35^{\circ} \mathrm{C}$. After workup, partial distillation afforded the title compound as colorless liquid in 50% yield.
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.\mathbf{C D}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} 7.40\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.23-7.17(\mathrm{~m}$, 1H), 7.15-7.10 (m, 2H).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{M H z}\right) \boldsymbol{\delta} 131.9,130.9,129.9,127.9,126.7,125.4$.
m-Tolyl isocyanate ($\mathbf{2 m})^{3 f}$

According to method A: o- toluidine (20 mmol), triphosgene (22 $\mathrm{mmol})$ in DCM $(10 \mathrm{~mL})$ were stirred at $-35^{\circ} \mathrm{C}$. After workup, partial distillation afforded the title compound as colorless liquid in 50% yield. The obtained product is identical to a commercially available sample.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} 7.18(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.90-$ 6.87 (m, 2H), 2.32 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z}\right) \boldsymbol{\delta} 139.8,133.4,129.4,126.7,125.5,121.8,21.3$.

3,5-Dimethylphenyl isocyanate (2n) ${ }^{3 \mathrm{~d}}$

According to method A: 3,5-dimethylaniline (20 mmol), triphosgene (22 mmol) in DCM (10 mL) were stirred at $-35^{\circ} \mathrm{C}$. After workup, partial distillation afforded the title compound as colorless liquid in 62% yield.

${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 2 \mathrm{H})$, 2.27 (s, 6H).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z}\right) \boldsymbol{\delta} 139.5,133.2,127.6,122.5$, 21.2.

4. Re-catalyzed C-H aminocarbonylation of azobenzenes

4.1 Optimization of reaction conditions

Table S1. Survey of the reaction parameters ${ }^{a}$

Entry	Cat.	1a (eq)/2i (eq)	Temp (${ }^{\circ} \mathrm{C}$)	Solvent	Yield (\%) ${ }^{\text {b }}$
1	---	1/2.5	150	Toluene	0
2	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	1/2.5	150	Toluene	60
3	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	1/2.5	150	DCE	46
4	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	1/2.5	150	Xylene	58
5	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	1/2.5	150	CCl_{4}	0
6	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	1/2.5	150	$\mathrm{CH}_{3} \mathrm{CN}$	0
7	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	1/2.5	150	THF	60
8	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	1/2.5	150	Dioxane	55
9	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	1/2.5	150	Cyclohexane	55
10	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	1/2	150	Toluene	54
11	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	1/1.5	150	Toluene	39
12	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	1/1	150	Toluene	32
13	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	1.5/1	150	Toluene	39
14	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	2/1	150	Toluene	47
15	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	2.5/1	150	Toluene	54
16	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	2.5/1	140	Toluene	69
17	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	2.5/1	130	Toluene	72
18	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	1/2.5	130	Toluene	64
19	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	2.5/1	120	Toluene	0
$20^{\text {c }}$	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	2.5/1	130	Toluene	74
21^{c}, ${ }^{\text {d }}$	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	2.5/1	130	Toluene	$77(75)^{h}$
$22^{\text {e }}$	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	2.5/1	130	Toluene	72
23^{f}	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	2.5/1	130	Toluene	47
24^{g}	$\mathrm{Re}_{2}(\mathrm{CO})_{10}$	2.5/1	130	Toluene	48
25	$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Cl}$	2.5/1	130	Toluene	0
26	$\mathrm{Re}(\mathrm{CO})_{5} \mathrm{Br}$	2.5/1	130	Toluene	0
27	$\mathrm{MnCO})_{5} \mathrm{Br}$	2.5/1	130	Toluene	0
28	$\mathrm{Mn}_{2}(\mathrm{CO})_{10}$	2.5/1	130	Toluene	0
29	$\mathrm{Co}(\mathrm{acac})_{2}$	2.5/1	130	Toluene	0
30	$\mathrm{Pd}(\mathrm{OAc})_{2}$	2.5/1	130	Toluene	0
31	$\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}$	2.5/1	130	Toluene	0
32	$\mathrm{Cu}(\mathrm{OAc})_{2}$	2.5/1	130	Toluene	0

33	$\mathrm{Fe}_{2}(\mathrm{CO})_{9}$	$2.5 / 1$	130	Toluene	0
34	$\mathrm{Ru}_{3}(\mathrm{CO})_{12}$	$2.5 / 1$	130	Toluene	7

${ }^{a}$ Reaction conditions unless otherwise noted: 1a (0.2 mmol), $\mathbf{2 i}(0.5 \mathrm{mmol})$, catalyst (0.01 mmol), solvent $(2 \mathrm{~mL}), 150{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$ under N_{2} atmosphere. ${ }^{b}$ Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture with $1,3,5$-trimethoxybenzene as an internal standard. ${ }^{c} 0.2 \mathrm{M} .{ }^{d} 48 \mathrm{~h} .{ }^{e} \mathrm{NaOAc}(20 \mathrm{~mol} \%) .{ }^{f} \mathrm{Et}_{3} \mathrm{~N}(20 \mathrm{~mol} \%) .{ }^{g} \mathrm{Na}_{2} \mathrm{CO}_{3}(20$ mol\%). ${ }^{h}$ Isolated yield on 0.5 mmol scale, 1a was recovered in 70% isolated yield. $\mathrm{DCE}=1,2$-dichloroethane, $\mathrm{THF}=$ tetrahydrofuran.

Of note, no bis-C-H functionalized products such as 4ai and 5ai were detected during the entire screening process, which showcased the excellent chemoselectivity in this reaction. As shown in Scheme S1, the reaction intermediate Re-complex A adopts an octahedron configuration, which is more sensitive to steric effect than those containing a tetrahedron configuration (such as $\mathrm{Pd}^{\mathrm{II}}$ systems). We propose that the selectivity origins from the bulky hindrance of the benzamide group in mono-aminocarbonylation products, which renders the second C-H aminocarbonylation rather difficult for $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ catalyst.

The reaction of azobenzene with ortho-substituted isocyanate gave benzamide 3ak in low yield under standard condition (Table S2, entry 1). A higher concentration provided 3ak in 64% yield (entry 2). Introduction of a catalytic amount of NaOAc as a base to the reaction gave 3ak in 71% isolated yield and the reaction almost completed in 24 h (entry 3).

Table S2. Optimization of reaction with o-tolyl isocyanate ${ }^{a}$

Entry	Base (eq.)	$c(\mathrm{M})$	Yield $\left.^{(3 a k, \%}\right)^{b}$
1	---	0.2	25
2	--	0.4	64
3^{c}	$\mathrm{NaOAC}(0.2)$	0.2	$73(71)$

[^1]$(0.01 \mathrm{mmol})$, solvent $(2.5 \mathrm{~mL}), 130{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$ under N_{2} atmosphere. ${ }^{b}$ Yields determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture with $1,3,5$-trimethoxybenzene as an internal standard. ${ }^{c} 24 \mathrm{~h}$.

4.2. Typical procedure for C-H aminocarbonylation

To an oven-dried Teflon-screw-capped tube equipped with a magnetic stir bar were added $\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, azobenzene (1.25 mmol), isocyanate (0.5 mmol), NaOAc (0.1 mmol , for substrates of low activity) and toluene (2.5 mL) sequentially under nitrogen. The closed tube was put into a pre-heated oil bath at 130 ${ }^{\circ} \mathrm{C}$ and stirred for 48 h or 24 h . After completion of the reaction, the resulting mixture was cooled down to room temperature, dilute with ethyl acetate (5 mL), filtered through a short pad of silica gel and washed with ethyl acetate (30 mL). The filtrate was pre-absorbed on silica gel and concentrated under vacuum. Flash chromatographic purification of residue provided the pure o-azobenzamides (petroleum ether:ethyl acetate $=10: 1$).

