Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Photophysical and structural investigation of ^{Py}A-modified adenine cluster: its potential use for fluorescent DNA probes exhibiting distinct emission color changes

Ki Tae Kim, Wooseok Heo, Taiha Joo,* Byeang Hyean Kim*

Department of Chemistry, BK School of Molecular Science, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea

Table of contents

Experimental methods	S3-5
Table S1. Photophysical properties of oligonucleotides	S6-7
Table S2. Time constants determined from TCSPC experiments	S 8
Table S3. Experimental Thermodynamic Parameters	S9-10
Table S4. Evaluation of Three-way junction type molecular beacons based on the A-	S11
Cluster	
Table S5. MALDI-TOF data	S12-14
Fig. S1. UV/Vis absorption spectra	S15-17
Fig. S2. Fluorescence emission spectra of triply and quadruply modified A-Clusters	S17
Fig. S3. Fluorescence emission/excitation anisotropy of synthesized ODNs	S18
Fig. S4. Fluorescence emission/excitation spectra of the A-Clusters with different	S19
lengths of adenines	
Fig. S5. Energy-minimized structure of the A-Cluster on the zipper-like structure	S20
Fig. S6. Fluorescence emission spectra of A-Clusters containing a variety of PAH-	S21-23
modified 2'-deoxyadenosines	
Fig. S7. Properties of multi–A-Cluster systems	S24
Fig. S8. 20% Polyacrylamide gel electrophoresis of four-A-Clusters	S25
Fig. S9. UV Melting curves of double-stranded oligonucleotides	S26-31
References	S32

Experimental methods

Materials and general methods

All chemical reagents and solvents for organic synthesis were purchased from Sigma–Aldrich, Alfa Aesar, Tokyo Chemical Industry, and Junsei Chemical. For oligonucleotide synthesis, reagents were obtained from Glen Research and Proligo. Dichloromethane, THF, and DMF were purified in a distillation tower. All natural DNA and RNA samples were purchased from Integrated DNA Technologies (IDT). The phosphoramidite for preparing abasic sites was purchased from Glen Research. The structure of the abasic site is shown below. All fluorescent nucleosides and phosphoramidites, including ^{Py}A, were synthesized using previously reported methods.¹ Synthesis, purification (HPLC), identification (MALDI-TOF mass spectrometry), and quantification of oligonucleotides and measurement of UV spectra, and circular dichroism (CD) spectra were performed according to general methods reported prevously.² Fluorescence emission/excitation spectra were also recorded using the same conditions as those described previously,² except for the excitation/emission slit widths.

Preparation of samples for measurements

For UV and fluorescence emission/excitation spectra, melting curves, and anisotropy spectra, 1.5 nmol of each A-Cluster–forming sequence, 500 μ L of 100 mM Trizma buffer (pH 7.2) containing 200 mM NaCl, and 20 mM MgCl₂, and additional nuclease-free water were mixed in a 1.5-mL microtube to a total volume of 1 mL. After vortexing for 1 min, the sample for annealing was maintained at 95 °C for 3 min, then under ambient conditions for 4 h, followed by cooling at 10 °C for 3 h, prior to any measurements. In case of miR-21 detection, all UV and fluorescence emission/excitation spectra were obtained without the annealing.

Fluorescence excitation and emission anisotropy

Fluorescence anisotropy was monitored using Eclipse spectrometers (Varian) and the "Automated

Polarization Measurements in Scan" method, with the following parameters: scanning ranges, 420–600 nm for emission and 300–440 nm for excitation; data interval, 1.0 nm; scan rate, 120 nm/min; excitation and emission slit width, 2.5 nm; PMT voltage, Auto; temperature, 25 °C; measure G factor once, vertical, 1, horizontal, 3, for excitation and emission.

Time-resolved fluorescence (TRF) spectra

Time-correlated single photon counting (TCSPC) technique was used for TRF experiments. The light source was a home-built cavity-dumped Ti:sapphire oscillator pumped by a frequency-doubled Nd:YVO₄ laser (Verdi, Coherent). The center wavelength of the oscillator output pulse was adjusted to 800 nm and its frequency was doubled. Cavity-dumping provided 30 nJ pulses at 380 kHz. Pump pulses were generated by the second harmonic generation in a 300-µm-thick β -barium borate crystal. In the TCSPC experiment, fluorescence was collected and detected by a parabolic mirror and a silicon avalanche photodiode (id100-50, ID Quantique), respectively. The instrument response function was measured to be 60 ps (full width at half maximum). For TRF spectra, a spectral reconstruction method was used in conjunction with their steady-state emission spectra. Details of the TCSPC setup have been described elsewhere.³

