Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Optimized Quinoline-Based Biofilm Disruptors with Improved Efficacy Against Biofilm Formation in *Vibrio cholerae*

Brian León, F. P. Jake Haeckl, Roger G. Linington*

Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA.

Table of Contents

Materials and Methods	S2
General Experimental Procedure	S2
Synthetic Procedures	S2-S7
NMR Data (¹ H and ¹³ C)	S8-S37
Inhibition and Detachment Assay Protocol	S38-S40
HeLa Data and Minimum Inhibitory Concentrations (MICs)	S41
EC ₅₀ Curves	S42-S44
Analytical Quality Control (QC) Liquid Chromatograms (4 – 21)	S45-S46

Materials and Methods

General Experimental Procedures. All reactions were performed in oven dried glassware under an inert atmosphere of N₂ or Ar. Tetrahydrofuran (THF), toluene (PhMe) and methylene chloride (DCM) were obtained from a Pur-Solv 400 solvent purification system manufactured by Innovative Technology. All reagents were used as purchased without further purification, with the following exceptions: triethylamine was distilled from calcium hydride and stored over sodium hydroxide; oxalyl chloride (COCI)₂ was distilled and stored over poly(vinylpyridine). *i*-PrMgCI•LiCI was titrated using I₂ and LiCl.¹ Thin layer chromatography was performed with Merck Silica gel 60 F₂₅₄ and visualized with UV or chemical stain (p-anisaldehyde). Crude reaction mixtures were purified using Silica Gel 60 (230 – 400 mesh ASTM).² ¹H and ¹³C NMR spectra were obtained on either 500 or 600 MHz Varian spectrometers equipped with 5 mm broadband and 5 mm HCN triple resonance cryoprobe respectively. ¹H and ¹³C NMR's are referenced to indicated solvent signals. Highresolution mass spectra were obtained on a bench-top Agilent 6230 ESI-TOF-MS. Optical rotation measurements were found on a Jasco P-2000 digital polarimeter. using a 10 mm and 100 mm path length cell at 589 nm. UV Spectra were recorded on a Shimadzu UV-Visible Spectrophotometer (UV-1800) with a path length of 1 cm.

General Suzuki Procedure (GP 1):

To an oven dried 2-neck flask (25 mL) equipped with a stir bar (Ar) was added **SM** (1 eq), ArB(OH)-² (1.3 eq), and Cs₂CO₃ (1.3 eq). A condenser was attached and PhMe (N₂ sparged), EtOH, and H₂O (6.66:1.33:2, 0.025 M) were added. The reaction was degassed using three cycles of the freeze, pump, thaw method. Tetrakis(triphenylphosphine)palladium (0.21 eq) was then added and the biphasic mixture heated to reflux (105 °C) and stirred vigorously for 24 h. Prior to cooling the reaction was a biphasic translucent yellow mixture. Upon cooling to rt the organic layer would turn black. This reaction was partitioned between CH₂Cl₂ (50 mL) and H₂O (50 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 50 mL). The combined organic layers were dried with MgSO₄, filtered through a cotton plug, and concentrated *in vacuo*. The crude reaction mixture was next treated with HCl (2M in Et₂O, 23.04 eq). The reaction was then diluted in PhMe and a portion of Et₃N was added slowly and the reaction was concentrated *in vacuo*.

(*R*)-(2-bromoquinolin-4-yl)((*S*)-1-tritylpyrrolidin-2-yl)methanol³ (7):

To an oven dried vial equipped with a stir bar (N₂) was added 2, 4-dibromoquinoline (5.38 g, 18.74 mmol) which was dissolved in THF (23.5 mL) and taken to -78 °C. Addition of *i*-PrMgCl•LiCl (21.6 mL, 20.62 mmol, 0.96 M in THF) resulted in the formation of a light yellow solution which was allowed to stir at -78 °C for 2 h. Next a solution of **6** (7.68 g, 22.49 mmol) in THF (28.1 mL) was slowly added and the solution was allowed to stir at rt for 12 h. Next the solution was quenched with a saturated NH₄Cl solution and partitioned between CH₂Cl₂ (100 mL) and H₂O (100 mL). The layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 100 mL). The combined organic layers were dried with MgSO₄, filtered through a cotton plug, and concentrated *in vacuo*. The residue was purified by flash chromatography (1:9:90, Et₃N:EtOAc:Hex) to afford **11** (4.15 g, 40%) as a white foam. Analytical data matched literature values.

(R)-(2-chloroquinolin-4-yl)((S)-pyrrolidin-2-yl)methanol (8):

To a green cap vial equipped with a stir bar (N₂) was added **7** (48.0 mg, 0.087 mmol). This was then dissolved in Et₂O (870 μL) followed by addition of HCl (1.0 mL, 2.01 mmol, 2M in Et₂O). After 12 h the solution was concentrated *in vacuo*. Purification by flash chromatography (Et₃N:MeOH:CH₂Cl₂, 1:5:94) yielded **8** (8.7 mg, 38%) as a colorless film. ¹H NMR (600 MHz, CD₃OD) δ 8.17 (d, J = 8.4 Hz, 1H), 8.01 (d, J = 8.2 Hz, 1H), 7.85 (t, J = 7.7 Hz, 1H), 7.77 (s, 1H), 7.73 (t, J = 7.6 Hz, 1H), 5.91 (d, J = 3.0 Hz, 1H), 4.07 (td, J = 2.74, 8.2 Hz, 1H), 3.42 – 3.32 (m, 2H), 2.09 – 2.04 (m, 2H), 1.93 – 1.84 (m, 1H), 1.52 – 1.41 (m, 1H). ¹³C NMR (151 MHz, CD₃OD) δ 152.2, 149.1, 132.1, 129.9, 129.0, 125.1, 124.1, 120.6, 111.4, 67.1, 63.8, 47.4, 24.9, 24.0. HRMS (ESI): Exact Mass for C₁₄H₁₆CIN₂O [M + H] requires *m/z* 263.0951, found *m/z* 263.0948. [**a**]_D²⁶: 61.32 (*c* 0.043, CHCl₃). **UV:** (CHCl3) λmax (log ε) 236 nm (4.39).