4.3. Characterization of \boldsymbol{o}-azobenzamides

(E)-N-phenyl-2-(phenyldiazenyl)benzamide (3aa)

According to general procedure: $\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5$ $\mathrm{mol} \%$), (E)-1,2-diphenyldiazene (1.25 mmol), phenyl isocyanate $(0.5 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at 130 ${ }^{\circ} \mathrm{C}$ for 48 h . After workup, column chromatography (PE:EA = 10:1) afford the title compound as orange solid in 66% yield.
m.p.: $121-122^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 10.71(\mathrm{~s}, 1 \mathrm{H}), 8.43\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.87-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.79\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.67(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60-7.51(\mathrm{~m}, 5 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta} 163.6,152.6,149.2,138.5,132.3,132.1,131.9$, $131.5,129.5,129.1,124.1,123.1,120.2,115.9$.

HRMS (ESI-MS): calculated for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{ON}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 324.11073$, found: 324.11078.

(E)-2-(phenyldiazenyl)- N-(p-tolyl)benzamide (3ab)

According to general procedure: $\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5$ mol \%), (E)-1,2-diphenyldiazene (1.25 mmol), 4-methylphenyl isocyanate (0.5 mmol) in toluene (2.5 mL) were stirred at $130{ }^{\circ} \mathrm{C}$ for 48 h . After workup, column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) afford the title compound as orange solid in 63% yield.
m.p.: $144-145^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 10.63(\mathrm{~s}, 1 \mathrm{H}), 8.42\left(\mathrm{dd}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.86-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.77\left(\mathrm{dd}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.59-7.50(\mathrm{~m}, 7 \mathrm{H}), 7.12$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $2.30(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta} 163.5,152.7$, 149.2, 136.0, 133.9, 132.4. 132.0, 131.9, 131.7, 129.6, 129.6, 123.2, 120.2, 115.9, 21.0.

HRMS (ESI-MS): calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ON}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 338.12611$, found: 338.12619.
(E)-2-(phenyldiazenyl)-N-(4-biphenyl)benzamide (3ac)

According to method A: $\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, (E)-1,2-diphenyldiazene (1.25 mmol), 4-biphenyl isocyanate $(0.5 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at $130^{\circ} \mathrm{C}$ for 48 h. After workup, column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) afford the title compound as orange solid in 66% yield.
m.p.: $184-185^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 10.80(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.86(\mathrm{~m}$, 2H), 7.80 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.74 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.60-7.52$ (m, 9H), 7.40 (t, J $=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, 7.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 101 \mathbf{M H z}\right) \boldsymbol{\delta} 163.6,152.7,149.3,140.6,137.9,137.1,132.5$, $132.2,131.9,131.6,129.7,128.8,127.7,127.1,126.9,123.2,120.5,116.0$.

HRMS (ESI-MS): calculated for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{ON}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 400.14203$, found: 400.14186.

(E)-2-(phenyldiazenyl)-N-(4-methoxyphenyl)benzamide (3ad)

According to method $\mathrm{B}: \operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, (E)-1,2-diphenyldiazene (1.25 mmol), 4-methoxyphenyl isocyanate (0.5 mmol) $\mathrm{NaOAc}(0.1 \mathrm{mmol})$, in toluene (2.5 mL) were stirred at $130^{\circ} \mathrm{C}$ for 48 h . After workup, column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) afford the title compound as orange solid in 42% yield.
m.p.: $182-183{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right) \boldsymbol{\delta} 10.63(\mathrm{~s}, 1 \mathrm{H}), 8.46\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.90-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.82\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.61-7.55(\mathrm{~m}, 7 \mathrm{H}), 6.88$ (d, $J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 101 \mathbf{M H z}\right) \boldsymbol{\delta} 163.4,156.5,152.7,149.3,132.4,132.0,132.0$, $131.9,131.8,131.7,129.7,123.2,121.8,116.0,114.3,55.6$.

HRMS (ESI-MS): calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 354.12130$, found: 354.12128.
(E)-2-(phenyldiazenyl)- N -(4-trifluoromethoxyphenyl)benzamide (3ae)

According to general procedure: $\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}$, $5 \mathrm{~mol} \%$), (E)-1,2-diphenyldiazene (1.25 mmol), 4-trifluoromethoxyphenyl isocyanate (0.5 mmol), NaOAc $(0.1 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at $130{ }^{\circ} \mathrm{C}$ for 48 h . After workup, column chromatography (PE:EA = 10:1) afford the title compound as orange solid in 63% yield.
m.p.: $159-160^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 10.86(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}$, $3 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 5 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{M H z}\right) \boldsymbol{\delta} 163.8,152.7,149.3,145.3,137.3,132.6,132.4$, $132.0,132.0,131.2,129.7,123.1,121.9,121.3,120.6\left({ }^{1} J_{\mathrm{C}-\mathrm{F}}=252.5 \mathrm{~Hz}\right), 116.1$.
${ }^{19}{ }^{\mathrm{F}}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathbf{5 6 5} \mathbf{~ M H z}\right) \boldsymbol{\delta}$-58.0.
HRMS (ESI-MS): calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~N}_{3} \mathrm{~F}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 408.09303, found: 408.09317.

(E)-2-(phenyldiazenyl)-N-(4-trifluoromethylphenyl)benzamide (3af)

According to method A: $\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, (E)-1,2-diphenyldiazene (1.25 mmol), 4-trifluoromethylphenyl isocyanate (0.5 mmol) in toluene (2.5 mL) were stirred at $130{ }^{\circ} \mathrm{C}$ for 48 h . After workup, column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) afford the title compound as orange solid in 74 \% yield.
m.p.: $155-156{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 11.00(\mathrm{~s}, 1 \mathrm{H}), 8.40\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.86-7.84(\mathrm{~m}, 3 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 7 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 101 \mathbf{M H z}\right) \boldsymbol{\delta} 164.0,152.8,149.3,141.6,132.7,132.6,132.0$, $132.0,131.0,129.7,126.4\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.1 \mathrm{~Hz}\right), 125.9\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.6 \mathrm{~Hz}\right), 124.5(\mathrm{q}$, $\left.{ }^{1} J_{\mathrm{C}-\mathrm{F}}=271.6 \mathrm{~Hz}\right), 123.1,119.8,116.1$.
${ }^{19}{ }^{\mathrm{F}}$ NMR ($\left.\mathrm{CDCl}_{3}, \mathbf{5 6 5} \mathbf{~ M H z}\right) \boldsymbol{\delta}-62.0$.
HRMS (ESI-MS): calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{ON}_{3} \mathrm{~F}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 370.11617, found: 370.11614.

(E)-2-(phenyldiazenyl)-N-(4-fluorophenyl)benzamide (3ag)

According to general procedure: $\mathrm{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5$ $\mathrm{mol} \%$), (E)-1,2-diphenyldiazene (1.25 mmol), 4-fluorophenyl isocyanate (0.5 mmol), $\mathrm{NaOAc}(0.1 \mathrm{mmol})$ in toluene (2.5 mL) were stirred at $130{ }^{\circ} \mathrm{C}$ for 48 h . After workup, column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) afford the title compound as orange solid in 70% yield.
m.p.: $167-169^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 10.78(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}$, 3H), $7.64-7.56(\mathrm{~m}, 7 \mathrm{H}), 7.02(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1 ~ M H z}\right) \boldsymbol{\delta} 163.6,159.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=245.5 \mathrm{~Hz}\right), 152.6,149.2$, $134.6\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 132.5,132.2,132.0,131.9,131.3,129.7,123.1,121.8,(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.8 \mathrm{~Hz}\right), 116.0,115.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.5 \mathrm{~Hz}\right)$.
${ }^{19}$ F NMR (CDCl3, 565 MHz$) \boldsymbol{\delta}$-118.0.
HRMS (ESI-MS): calculated for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ON}_{3} \mathrm{FNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$342.10131, found 342.10126.

(E)-2-(phenyldiazenyl)-N-(4-chlorophenyl)benzamide (3ah)

According to method $\mathrm{A}: \mathrm{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%),(E)-1,2$-diphenyldiazene $(1.25 \mathrm{mmol})$, 4-chlorophenyl isocyanate $(0.5 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred

at $130{ }^{\circ} \mathrm{C}$ for 48 h . After workup, column chromatography $(\mathrm{PE}: \mathrm{EA}=10: 1)$ afford the title compound as orange solid in 86 \% yield.
m.p.: $164-165^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR (CDCl $\left.\mathbf{C D}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} 10.83(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.86-7.82(\mathrm{~m}$, $3 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 7 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{M H z}\right) \boldsymbol{\delta} 163.6,152.7,149.2,137.2,132.5,132.3,132.0$, 131.9, 131.2, 129.7, 129.2, 129.1, 123.1, 121.4, 116.0.