T_m measurement of oligonucleotides

For T_m determination, we utilized Cary 100 UV-visible spectrophotometer and Cary temperature controller to record the hyperchromicity; wavelength: 260nm, SBW: 1.0 nm, start: 10 °C, end: 98 °C, data interval: 1 °C, rate: 2 °C/min. All samples were recorded three times. The T_m curves were analyzed by general method for T_m determination (temperature at which half of the sample is folded, and half is unfolded). T_m determination was done by finding middle point of UV absorption corrected by upper and lower baselines.^{4a}

Calculation of thermodynamic parameters

The van't Hoff equation was used to calculate thermodynamic parameters (ΔH° , ΔS° , ΔG°) according to previous reports.⁴ To obtain these thermodynamic parameters from UV melting curves, the following equations, derived by Puglisi and Tinoco^{4b} for bimolecular equilibrium, were employed: $\Delta H^{\circ} = 6 R T_m^2 d(\theta)/d(T)_{\text{at } T=Tm}$ $\Delta S^{\circ} = -R \ln(C_0/2) + \Delta H^{\circ}/T_m$

$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

where C_0 is the initial strand concentration. The fraction folded (θ) was obtained from UV melting curves. The slopes were obtained by differentiation of the fraction folded (θ) as a function of the temperature (T).

Calculation of photophysical properties

To calculate the ratio of the fluorescence intensities in the short- and long-wavelength regions, two separate emission spectra having Gaussian curves were obtained by using the Fit Multi-peaks function in the Origin program. Each area was used to calculate the quantum yield (QY) of two different types of fluorescence emissions. Quinine sulfate in 0.5 M H₂SO₄ (1– 10 μ M; $\varphi_F = 0.546$; excitation: 310 nm) was used as the reference material;⁵ the QY was calculated using equations described previously.^{2,6} The absorbance was monitored at 385 nm; this wavelength was also used for excitation of the ^{Py}A residues.

Polyacrylamide gel electrophoresis (PAGE)

A non-denaturing polyacrylamide gel was prepared using a previously reported technique.² Aliquots (200 pmol) of samples having the multi-A-Cluster sequence were used for PAGE. Aliquots (133 μ L) of samples (containing 200 pmol of the sample, 6.70 μ mol of Trizma buffer, 13.3 μ mol of NaCl, 1.30 μ mol of MgCl₂) for measurement of fluorescence emission spectra were dried and then dissolved in water/formamide mixture (6 μ L) for loading. PAGE was performed at 90 V, 260 mA, 22 W, and 25 °C for 4 h. After running, the gels were stained using Stains All (Sigma–Aldrich) in formamide for 30 min and exposed to sunlight until bands were clear.

Molecular modeling of A-Cluster

Adenine-pentad duplex for the A-Cluster was built based on the zipper-like structure observed previously through X-ray crystallography.⁷ The initially built structure was optimized geometrically to perform molecular dynamics simulations by using the AMBER94 force field⁸ through Hyperchem (v. 8.0). Firstly, zipper-like structures for the adenine-pentad duplexes featuring one or two ^{Py}A residues were built (Fig. S5A and B). For optimized structure of part of A3+A4, one of the ^{Py}A residues has a *syn* conformation to construct the stacked pyrenes, generating the large stabilization effect for the DNA duplexes⁹⁻¹¹ as observed experimentally. Likewise, was built a part of A3+A4 containing the A-Cluster and 3-mer Watson–Crick duplexes at the end of the sequence (Fig. S5C and D).