(R)-(2-phenylquinolin-4-yl)((S)-pyrrolidin-2-yl)methanol (9):

Prepared according to **GP 1** from **7** (91.5 mg, 0.17 mmol), ArB(OH)₂ (26.3 mg, 0.22 mmol), and Cs₂CO₃ (70.3 mg, 0.22 mmol). Next PhMe, EtOH, and H₂O were added (4.4 mL: 880 μL: 1.3 mL, 0.025 M) followed by tetrakis(triphenylphosphine) palladium (404.3 mg, 0.035 mmol). **RP-HPLC** (Phenomenex Synergi Fusion-RP 10 micron, 80 Å, 250 x 10 mm, 35:65 to 80:20% MeOH/H₂O + 0.02% formic acid over 14.5 min., 4 mL min⁻¹ flow rate). (17.2 mg, 34%) as a colorless film. ¹H **NMR** (600 MHz, CD₃OD) δ = 8.24 (d, *J*=2.7 Hz, 1H), 8.17 (m, 2H), 8.15 – 8.10 (m, 2H), 7.83 – 7.78 (m, 1H), 7.70 – 7.64 (m, 1H), 7.58 – 7.53 (m, 2H), 7.53 – 7.48 (m, 1H), 5.99 (s, 1H), 4.13 (m, 1H), 3.44 – 3.32 (m, 2H), 2.17 – 2.02 (m, 2H), 1.93 – 1.82 (m, 1H), 1.52 – 1.42 (m, 1H). ¹³C NMR (151 MHz, CD₃OD) δ 158.9, 149.3, 149.1, 149.1, 140.6, 131.1, 130.9, 130.8, 130.0, 128.7, 128.2, 125.3, 123.7, 123.7, 117.5, 67.4, 64.0, 47.3, 24.9, 24.1. **HRMS** (ESI): Exact Mass for C₂₀H₂₁N₂O [M + H]⁺ requires *m/z* 305.1654, found *m/z* 305.1664. [**a**]_D²⁵: -35.59 (*c* 0.094, CHCl₃). **UV**: (CHCl₃) λ_{max} (log ε) 260 nm (4.49).

(R)-((S)-pyrrolidin-2-yl)(2-(2-(trifluoromethyl)phenyl)quinolin-4-yl)methanol (10)

Prepared according to **GP 1** from **7** (85.4 mg, 0.16 mmol), ArB(OH)₂ (39.7 mg, 0.21 mmol), and Cs₂CO₃ (68.1 mg, 0.21 mmol). Next PhMe, EtOH, and H₂O were added (4.1 mL: 830 μL: 1.2 mL, 0.025 M) followed by tetrakis(triphenylphosphine) palladium (37.7 mg, 0.033 mmol). **RP-HPLC** (Phenomenex Synergi Fusion-RP 10 micron, 80 Å, 250 x 4.6 mm, 35:65 MeOH/H₂O + 0.02% formic acid over 15 min., 2 mL min⁻¹ flow rate). (4.8 mg, 8%) as a colorless film. ¹H NMR (600 MHz, CD₃OD) δ 8.25 – 8.20 (m, 1H), 8.13 (d, *J* = 8.4 Hz, 1H), 7.92 – 7.89 (m, 2H), 7.87 (t, *J* = 7.7 Hz, 1H), 7.82 – 7.73 (m, 2H), 7.72 (t, *J* = 7.7 Hz, 1H), 7.62 (d, *J* = 7.5 Hz, 1H), 5.99 (s, 1H), 4.08 (t, *J* = 8.3 Hz, 1H), 3.44 – 3.26 (m, 1H), 2.11 – 2.00 (m, 2H), 1.92 – 1.84 (m, 1H), 1.50 – 1.39 (m, 1H). ¹³C NMR (151 MHz, CD₃OD) δ 159.4, 149.1, 148.4, 141.0, 133.3, 132.5, 131.5, 130.5, 130.4, 129.0, 127.5, 127.5, 125.3, 124.7, 123.7, 120.4, 67.1, 64.1, 47.5, 24.9, 24.1. HRMS (ESI): Exact Mass for $C_{21}H_{19}F_{3}N_2O$ [M + H]⁺ requires *m/z* 373.1527, found *m/z* 373.1540. **[a]₀²⁵:** -37.93 (*c* 0.082, CHCl₃). **UV:** (CHCl₃) λ_{max} (log ϵ) 244 nm (4.63).

(R)-((S)-pyrrolidin-2-yl)(2-(3-(trifluoromethyl)phenyl)quinolin-4-yl)methanol (11)

Prepared according to **GP 1** from **7** (88.5 mg, 0.16 mmol), $ArB(OH)_2$ (39.8 mg, 0.21 mmol), and Cs_2CO_3 (68.2 mg, 0.21 mmol). Next PhMe, EtOH, and H_2O were added (4.3 mL: 860 μ L: 1.3 mL, 0.025 M) followed by tetrakis(triphenylphosphine) palladium (39.1 mg, 0.034 mmol). **RP-HPLC** (Phenomenex Synergi Fusion-RP 10 micron, 80 Å, 250 x 4.6 mm, 46:54 MeOH/H₂O + 0.02% formic acid over 15 min., 2 mL min⁻¹ flow rate). (4.4 mg, 7%) as a white solid. ¹H NMR (600 MHz,