HRMS (ESI-MS): calculated for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ON}_{3} \mathrm{ClNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 358.07176, found: 358.07178 .
(E)-2-(phenyldiazenyl)- N -(4-bromophenyl)benzamide (3ai)

According to method $\mathrm{A}: \operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, (E)-1,2-diphenyldiazene (1.25 mmol$)$, 4-bromophenyl isocyanate $(0.5 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at $130{ }^{\circ} \mathrm{C}$ for 48 h . After workup, column chromatography $(\mathrm{PE}: \mathrm{EA}=10: 1)$ afford the title compound as orange solid in 75 \% yield.
m.p.: $168-169^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 10.82(\mathrm{~s}, 1 \mathrm{H}), 8.42\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.87-7.81(\mathrm{~m}, 3 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 7 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{M H z}\right) \boldsymbol{\delta} 163.7,152.7,149.2,137.7,132.6,132.4,132.1$, 132.0, 132.0, 131.2, 129.7, 123.1, 121.7, 116.8, 116.0.

HRMS (ESI-MS): calculated for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ON}_{3} \mathrm{BrNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 402.02125, found: 402.02136 .

(E)-2-(phenyldiazenyl)-N-(4-iodophenyl)benzamide (3aj)

According to method $\mathrm{A}: \operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%),(E)-1,2$-diphenyldiazene (1.25 mmol), 4-iodophenyl isocyanate $(0.5 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at

$130{ }^{\circ} \mathrm{C}$ for 48 h . After workup, column chromatography $(\mathrm{PE}: \mathrm{EA}=10: 1)$ afford the title compound as orange solid in 62 \% yield.
m.p.: $177-178^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 10.83(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.84(\mathrm{~m}$, $3 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 7 \mathrm{H}), 7.45(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 101 \mathbf{M H z}\right) \boldsymbol{\delta} 163.7,152.7,149.2,138.3,138.0,132.6,132.4$, 132.0, 131.9, 131.2, 129.7, 123.1, 122.0, 116.0, 87.4.

HRMS (ESI-MS): calculated for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ON}_{3} \mathrm{INa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 450.00738$, found: 450.00735 .

(E)-2-(phenyldiazenyl)-N-(2-methylphenyl)benzamide (3ak)

According to method $\mathrm{B}: \mathrm{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, (E)-1,2-diphenyldiazene (1.25 mmol$)$, 2-methylphenyl isocyanate (0.5 mmol), $\mathrm{NaOAc}(0.1 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at $130{ }^{\circ} \mathrm{C}$ for 48 h . After workup, column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) afford the title compound as orange solid in 71% yield.
m.p.: $122-123{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 10.03(\mathrm{~s}, 1 \mathrm{H}), 8.46\left(\mathrm{dd}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.78(\mathrm{~m}, 3 \mathrm{H}), 7.64-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.48(\mathrm{~m}$, $3 \mathrm{H}), 7.26-7.07(\mathrm{~m}, 3 \mathrm{H}) 2.08(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 101 \mathbf{M H z}\right) \boldsymbol{\delta} 164.0,152.7,149.8,136.2,132.2,132.1,131.9$, 131.7, 131.7, 130.5, 130.3, 129.5, 126.6, 125.4, 124.3, 123.1, 116.3, 18.1.

HRMS (ESI-MS): calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ON}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 338.12638$, found: 338.12640.

(E)-2-(phenyldiazenyl)- N-(2-chlorophenyl)benzamide (3al)

According to method $\mathrm{B}: \mathrm{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%),(E)$-1,2-diphenyldiazene

(1.25 mmol), 2-chlorophenyl isocyanate (0.5 mmol), NaOAc $(0.1 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at $130^{\circ} \mathrm{C}$ for 48 h . After workup, column chromatography (PE:EA = 10:1) afford the title compound as orange solid in 80% yield.
m.p.: $128-129{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} 10.39(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.41(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.48-$ $4.46(\mathrm{~m}, 3 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta} 164.2,152.4,149.8,135.3,132.3,132.2,131.8$, $131.5,129.2,129.1,127.5,125.0,124.2,123.6,123.5,116.5$.

HRMS (ESI-MS): calculated for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ON}_{3} \mathrm{ClNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 358.07176, found: 358.07157.

(E)-2-(phenyldiazenyl)- N-(m-tolylphenyl)benzamide (3am)

According to method $\mathrm{B}: \mathrm{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, (E)-1,2-Diphenyldiazene (1.25 mmol), m-tolyl isocyanate (0.5 mmol), $\mathrm{NaOAc}(0.1 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at $130{ }^{\circ} \mathrm{C}$ for 48 h . After workup, column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) afford the title compound as orange solid in 63% yield.
m.p.: $88-89^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 10.6(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.86(\mathrm{~m}$, 2H), $7.80(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 6 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 101 \mathbf{M H z}\right) \boldsymbol{\delta} 163.5,152.7,149.2,138.9,138.5,132.4,132.1$, 131.9, 131.7, 129.6, 129.0, 125.1, 123.2, 120.9, 117.3, 115.9, 21.6.

HRMS (ESI-MS): calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ON}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 338.12638$, found: 338.12625.

(E)-2-(phenyldiazenyl)- N-(3,5-dimethylphenyl)benzamide (3an)

According to general procedure: $\mathrm{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}$, $5 \mathrm{~mol} \%$), (E)-1,2-diphenyldiazene (1.25 mmol), 3,5-dimethylphenyl isocyanate (0.5 mmol), NaOAc (0.1 mmol) in toluene (2.5 mL) were stirred at $130{ }^{\circ} \mathrm{C}$ for 48 h. After workup, column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) afford the title compound as orange solid in 70% yield.
m.p.: $159-160^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} 10.69(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d},(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90-7.88$ (m, 2H), $7.81(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 5 \mathrm{H}), 7.33(\mathrm{~s}, 2 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 2.29$ ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 101 \mathbf{M H z}\right) \boldsymbol{\delta} 163.4,152.7,149.2,138.8,138.4,132.4,132.0$, $132.0,131.9,131.7,129.5,126.0,123.3,118.0,115.8,21.5$.

HRMS (ESI-MS): calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{ON}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 352.14203, found: 352.14194.

Figure S1. Molecular structures of 3an, showing 30\% probability ellipsoids and the partial atom-numbering scheme

(E)-N-(naphthalen-2-yl)-2-(phenyldiazenyl)benzamide (3ao)

According to general procedure: $\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5$ $\mathrm{mol} \%$), (E)-1,2-diphenyldiazene (1.25 mmol), naphthalen-2-yl isocyanate (0.5 mmol), $\mathrm{NaOAc}(0.1 \mathrm{mmol})$ in toluene (2.5 mL) were stirred at $130^{\circ} \mathrm{C}$ for 48 h . After workup, column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) afford the title compound as orange solid in 67% yield.
m.p.: $159-160^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right) \boldsymbol{\delta} 10.97(\mathrm{~s}, 1 \mathrm{H}), 8.55\left(\mathrm{dd}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $8.27(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.71-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 2 \mathrm{H})$, $7.41-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{M H z}\right) \boldsymbol{\delta} 164.3,152.5,149.9,134.2,133.3,132.3,132.3$, 132.2, 131.9, 131.4, 129.5, 128.7, 127.1, 126.0, 125.9, 125.4, 123.5, 121.6, 120.6, 116.4.

HRMS (ESI-MS): calculated for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{ON}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$374.12638, found 374.12616.

(E)-N-butyl-2-(phenyldiazenyl)benzamide (3ap)

According to general procedure: $\mathrm{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5$ $\mathrm{mol} \%$), (E)-1,2-diphenyldiazene (1.25 mmol), n-butyl isocyanate (0.5 mmol), $\mathrm{NaOAc}(0.1 \mathrm{mmol})$ in toluene (2.5 mL) were stirred at $130^{\circ} \mathrm{C}$ for 48 h . After workup, column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) afford the title compound as orange solid in 55% yield.
m.p.: $105-106^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.34\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.84-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.75\left(\mathrm{dd}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.58-7.49(\mathrm{~m}, 5 \mathrm{H}), 3.52$ (q, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

[^2]129.5, 123.2, 115.8, 40.0, 31.8, 20.4, 13.8.