ODNs	λ_{max}	Abs.	Abs.	Abs.	λ_{emi}	Fl. area	short	long	Q.Y.	Q.Y.
		λ_{385}	λ_{415}	$(\lambda_{385}/\lambda_{415})$		$(\lambda_{short}/\lambda_{long})$	area	area	λ_{short}	λ_{long}
A1	387, 417	0.04	0.05	0.82	456	n. d.	15563	n. d.	0.54	n. d.
A2	385, 415	0.04	0.04	0.91	453	n. d.	13548	n. d.	0.48	n. d.
A1+N2	385, 415	0.04	0.04	0.95	453	n. d.	12131	n. d.	0.46	n. d.
A2+N1	386, 416	0.04	0.04	0.93	455	n. d.	13884	n. d.	0.50	n. d.
A1+A2	384, 416	0.08	0.06	1.22	466	n. d.	15864	n. d.	0.30	n. d.
A3	385, 416	0.05	0.05	0.96	453	n. d.	19727	n. d.	0.57	n. d.
A4	386, 415	0.06	0.07	0.88	454	n. d.	22909	n. d.	0.54	n. d.
A3+N4	385, 415	0.05	0.06	0.82	454	n. d.	21785	n. d.	0.63	n. d.
A4+N3	387, 415	0.06	0.07	0.83	455	n. d.	26925	n. d.	0.61	n. d.
A3+A4	385, 413	0.11	0.09	1.26	456, 580	28:72	3753	9651	0.05	0.12
A3+A5	385, 415	0.11	0.11	1.01	460	n. d.	14222	n. d.	0.19	n. d.
A3+A6	385, 417	0.11	0.08	1.34	465, 546	29:71	5351	13100	0.07	0.17
A3+A7	385, 415	0.11	0.12	0.87	458	n. d.	39926	n. d.	0.52	n. d.
A3+A8	386, 416	0.11	0.12	0.87	461	n. d.	12279	n. d.	0.16	n. d.
A3+A9	385, 415	0.12	0.10	1.19	463	n. d.	24770	n. d.	0.30	n. d.
A3+A10	386, 415	0.10	0.08	1.27	465, 549	24:76	3422	10837	0.05	0.15
A3+A11	386, 417	0.10	0.09	1.23	466, 538	28:72	5486	14107	0.07	0.19
A3+A12	385, 414	0.11	0.08	1.28	459, 563	35:65	5345	9927	0.07	0.13
A3+A13	385, 414	0.11	0.08	1.32	465, 542	45:55	9091	11111	0.12	0.14
A3+A14	385, 414	0.10	0.08	1.26	461, 552	40:60	6895	10342	0.09	0.14
A4+A15	385, 415	0.11	0.09	1.20	463	n. d.	26958	n. d.	0.35	n. d.
A3+A16	385, 415	0.10	0.08	1.20	463	n. d.	25693	n. d.	0.36	n. d.
A12 +A15	385, 415	0.11	0.09	1.25	464	n. d.	22879	n. d.	0.30	n. d.
A13+A15	384, 415	0.10	0.08	1.35	467	n. d.	24405	n. d.	0.33	n. d.
A9+A15	385, 414	0.11	0.11	1.02	460	n. d.	36439	n. d.	0.45	n. d.
A14+A15	385, 416	0.10	0.09	1.11	461	n. d.	28940	n. d.	0.39	n. d.
A15+A16	385, 415	0.10	0.09	1.21	463	n. d.	25844	n. d.	0.34	n. d.
A29+A30	384, 417	0.18	0.12	1.47	480, 549	25:75	5980	17939	0.05	0.14
A31+A32	385, 418	0.20	0.15	1.34	476, 544	25:75	8033	24099	0.06	0.17
A33+A34	385, 414	0.23	0.16	1.40	461, 577	6:94	1133	17760	0.01	0.11
A33+A35	385, 415	0.22	0.17	1.33	463, 570	12:88	2460	18042	0.02	0.11
A33+A36	385, 414	0.22	0.17	1.32	462, 564	19:81	4414	18817	0.03	0.12
A33+A37	385, 415	0.23	0.20	1.17	467, 541	35:65	12026	22334	0.07	0.13
A33+A38	385, 414	0.21	0.15	1.38	463, 571	12:88	2447	17941	0.02	0.12
A33+A39	385, 415	0.22	0.16	1.40	461, 574	8:92	1575	18113	0.01	0.12
A33+A40	385, 415	0.21	0.16	1.36	464, 563	14:86	3135	19258	0.02	0.13
A41	386, 416	0.21	0.16	1.29	460, 574	5:95	976	18548	0.01	0.12
A42	385, 415	0.17	0.13	1.24	467, 552	23:77	5098	17066	0.04	0.14
A43	384, 415	0.22	0.16	1.58	4//, 543	30:04	13594	24166	0.09	0.15
A44	383, 415	0.19	0.13	1.48	478	n. d.	40938	n. d.	0.30	n. d.
A45	383, 416	0.18	0.12	1.46	490	n. d.	36480	n. d.	0.28	n. d.