CD₃OD) δ 8.53 – 8.50 (m, 1H), 8.45 (d, *J* = 7.7 Hz, 1H), 8.31 (s, 1H), 8.23 (d, *J* = 8.5 Hz, 1H), 8.19 (d, *J* = 8.4 Hz, 1H), 7.88 – 7.81 (m, 2H), 7.78 (t, *J* = 7.7 Hz, 1H), 7.71 (t, *J* = 7.6 Hz, 1H), 5.98 (d, *J* = 3.5 Hz, 1H), 4.12 (td, *J* = 3.0, 8.5, 9.2 Hz, 1H), 3.44 – 3.36 (m, 1H), 3.36 – 3.32 (m, 1H), 2.13 – 2.04 (m, 1H), 1.94 – 1.83 (m, 1H), 1.56 – 1.46 (m, 1H). ¹³**C** NMR (151 MHz, CD₃OD) δ 156.8, 149.6, 149.5, 141.5, 132.3, 132.2, 131.4, 131.4, 130.9, 128.7, 127.2, 125.6, 125.2, 125.2, 123.7, 116.9, 67.6, 64.1, 47.5, 25.0, 24.3. HRMS (ESI): Exact Mass for C₂₁H₁₉F₃N₂O [M + H]⁺ requires *m/z* 373.1527, found *m/z* 373.1539. **[a]**_D²⁶: -24.30 (*c* 0.061, CHCl₃). **UV**: (CHCl₃) λ_{max} (log ε) 260 nm (4.45).

(R)-(2-(4-nitrophenyl)quinolin-4-yl)((S)-pyrrolidin-2-yl)methanol (12)

Prepared according to **GP 1** from **7** (101.8 mg, 0.19 mmol), ArB(OH)₂ (40.2 mg, 0.24 mmol), and Cs₂CO₃ (78.4 mg, 0.24 mmol). Next PhMe, EtOH, and H₂O were added (4.9 mL: 1.0 mL: 1.5 mL, 0.025 M) followed by tetrakis(triphenylphosphine) palladium (44.9 mg, 0.038 mmol). **RP-HPLC** (Phenomenex Synergi Fusion-RP 10 micron, 80 Å, 250 x 10 mm, 60:40 to 95:5% MeOH/H₂O + 0.02% formic acid over 10 min., 4 mL min⁻¹ flow rate). (19.1 mg, 30%) as a yellow solid. ¹H **NMR** (600 MHz, (CD₃)₂ SO) δ 8.54 (d, *J* = 8.5 Hz, 2H), 8.42 (d, *J* = 8.6 Hz, 2H), 8.36 – 8.29 (m, 2H), 8.17 (d, *J* = 8.4 Hz, 1H), 7.85 (t, *J* = 7.6 Hz, 1H), 7.69 (t, *J* = 7.5 Hz, 1H), 5.72 (s, 1H), 3.86 – 3.74 (m, 1H), 3.12 – 3.05 (m, 1H), 3.05 – 2.97 (m, 1H), 1.98 – 1.88 (m, 1H), 1.88 – 1.79 (m, 1H), 1.72 – 1.62 (m, 1H), 1.50 – 1.39 (m, 1H). ¹³**C NMR** (151 MHz, (CD₃)₂ SO) δ 153.5, 149.9, 148.0, 147.7, 144.7, 130.2, 130.0, 128.4, 127.3, 124.7, 124.1, 123.8, 116.0, 67.7, 62.5, 45.8, 24.4, 24.3. **HRMS** (ESI): Exact Mass for C₂₀H₂₀N₃O₃ [M + H]⁺ requires *m/z* 350.1504, found *m/z* 350.1513. **[a]**_D²⁵**:** Insufficient Solubility.

(R)-((S)-pyrrolidin-2-yl)(2-(4-(trifluoromethyl)phenyl)quinolin-4-yl)methanol (4)

Prepared according to **GP 1** from **7** (101.8 mg, 0.19 mmol), ArB(OH)₂ (40.2 mg, 0.24 mmol), and Cs₂CO₃ (78.4 mg, 0.24 mmol). Next PhMe, EtOH, and H₂O were added (4.9 mL: 1.0 mL: 1.5 mL, 0.025 M) followed by tetrakis(triphenylphosphine) palladium (44.9 mg, 0.038 mmol). **RP-HPLC** (Phenomenex Synergi Fusion-RP 10 micron, 80 Å, 250 x 10 mm, 60:40 to 95:5% MeOH/H₂O + 0.02% formic acid over 10 min., 4 mL min⁻¹ flow rate). (19.1 mg, 30%) as a yellow solid. ¹H **NMR** (600 MHz, CD₃OD) δ 8.36 (d, J = 8.5 Hz, 2H), 8.29 (s, 1H), 8.23 – 8.16 (m, 2H), 7.85 (d, J = 8.7 Hz, 2H), 7.81 (ddd, J = 1.3, 6.8, 8.2 Hz, 1H), 7.70 – 7.66 (m, 1H), 5.86 (d, J = 3.5 Hz, 1H), 3.90 (td, J = 3.47, 8.1 Hz, 1H), 3.31 – 3.24 (m, 1H), 3.14 (ddd, J = 5.8, 8.1, 11.0 Hz, 1H), 2.07 – 1.94 (m, 3H), 1.85 – 1.76 (m, 1H), 1.50 – 1.42 (m, 1H). ¹³C **NMR** (151 MHz, CD₃OD) δ 156.9, 150.5, 149.4, 144.3, 131.2, 131.2, 129.3, 129.3, 128.5, 126.8, 126.8, 126.8, 126.8, 125.9, 124.0, 117.2, 68.8, 64.2, 47.6, 25.6, 24.9. **HRMS** (ESI): Exact Mass for C₂₁H₂₀F₃N₂O [M + H]⁺ requires *m/z* 373.1527, found *m/z* 373.1537. **[a]**_D²⁴: -31.192 (*c* 0.075, CHCl₃). **UV**: (CHCl₃) λ_{max} (log ε) 258 nm (4.73).