HRMS (ESI-MS): calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ON}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$304.14203, found 304.14195.

(E)-2-(phenyldiazenyl)-N-cyclopentylbenzamide (3aq)

According to general procedure: $\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5$ $\mathrm{mol} \%$), (E)-1,2-diphenyldiazene (1.25 mmol), cyclopentayl isocyanate (0.5 mmol), $\mathrm{NaOAc}(0.1 \mathrm{mmol})$ in toluene (2.5 mL) were stirred at $130{ }^{\circ} \mathrm{C}$ for 48 h . After workup, column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) afford the title compound as sticky oil in 55% yield.
m.p.: $114-115^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} 8.50(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.37\left(\mathrm{dd}, J_{1}=8.0 \mathrm{~Hz}, J_{2}=\right.$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.75\left(\mathrm{dd}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.60-7.50$ $(\mathrm{m}, 5 \mathrm{H}), 4.52-4.43(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.56-1.50(\mathrm{~m}$, $2 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{M H z}\right) \boldsymbol{\delta} 165.3,152.7,149.6,132.2,131.8,131.6,131.6$, $131.5,129.5,123.1,115.8,51.9,33.4,24.0$.

HRMS (MALDI-MS): calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$316.14203, found 316.14228 .

(E)-2-(phenyldiazenyl)-N-benzylbenzamide (3ar)

According to general procedure: $\mathrm{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5$ mol \%), (E)-1,2-diphenyldiazene (1.25 mmol), benzyl isocyanate (0.5 mmol), $\mathrm{NaOAc}(0.1 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at $130{ }^{\circ} \mathrm{C}$ for 48 h . After workup, column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) afford the title compound as sticky oil in 57% yield.
m.p.: $116-117^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} 8.92(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.56-7.27(\mathrm{~m}, 12 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 101 \mathbf{M H z}\right) \boldsymbol{\delta} 165.6,152.2,149.5,138.2,132.0,131.8,131.7$, 131.6, 131.3, 129.4, 128.9, 128.5, 127.7, 123.2, 115.8, 44.8.

HRMS (ESI-MS): calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{ON}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$338.12638, found 338.12631 .

(E)-5-methyl-2-(p-tolyldiazenyl)-N-(4-chlorophenyl)benzamide (3bh)

According to general procedure: $\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}$, $5 \mathrm{~mol} \%$), (E)-1,2-di-p-tolylphenyldiazene (1.25 mmol), 4-chlorophenyl isocyanate (0.5 mmol), NaOAc (0.1 $\mathrm{mmol})$ in toluene (2.5 mL) were stirred at $130^{\circ} \mathrm{C}$ for 24 h. After workup, column chromatography (PE:EA = 10:1) afford the title compound as orange solid in 78% yield.
m.p.: $175-176{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right) \boldsymbol{\delta} 11.02,(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76-7.74(\mathrm{~m}$, $3 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 101 \mathrm{MHz}\right) \boldsymbol{\delta} 163.9,150.9,147.5,143.3,142.6,137.3,133.1$, 132.3, 130.6, 130.4, 129.2, 129.1, 123.1, 121.4, 116.0, 21.8, 21.7.

HRMS (MALDI-MS): calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$386.10306, found 386.10323.

(E)-5-(tert-butyl)-2-((4-(tert-butyl)phenyl)diazenyl)-N-(4-chlorophenyl)

benzamide (3ch)

According to general procedure: $\mathrm{Re}_{2}(\mathrm{CO})_{10}(0.025$ mmol, $5 \mathrm{~mol} \%$), (E)-1,2-bis(tert-butyl) phenyldiazene (1.25 mmol), 4-chlorophenyl isocyanate (0.5 mmol), $\mathrm{NaOAc}(0.1 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at $130{ }^{\circ} \mathrm{C}$ for 24 h . After
workup, column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) afford the title compound as orange solid in 85% yield.
m.p.: $181-182^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 11.03,(\mathrm{~s}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.76(\mathrm{~m}$, $3 \mathrm{H}), 7.67$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{~s}$, $18 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{M H z}\right) \boldsymbol{\delta} 164.1,156.3,155.4,150.6,147.4,137.3,130.4$, $129.5,129.1,129.0,128.7,126.6,122.9,121.4,115.9,35.3,35.3,31.3,31.2$.

HRMS (MALDI-MS): calculated for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{ClN}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 470.19696$, found 470.19708 .
(E)-N-(4-chlorophenyl)-5-(methoxy)-2-((4-methoxyphenyl)diazenyl)benzamide (3dh)

According to general procedure: $\mathrm{Re}_{2}(\mathrm{CO})_{10}(0.025$ mmol, $5 \mathrm{~mol} \%$), (E)-1,2-bis(4-methoxy)phenyl diazene (1.25 mmol), 4-chlorophenyl isocyanate (0.5 $\mathrm{mmol}), \mathrm{NaOAc}(0.1 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at $130{ }^{\circ} \mathrm{C}$ for 24 h . After workup, column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) afford the title compound as orange solid in 76% yield.
m.p.: $172-173{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 11.32(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.75(\mathrm{~m}, 3 \mathrm{H}), 7.62$ (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.29 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .7 .02(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 101 \mathbf{M H z}\right) \boldsymbol{\delta} 163.5,162.8,162.1,146.9,143.8,137.3,132.3$, 129.1, 124.9, 121.4, 119.4, 118.0, 114.8, 114.5, 55.9, 55.8.

HRMS (MALDI-MS): calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{NaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 418.09289$, found 418.09292.
(E)-N-(4-chlorophenyl)-5-(trifluoromethoxy)-2-((4-(trifluoromethoxy)phenyl)diaz

enyl)benzamide (3eh)

According to general procedure: $\mathrm{Re}_{2}(\mathrm{CO})_{10}(0.025$ mmol, $5 \mathrm{~mol} \%$), (E)-1,2-bis(4-trilfuoromethoxy) phenyldiazene (1.25 mmol), 4-chlorophenyl isocyanate (0.5 mmol), $\mathrm{NaOAc}(0.1 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at $130{ }^{\circ} \mathrm{C}$ for 24 h . After workup, column chromatography $(\mathrm{PE}: \mathrm{EA}=10: 1)$ afford the title compound as orange solid in 52% yield.
m.p.: $140-141^{\circ} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 10.53(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.91-7.86(\mathrm{~m}, 3 \mathrm{H}), 7.54$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0$ Hz, 2H).
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{M H z}\right) \boldsymbol{\delta} 162.1,152.3\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.1 \mathrm{~Hz}\right), 152.0\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.1\right.$ $\mathrm{Hz}), 147.0,136.6,133.6,129.8,129.3,124.9,124.6,124.1,123.4,121.7,121.4,120.5$ $\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=257.6 \mathrm{~Hz}\right), 120.4\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=257.6 \mathrm{~Hz}\right), 118.4$.
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 565 \mathrm{MHz}\right) \boldsymbol{\delta}$-57.6, -57.6.
HRMS (MALDI-MS): calculated for $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{ClF}_{6} \mathrm{~N}_{3} \mathrm{NaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$526.03636, found 526.03634 .
(E)-N-(4-chlorophenyl)-5-(trifluoromethyl)-2-((4-(trifluoromethyl)phenyl)diazen yl)benzamide (3fh)

According to general procedure: $\mathrm{Re}_{2}(\mathrm{CO})_{10}(0.025$ mmol, $5 \mathrm{~mol} \%$), (E)-1,2-bis(4-trifluoromethyl)phenyl diazene (1.25 mmol), 4-chlorophenyl isocyanate (0.5 $\mathrm{mmol}), \mathrm{NaOAc}(0.1 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at $130{ }^{\circ} \mathrm{C}$ for 24 h . After workup, column chromatography $(\mathrm{PE}: \mathrm{EA}=10: 1)$ afford the title compound as orange solid in 46% yield.
m.p.: $175-176{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 10.30(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 8.01-7.83(\mathrm{~m}, 7 \mathrm{H}), 7.56$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z}\right) \boldsymbol{\delta} 162.2,1542,150.5,136.5,134.5\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.9 \mathrm{~Hz}\right)$, $134.1\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.7 \mathrm{~Hz}\right), 132.6,129.4,129.1\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right), 127.1\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.6\right.$ $\mathrm{Hz}), 123.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=273.5 \mathrm{~Hz}\right), 123.6,123.4,\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=274.1 \mathrm{~Hz}\right), 121.4,117.2$.
${ }^{19}$ F NMR ($\mathbf{C D C l}_{3}, \mathbf{5 6 5} \mathbf{~ M H z) ~} \boldsymbol{\delta}$-62.8, -63.0.
HRMS (MALDI-MS): calculated for $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{ClF}_{6} \mathrm{~N}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$494.04653, found 494.04667.