Table S1 Photophysical properties of oligonucleotides

ODNs	λ_{max}	Abs.	Abs.	Abs.	λ_{emi}	Fl. area	short	long	Q.Y.	Q.Y.
		λ_{385}	λ_{415}	$(\lambda_{385}/\lambda_{415})$		$(\lambda_{short}/\lambda_{long})$	area	area	λ_{short}	λ_{long}
A46	386, 416	0.21	0.17	1.22	460, 569	14:86	3056	18770	0.02	0.13
A47	385, 416	0.22	0.18	1.25	464, 558	15:85	3806	21567	0.02	0.14
A48	385, 416	0.21	0.16	1.36	468, 536	28:72	10001	25716	0.07	0.17
A49	384, 417	0.19	0.14	1.35	467, 527	28:72	11120	28593	0.08	0.21
A50	385, 416	0.23	0.18	1.23	466, 557	18:82	4549	20724	0.03	0.13
A51	385, 415	0.23	0.17	1.40	461, 567	12:88	2683	19675	0.02	0.12

	A3+	<mark>A10 (-</mark> AAF(GA-)			A3+A4 (·	AAFAA-)	
450 nm	0.35	0.61	0.04		450 nm	0.3	0.67	0.03
	440 ps	2.0 ns	11 ns			390 ps	2.2 ns	6.8 ns
580 nm	0.35	0.28	0.37		580 nm	0.58	0.42	
	2.4 ns	7.6 ns	34 ns			3.4 ns	31 ns	
	A3+	A11 (-AAF	ГА-)			A3+A12 (·	-CAFAA-)	
450 nm	0.28	0.67	0.05		450 nm	0.3	0.62	0.08
	360 ps	2.2 ns	10 ns			330 ps	2.0 ns	6.1 ns
580 nm	0.5	0.23	0.27		580 nm	0.57	0.43	
	2.8 ns	8.2 ns	33 ns			3.6 ns	31 ns	
	A	1+A2 (- AFA	\-)			A3+A13 (·	-ACFAA-)	
450 nm	0.3	0.65	0.05		450 nm	0.33	0.57	0.1
	440 ps	2.3 ns	12 ns			330 ps	1.9 ns	6.7 ns
580 nm	0.49	0.27	0.24		580 nm	0.74	0.26	
	2.4 ns	7.2 ns	35 ns			3.4 ns	30 ns	
		A+A0				A3+A9 (-	AAFCA-)	
450 nm	0.63	0.29	0.08		450 nm	0.4	0.51	0.09
	90 ps	460 ps	2.0 ns			280 ps	1.7 ns	5.5 ns
580 nm	0.37	0.24	0.27	0.12	580 nm	0.69	0.31	
	150 ps	740 ps	3.1 ns	18 ns		3.4 ns	27 ns	
	A3	(Single stra	nd)			A3+A14 (·	-AAFAC-)	
450 nm	0.45	0.55			450 nm	0.37	0.56	0.07
	950 ps	2.4 ns				330 ps	1.8 ns	6.3 ns
					580 nm	0.7	0.3	
						3.1 ns	31 ns	

Table S2 Time constants determined from TCSPC experiments

ODNs	T	ΛH°	ΔS°	$\Lambda G^{\circ}(25 \ ^{\circ}\mathrm{C})$
OBIN	1 m	(kcal/mol)	(cal/mol K)	(kcal/mol)
A1+N2	55.6	-74.8	-200	-15.3
A2+N1	55.6	-72.9	-194	-15.1
A1+A2	60.0	-69.3	-180	-15.6
N1+N2	54.8	-84.5	-230	-16.0
A3+N4	55.1	-88.1	-240	-16.4
A4+N3	55.4	-86.0	-234	-16.3
A3+A4	61.4	-90.7	-243	-18.2
N3+N4	52.2	-80.4	-219	-15.1
A3+A5	58.9	-76.5	-202	-16.2
A3+A6	60.6	-87.6	-234	-17.7
A3+A7	56.3	-59.6	-153	-14.0
A3+A8	56.0	-78.2	-210	-15.7
A3+A9	58.7	-76.3	-202	-16.2
A3+A10	58.8	-77.2	-204	-16.2
A3+A11	59.1	-79.8	-212	-16.5
A3+A12	59.3	-84.6	-226	-17.1
A3+A13	58.0	-77.3	-205	-16.1
A3+A14	58.6	-83.5	-226	-17.1
A4+A15	57.0	-73.3	-194	-15.5
A3+A16	56.6	-72.8	-193	-15.3
A12 +A15	57.2	-69.8	-183	-15.2
A13+A15	56.7	-73.8	-196	-15.4
A9+A15	56.2	-68.0	-179	-14.8
A14+A15	55.5	-69.3	-183	-14.8
A15+A16	56.1	-70.7	-187	-15.0
A3+A21	56.8	-67.5	-177	-14.9
A3+A22	58.2	-68.2	-178	-15.2
A23+A24	55.8	-70.0	-185	-14.9
A25+A26	62.9	-73.0	-189	-16.6
A27+A28	57.5	-70.4	-185	-15.3
A29+A30	59.1	-65.1	-168	-15.0

Table S3 Experimental Thermodynamic Parameters. Thermodynamic parameters were calculatedfrom the UV melting curves according to general methods.

