Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

# **Supporting Information**

# **Copper-Catalyzed Trifluoromethylation of Alkenes: Synthesis of Trifluoromethylated Benzoxazines**

Sadhan Jana, Athira Ashokan, Shailesh Kumar, Ajay Verma, and Sangit Kumar $^{*}$ 

Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal,

Bhopal By-pass Road, Bhauri, Bhopal, Madhya Pradesh, India, Pin: 462 066

E-mail: <u>sangitkumar@iiserb.ac.in</u>

|                                                                                                                       | Page         |
|-----------------------------------------------------------------------------------------------------------------------|--------------|
| Table of Contents                                                                                                     | <b>S</b> 1   |
| General experimental details                                                                                          | S2-S4        |
| Optimization Table                                                                                                    | S5-S7        |
| Mechanistic investigation                                                                                             | S8-S13       |
| Synthesis of substrates for benzoxazines and                                                                          |              |
| trifluoromethylation: synthesis of CF <sub>3</sub> -benzoxazines                                                      | S14-S46      |
| Further transformation                                                                                                | S46-S49      |
| <sup>1</sup> H, <sup>13</sup> C, <sup>19</sup> F NMR and HRMS spectra of substrates and CF <sub>3</sub> -benzoxazines | S50-S201     |
| Crystal structure details for compounds <b>3f</b> (CCDC No. 1063690),                                                 |              |
| <b>5d</b> (CCDC No. 1402832), <b>3z</b> (CCDC No. 1402833)                                                            | S202-S232    |
| References                                                                                                            | <b>S</b> 233 |

D----

#### **General Experimental Details**

All reactions were performed under nitrogen atmosphere in an oven dried glassware containing a magnetic stir bar and sealed with septum. Anhydrous DMSO was purchased from Sigma Aldrich. 2-Aminoacetophenone, substituted benzoic acid and thionyl chloride were purchased from Spectrochem Pvt. Ltd. All fluorinating agents were purchased from Sigma Aldrich Co. India. All reactions were set up using standard Schlenk line techniques. Yields of the reactions were determined chromatographically and spectroscopically for the isolated product and optimized condition, respectively. Reactions were monitored by <sup>19</sup>F NMR Spectroscopy and thin-layer Chromatography (TLC). All NMR experiments were carried out on Bruker 400/500 MHz spectrometer in CDCl<sub>3</sub> and NMR chemical shifts are reported in ppm referenced to the solvent peaks of CDCl<sub>3</sub> (7.24 ppm for 1H and 77±0.07 ppm for <sup>13</sup>C), respectively. <sup>19</sup>F NMR spectra were recorded on 376.5 MHz Spectrometer and were calibrated using PhF as an external reference (-113.1 ppm). The following abbreviations were used to indicate multiplicity: s (singlet), brs (broad singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets) td (triplet of doublet) and m (multiplet). High resolution mass analysis is performed on quadrupole-timeof-flight Bruker MicroTOF-Q II mass spectrometer equipped with an ESI and APCI source; HR-GC mass analysis is performed on Agilent 7200 Accurate mass Q-TOF MS equipped with 7890A GC and LR-GC mass analysis is performed on Agilent Technologies MS-S975C inert XLEI/CIMSD with triple axis detector. Single crystal X-ray data for compounds CCDC No. 1063690 (3f), 1402832 (5e), 1402833 (3z) were collected on a Bruker D8 VENTURE diffractometer equipped with CMOS Photon 100 detector and Mo-K $\alpha$  ( $\lambda = 0.71073$  Å) radiation was used. Silica gel (100-200 mesh size) was used for column chromatography purchased from RANKEM Pvt. Ltd. India. TLC analysis of reaction mixtures was performed using Merck silica gel (60 F254) plates.

# General Procedure for the synthesis of *N*-(2-(prop-1-en-2-yl)aryl)benzamides 1 (substrates for trifluoromethylated benzoxazines 3)

The substrates **1** for **3** were prepared from 2-aminoacetophenone by following two steps: a) first, conversion of 2-aminoacetophenone into 2-(prop-1-en-2-yl)aniline; b) preparation of N-(2-(prop-1-en-2-yl)aryl)benzamides by coupling of aroyl/ acyl chloride with 2-(prop-1-en-2-yl)aniline (**Scheme 1**).