(E)-N-(4-chlorophenyl)-3-methyl-2-(o-tolyldiazenyl)benzamide (3gh)

According to general procedure: $\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5$ mol \%), (E)-1,2-bis(2-methyl)phenyldiazene (1.25 mmol), 4-chlorophenyl isocyanate (0.5 mmol), NaOAc (0.1 mmol) in toluene (2.5 mL) were stirred at $130{ }^{\circ} \mathrm{C}$ for 24 h . After workup, column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) afford the title compound as orange solid in 57% yield.
m.p.: $145-146{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right) \boldsymbol{\delta} 8.90(\mathrm{~s}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, 2H), $7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$, 2.44 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z)} \boldsymbol{\delta}$ 166.7, 150.7, 149.2, $139.3,137.1,133.8,133.6$, 132.0, 131.7, 129.2, 128.8, 127.6, 126.4, 121.0, 115.1, 19.4, 17.7.

HRMS (MALDI-MS): calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$386.10306, found 386.10325.

(E)-N-(4-chlorophenyl)-3-methoxy-2-(2-methoxyphenyl)diazenyl)benzamide

 (3hh)According to general procedure: $\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, (E)-1,2-bis(2-methoxy)phenyldiazene (1.25 mmol), 4-chlorophenyl isocyanate (0.5

mmol), $\mathrm{NaOAc}(0.1 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at $130{ }^{\circ} \mathrm{C}$ for 24 h . After workup, column chromatography $(\mathrm{PE}: \mathrm{EA}=10: 1)$ afford the title compound as orange solid in 60 \% yield.
m.p.: $162-163{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 10.72(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.08(\mathrm{~m}$, 2H), 3.87 ($\mathrm{s}, 3 \mathrm{H}$), 3.83 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 101 \mathbf{M H z}\right) \boldsymbol{\delta} 163.4,162.5,160.7,153.7,150.3,137.3,133.6$, $130.4,129.0,128.8,124.2,121.3,118.9,118.5,116.7,107.0,99.5,55.8,55.6$.

HRMS (MALDI-MS): calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{NaO}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 418.09289$, found 418.09299.
(E)-N-(4-chlorophenyl)-2-((2,4-dimethylphenyl)diazenyl)-3,5-dimethylbenzamide (3ih)

According to procedure: $\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5$ mol \%), (E)-1,2-bis(2,4-dimethyl)phenyldiazene (1.25 mmol), 4-chlorophenyl isocyanate (0.5 mmol), NaOAc $(0.1 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at $130{ }^{\circ} \mathrm{C}$ for 24 h . After workup, column chromatography (PE:EA $=10: 1)$ afford the title compound as orange solid in 53% yield.
m.p.: $208-209{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right) \boldsymbol{\delta} 9.13(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.02(\mathrm{~m}, 5 \mathrm{H})$, 2.47 (s, 6H), 2.36 (s, 3H), 2.32 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{~ M H z)} \boldsymbol{\delta} 166.4,149.0,147.2,142.5,139.6,139.3,137.2$, $135.0,132.6,132.3,129.6,128.9,128.8,127.3,121.0,114.8,21.5,21.2,20.1,17.7$.

HRMS (MALDI-MS): calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$414.13436, found 414.13445.
(E)-N-(4-chlorophenyl)-2-((3,5-dimethylphenyl)diazenyl)-2,6-dimethylbenzamide (3jh)

According to general procedure: $\mathrm{Re}_{2}(\mathrm{CO})_{10}(0.025$ mmol, $5 \quad \mathrm{~mol} \%$), (E)-1,2-bis(2,4-dimethyl)phenyldiazene (1.25 mmol), 4-chlorophenyl isocyanate (0.5 mmol), NaOAc (0.1 $\mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at $130{ }^{\circ} \mathrm{C}$ for 24
h. After workup, column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) afford the title compound as orange solid in 73% yield.
m.p.: $201-202{ }^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right) \boldsymbol{\delta} 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.56\left(\mathrm{dd}, J_{1}=7.2 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $7.40(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 2 \mathrm{H}), 7.29\left(\mathrm{dd}, J_{1}=6.8 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~s}$, $1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{M H z}\right) \boldsymbol{\delta} 167.2,152.7,149.2,140.2,138.9,137.1,136.8$, $134.0,133.7,133.3,129.5,129.1,121.5,121.1,114.0,21.5,21.3,19.3$.

HRMS (MALDI-MS): calculated for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 414.13436$, found 414.13441.
(E)-N-(4-chlorophenyl)-4-methyl-2-(m-tolyldiazenyl)benzamide (3kh) and
(E)-N-(4-chlorophenyl)-6-methyl-2-(m-tolyldiazenyl)benzamide (3kh')

According to general procedure: $\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, (E)-1,2-bis(2-methyl)phenyldiazen e (1.25 mmol), 4-chlorophenyl isocyanate (0.5 mmol), NaOAc $(0.1 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at $130{ }^{\circ} \mathrm{C}$ for 24 h . The ratio of $\mathbf{3 k h}$ and 3kh' was determined by GC-MS to be 50:1. After workup, column chromatography $(P E: E A=10: 1)$ afford the title compound as orange solid in 93% yield..

Data for major product 3kh

m.p.: $155-156^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H} \operatorname{NMR}\left(\mathbf{C D C l}_{3}, 400 \mathbf{M H z}\right) \boldsymbol{\delta} 10.89(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, \boldsymbol{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.54(\mathrm{~m}$, $5 \mathrm{H}), 7.41(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42$ (s, $3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{M H z}\right) \boldsymbol{\delta} 163.5,152.6,148.8,143.0,139.6,137.3,133.2$, 132.7, 131.9, 129.4, 128.9, 128.7, 128.4, 122.5, 121.4, 121.1, 115.9, 21.5, 21.4.

HRMS (MALDI-MS): calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$386.10306, found 386.10307

(E)-N-(4-chlorophenyl)-2-(mesityldiazenyl)benzamide (31h)

According to method $\mathrm{A}: \operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, (E)-1-(2,4,6-trimethylphenyl)-2-phenyldiazene (1.25 mmol), 4-chlorophenyl isocyanate (0.5 mmol), $\mathrm{NaOAc}(0.1 \mathrm{mmol})$ in toluene (2.5 mL) were stirred at $130{ }^{\circ} \mathrm{C}$ for 24 h . After workup, column chromatography ($\mathrm{PE}: \mathrm{EA}=10: 1$) afford the title compound as orange solid in 84% yield.
m.p.: $126-127^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{M H z}\right) \boldsymbol{\delta} 10.70(\mathrm{~s}, 1 \mathrm{H}), 8.33-8.31(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.74(\mathrm{~m}$, 1H), $7.53-7.47$ (m, 4H), 7.19 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.95 (s, 2H), 2.35 (s, 6H), 2.33 (s, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{1 0 1} \mathbf{M H z}\right) \boldsymbol{\delta} 163.9,149.3,149.1,140.3,137.1,132.0,131.6$, 131.4, 131.3, 130.3, 128.9, 128.9, 121.3, 115.4, 21.2, 19.1.

HRMS (MALDI-MS): calculated for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClN}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$400.11871, found 400.11878.