ODNs	$T_{ m m}$	ΔH°	ΔS°	$\Delta G^{\circ}(25 \ ^{\circ}\mathrm{C})$
		(kcal/mol)	(cal/mol K)	(kcal/mol)
A31+A32	62.2	-66.7	-171	-15.8
A33+A34	64.3	-90.5	-240	-18.9
A33+A35	61.4	-81.1	-214	-17.2
A33+A36	58.0	-80.0	-213	-16.3
A33+A37	55.9	-67.6	-177	-14.7
A33+A38	58.5	-77.9	-207	-16.2
A33+A39	61.5	-80.2	-212	-17.1
A33+A40	56.4	-68.1	-179	-14.8

Table S4 Evaluation of Three-way junctinon type molecular beacons based on the A-Cluster. Discrimination factor was calculated by the equation, $(I_{455}/I_{600})_{MB} / (I_{455}/I_{600})_{MB+Target}$. I_{455} : Fluorescence intensity at the 455 nm; I_{600} : Fluorescence intensity at the 600 nm. In the presence of miR-21, the **ST5+ST6** exhibited the highest I_{600} and lowest I_{455} among the molecular beacons.

miR-21	5'-r(UAG CUU AUC AG A CUG AUG UUG A)-3
miR-21 DNA	5'-d(TAG CTT ATC AG A CTG ATG TTG A)-3'
M1	5'-d(TAG CTT ATC AG T CTG ATG TTG A)-3'
M2	5'-d(TAG CTT ATC AG G CTG ATG TTG A)-3'
M3	5'-d(TAG CTT ATC AG C CTG ATG TTG A)-3'
M4	5'-d(TAG CTT ATC AA A CTG ATG TTG A)-3'
M5	5'-d(TAG CTT ATC A T A CTG ATG TTG A)-3'
M6	5'-d(TAG CTT ATC AC A CTG ATG TTG A)-3'

Samples	I ₄₅₅	I ₆₀₀	I ₄₅₅ / I ₆₀₀	Discrimination factor
ST1+ST2	312	37	8.5	
ST1+ST2+miR-21 DNA	208	52	4.0	2.1
ST1+ST2+ miR-21	245	47	5.5	1.5
ST3+ST4	608	13	45.2	
ST3+ST4+ miR21 DNA	324	42	7.8	5.8
ST3+ST4+ miR-21	469	30	15.6	2.9
ST5+ST6	570	12	49.4	
ST5+ST6+ miR21 DNA	211	45	4.7	10.5
ST5+ST6+ miR-21	231	44	5.2	9.4
ST7+ST8	441	16	27.4	
ST7+ST8+ miR21 DNA	389	24	16.5	1.7
ST7+ST8+ miR-21	353	34	10.3	2.7
ST5+ST6+M1	416	23	18.3	2.7
ST5+ST6+M2	323	29	11.3	4.4
ST5+ST6+M3	281	34	8.2	6.0
ST5+ST6+M4	333	32	10.5	4.7
ST5+ST6+M5	333	33	10.0	5.0
ST5+ST6+M6	328	34	9.6	5.1