Scheme 1



Conversion of 2-Aminoacetophenone into 2-(prop-1-en-2-yl)aniline: A Typical Procedure

To a stirred solution of Ph<sub>3</sub>PMeBr (1.5 equiv. 12.2 mmol) in Dry THF (15 mL) was added KO<sup>*t*</sup>Bu (1.5 equiv. 12.2 mmol) in portions under nitrogen. After the mixture was stirred at room temperature for 0.5 h, a solution of corresponding benzophenone (1 equiv. 8.14 mmol) in THF (15 mL) was added dropwise. The reaction mixture was then stirred at room temperature under nitrogen overnight. The reaction mixture was quenched with water and extracted with EtOAc (50 mL x 2). The combined organic layers were washed with saturated NaHCO<sub>3</sub> (50 mL) and brine (50 mL), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated on rotary evaporator under vacuum and the residue was purified by column chromatography on silica gel. A light yellow oil was obtained.<sup>1</sup> yield (0.86 g, 79%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  7.09-7.04 (m, 2H), 6.75 (td, *J* =

7.4, 1.0 Hz, 1H), 6.7 (d, *J* = 7.8 Hz, 1H), 5.32-5.30 (m, 1H), 5.07 (d, *J* = 1.0 Hz, 1H), 3.84 (s, 2H), 2.09 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 143.5, 142.8, 129.2, 128.2, 127.9, 118.2, 115.5, 115.3, 23.9.

## General procedure for the preparation of N-(2-(prop-1-en-2-yl)aryl)benzamides

To a stirred solution of benzoyl chloride derivatives (400 mg, 3.3 mmol) in dry  $CH_2Cl_2$  (25 mL), amine (399 mg, 3 mmol), and triethylamine (333 mg, 3.3 mmol) in dry  $CH_2Cl_2$  (20 mL) were added dropwise using a dropping funnel at 0  $^{0}C$ . The reaction mixture was stirred at room temperature for 12 h. After completion, the reaction was washed by 10 mol % aqueous HCl solution (15 mL), saturated aqueous NaHCO<sub>3</sub> solution (15 mL), brine (25 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>. The organic solvent was removed by rotary evaporator under vacuum and the residue was purified by column chromatography on silica gel using (hexane/ethyl acetate, 9:1). A white solid was obtained.



*N*-(2-(Prop-1-en-2-yl)phenyl)benzamide (1a):<sup>2</sup> White solid, yield (0.69 g, 89%). m.p.: 70 – 72 <sup>o</sup>C, <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 8.48 (d, *J* = 8.3 Hz, 1H), 8.45 (bs, 1H), 7.82 (d, *J* = 7.8 Hz, 2H), 7.53 (t, *J* = 7.40Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.31 (td, *J* = 7.8, 1.6 Hz, 1H), 7.18 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.11 (td, *J* = 7.4, 1.0 Hz, 1H), 5.47-5.469 (m, 1H), 5.11-5.10 (m, 1H), 2.11 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 165.1, 143.3, 135.1, 134.0, 133.6, 131.8, 128.8, 128.0, 127.7, 126.9, 123.9, 120.9, 116.8, 24.6.