(E)-N-(4-chlorophenyl)-2-((3,5-dimethylphenyl)diazenyl)benzamide (3mh)

According to method $\mathrm{A}: \operatorname{Re}_{2}(\mathrm{CO})_{10} \quad(0.025 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, (E)-1-(3,5-dimethylphenyl)-2-phenyldiazene (1.25 mmol), 4-chlorophenyl isocyanate $(0.5 \mathrm{mmol}), \mathrm{NaOAc}(0.1 \mathrm{mmol})$ in toluene $(2.5 \mathrm{~mL})$ were stirred at $130^{\circ} \mathrm{C}$ for 24 h .

After workup, column chromatography (PE:EA = 10:1) afford the title compound as orange solid in 70% yield. 3md was isolated as a single product.
m.p.: $116-117^{\circ} \mathrm{C}$
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathbf{~ M H z}\right) \boldsymbol{\delta} 11.04(\mathrm{~s}, 1 \mathrm{H}), 8.41\left(\mathrm{dd}, J_{1}=\right.$ $\left.7.6 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.77\left(\mathrm{~d}, J_{1}=7.6 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.64(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 2 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}$, 3H).
${ }^{13} \mathbf{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 101 \mathbf{M H z}\right) \boldsymbol{\delta} 163.5,152.8,149.0,139.4,137.3,134.3,132.3$, $131.9,131.8,130.9,129.0,129.0,121.2,121.0,115.7,21.3$.

HRMS (MALDI-MS): calculated for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$386.10306, found 386.10304.

5. Mechanistic studies

5.1 Probe the possible reaction intermediate

To probe the possible reaction intermediate, a series of reactions were carried out. First, we examined the stoichiometric reaction of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ with azobenzene 1a. It was shown that $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ reacted smoothly with azobenzene $\mathbf{1 a}$ affording five-member rhenacycle A in 6\% isolated yield (Scheme S1).

Scheme S1. Stoichiometric reaction of $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ with azobenzene 1a

Experimental procedure:

$\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.38 \mathrm{mmol}, 248 \mathrm{mg})$, azobenzene $\mathbf{1 a}(2.8 \mathrm{mmol}, 510 \mathrm{mg})$ were added into an oven-dried reaction vessel with Teflon screw cap under a nitrogen atmosphere. Toluene (20 mL) was then added into the reaction tube. The reaction mixture was stirred at $130^{\circ} \mathrm{C}$ for 3 days. After the completion, the solvent was removed by rotary evaporation and the residue was sublimed at $65^{\circ} \mathrm{C}$ to remove azobenzene in vacuum. After azobenzene was completely removed, the mixture was further sublimed at $75^{\circ} \mathrm{C}$ in vacuum for 2 hours affording the pure product \mathbf{A} in 6% yield. ${ }^{1 \mathrm{~b}}$

${ }^{1} \mathbf{H}$ NMR (400 MHz , Acetone- \mathbf{d}_{6}): $8.35\left(\mathrm{dd}, J_{1}=7.6 \mathrm{~Hz}\right)$, $8.08(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.61(\mathrm{~m}$, 3H), 7.40-7.36 (m, 2H).
${ }^{13}$ C NMR ($\mathbf{1 0 1 ~ M H z}$, Acetone-d ${ }_{6}$): 194.0 (CO), 191.3 (CO),
186.7 (2CO), 169.7, 169.1, 158.0, 142.7, 134.4, 133.5, 131.6, 130.0, 126.4, 123.6.

Next, the stoichiometric reaction of \mathbf{A} with $\mathbf{2 i}$ was conducted and o-azobenzamide 3ai was obtained in 57\% isolated yield after column chromatography (Scheme S2). At last, we performed a catalytic reaction of azobenzene $\mathbf{1 a}$ with isocyanate $\mathbf{2 i}$ using
rhenacycle complex \mathbf{A} as a catalyst under the standard conditions. The reaction proceeded successfully affording the product 3ai in 78\% NMR yield (Scheme S3). These results indicated that the five-member rhenacycle \mathbf{A} might be a key reaction intermediate in the catalytic reaction.

Scheme S2. Stoichiometric reaction of rhenacycle A with 2i

Experimental procedure:

To an oven-dried tube was added $\mathbf{A}(0.05 \mathrm{mmol} 24 \mathrm{mg})$, p-bromophenyl isocyanate $\mathbf{2 i}(0.1 \mathrm{mmol}, 19.8 \mathrm{mg}), \mathrm{NaOAc}(0.05 \mathrm{mmol}, 4.1 \mathrm{mg})$ and toluene $(0.25$ mL) under N_{2} atmosphere. The vial was then placed in an oil bath preset to $130^{\circ} \mathrm{C}$. After stirring for 48 h , the vial was removed from the oil bath and was cooled to ambient temperature. After removal of the solvent under vacuum, the residue was subject to column chromatography affording product 3ai in 57\% yield.

Scheme S3. Rhenacycle A catalyzed reaction of 1a and $\mathbf{2 i}$

Experimental procedure:

To an oven-dried tube was added $\mathbf{A}(0.01 \mathrm{mmol} 4.8 \mathrm{mg})$, azobenzene 1a (0.25 mmol, 45.5 mg), p-bromophenyl isocyanate $\mathbf{2 i}(0.1 \mathrm{mmol}, 19.8 \mathrm{mg}$), NaOAc (0.02 $\mathrm{mmol}, 1.6 \mathrm{mg})$ and toluene $(0.5 \mathrm{~mL})$ under N_{2} atmosphere. The vial was then placed
in an oil bath preset to $130^{\circ} \mathrm{C}$. After stirring for 48 h , the vial was removed from the oil bath and was cooled to ambient temperature. After removal of the solvent under vacuum, the yield of 3ai was determined by ${ }^{1} \mathrm{H}$ NMR using equimolar amount of 1,3,5-trimethoxylbenzene as an internal standard.

5.2 Probe the nature of the C-H activation step

Fully deuterated azobenzene $\mathbf{1 a}-\boldsymbol{d}_{\mathbf{1 0}}$ was prepared from commercially available bromobenzene- d_{5} (Alfa Aesar, $>99 \% \mathrm{D}$) according to the procedure shown in Scheme S4.

Scheme S4. Preparation of deuterated azobenzene $\mathbf{1 a}-\boldsymbol{d}_{\mathbf{1 0}}$

Dipentadeuteroazobenzene ($1 \mathrm{a}-\mathrm{d}_{10}$)

Pentadeuteroaniline was prepared from bromobenzene- d_{5} ($10 \mathrm{mmol}, 1.6 \mathrm{~g}$) by a known procedure ${ }^{4}$ and then treated with CuBr , pyridine following the previous described general procedure A using O_{2} as oxidant for the synthesis of dipentadeuteroazobenzene $\mathbf{1 a -} \boldsymbol{d}_{\mathbf{1 0}}$. After workup, the title compound was isolated by column chromatography $(\mathrm{PE} / \mathrm{EA}=50: 1)$ as reddish solid in 50% yield. ${ }^{1 \mathrm{~b}}$

To determine whether the $\mathrm{C}-\mathrm{H}$ activation step is a deprotonative cyclization process, deuterium-labeling experiments were next explored. The reaction of dipentadeuteroazobenzene $\mathbf{1 a}-\boldsymbol{d}_{\mathbf{1 0}}$ with phenyl isocyanate $\mathbf{2 a}$ resulted in the partial loss of deuterium at the ortho-positions of both the starting material and the product (Scheme S5). We proposed that the loss of deuterium arose from the exchange of deuterium with protons in the reaction solution.