ODN	Formula	calcd. Mass (m/z)	Obs. Mass (m/z)
Α	$C_{181}H_{218}N_{56}O_{103}P_{16}$	5318.9431	5318.3958
A0	$C_{185}H_{214}N_{76}O_{95}P_{16}$	5515.0139	5515.2605
A1	$C_{201}H_{242}N_{66}O_{113}P_{18}$	5945.0593	5945.4042
A2	$C_{205}H_{238}N_{86}O_{105}P_{18}$	6141.1301	6141.6017
A3	$C_{221}H_{266}N_{76}O_{123}P_{20}$	6571.1755	6571.2323
A4	$C_{225}H_{262}N_{96}O_{115}P_{20}$	6767.2463	6768.5527
A5	$C_{225}H_{262}N_{96}O_{115}P_{20}$	6767.2463	6767.2625
A6	$C_{225}H_{262}N_{96}O_{115}P_{20}$	6767.2463	6767.5043
A7	$C_{225}H_{262}N_{96}O_{115}P_{20}$	6767.2463	6767.6594
A8	$C_{225}H_{262}N_{96}O_{115}P_{20}$	6767.2463	6767.1655
A9	$C_{224}H_{262}N_{94}O_{116}P_{20}$	6743.2351	6743.2579
A10	$C_{225}H_{262}N_{96}O_{116}P_{20}$	6783.2413	6783.0471
A11	$C_{225}H_{263}N_{93}O_{117}P_{20}$	6758.2348	6758.7629
A12	$C_{224}H_{262}N_{94}O_{116}P_{20}$	6743.2351	6743.2846
A13	$C_{224}H_{262}N_{94}O_{116}P_{20}$	6743.2351	6743.7525
A14	$C_{224}H_{262}N_{94}O_{116}P_{20}$	6743.2351	6743.4408
A15	$C_{219}H_{266}N_{72}O_{125}P_{20}$	6523.1531	6522.9358
A16	$C_{223}H_{262}N_{92}O_{117}P_{20}$	6719.2239	6718.9619
A17	$C_{214}H_{290}N_{86}O_{133}P_{22}$	7197.2917	7197.4826
A18	$C_{245}H_{286}N_{106}O_{125}P_{22}$	7393.3625	7393.4030
A19	$C_{261}H_{314}N_{96}O_{143}P_{24}$	7823.4079	7823.2996
A20	$C_{265}H_{310}N_{116}O_{135}P_{24}$	8019.4787	8019.8555
A21	$C_{220}H_{259}N_{91}O_{115}P_{20}$	6634.2075	6634.2938
A22	$C_{220}H_{259}N_{91}O_{115}P_{20}$	6634.2075	6634.5782
A23	$C_{217}H_{266}N_{68}O_{127}P_{20}$	6475.1307	6474.9708
A24	$C_{221}H_{262}N_{88}O_{119}P_{20}$	6671.2015	6671.7978
A25	$C_{221}H_{266}N_{76}O_{127}P_{20}$	6635.1555	6635.0037
A26	$C_{225}H_{262}N_{96}O_{119}P_{20}$	6831.2263	6831.1960
A27	$C_{221}H_{270}N_{64}O_{131}P_{20}$	6535.1295	6535.3347
A28	$C_{225}H_{266}N_{84}O_{123}P_{20}$	6731.2003	6731.9409

Table S5 MALDI-TOF MS data for synthesized oligonucleotides.

A29	$C_{249}H_{286}N_{81}O_{128}P_{21}$	7108.2962	7107.5284
A30	$C_{253}H_{282}N_{101}O_{120}P_{21}$	7304.3670	7304.8779
A31	$C_{259}H_{298}N_{86}O_{133}P_{22}$	7421.3543	7421.6788
A32	$C_{263}H_{294}N_{106}O_{125}P_{22}$	7617.4251	7617.0038
A33	$C_{269}H_{310}N_{91}O_{138}P_{23}$	7734.4124	7734.4102
A34	$C_{273}H_{306}N_{111}O_{130}P_{23}$	7930.4832	7930.8312
A35	$C_{272}H_{306}N_{109}O_{131}P_{23}$	7906.4720	7906.7129
A36	$C_{272}H_{306}N_{109}O_{131}P_{23}$	7906.4720	7906.9807
A37	$C_{271}H_{306}N_{107}O_{132}P_{23}$	7882.4608	7882.3640
A38	$C_{272}H_{306}N_{109}O_{131}P_{23}$	7906.4720	7906.3745
A39	$C_{272}H_{306}N_{109}O_{131}P_{23}$	7906.4720	7906.3535
A40	$C_{271}H_{306}N_{107}O_{132}P_{23}$	7882.4608	7882.3710
A41	$C_{212}H_{201}N_{70}O_{68}P_{13}$	5217.1075	5216.7735
A42	$C_{211}H_{201}N_{68}O_{69}P_{13}$	5193.0963	5193.7430
A43	$C_{210}H_{201}N_{66}O_{70}P_{13}$	5169.0851	5169.4843
A44	$C_{209}H_{201}N_{64}O_{71}P_{13}$	5145.0739	5144.8105
A45	$C_{208}H_{201}N_{62}O_{72}P_{13}$	5121.0627	5121.5088
A46	$C_{208}H_{201}N_{62}O_{72}P_{13}$	5193.0963	5192.8749
A47	$C_{210}H_{201}N_{66}O_{70}P_{13}$	5169.0851	5168.6377
A48	$C_{209}H_{201}N_{64}O_{71}P_{13}$	5145.0739	5145.8321
A49	$C_{208}H_{201}N_{62}O_{72}P_{13}$	5121.0627	5120.2982
A50	$C_{208}H_{201}N_{62}O_{72}P_{13}$	5193.0963	5193.0353
A51	$C_{208}H_{201}N_{62}O_{72}P_{13}$	5193.0963	5193.1187
N1	$C_{183}H_{234}N_{66}O_{113}P_{18}$	5720.9967	5720.0030
N2	$C_{187}H_{230}N_{86}O_{105}P_{18}$	5917.0675	5917.1224
N3	$C_{203}H_{258}N_{76}O_{123}P_{20}$	6347.1192	6347.0610
N4	$C_{207}H_{254}N_{96}O_{115}P_{20}$	6543.1837	6543.6756
ST1	$C_{242}H_{289}N_{91}O_{130}P_{20}$	7230.3144	7230.8019
ST2	$C_{244}H_{289}N_{95}O_{130}P_{22}$	7310.3268	7311.2026
ST3	$C_{233}H_{277}N_{88}O_{124}P_{21}$	6941.2675	6941.8640
ST4	$C_{234}H_{277}N_{90}O_{124}P_{21}$	6981.2737	6981.7523
ST5	$C_{223}H_{265}N_{83}O_{118}P_{20}$	6612.2144	6612.7059
ST6	$C_{225}H_{265}N_{87}O_{118}P_{20}$	6692.2268	6692.6375