(R)-((S)-pyrrolidin-2-yl)(2-(p-tolyl)quinolin-4-yl)methanol (13)

Prepared according to **GP 1** from **7** (87.5 mg, 0.16 mmol), ArB(OH)₂ (28.1 mg, 0.21 mmol), and Cs₂CO₃ (67.4 mg, 0.21 mmol). Next PhMe, EtOH, and H₂O were added (4.2 mL: 850 μ L: 1.4 mL, 0.025 M) followed by tetrakis(triphenylphosphine) palladium (38.6 mg, 0.033 mmol). **RP-HPLC** (Phenomenex Synergi Fusion-RP 10 micron, 80 Å, 250 x 4.6 mm, 31:69 MeOH/H₂O + 0.02% formic acid over 15 min., 2 mL min⁻¹ flow rate). (8.9 mg, 18%) as a white solid. ¹H NMR (600 MHz, CD₃OD) δ 8.22 (s, 1H), 8.16 (dd, *J* = 6.9, 8.8 Hz, 2H), 8.02 (d, *J* = 8.0 Hz, 2H), 7.80 (t, 1H), 7.66 (t, *J* = 7.6 Hz, 1H), 7.37 (d, *J* = 7.8 Hz, 2H), 5.94 (d, *J* = 3.2 Hz, 1H), 4.08 (t, *J* = 7.8 Hz, 1H), 3.42 – 3.35 (m, 1H), 3.35 – 3.32 (m, 1H), 2.44 (s, 3H), 2.16 – 2.01 (m, 3H), 1.91 – 1.83 (m, 1H), 1.52 –

1.45 (m, 1H). ¹³**C NMR** (151 MHz, CD₃OD) δ 158.9, 149.3, 149.1, 141.2, 137.8, 131.1, 130.8, 130.6, 129.3, 128.7, 128.0, 125.3, 123.7, 123.6, 117.3, 67.6, 64.1, 47.4, 25.0, 24.3, 21.4. **HRMS** (ESI): Exact Mass for $C_{21}H_{23}N_2O$ [M + H]⁺ requires *m/z* 319.1810, found *m/z* 319.1807. **[α]_D²⁴:** - 41.19 (*c* 0.071, CHCl₃). **UV:** (CHCl₃) λ_{max} (log ε) 268 nm (4.54).

(R)-(2-(4-fluorophenyl)quinolin-4-yl)((S)-pyrrolidin-2-yl)methanol (14)

Prepared according to **GP 1** from **7** (101.9 mg, 0.19 mmol), ArB(OH)₂ (33.7 mg, 0.24 mmol), and Cs₂CO₃ (78.5 mg, 0.24 mmol). Next PhMe, EtOH, and H₂O were added (4.9 mL: 980 μL: 1.6 mL, 0.025 M) followed by tetrakis(triphenylphosphine) palladium (45.0 mg, 0.038 mmol). **RP-HPLC** (Phenomenex Synergi Fusion-RP 10 micron, 80 Å, 250 x 10 mm, 60:40 to 95:5% MeOH/H₂O + 0.02% formic acid over 10 min., 4 mL min⁻¹ flow rate). (46.9 mg, 79%) as a white solid. ¹H **NMR** (600 MHz, CD₃OD) δ 8.58 – 8.52 (m, 1H), 8.48 (s, 1H), 8.44 – 8.38 (m, 1H), 8.27 – 8.20 (m, 2H), 8.15 (t, *J* = 7.5 Hz, 1H), 8.02 – 7.97 (m, 1H), 7.48 (t, *J* = 8.3 Hz, 2H), 6.17 (s, 1H), 4.23 – 4.14 (m, 1H), 3.47 – 3.34 (m, 2H), 2.18 – 2.06 (m, 2H), 1.97 – 1.85 (m, 1H), 1.62 – 1.50 (m, 1H). ¹³C **NMR** (151 MHz, CD₃OD) δ 167.9, 166.2, 158.5, 155.8, 135.5, 133.1, 133.0, 131.1, 130.2, 125.8, 124.0, 119.7, 118.1, 117.9, 111.4, 67.7, 64.1, 47.5, 24.8, 24.1. **HRMS** (ESI): Exact Mass for C₂₀H₂₀FN₂O [M + H]⁺ requires *m/z* 323.1559, found *m/z* 323.1559. **[α]_D²⁶:** -8.51 (*c* 0.032, CHCl₃). **UV:** (CHCl₃) λ_{max} (log ε) 262 nm (4.05).

(*R*)-(2-(4-(pentafluorosulfanyl)phenyl)quinolin-4-yl)((*S*)-pyrrolidin-2-yl)methanol (15) Prepared according to **GP 1** from **7** (93.8 mg, 0.17 mmol), ArB(OH)₂ (55.0 mg, 0.22 mmol), and Cs₂CO₃ (72.3 mg, 0.22 mmol). Next PhMe, EtOH, and H₂O were added (4.6 mL: 910 µL: 1.4 mL, 0.025 M) followed by tetrakis(triphenylphosphine) palladium 40.4 mg, 0.035 mmol). **RP-HPLC** (Phenomenex Synergi Fusion-RP 10 micron, 80 Å, 250 x 10 mm, 65:35 to 95:5% MeOH/H₂O + 0.02% formic acid over 10.5 min., 4 mL min⁻¹ flow rate). (17.5 mg, 24%) as a white solid. ¹H **NMR** (600 MHz, CD₃OD) δ 8.37 (d, *J* = 8.2 Hz, 2H), 8.31 (s, 1H), 8.21 – 8.15 (m, 2H), 8.00 (dd, *J* = 2.50, 8.8 Hz, 2H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.70 (t, *J* = 7.6 Hz, 1H), 5.97 (d, *J* = 3.2 Hz, 1H), 4.14 – 4.08 (m, 1H), 3.41 – 3.30 (m, 2H), 2.17 – 2.00 (m, 2H), 1.92 – 1.82 (m, 1H), 1.51 – 1.42 (m, 1H). ¹³C **NMR** (151 MHz, CD₃OD) δ 156.2, 149.6, 149.5, 143.9, 131.4, 131.4, 129.2, 128.9, 127.7, 127.7, 127.6, 127.6, 125.7, 123.7, 117.1, 67.5, 64.0, 47.4, 25.0, 24.2. **HRMS** (ESI): Exact Mass for C₂₀H₂₀F₅N₂OS [M + H]⁺ requires *m/z* 431.1216, found *m/z* 431.1227. **[a]**_D²⁶: -41.47 (*c* 0.044, CHCl₃). **UV:** (CHCl₃) λ_{max} (log ε) 258 nm (4.63).