Table S1. Optimization of reaction conditions $^{\#}$ 

|       | $\begin{array}{c} Catalyst \\ CF_3 \text{ source} \\ Solvent \\ temprature, N_2 \end{array} \xrightarrow{F_3C} 0 + + \\ NH \\ Ja \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 4 \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ 0 \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ NH \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ NH \\ H \\ \end{array} + \\ \begin{array}{c} CF_3 \\ NH \\ NH \\ H \\ H \\ NH \\ H \\ NH \\ H \\ NH \\ H \\ $ |                                                       |           |        |                    |                          |  |  |  |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-----------|--------|--------------------|--------------------------|--|--|--|--|--|--|
|       | CF <sub>3</sub> source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |           |        |                    |                          |  |  |  |  |  |  |
|       | $F_{3}C_{-1}-O \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |           |        |                    |                          |  |  |  |  |  |  |
|       | CF <sub>3</sub> BF <sub>4</sub> CF <sub>3</sub> OTf<br>Togni's reagent Umemoto's reagent 2 Streaves' reagent TMSCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |           |        |                    |                          |  |  |  |  |  |  |
| Entry | CF <sub>3</sub> Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Catalyst (20 mol %)                                   | Base (1.5 | T (°C) | Solvent            | Yield of 2a              |  |  |  |  |  |  |
|       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | equiv)    |        |                    | (%) <sup>a</sup>         |  |  |  |  |  |  |
| 1     | Togni's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CuI                                                   | —         | 80     | DCE                | $30^{\rm a}, 45^{\rm b}$ |  |  |  |  |  |  |
| 2     | Shreeve's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CuI                                                   | —         | 80     | DCE                | 37                       |  |  |  |  |  |  |
| 3     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CuI                                                   | —         | 80     | DCE                | 52                       |  |  |  |  |  |  |
| 4     | TMSCF <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CuI                                                   | —         | 80     | DCE                | ND                       |  |  |  |  |  |  |
| 5     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                     | —         | 80     | DCE                | ND                       |  |  |  |  |  |  |
| 6     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CuCl                                                  | —         | 80     | DCE                | 17                       |  |  |  |  |  |  |
| 7     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CuBr                                                  | —         | 80     | DCE                | 14                       |  |  |  |  |  |  |
| 8     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CuTc                                                  | —         | 80     | DCE                | 17                       |  |  |  |  |  |  |
| 9     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cu(OTf) <sub>2</sub>                                  | —         | 80     | DCE                | 6                        |  |  |  |  |  |  |
| 10    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [Cu(CH <sub>3</sub> CN) <sub>4</sub> ]BF <sub>4</sub> | —         | 80     | DCE                | 5                        |  |  |  |  |  |  |
| 11    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CuCN                                                  | —         | 80     | DCE                | 26                       |  |  |  |  |  |  |
| 12    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CuCl <sub>2</sub>                                     | —         | 80     | DCE                | 9                        |  |  |  |  |  |  |
| 13    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $Cu(OTf).C_6H_6$                                      | —         | 80     | DCE                | 8                        |  |  |  |  |  |  |
| 14    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [Cu(CH <sub>3</sub> CN) <sub>4</sub> ]PF <sub>6</sub> | —         | 80     | DCE                | 6                        |  |  |  |  |  |  |
| 15    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cu(OAc)                                               | —         | 80     | DCE                | 27                       |  |  |  |  |  |  |
| 16    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cu(OAc) <sub>2</sub>                                  | —         | 80     | DCE                | 8                        |  |  |  |  |  |  |
| 17    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CuI                                                   | —         | 80     | DMF                | 52                       |  |  |  |  |  |  |
| 18    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CuI                                                   | —         | 80     | DMAc               | 58                       |  |  |  |  |  |  |
| 19    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CuI                                                   | —         | 80     | NMP                | 39                       |  |  |  |  |  |  |
| 20    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CuI                                                   | —         | 80     | DMSO               | 68                       |  |  |  |  |  |  |
| 21    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CuI                                                   | _         | 80     | 1,4-Dioxane        | 17                       |  |  |  |  |  |  |
| 22    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CuI                                                   | —         | 80     | Toluene            | 4                        |  |  |  |  |  |  |
| 23    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CuI                                                   | —         | 80     | CHCl <sub>3</sub>  | 9                        |  |  |  |  |  |  |
| 24    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CuI                                                   | —         | 80     | CH <sub>3</sub> CN | 24                       |  |  |  |  |  |  |