ST7	$C_{242}H_{289}N_{91}O_{129}P_{22}$	7214.3194	7213.9168
ST8	$C_{245}H_{290}N_{94}O_{131}P_{22}$	7325.3265	7324.9519
miR-21	$C_{209}H_{257}N_{80}O_{154}P_{21}$	7001.1021	7001.1443
miR-21 DNA	$C_{217}H_{273}N_{80}O_{132}P_{21}$	6761.1713	6761.6657
Na	$C_{215}H_{264}N_{76}O_{123}P_{20}$	6497.1599	6497.3065
Na1	$C_{219}H_{260}N_{96}O_{115}P_{20}$	6693.2307	6693.3576
Na2	$C_{219}H_{262}N_{90}O_{119}P_{20}$	6675.2077	6675.3443
Na3	$C_{219}H_{264}N_{84}O_{123}P_{20}$	6657.1847	6657.5889
An	$C_{219}H_{266}N_{76}O_{123}P_{20}$	6547.1755	6546.9872
An1	$C_{223}H_{262}N_{96}O_{115}P_{20}$	6743.2463	6743.4978
An2	$C_{223}H_{264}N_{90}O_{119}P_{20}$	6725.2233	6725.2257
An3	$C_{223}H_{266}N_{84}O_{123}P_{20}$	6707.2003	6707.3223
Py2	$C_{225}H_{264}N_{90}O_{119}P_{20}$	6749.2233	6749.2117
Py3	$C_{225}H_{266}N_{84}O_{123}P_{20}$	6731.2003	6731.3010
Pe	$C_{225}H_{268}N_{76}O_{123}P_{20}$	6621.1912	6621.5690
Pe1	$C_{229}H_{264}N_{96}O_{115}P_{20}$	6817.2620	6817.5094
Pe2	$C_{229}H_{266}N_{90}O_{119}P_{20}$	6799.2390	6799.2795
Pe3	$C_{229}H_{268}N_{84}O_{123}P_{20}$	6781.2390	6781.0075

Fig. S1 UV/Vis absorption spectra of synthesized ODNs

Fig. S2 Fluorescence emission spectra of triply and quadruply modified A-Clusters.

Fig. S3 Fluorescence emission/excitation anisotropy of synthesized ODNs

Fig. S4 Fluorescence emission/excitation spectra of (A) A1+A2, (B) A3+A4, (C) A17+A18, and (D) A19+A20. The numbers on spectra indicate the ratio of the fluorescence intensity under 260 nm to 385 nm. Conditions: 1.5 μ M of duplexes; total volume, 1 mL; 50 mM trizma buffer (pH 7.2), 100 mM NaCl, 10 mM MgCl₂; 25 °C.

Fig. S5 Energy-minimized structure of the A-Cluster (part of A3+A4) on the zipper-like structure, determined using the AMBER force field (Hyperchem 8.0). Side view of (A) singly and (B) doubly ^{Py}A-modified adenine-pentad zipper-like structure. (C) Side and (D) front views of the zipper-like structure containing two stacked ^{Py}A residues with a 3-mer Watson–Crick base pair part. Well-stacked adenine residues and two pyrene moieties in the middle of the A-Cluster were observed. Red: oxygen; magenta: phosphorus; gray: carbon; blue: nitrogen.