(R)-(2-(4-chlorophenyl)quinolin-4-yl)((S)-pyrrolidin-2-yl)methanol (16)

Prepared according to **GP 1** from **7** (91.7 mg, 0.17 mmol), ArB(OH)₂ (33.9 mg, 0.22 mmol), and Cs₂CO₃ (70.8 mg, 0.22 mmol). Next PhMe, EtOH, and H₂O were added (4.5 mL: 890 μ L: 1.3 mL, 0.025 M) followed by tetrakis(triphenylphosphine) palladium 40.5 mg, 0.035 mmol). **RP-HPLC** (Phenomenex Synergi Fusion-RP 10 micron, 80 Å, 250 x 10 mm, 60:40 to 95:5% MeOH/H₂O + 0.02% formic acid over 11 min., 4 mL min⁻¹ flow rate). (6.4 mg, 12%) as a colorless solid. ¹H **NMR** (600 MHz, CD₃OD) δ 8.25 (s, 1H), 8.22 – 8.13 (m, 4H), 7.82 (t, *J* = 7.6 Hz, 1H), 7.68 (t, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 8.1 Hz, 2H), 5.95 (s, 1H), 4.08 (t, *J* = 8.1 Hz, 1H), 3.50 – 3.31 (m, 1H), 3.30 – 3.13 (m, 1H), 2.14 – 2.03 (m, 2H), 1.93 – 1.82 (m, 1H), 1.53 – 1.44 (m, 1H). ¹³**C NMR** (151 MHz, CD₃OD) δ 157.5, 149.4, 139.2, 137.0, 133.1, 133.0, 131.2, 131.1, 130.2, 130.1, 130.1, 128.4, 125.4, 123.6, 117.0, 67.7, 64.1, 47.5, 25.0, 24.3. **HRMS** (ESI): Exact Mass for C₂₀H₂₀CIN₂O [M +

H]⁺ requires *m/z* 339.1264, found *m/z* 339.1264. **[α]**_D²⁵: -31.68 (*c* 0.075, CHCl₃). **UV**: (CHCl₃) λ_{max} (log ε) 266 nm (4.39).

(*R*)-(2-(2,4-bis(trifluoromethyl)phenyl)quinolin-4-yl)((*S*)-pyrrolidin-2-yl)methanol (17) Prepared according to **GP 1** from **7** (103.2 mg, 0.19 mmol), ArB(OH)₂ (62.9 mg, 0.24 mmol), and Cs₂CO₃ (79.5 mg, 0.24 mmol). Next PhMe, EtOH, and H₂O were added (5.0 mL: 1.0 mL: 1.5 mL, 0.025 M) followed by tetrakis(triphenylphosphine) palladium 45.1 mg, 0.04 mmol). **RP-HPLC** (Phenomenex Synergi Fusion-RP 10 micron, 80 Å, 250 x 10 mm, 70:30 to 95:5% MeOH/H₂O + 0.02% formic acid over 10 min., 4 mL min⁻¹ flow rate). (23.4 mg, 28%) as a colorless film. ¹H **NMR** (600 MHz, CD₃OD) δ 8.27 (d, *J* = 8.4 Hz, 1H), 8.18 (s, 1H), 8.14 (t, *J* = 8.3 Hz, 2H), 7.95 (s, 1H), 7.90 – 7.86 (m, 2H), 7.79 (t, *J* = 7.5 Hz, 1H), 6.05 (s, 1H), 4.16 (t, *J* = 7.8 Hz, 1H), 3.44 – 3.31 (m, 2H), 2.16 – 2.03 (m, 2H), 1.96 – 1.82 (m, 1H), 1.51 – 1.39 (m, 1H). ¹³C **NMR** (151 MHz, CD₃OD) δ 157.8, 149.5, 148.5, 144.8, 133.9, 131.7, 130.7, 130.5, 130.2, 130.2, 129.3, 125.7, 125.5, 124.6, 123.9, 123.9, 119.9, 66.9, 64.0, 47.3, 24.9, 24.0. **HRMS** (ESI): Exact Mass for C₂₂H₁₉F₆N₂O [M + H]⁺ requires *m/z* 441.1401, found *m/z* 441.1395. [**a**]_D²⁴: -77.56 (*c* 0.03, CHCl₃). **UV:** (CHCl₃) λ_{max} (log ε) 252 nm (4.43).

(R)-(2-(2,4-dimethylphenyl)quinolin-4-yl)((S)-pyrrolidin-2-yl)methanol (18)