Scheme S5. Deuterium-labeling experiment with $\mathbf{1 a -} \boldsymbol{d}_{\mathbf{1 0}}$

Experimental procedure:

$\mathrm{Re}_{2}(\mathrm{CO})_{10}(0.01 \mathrm{mmol}, 6.5 \mathrm{mg})$, NaOAc ($0.04 \mathrm{mmol}, 3.2 \mathrm{mg}$), phenyl isocyanate 2a ($0.2 \mathrm{mmol}, 23.8 \mathrm{mg}$), dipentadeuteroazobenzene $\mathbf{1 a} \mathbf{-} \boldsymbol{d}_{\mathbf{1 0}}(0.5 \mathrm{mmol}, 96.0 \mathrm{mg})$ and toluene (1 ml) were added into an owen-dried reaction vessel. The solution was stirred at $130^{\circ} \mathrm{C}$ for 24 h . After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate. The filtrate was concentrated by rotary evaporation and the residue was purified by silica gel column chromatography to afford the pure product in 31% yield and the recovered starting material in 50% yield (based on the loading of $\mathbf{1 a -} \boldsymbol{d}_{\mathbf{1 0}}$), which was analyzed by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}. The D-content in the recovered starting material was analyzed using an equimolar amount of 1,3,5-trimethoxylbenzene as the internal standard.

To further confirm the exchange of H / D, the reaction of azobenzene 1a with $D_{2} \mathrm{O}$ was tested and the incorporation of deuterium at the ortho-positions of the recovered 1a was detected, which confirmed our assumption (Scheme S6).

Scheme S6. H/D scrambling experiment of 1a with $\mathrm{D}_{2} \mathrm{O}$

Experimental procedure:

$\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 6.5 \mathrm{mg})$, azobenzene $\mathbf{1 a}(0.2 \mathrm{mmol}, 36.4 \mathrm{mg})$, NaOAc ($0.04 \mathrm{mmol}, 3.2 \mathrm{mg}$), $\mathrm{D}_{2} \mathrm{O}(0.2 \mathrm{mmol}, 3.6 \mathrm{mg})$ and toluene $(1 \mathrm{~mL})$ were added into an owen-dried reaction vessel. The solution was stirred at $130{ }^{\circ} \mathrm{C}$ for 14 h . After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate. The filtrate was concentrated by rotary evaporation and the residue was analyzed by ${ }^{1} \mathrm{H} \mathrm{NMR}$ in CDCl_{3}.

To investigate whether the C-H activation step is reversible without the addition of NaOAc , the combination of azobenzene $1 \mathbf{1 a}$ with a catalytic mount of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ in
the present of $\mathrm{D}_{2} \mathrm{O}$ was examined. It turned out that only negligible D -incorporation at the ortho-positions of recovered 1a was observed (Scheme S7). This result indicated that an irreversible C-H activation step occurred in the absent of NaOAc.

Scheme S7. H/D exchange experiment of $\mathbf{1 a}$ and $\mathrm{D}_{2} \mathrm{O}$ in the absence of NaOAc .

Experimental procedure:

$\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 6.5 \mathrm{mg})$, azobenzene 1a $(0.2 \mathrm{mmol}, 36.4 \mathrm{mg}), \mathrm{D}_{2} \mathrm{O}(0.2$ $\mathrm{mmol}, 3.6 \mathrm{mg})$ and toluene (1 mL) were added into an owen-dried reaction vessel. The solution was stirred at $130{ }^{\circ} \mathrm{C}$ for 14 h . After completion, the solvent was removed by rotary evaporation and the residue was analyzed by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}.

Similarly, the reaction of dipentadeuteroazobenzene $\mathbf{3 a}-\boldsymbol{d}_{\mathbf{1 0}}$ with p-chlorophenyl isocyanate $\mathbf{2 h}$ under the standard conditions resulted in only a very small amount of
deuterium loss in the product $\mathbf{3 a h}-\boldsymbol{d}_{9}$ as well as the recovered azobenzene $\mathbf{1 a -} \boldsymbol{d}_{\mathbf{1 0}}$ (Scheme S8).

Scheme S8. H/D exchange experiment of $\mathbf{1 a} \mathbf{a} \boldsymbol{d}_{\mathbf{1 0}}$ with $\mathbf{2 h}$ in the absence of NaOAc.

Experimental procedure:

$\mathrm{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 6.5 \mathrm{mg})$, azobenzene $\mathbf{1 a - \boldsymbol { d } _ { 1 0 }}(0.5 \mathrm{mmol}, 96.0 \mathrm{mg})$, p-cholrophenyl isocyanate $\mathbf{2 h}(0.2 \mathrm{mmol}, 30.7 \mathrm{mg})$ and toluene $(1 \mathrm{~mL})$ were added into an owen-dried reaction vessel. The solution was stirred at $130{ }^{\circ} \mathrm{C}$ for 48 h . After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate. The filtrate was concentrated by rotary evaporation and the residue was purified by silica gel column chromatography to afford the pure product 3ah- \boldsymbol{d}_{9} in 25% yield and the recovered starting material in 61% yield (based on the loading of $\mathbf{1 a -} \boldsymbol{d}_{\mathbf{1 0}}$), which was analyzed by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3}. The D-content in the recovered starting material was analyzed using an equimolar amount of 1,3,5-trimethoxylbenzene as the internal standard.

1a- \boldsymbol{d}_{10} recovered

5.3 KIE experiments

Two parallel reactions of $\mathbf{2 a}$ with $\mathbf{1 a}$ and $\mathbf{1 a - d _ { 1 0 }}$ respectively were performed to determine the corresponding KIE value. 1a $(0.25 \mathrm{mmol}, 45.5 \mathrm{mg})$ and $\mathbf{1 a - d _ { 1 0 }}(0.25$
$\mathrm{mmol}, 48.0 \mathrm{mg}$) were placed in an oven-dried Schlenk tube respectively, and then treated with the same mixture of $\mathbf{2 a}(0.1 \mathrm{mmol}, 11.9 \mathrm{mg}), \mathrm{Re}_{2}(\mathrm{CO})_{10}(0.005 \mathrm{mmol}, 3.2$ mg), 1,3,5-trimethoxybenzene (internal standard, $0.1 \mathrm{mmol}, 16.8 \mathrm{mg}$) in anhydrous toluene $(0.5 \mathrm{~mL})$ at $130{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. Each reaction was sampled at the following indicated points and analyzed by GC-MS. The GC yields were calculated after calibrating the response of GC.

Time (h)	0	2	4	6	8	9	10	11
GC Yield of 3aa (\%)	0	0	0	0.150	0.899	1.98	2.70	4.40
Time (h)	12	13	14	15	16			
GC Yield of 3aa (\%)	7.63	12.1	16.5	22.3	26.8			

Time (h)	0	2	4	6	8	9	10	11
GC Yield of 3aa' (\%)	0	0	0	0	0	0	0	0.487
Time (h)	12	13	14	15	16	17		
GC Yield of 3aa' (\%)	2.82	4.92	6.99	9.20	11.2	14.1		

$\mathrm{KIE}=\mathbf{4 . 5 8 3} / 2.212 \boldsymbol{=} \mathbf{2 . 0 7}$
KIE value from the two parallel reactions was determined to be 2.07 . The primary KIE measured by the above experiments indicated that the cleavage of the $\mathrm{C}-\mathrm{H}$ bond might be involved in the rate-determining step of the reaction.

5.4 Competition Experiments.

In order to gain more insight into the reaction mechanism, competition experiments were studied. Equalmolar amounts of azobenzene 1b and $\mathbf{1 f}$ bearing Me and CF_{3} groups respectively at the para-positions were treated with equalmolar amount of p-chlorophenyl isocyanate $\mathbf{2 h}$ in the presence of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ and NaOAc (Scheme S9).

The o-azobenzamide 3fh derived from $\mathbf{1 f}$ turned out to be the major product.

Scheme S9. Competition experiment of substituted azobenzenes

A deprotonation pathway is proposed to be involved in the C-H activation step. Therefore, azobenzenes bearing electron-withdrawing group such as CF_{3} undergo easier deprotonative C-H activation to give kinetically more favored product as shown in Scheme 6. However, azoarenes bearing electron-donating groups such as Me group might form the thermodynamically more favored product in higher yield, albeit with lower reaction rate in comparison with electron-poor azobenzenes.

Experimental procedure:

$\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 6.5 \mathrm{mg})$, azobenzene $\mathbf{1 b}(0.2 \mathrm{mmol}, 42.0 \mathrm{mg})$, $\mathbf{1 f}(0.2$ $\mathrm{mmol}, 63.6 \mathrm{mg}), \mathrm{NaOAc}(0.04 \mathrm{mmol}, 3.2 \mathrm{mg})$ and toluene $(1 \mathrm{~mL})$ were added into an owen-dried reaction vessel. The solution was stirred at $130{ }^{\circ} \mathrm{C}$ for 24 h . After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate. The filtrate was concentrated by rotary evaporation and the residue was analyzed by ${ }^{1} \mathrm{H}$ NMR using equalmolar amount of $1,3,5$-trimethoxybenzene as internal in CDCl_{3}.