| 25 | 2 | CuI (25 mol %)               | —                              | 80  | DMSO | 66 |  |
|----|---|------------------------------|--------------------------------|-----|------|----|--|
| 26 | 2 | CuI (50 mol %)               | —                              | 80  | DMSO | 64 |  |
| 27 | 2 | CuI                          | KF                             | 80  | DMSO | 60 |  |
| 28 | 2 | CuI                          | KF(4 equiv)                    | 80  | DMSO | 61 |  |
| 29 | 2 | CuI                          | K <sub>3</sub> PO <sub>4</sub> | 80  | DMSO | 27 |  |
| 30 | 2 | CuI                          | K <sub>2</sub> CO <sub>3</sub> | 80  | DMSO | 31 |  |
| 31 | 2 | CuI                          | $CS_2CO_3$                     | 80  | DMSO | 17 |  |
| 32 | 2 | CuI                          | NaOAc                          | 80  | DMSO | 18 |  |
| 33 | 2 | CuI                          | CsF                            | 80  | DMSO | 28 |  |
| 34 | 2 | CuI                          | AgF <sub>2</sub>               | 80  | DMSO | 9  |  |
| 35 | 2 | CuI                          | —                              | 120 | DMSO | 52 |  |
| 36 | 2 | CuI                          | —                              | 140 | DMSO | 12 |  |
| 37 | 2 | CuI                          | —                              | 105 | DMSO | 52 |  |
| 38 | 2 | CuI                          | —                              | 100 | DMSO | 49 |  |
| 39 | 2 | CuI                          | —                              | 25  | DMSO | 3  |  |
| 40 | 2 | Cu                           | —                              | 80  | DMSO | 18 |  |
| 41 | 2 | CuI, 1,10-                   | KF                             | 80  | DMSO | 45 |  |
|    |   | Phenanthroline               |                                |     |      |    |  |
| 42 | 2 | CuI, 2,2'-bipyridine         | KF                             | 80  | DMSO | 33 |  |
| 43 | 2 | CuI, AgNO <sub>3</sub> (0.5) | KF                             | 80  | DMSO | 55 |  |
| 44 | 2 | CuI, Mg power(0.5)           | KF                             | 80  | DMSO | 23 |  |
| 45 | 2 | CuI, Ag power (0.5)          | KF                             | 80  | DMSO | 57 |  |
| 46 | 2 | CuI, AgCO <sub>3</sub> (0.5) | KF                             | 80  | DMSO | 41 |  |
| 47 | 2 | CuI, $K_2S_2O_8(0.5)$        | KF                             | 80  | DMSO | 23 |  |
| 48 | 2 | CuI, Ag power (0.5)          | KF                             | 120 | DMSO | 16 |  |
| 49 | 2 | CuI, Ag power (0.5),         | KF                             | 100 | DMSO | 14 |  |
|    |   | 1,10-Phenanthroline          |                                |     |      |    |  |

<sup>#</sup> All reactions were carried out at 0.2 mmol of **1a** using 0.35 mmol of **2** in 1 mL of solvent at 80  $^{\circ}$ C in a Schlenk tube under nitrogen and the progress of reaction was monitored by TLC upto 35 h. <sup>a</sup> Percentage yield of **3a** determined by <sup>19</sup>F-NMR Spectroscopy using fluorobenzene as an internal standard. <sup>b</sup> Yield of **4.** ND = Not detected.

Synthesis of trifluoromethylated benzoxazine (**3a**) from *N*-(2-prop-1-en-2-yl) benzamide (**1a**) was optimized by screening of various trifluromethylating reagents (See Scheme above in the Table S1), Cu salts, bases, oxidants, ligands in various solvents in Schlenk tube at 80 to 120  $^{0}$ C (Table S1). We began optimization by observing reaction of **1a**, CuI (20 mol%) and Togni's

reagent in DCE at 80  $^{0}$ C under nitrogen atmosphere. Mixture of desired trifluoromethylated benzoxazine **3a** in low yield (30%) along with 45% allylic trifluoromethylated as major product **4a** was observed (entry 1, Table S1). Next, we screened various trifluoromethylating agents such as TMSCF<sub>3</sub>, Shreeve's, and Umemoto's reagents. No desired product was observed when TMSCF<sub>3</sub> was used (entry 2, Table S1). Subsequently, Shreeve's and Umemoto's reagents gave 37% and 52 % desired products **3a**, respectively (entries 2, 3, Table S1). Although, we screened different Cu salts, but no improvement in yield was observed (entries 6-16, Table S1). Nonetheless, CuI was found to be effective for this reaction. We also screen different bases (entries 27-34, Table S1), varying temperatures (entries 35-39, Table S1), addition of different ligands along with additives, and bases (entries 41-49, Table S1). Nonetheless, substantial improved in the yield of **3a** could not be realized. Next, we examined the significance of solvent on reaction outcome (entries 17-24, Table S1), Among a range of solvents tested from DCE to DMAc, DMF, DMSO leads to further improvements in yields and best yield 68% was obtained in DMSO.