Prepared according to **GP 1** from **7** (99.2 mg, 0.18 mmol), ArB(OH)₂ (35.2 mg, 0.23 mmol), and Cs₂CO₃ (76.5 mg, 0.23 mmol). Next PhMe, EtOH, and H₂O were added (4.8 mL: 970 μL: 1.6 mL, 0.025 M) followed by tetrakis(triphenylphosphine) palladium 43.9 mg, 0.04 mmol). **RP-HPLC** (Phenomenex Synergi Fusion-RP 10 micron, 80 Å, 250 x 4.6 mm, 31:69 MeOH/H₂O + 0.02% formic acid over 15 min., 2 mL min⁻¹ flow rate). (17.4 mg, 29%) as a white solid. ¹H NMR (600 MHz, CD₃OD) δ 8.20 (s, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.87 (s, 1H), 7.82 (t, 1H), 7.71 (t, *J* = 7.7 Hz, 1H), 7.34 (dd, *J* = 2.80, 7.7 Hz, 1H), 7.18 (s, 1H), 7.18 – 7.12 (m, 1H), 5.98 (s, 1H), 4.12 (dt, *J* = 4.0, 8.6 Hz, 1H), 3.42 – 3.31 (m, 2H), 2.39 (s, 3H), 2.32 (s, 3H), 2.16 – 2.01 (m, 2H), 1.94 – 1.80 (m, 1H), 1.53 – 1.40 (m, 1H). ¹³**C** NMR (151 MHz, CD₃OD) δ 161.7, 148.9, 148.7, 140.1, 138.8, 136.9, 132.5, 131.2, 130.5, 130.2, 128.4, 127.8, 124.9, 123.8, 120.9, 67.2, 64.0, 47.3, 25.0, 24.2, 21.3, 20.4. HRMS (ESI): Exact Mass for C₂₂H₂₅N₂O [M + H]⁺ requires *m/z* 333.1967, found *m/z* 333.1976. **[α]_D²⁵:** -39.72 (*c* 0.07, CHCl₃). **UV:** (CHCl₃) λ_{max} (log ε) 264 nm (4.16).

(R)-(2-(2,4-difluorophenyl)quinolin-4-yl)((S)-pyrrolidin-2-yl)methanol (19)

Prepared according to **GP 1** from **7** (97.1 mg, 0.18 mmol), ArB(OH)₂ (36.3 mg, 0.23 mmol), and Cs₂CO₃ (74.9 mg, 0.23 mmol). Next PhMe, EtOH, and H₂O were added (4.7 mL: 940 μL: 1.6 mL, 0.025 M) followed by tetrakis(triphenylphosphine) palladium 42.9 mg, 0.037 mmol). **RP-HPLC** (Phenomenex Synergi Fusion-RP 10 micron, 80 Å, 250 x 10 mm, 60:40 to 95:5% MeOH/H₂O + 0.02% formic acid over 8.5 min., 4 mL min⁻¹ flow rate). (18.5 mg, 31%) as a white solid. ¹H **NMR** (600 MHz, CD₃OD) δ 8.22 – 8.15 (m, 3H), 8.10 – 8.02 (m, 1H), 7.83 (t, *J* = 7.7 Hz, 1H), 7.72 (t, *J* = 7.5 Hz, 1H), 7.22 – 7.13 (m, 2H), 6.00 (s, 1H), 4.12 (t, *J* = 8.7 Hz, 1H), 3.45 – 3.33 (m, 2H), 2.17 – 2.03 (m, 2H), 1.94 – 1.84 (m, 1H), 1.52 – 1.43 (m, 1H). ¹³C **NMR** (151 MHz, CD₃OD) δ 165.2 (dd, *J* = 12.17, 250.65 Hz), 162.3 (dd, *J* = 12.12, 251.78 Hz), 154.5 (d, *J* = 2.01 Hz), 149.3 , 148.9 , 133.9 (dd, *J* = 4.25, 9.85 Hz), 131.2 , 130.9 , 128.7 , 125.3 , 123.7 , 120.4 (d, *J* = 7.34 Hz), 113.1 (dd, *J* = 3.69, 21.63 Hz), 111.4 , 105.4 (t, *J* = 26.43 Hz), 67.1 , 64.0 , 47.4 , 24.9 , 24.0. **HRMS** (ESI): Exact Mass for C₂₀H₁₉F₂N₂O [M + H]⁺ requires *m/z* 341.1465, found *m/z* 341.1469. [**a**]₀²⁵: -53.44 (*c* 0.09, CHCl₃). **UV**: (CHCl₃) λ_{max} (log ε) 254 nm (4.33).

(R)-(2-(3-(pentafluorosulfanyl)phenyl)quinolin-4-yl)((S)-pyrrolidin-2-yl)methanol (20)

Prepared according to **GP 1** from **7** (96.4 mg, 0.18 mmol), ArB(OH)₂ (56.5 mg, 0.23 mmol), and Cs₂CO₃ (74.3 mg, 0.23 mmol). Next PhMe, EtOH, and H₂O were added (4.7 mL: 930 μ L: 1.4 mL, 0.025 M) followed by tetrakis(triphenylphosphine) palladium 42.5 mg, 0.037 mmol). **RP-HPLC** (Phenomenex Synergi Fusion-RP 10 micron, 80 Å, 250 x 10 mm, 65:35 to 95:5% MeOH/H₂O + 0.02% formic acid over 10.5 min., 4 mL min⁻¹ flow rate). (14.3 mg, 19%) as a white solid. ¹H **NMR** (600 MHz, CD₃OD) δ 8.69 (t, *J* = 2.0 Hz, 1H), 8.42 (d, *J* = 7.7 Hz, 1H), 8.31 (s, 1H), 8.23 (d, *J* = 8.5 Hz, 1H), 8.20 (d, *J* = 8.4 Hz, 1H), 7.97 (dd, *J* = 2.3, 8.2 Hz, 1H), 7.85 (t, *J* = 7.6 Hz, 1H), 7.77 (t, *J* = 8.0 Hz, 1H), 7.74 – 7.69 (m, 1H), 6.00 (d, *J* = 3.2 Hz, 1H), 4.15 (td, *J* = 3.1, 8.5, 9.0 Hz, 1H), 3.45 – 3.34 (m, 2H), 2.19 – 2.05 (m, 2H), 1.95 – 1.85 (m, 1H), 1.55 – 1.44 (m, 1H).