Moreover, the competition reaction between phenyl isocyanate $\mathbf{2 b}$ and $\mathbf{2 f}$ was carried out in order to probe the following steps after $\mathrm{C}-\mathrm{H}$ bond activation (Scheme S10). It was shown that 1a reacted preferentially with the electron-deficient phenyl isocyanate $\mathbf{2 f}$ affording $\mathbf{3 a f}$ in 38% yield as the major product.

Scheme S10. Competition Experiment of substituted phenyl isocyanates

Experimental procedure:

$\operatorname{Re}_{2}(\mathrm{CO})_{10}(0.025 \mathrm{mmol}, 6.5 \mathrm{mg})$, azobenzene 1a $(0.2 \mathrm{mmol}, 36.4 \mathrm{mg})$, 2b $(0.2$ $\mathrm{mmol}, 26.6 \mathrm{mg}$), $\mathbf{2 f}(0.2 \mathrm{mmol}, 37.4 \mathrm{mg}), \mathrm{NaOAc}(0.04 \mathrm{mmol}, 3.2 \mathrm{mg})$ and toluene (1 mL) were added into an owen-dried reaction vessel. The solution was stirred at $130^{\circ} \mathrm{C}$ for 24 h . After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate. The filtrate was concentrated by rotary evaporation and the residue was analyzed by ${ }^{1} \mathrm{H}$ NMR using equalmolar amount of 1,3,5-trimethoxybenzene as internal standard in CDCl_{3}

6. Synthetic transformations of \boldsymbol{o}-azobenzamides

With the obtained o-azobenzamides in hand, we performed application experiments to shown their synthetic utilities. As an example, o-azobenzamide 3aa was treated with $\mathrm{Zn} / \mathrm{NH}_{4} \mathrm{Cl}$ to afford the reduced product, diphenylhydrazine $\mathbf{6 a a}$, in 92% yield (Scheme S11).

Scheme S11. Reduction of o-azobenzamide 3aa

Experimental procedure:

o-Azobenzamide $\mathbf{3 a a}(0.1 \mathrm{mmol}, 30.1 \mathrm{mg}), \mathrm{Zn}(0.5 \mathrm{mmol}, 32.5 \mathrm{mg}), \mathrm{NH}_{4} \mathrm{Cl}(0.5$ $\mathrm{mmol}, 56.5 \mathrm{mg})$, and absolute methanol (1 mL) were added into a round-bottom flask. The solution was stirred at room temperature for 5 h . After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate. The filtrate was concentrated by rotary evaporation and the residue was subjected to column chromatography to afford the pure product $\mathbf{6 a a}$ in 92% yield.
N-phenyl-2-(2-phenylhydrazinyl)benzamide (6aa)

${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $8.79(\mathrm{~s}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.22-$ $7.12(\mathrm{~m}, 4 \mathrm{H}), 6.82-6.79(\mathrm{~m}, 3 \mathrm{H}), 7.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~s}$, 1H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$): $167.7,151.1,148.5,137.8,133.5,129.4,129.2,127.2$, 124.8, 120.7, 120.0, 117.5, 115.6, 113.3, 112.4.

HRMS (MALDI-MS): calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{NaO}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$326.12638, found 326.12644.

-

By combination of Re-catalyzed mono-C-H aminocarbonylation with other transition metal catalyzed C-H activation, sequential C-H bond transformations could be achieved. For instance, o-azobenzamide 3aa underwent the second C-H acylation
reaction under the catalysis of palladium giving unsymmertrical azobenzene derivative 7aa smoothly (Scheme S12).

Scheme S12. Pd-catalyzed C-H acylation of o-azobenzamide 3aa

Experimental procedure ${ }^{5}$:

$\mathrm{Pd}(\mathrm{OAc})_{2}(0.01 \mathrm{mmol}, 2.3 \mathrm{mg})$, o-azobenzamide 3aa ($0.1 \mathrm{mmol}, 30.1 \mathrm{mg}$), TBHP (0.25 mmol) benzaldehyde ($0.11 \mathrm{mmol}, 11.2 \mathrm{mg}$) and 1,2-dichloroethane (0.5 mL) were added into an owen-dried reaction vessel under N_{2} atmosphere. The solution was stirred at $90{ }^{\circ} \mathrm{C}$ for 24 h . After completion, the reaction mixture was filtered through a short pad of silica gel and washed with ethyl acetate. The filtrate was concentrated by rotary evaporation and the residue was subjected to column chromatography to afford the pure product 7aa in 55% yield.
(E)-2-((2-benzoylphenyl)diazenyl)- N-phenylbenzamide (7aa)

${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$): $10.35(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=8.0$ $\mathrm{Hz}), 7.79-7.66(\mathrm{~m}, 8 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.25(\mathrm{~m}$, $5 \mathrm{H}), 7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): 196.5, 163.6, 150.6, 149.0, $138.9,138.5,138.3,133.3,132.2,132.1,131.9,131.7,131.4$, 129.8, 129.6, 129.2, 128.6, 124.5, 120.4, 117.2, 116.1.

HRMS (MALDI-MS): calculated for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{NaO}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$ 428.13695, found 428.13696 .

6. References

(a) C. Zhang and N. Jiao, Angew. Chem. Int. Ed. 2010, 49, 6174-6177. (b) Geng, X.; Wang, C. Org. Lett. 2015, DOI: 10.1021/acs.orglett.5b00938.

2 Badger, G. M.; Drewer, R. J.; Lewis, G. E. Aust. J. Chem. 1964, 17, 1036-1049.
3 (a) K. Thalluri, S. R. Manne, D. Dev and B. Mandal, J. Org. Chem., 2014, 79, 3765-3775; (b) A. Yoshimura, M. Luedtke, V. Zhadankin, J. Org. Chem. 2012, 77, 2087-2091; (c) S. Lesniak, A. Chrostowska, D. Kuc, M. Maciejczyk, S. Khayar, R. Nazarski and L. Urbaniak, Tetrahedron, 2009, 65, 10581-10589; (d) V.; Usharani, R. Bhujanga, M. Reddy and P. Dubey, Asian J. Chem., 2011, 23, 1802-1806. (e) Y. Charalambides and S.Moratti, Synthetic. Comm., 2007, 37, 1037-1044; (f) E. P. Trub, E. N., Boitsov, B. M. Tsigin, J. Appl. Spectrosc., 1984, 41, 1232-1236.

4 L. Zhang, K. Chen, G. Chen, B. Li, S. Luo, Q. Guo, J. Wei and Z.-J. Shi, Org. Lett. 2013, 15, 10-13.

5 H. Li, P. Li and L. Wang, Org. Lett. 2013, 15, 620-623.

7. Spectra of Products

\circ
$\stackrel{1}{1}$
$\stackrel{1}{1}$

$\begin{array}{llllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20\end{array}$

$\left.\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl}(\mathrm{ppm})\end{array}\right)$

$\begin{array}{lllllllllllllllllllllllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20\end{array}$

S103

$\bar{\sim} \underset{\sim}{\sim} \underset{\sim}{\infty}$ NT!

-
$\left[\begin{array}{llllllllllllllllllllllllllllllllllllll}2.0 & 11.5 & 11.0 & 10.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0.5 & -1 . C\end{array}\right.$

[^0]: ${ }^{19}$ F NMR ($\left.\mathbf{C D C l}_{3}, \mathbf{5 6 5} \mathbf{~ M H z}\right) \boldsymbol{\delta}$-118.2.

[^1]: ${ }^{a}$ Reaction conditions unless otherwise noted: 1a (1.25 mmol), 2k (0.5 mmol), catalyst

[^2]: ${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 101 \mathbf{M H z}\right) \boldsymbol{\delta} 165.8,152.6,149.6,132.1,131.8,131.6,131.6$,