# **Mechanistic Investigation**<sup>3</sup>



NMR Spectra



S8



NMR Spectra



| 1 | 1   |     | - L | <br>1 | 1   |   | 1.2 |     | <br>- L | - 1       | 1 1           | <br>23 |    | 1  | - L2 | 1   |    | 1  |      | 1. 1. |   |      |      |
|---|-----|-----|-----|-------|-----|---|-----|-----|---------|-----------|---------------|--------|----|----|------|-----|----|----|------|-------|---|------|------|
| 0 | -10 | -20 | -30 | -40   | -50 | - | 50  | -70 | -80     | -90<br>f1 | -100<br>(ppm) | -110   | -1 | 20 | -130 | 140 | -1 | 50 | -160 | -170  | 3 | -180 | -190 |



| - 1 | - L |     |     | - L |     |     | - U |                   |                  |      | - L - J - | - K  |      |      |      |      |      | 1 1  |
|-----|-----|-----|-----|-----|-----|-----|-----|-------------------|------------------|------|-----------|------|------|------|------|------|------|------|
| -10 | -20 | -30 | -40 | -50 | -60 | -70 | -80 | <mark>-9</mark> 0 | -100<br>f1 (ppm) | -110 | -120      | -130 | -140 | -150 | -160 | -170 | -180 | -190 |

# GC-MS Spectra.



| The Processing of the Processi |                                       | Acquisition date: 17/04/15                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------|
| Sample ID: SJ-345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Supervisor: Dr. Sangit Kumar          | <b>Operator:</b> IISERB-CIF-Mass Facility |
| Instrument: Agilent 7890A GC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Column: HP-5                          | Ionization: EI (70 eV)                    |
| with 5975C MS system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>Method:</u> General_1_HP5_80_DEG.M | <u>MSD</u> : Single Quad.                 |





Page 1 of 3



Sample ID: SJ-345

with 5975C MS system

Instrument: Agilent 7890A GC

| Supervisor:       | Dr. Sangit Kumar      |
|-------------------|-----------------------|
| <u>Column</u> : H | P-5                   |
| Method: G         | eneral_1_HP5_80_DEG.M |

Acquisition date: 17/04/15 <u>Operator:</u> IISERB-CIF-Mass Facility <u>Ionization:</u> EI (70 eV) <u>MSD</u>: Single Quad.

#### Abundance



Agilent Technologies

Page 2 of 3



Sample ID: SJ-345

<u>Instrument:</u> Agilent 7890A GC with 5975C MS system

<u>Supervisor:</u> Dr. Sangit Kumar <u>Column</u>: HP-5 <u>Method:</u> General\_1\_HP5\_80\_DEG.M Acquisition date: 17/04/15 <u>Operator:</u> IISERB-CIF-Mass Facility <u>Ionization:</u> EI (70 eV) <u>MSD</u>: Single Quad.

#### Abundance



Agilent Technologies

Page 3 of 3

General experimental procedure for trifluoromethylation of N-(2-(prop-1-en-2-





Benzamide 1a (0.047 g, 0.2 mmol, 1.0 equiv), Umemoto's reagent 2 (0.119 g, 0.35 mmol, 1.75 equiv), and CuI (0.008 g, 0.04 mmol, 0.2 equiv) were added to a 25 mL Schlenk tube equipped with magnetic stir bar. The tube was evacuated and backfilled with nitrogen and then DMSO (1 mL) was added to the tube by syringe. The progress of the reaction was monitored by TLC. The reaction mixture was stirred upto 16-35 h at 80  $^{\circ}$ C and extracted with ethyl acetate (2 x 15 mL). The combined organic layers were washed with saturated brine (2 x 30 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and the organic solvent was removed by rotary evaporator under vacuum and the residue was purified by flash column chromatography on silica gel (petroleum ether: EtOAc = 30: 1) to afford the benzoxazine 3a.

### **Characterization Data**



**4-Methyl-2-phenyl-4-(2, 2, 2-trifluoromethyl)**[*d*][**1,3**]**oxazine** (**3a**):<sup>4</sup> White Solid, yield (0.041 g, 68%), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>), δ 8.16 (m, 2H), 7.51-7.42 (m, 3H), 7.33-7.31 (m, 2H), 7.23-7.18 (m, 1H), 7.14-7.11 (m, 1H), 2.91-2.79 (m, 1H), 2.67-2.55 (m, 1H), 1.91 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 156.0, 155.7, 138.3, 132.2, 131.5, 129.3, 128.2, 128.1 (q, *J* = 278.0 S14

Hz, CF<sub>3</sub>), 128,0 126.9, 125.6, 122.5, 76.6 (q, J = 2.2 Hz), 43.1 (q, J = 27.1 Hz, CH<sub>2</sub>CF<sub>3</sub>), 26.6 (d, J = 1.5 Hz), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -59.89 (t, J = 10.5 Hz, 3F), HRMS (ESI), m/z calcd for C<sub>17</sub>H<sub>14</sub>F<sub>3</sub>NO [M+H]<sup>+</sup> 306.1100, found 306.1102.