Fig. S6 Fluorescence emission spectra of A-Clusters containing a variety of PAH-modified 2'deoxyadenosines. **F** can be **Na**, **An**, **Py**, or **Pe** when **F** contains ^{Na}**A**, ^{An}**A**, ^{Py}**A**, or ^{Pe}**A**, respectively. The **F** sequence is fully or partially complementary to **F1**, **F2**, and **F3** and forms either an original A-Cluster or a modified A-Cluster. With the exception of **An**+**An1**, the A-clusters containing the anthracene moiety on one of the sides (**An**+**Py1**, **An**+**Pe1**) exhibited small Stokes shift; nevertheless, most cases, including singly modified-duplexes (**F**+**N4-7**; data not shown), resulted in no dramatic changes in Stokes shift.

S22

Fig. S7 (Top) Sequences of tested multi–A-Cluster systems. (A) Fluorescence spectra of two–A-Cluster systems with single or double C-variance at the 5' positions of the ^{Py}A residue. (B, C) Fluorescence spectra of four–A-Cluster systems without anti-parallel inducing sequences having various C-variances at the (B) 3' and (C) at 5' positions of the ^{Py}A residues. Conditions for fluorescence spectra: 1.5 μ M of duplexes; total volume, 1 mL; 50 mM trizma buffer (pH 7.2), 100 mM NaCl, 10 mM MgCl₂; 25 °C; $\lambda_{ex} = 385$ nm; slit_{ex} = 2.5 nm; slit_{em} = 5 nm. (D) 20% PAGE result of four–A-Cluster–forming sequences under UV irradiation. Surprisingly, part of A46 and A51 formed self-duplex by stacking interaction (upper bands), while A42 and A50 remained as the single strands (lower bands), even though they featured only a single C residue in different positions. This suggested that an internal C residue (A42 and A50) has a negative effect on two adjacent A-Clusters.

Fig. S8 20% Polyacrylamide gel electrophoresis of four–A-Clusters. (20% PAGE; 200 pmol samples; 6 µmol Trizma buffer (pH 7.2), 13 µmol NaCl, 1 µmol MgCl₂; L: (dA)₁₄ + (dA)₂₄; 1: **A41**; 2: **A46**; 3: **A42**; 4: **A43**; 5: **A44**; 6: **A45**; 7: **A47**; 8: **A48**; 9: **A49**). ^{Py}A-modified polyadenylates containing two or more C residues exhibited bands for only their single strands due to structural destabilization.

Fig. S9 Thermal stabilities of double-stranded oligonucleotides. Conditions: 1.5 μ M of duplexes; total volume, 1 mL; 50 mM trizma buffer (pH 7.2), 100 mM NaCl, 10 mM MgCl₂. The **A3+A4** exhibited the highest T_m value in the adenine-pentad duplexes.

S27

S29

References

- (1) G. T. Hwang, Y. J. Seo and B. H. Kim, Tetrahedron Lett., 2005, 46, 1475.
- (2) K. T. Kim, R. N. Veedu, Y. J. Seo and B. H. Kim, Chem. Commun., 2014, 50, 1561.
- (3) P. Manoj, C.-K. Min, C. T. Aravindakumar and T. Joo, Chem. Phys., 2008, 352, 333.

(4) a) J.-L. Mergny and L. Lacroix, *Oligonucleotides*, 2003, **13**, 515; b) J. D. Puglisi and I. Jr. Tinoco, *Methods Enzymol.*, 1989, **180**, 304.

(5) A. M. Brouwer, Pure Appl. Chem., 2011, 83, 2213.

(6) A. T. R. Williams and S. A. Winfield, Analyst, 1983, 108, 1067.

(7) W. Shepard, W. B. Cruse, R. Fourme, E. de la Fortelle and T. Prangé, Structure, 1998, 6, 849.

(8) W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell and P. A. Kollman, *J. Am. Chem. Soc.*, 1995, **117**, 5179.

(9) R. Häner, F. Samain and V. L. Malinovskii, Chem. Eur. J. 2009, 15, 5701.

(10) U. Förster, K. Lommel, D. Sauter, C. Grünewald, J. W. Engels and J. Wachtveitl, *ChemBioChem* 2010, **11**, 664.

(11) S. P. Sau, A. S. Madsen, P. Podbevsek, N. K. Andersen, T. S. Kumar, S. Andersen, R. L. Rathje, B. A. Anderson, D. C. Guenther, S. Karmakar, P. Kumar, J. Plavec, J. Wengel and P. J. Hrdlicka, *J. Org. Chem.* 2013, **78**, 9560.