¹³**C** NMR (151 MHz, CD₃OD) δ 156.2, 149.6, 149.5, 141.7, 131.9, 131.4 (d, *J* = 7.22 Hz), 130.9, 129.3, 128.8, 128.6, 128.0 (m), 126.0 (m), 125.7, 123.7, 116.8, 67.5, 64.0, 47.4, 24.9, 24.2. HRMS (ESI): Exact Mass for C₂₀H₂₀F₅N₂OS [M + H]⁺ requires *m/z* 431.1216, found *m/z* 431.1213. **[a]**_D²⁶: - 23.38 (*c* 0.06, CHCl₃). **UV**: (CHCl₃) λ_{max} (log ε) 256 nm (4.46).

(R)-(2-(2,4-dichlorophenyl)quinolin-4-yl)((S)-pyrrolidin-2-yl)methanol (21)

Prepared according to **GP 1** from **7** (92.2 mg, 0.17 mmol), ArB(OH)₂ (41.6 mg, 0.22 mmol), and Cs₂CO₃ (71.0 mg, 0.22 mmol). Next PhMe, EtOH, and H₂O were added (4.5 mL: 890 μL: 1.4 mL, 0.025 M) followed by tetrakis(triphenylphosphine) palladium 40.7 mg, 0.035 mmol). **RP-HPLC** (Phenomenex Synergi Fusion-RP 10 micron, 80 Å, 250 x 10 mm, 57:43 to 80:20% MeOH/H₂O + 0.02% formic acid over 14.5 min., 4 mL min⁻¹ flow rate). (8.8 mg, 16%) as a colorless film. ¹H **NMR** (600 MHz, CD₃OD) δ 8.22 (dd, J = 1.4, 8.6 Hz, 1H), 8.18 (dd, J = 1.2, 8.6 Hz, 1H), 8.08 (d, J = 1.0 Hz, 1H), 7.89 (ddd, J = 1.3, 6.9, 8.4 Hz, 1H), 7.78 (ddd, J = 1.3, 6.9, 8.3 Hz, 1H), 7.70 (d, J = 2.0 Hz, 1H), 7.69 (d, J = 8.3 Hz, 1H), 7.56 (dd, J = 2.1, 8.3 Hz, 1H), 6.01 (d, J = 2.8 Hz, 1H), 4.15 (ddd, J = 3.0, 7.7, 9.3 Hz, 1H), 3.45 – 3.36 (m, 2H), 2.17 – 2.06 (m, 2H), 1.96 – 1.85 (m, 1H), 1.57 – 1.47 (m, 1H). ¹³**C NMR** (151 MHz, CD₃OD) δ 157.5, 148.5, 138.8, 137.0, 134.4, 133.8, 131.8, 130.9, 130.3, 129.3, 128.9, 125.4, 123.7, 121.0, 111.4, 67.0, 64.2, 47.5, 24.8, 24.0. **HRMS** (ESI): Exact Mass for C₂₀H₁₉Cl₂N₂O [M + H]⁺ requires *m/z* 373.0874, found *m/z* 373.0873. **[α]₀²⁶:** -34.91 (*c* 0.05, CHCl₃). **UV:** (CHCl₃) λ_{max} (log ε) 258 nm (4.16).

¹ A. Krasovskiy and P. Knochel, *Synthesis.*, 2006, **5**, 890 - 891.

² C. W. Still, M. Kahn and A. Mitra, *J. Org. Chem.*, 1978, **43**, 2923-2925.

³ B. Leon, J. C. N. Fong, K. C. Peach, W. R. Wong, F. H. Yildiz and R. G. Linington, *Org. Lett.*, 2013, *5*, 2011–2014.

The ¹H Spectrum (600 MHz) of **9** in CD₃OD

The ¹H Spectrum (600 MHz) of **12** in (CD₃)₂SO

The ¹H Spectrum (600 MHz) of 4 in CD₃OD

The ¹H Spectrum (600 MHz) of 13 in CD₃OD

The ¹H Spectrum (600 MHz) of 15 in CD₃OD

The ¹H Spectrum (600 MHz) of **17** in CD₃OD

The ¹H Spectrum (600 MHz) of $\mathbf{19}$ in CD₃OD

S34

Inhibition and Detachment Assay Protocol

Experimental Procedure:

Both the inhibition assay and dispersal assay follow the general procedure developed and utilized in our laboratory previously.^{4, 5, 6} In general, a GFPexpressing rugose variant and a GFP-expressing biofilm-deficient knockout $\Delta v p s |\Delta v p s |I$ of V, cholerae O1 EI Tor are dispensed into 384-well screening plates from a diluted overnight culture. After dispensing DMSO control, inhibitor chemical control taurochenodeoxycholic acid (TCDCA), or antibiotic chemical control (doxycycline) in DMSO are pinned into the screening plate. Test compounds solutions in DMSO are present in columns 3-12 in each screening plate (Figure S1), allowing for both inhibition and dispersal assays to take place in the same assay plate. For the inhibition assay, compounds are pinned into the bacterial plate at to and OD600 readings are taken immediately. After 2 hours of incubation (t_{2h}), the plate is reversed (rotated 180°) and the same compounds are pinned into the same plate in lanes 13-22 and OD₆₀₀ readings are taken again for dispersal initial readings, followed by an additional 2.5 hours of incubation. After a total of 4.5 hours of incubation, OD₆₀₀ readings are acquired and the differences can then be used to determine cellular viability. Immediately following absorbance readings, plates are washed, PBS buffer is added, and each well is imaged in 8 contiguous sites within each well.^{4, 5, 6} Data is representative of three biological replicates and two technical replicates for each biological replicate, totaling six technical replicates.

Figure S1. Lane 1 contains the DMSO vehicle control, lane 2 contains doxycycline (100μ M in the top 4 wells, 50μ M in the next 4 wells and a two-fold dilution in the bottom 8 wells), lane 23 contains TCDCA in a two-fold dilution from 100μ M, and lane 24 contains the knockout Δ vpsl Δ vpslL Lanes 3-12 contain compound in two-fold dilutions. Lanes 13-22 contain the same compounds in the dispersal assay (dilutions starting from the bottom based on pinning geometry) within the same plate.