**4-Methyl-N-(2-(prop-1-en-2-yl)phenyl)benzamide** (**1b**):<sup>5</sup> White solid, yield (0.61 g, 83%). m.p.: 64 – 66 °C, <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>), δ 8.47 (d, *J* = 8.5 Hz, 1H), 8.42 (bs, 1H), 7.71 (d, *J* = 8.2 Hz, 2H), 7.31 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.29-7.26 (m, 2H), 7.17 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.09 (td, *J* = 7.8, 1.6 Hz, 1H), 5.46-5.45 (m, 1H), 5.10 (q, *J* = 0.9 Hz, 1H), 2.40 (s, 3H), 2.09 (t, *J* = 1.30 Hz, 3H), <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>), δ 165.0, 143.3, 142.3, 134.1, 133.4, 132.2, 129.5, 128.0, 127.6, 126.9, 123.8, 120.7, 116.8, 24.6, 21.5, HRMS (ESI), *m/z* calcd for C<sub>17</sub>H<sub>17</sub>NO [M+H]<sup>+</sup> 252.1383, found 252.1400.



**4-Methyl-2-(p-tolyl)-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][1,3]oxazine (3b): White semi-solid; yield (0.075g, 59%), <sup>1</sup>H-NMR (400 MZ, CDCl<sub>3</sub>),  $\delta$  8.05 (d, *J* = 8.1 Hz, 2H), 7.33-7.30 (m, 2H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.21-7.18 (m, 1H), 7.11 (d, *J* = 7.7 Hz, 1H), 2.90-2.78 (m, 1H), 2.65-2.54 (m, 1H), 2.40 (s, 3H), 1.90 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  155.9, 142.0, 138.4, 129.4, 129.3, 129.0, 128.3, 128.0, 126.7, 125.5, 125.1 (q, *J*<sub>C,F</sub> = 278.3 Hz, 3F), 122.5, 76.4 (q, *J* = 2.2 Hz), 43.5 (q, *J* = 27.1Hz, CH<sub>2</sub>CF<sub>3</sub>),

26.1 (d.  $J_{C,F} = 1.6$  Hz), 21.6, <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -59.8 (t, J = 10.5 Hz, 3F), HRMS (ESI), m/z calcd for C<sub>18</sub>H<sub>16</sub>F<sub>3</sub>NO [M+H]<sup>+</sup> 320.1257, found 320.1275.



**4-Methoxy-N-(2-(prop-1-en-2-yl)phenyl)benzamide (1c):**<sup>2</sup> White solid, yield (0.58 g, 82%). m.p.: 102 - 104 °C, <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>),  $\delta$  8.45 (d, J = 8.3 Hz, 1H), 8.37 (bs, 1H), 7.77 (d, J = 8.8 Hz, 2H), 7.29 (td, J = 7.8, 1.6 Hz, 1H), 7.16 (dd, J = 7.8, 1.6 Hz, 1H), 7.08 (td, J = 7.5, 1.2 Hz, 1H), 6.96 (d, J = 8.9, 2H), 5.46-5.45 (m, 1H), 5.09 (q, J = 0.9 Hz, 1H), 3.84 (s, 3H), 2.09 (t, J = 1.2 Hz, 3H), <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>),  $\delta$  164.6, 162.4, 143.4, 134.2, 133.3, 128.8, 128.0, 127.6, 127.3, 123.6, 120.6, 116.7, 114.0, 55.4, 24.6.



**2-(4-Methoxyphenyl)-4-methyl-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][**1,3**]**oxazine** (**3c**): White semi-solid, yield (0.063 g, 50%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  8.09 (d, *J* = 8.9 Hz, 2H), 7.34-7.27 (m, 2H), 7.18 (td, *J* = 7.7, 1.7 Hz, 1H), 7.10 (d, *J* = 7.6 Hz, 1H), 6.93 (d, *J* = 8.9 Hz, 2H), 3.85 (s, 3H), 2.89-2.77 (m, 1H), 2.64-2.52 (m, 1H), 1.90 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  162.4, 155.7, 138.6, 129.8, 129.2, 128.3, 126.5, 125.6, 125.1 (q, *J*<sub>C, F</sub> = 279.2 Hz, CF<sub>3</sub>), 124.6, 122.4, 113.6, 76.3 (q, *J*<sub>C, F</sub> = 2.18 Hz), 55.3, 43.5 (q, *J*<sub>C, F</sub> = 27.1, Hz, CH<sub>2</sub>CF<sub>3</sub>), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -59.8 (t, *J* = 10.5 Hz, 3F), HRMS (ESI), *m*/*z* calcd for C<sub>18</sub>H<sub>16</sub>F<sub>3</sub>NO<sub>2</sub> [M+H]<sup>+</sup> 336.1206, found 336.1210.



**4-**(*tert*-**Butyl**)-**N-**(**2-**(**prop-1-en-2-yl**)**phenyl**)**benzamide** (1d):<sup>2</sup> White solid, yield (0.57 g, 86%). m.p.: 108 – 110 °C, <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>),  $\delta$  8.49 (d, J = 8.3 Hz, 1H), 8.45 (bs, 1H), 7.76 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.5 Hz, 2H), 7.31 (td, J = 7.8, 1.6 Hz, 1H), 7.17(dd, J = 7.7, 1.6Hz, 1H), 7.09 (td, J = 7.8, 1.6 Hz, 1H), 5.47-5.46 (m, 1H), 5.10 (q, J = 0.9 Hz, 1H), 2.10 (s, 3H), 1.34 (s, 9H), <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>),  $\delta$  164.9, 155.3, 143.3, 134.2, 133.4, 132.2, 128.0, 127.6, 126.8, 125.8, 123.7, 120.6, 116.8, 35.0, 31.1, 24.7. HRMS (ESI), *m/z* calcd for C<sub>20</sub>H<sub>23</sub>NO [M+H]<sup>+</sup> 294.1852, found 294.1856.



**2-(4-(***tert***-Butyl)phenyl)-4-methyl-4-(2,2,2-trifluoroethyl)-4H-benzo[***d***][1,3]oxazine (3d): Pale yellow semi-solid, yield (0.067g, 54%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), \delta 8.07 (d,** *J* **= 7.4 Hz, 2H), 7.45 (d,** *J* **= 8.5 Hz, 2H), 7.34-7.30 (m, 2H), 7.22-7.18 (m, 1H), 7.11 (d,** *J* **= 7.7 Hz, 1H), 2.90-2.78 (m, 1H), 2.66-2.55 (m, 1H), 1.90 (s, 3H), 1.34 (s, 9H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), \delta 155.8, 155.1, 138.5, 129.4, 129.2, 128.3, 127.8, 126.7, 125.5, 125.2, 125.1 (q,** *J***<sub>C, F</sub> = 279.2 Hz, CF<sub>3</sub>), 122.5, 76.4 (q,** *J***<sub>C, F</sub> = 2.2 Hz), 43.6 (q,** *J***<sub>C, F</sub> = 27.1 Hz, CH<sub>2</sub>CF<sub>3</sub>), 34.9, 31.1, 26.2 (d,** *J***<sub>C, F</sub> = 1.6 Hz), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>), \delta -59.8 (t,** *J* **= 10.7 Hz, 3F), HRMS (ESI),** *m***/***z* **Calcd for C<sub>21</sub>H<sub>22</sub>F<sub>3</sub>NO [M+H]<sup>+</sup> 362.1726, found 362.1747.** 



**4-Nitro-N-(2-(prop-1-en-2-yl)phenyl)benzamide (1e)**:<sup>7</sup> Light yellow solid, yield (0.62 g, 92%). m.p.: 130 – 132 °C, <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>),  $\delta$  8.48 (bs, 1H), 8.43 (d, *J* = 8.0 Hz, 1H), 8.32 (d, *J* = 8.9 Hz, 2H), 7.96 (d, *J* = 8.9 Hz, 2H), 7.33 (td, *J* = 7.8, 1.6 Hz, 1H), 7.20 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.15 (td, *J* = 7.5, 1.1 Hz, 1H), 5.48-5.47(m, 1H), 5.10 (q, *J* = 0.95 Hz, 1H), 2.11 (t, *J* = 1.22 Hz, 3H), <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>),  $\delta$  162.9, 149.7, 143.2, 140.6, 133.6, 133.3, 128.2, 128.1, 127.8, 124.6, 124.1, 120.7, 117.0, 24.7, HRMS (ESI), *m*/*z* calcd for C<sub>16</sub>H<sub>14</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> 283.1077, found 283.1085.