Data Acquisition and Processing:

Imaging data was processed as previously reported.⁴ Briefly, an automated pipeline for measuring intensity and surface coverage of GFP signals was created using MetaXpress software (Molecular Devices). This creates a commaseparated output which is normalized with the OD_{600} data with a custom script in Matlab (MathWorks). The combined normalized output is analyzed using JMP (SAS) and Prism (GraphPad). BIC₅₀ and BDC₅₀ curves were generated in Prism using two subsequent analyses that are present in the Prism package. First, Transform was applied such that X = log (X) to obtain the log of the concentration of compound in each well on the X-axis. Second, a Non-linear fit of the transformed data was applied using the setting "log(inhibitor) vs. response -- Variable slope (four parameters)" which is under the Dose-response – Inhibition tab. No other statistical methods were applied. Some dose-response curves did not converge or produce fit lines.

Data Interpretation:

For each assay, four compound designations are possible for any well, following the analysis outlined above. In the case of strong antibiotic activity, both biofilm-associated and planktonic cells are eliminated, resulting in blank wells and normalized OD_{600} readings near zero (Figure S2A). In the case of elimination of only planktonic cells, lower OD_{600} readings would be associated with the presence of some biofilm coverage (Figure S2B). For compounds with strong inhibition of biofilm coverage, but non-bactericidal activity, high OD_{600} readings will be associated with low biofilm coverage and only evidence of planktonic cells without large biofilm colonies (Figure S3C). Finally, compounds with no effect will show large mature biofilms and planktonic cells with high OD_{600} readings, following similar appearance and characteristics to the DMSO vehicle control (Figure S2D). Compounds capable of dispersing biofilms will display the same characteristics of those of the inhibitors, but have been added after the formation of biofilms (after 2 hours).

Figure S2. Percent biofilm coverage (BC). A) Strong antibiotic activity ($OD_{600} < 0.5$, BC < 0.2); B) Weak antibiotic activity ($OD_{600} < 0.5$, BC < 0.2); C) Strong inhibitor activity ($OD_{600} > 0.7$, BC < 0.2); D) No activity ($OD_{600} > 0.7$, BC > 0.2).

Figure S3. Representative dilution montage of compounds 4,8-21 inhibition activity. A) DMSO vehicle control lane. B) Doxycycline antibiotic control lane. C) TCDCA inhibitor control lane. D) Δvps -I Δvps -II control lane. Spaces between columns indicate compounds were not run in adjacent lanes. No space indicates compounds were adjacent to one another.

Figure S4. Representative dilution montage of compounds 4,8-21 dispersal activity. A) DMSO vehicle control lane. B) Doxycycline antibiotic control lane. C) TCDCA inhibitor control lane. D) Δvps -I Δvps -I control lane. Spaces between columns indicate compounds were not run in adjacent lanes. No space indicates compounds were adjacent to one another.

Minimum Inhibitory Concentration Protocol

Experimental Procedure:

MIC values were obtained as previously reported.³ Briefly, overnight saturated cultures of *V. cholerae* were diluted 1:1000 with fresh LB media and 40 μ L of culture was dispensed into each well of sterile, clear 384-well plates. 300 nL of DMSO stock of each compound in the synthetic library using a Perkin Elmer Janus MDT robot pinning tool. After inoculation, screening plates were stacked into a Perkin Elmer EnVision plate reader/shaker and OD₆₀₀ readings were taken once every hour for 18 hours with shaking. Computer generated growth curves for serially diluted compounds were used to determine MIC values by correlation of the OD₆₀₀ readings at the pre-exponential phase of bacteria to the concentrations of the individual wells. Values were reported in Figure S5.

Compound	Substitution	BIC ₅₀	BDC ₅₀	MIC	HeLa LD ₅₀
4	4-CF ₃	25.3	62.6	312.5	24.3
8	CI	>625	>625	>625	569.8
9	Ph	77.8	>250	>625	127
10	Ortho-CF ₃	>250	>250	156.3	625
11	Meta-CF ₃	56.5	151.5	156.3	35.5
12	4-NO ₂	>625	>625	N/A	218
13	4-Me	75.8	148.3	78.1	34.5
14	4-F	123.9	>250	312.5	104.2
15	4-SF₅	12.9	15.6	78.1	23.4
16	4-Cl	79.2	119.3	78.1	65.9
17	2,4-CF ₃	29.4	49.1	156.3	27.3
18	2,4-Me	169.5	175.9	312.5	108.7
19	2,4-F	>250	>250	312.5	67.2
20	3-SF₅	4.4	7.4	78.1	7.27
21	2,4-CI	52.5	153.3	>625	N/A

Table S1. Biological Activity of Second Generation Library. BIC: Biofilm Inhibitory Concentration, BDC: Biofilm Dispersal Concentration. Minimum Inhibitory Concentration (MIC), Screening data from Cytological Profiling assay (HeLa LD₅₀) Activities in μM.

Inhibition and Dispersal Activity Curves:

Liquid Chromatogram conditions: 10% MeOH/H₂O to 90 %MeOH/H₂O over 15 min and holding at same conditions for remaining 5 minutes.

- Linington, *Antimicrob. Agents Chemother.*, 2014, **58**, 1092–1099. ⁶ C. J. A. Warner, A. T. Cheng, F. H. Yildiz and R. G. Linington, *Chem. Commun.*, 2014, **51**,
- 1305-1308.

 ⁴ K. C. Peach, W. M. Bray, N. J. Shikuma, N. C. Gassner, R. S. Lokey, F. H. Yildiz and R. G. Linington, *Mol. Biosyst.*, 2011, **7**, 1176-1184.
⁵ G. Navarro, A. T. Cheng, K. C. Peach, W. M. Bray, V. S. Bernan, F. H. Yildiz and R. G.