**4-Methyl-2-(4-nitrophenyl)-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][1,3]oxazine (3e): Light yellow-solid, yield (0.114g, 92%). m.p.: 73 – 75 °C, <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 8.28 (q, J = 8.9 Hz, 4H), 7.38-7.32 (m, 2H), 7.27 (td, J = 7.5, 2.14 Hz, 1H), 7.14 (d, J = 7.5 Hz, 1H), 2.91-2.79 (m, 1H), 2.68-2.56 (m, 1H), 1.93 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 153.4, 149.5, 138.0, 137.5, 129.6, 128.7, 128.1, 128.0, 126.1, 125.0 (q,  $J_{C,F} = 278.6$ , CF<sub>3</sub>), 123.4, 122.7, 77.3 (q,  $J_{C,F} = 2.18$ ), 43.9 (q,  $J_{C,F} = 27.2$  Hz, CH<sub>2</sub>CF<sub>3</sub>), 26.7 (d,  $J_{C,F} = 1.6$  Hz), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>), δ -60.0 (t, J = 10.5 Hz, 3F), ), HRMS (ESI), *m*/*z* calcd for C<sub>17</sub>H<sub>13</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> 351.0951, found 351.0978.



**4-Fluoro-N-(2-(prop-1-en-2-yl)phenyl)benzamide (1f)**: White solid, yield (0.65 g, 89%). m.p.: 100 - 102 °C, <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>),  $\delta$  8.43 (d, *J* = 8.3 Hz, 1H), 8.37 (bs, 1H), 7.84-7.80 (m, 2H), 7.30 (td, *J* = 7.8 Hz, *J* = 1.6 Hz, 1H), 7.18 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.16-7.09 (m, 3H), 5.47-5.45 (m, 1H), 5.09 (q, *J* = 0.9 Hz, 1H), 2.10 (s, 3H), <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>),  $\delta$  165.9, 164.0, 163.9, 143.3, 133.1 (d, *J* <sub>C,F</sub> = 39.6 Hz), 131.3 (d, *J* <sub>C,F</sub> = 3.2 Hz), 129.3 (d, *J* <sub>C,F</sub> = 9.0 Hz), 127.9 (d, *J* <sub>C,F</sub> = 49.8 Hz), 124.0, 120.7, 116.8, 116.0, 115.8, 24.6, HRMS (ESI), *m/z* calcd for C<sub>16</sub>H<sub>14</sub>FNO [M+H]<sup>+</sup> 256.1132, found 256.1121.



**2-(4-Fluorophenyl)-4-methyl-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][1,3]oxazine (3f): White solid, yield (0.100g, 79%). m.p.: 98 – 100 °C, <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  8.15 (dd, *J* = 7.5, 5.6 Hz, 2H), 7.35-7.29 (m, 2H), 7.21 (td, *J* = 7.5, 1.7 Hz, 1H), 7.10 (t, *J* = 7.5 Hz, 3H), 2.90-2.78 (m, 1H), 2.65-2.53 (m, 1H), 1.90 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  166.3, 163.7, 154.8, 138.1, 130.3 (d, *J*<sub>C, F</sub> = 8.9 Hz), 129.4, 128.4 (d, *J* = 2.9 Hz), 1.28.1, 127.0, 125.5, 125.0 (q, *J* = 278.4 Hz, CF<sub>3</sub>), 122.5, 115.3 (*J*<sub>C, F</sub> = 22.0 Hz), 76.7 (q, *J*<sub>C,F</sub> = 2.16 Hz), 43.6 (q, *J* = 27.2 Hz, CH<sub>2</sub>CF<sub>3</sub>), 26.2 (d, *J* = 1.66 Hz), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -59.9 (t, *J* = 10.7 Hz, 3F), -108.19 to -108.12 (m, F), HRMS (ESI), *m*/z calcd for C<sub>17</sub>H<sub>13</sub>F<sub>4</sub>NO [M+H]<sup>+</sup> 324.1006, found 324.1021.



**4-Chloro-N-(2-(prop-1-en-2-yl)phenyl)benzamide** (**1g**):<sup>2</sup> White solid, yield (0.58 g, 84%). m.p.: 86 – 88 °C, <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>),  $\delta$  8.47 (d, J = 8.3 Hz, 1H), 8.43 (bs, 1H), 7.79 (d, J = 8.6 Hz, 2H), 7.48 (d, J = 8.6 Hz, 2H), 7.35 (td, J = 7.8, 1.7 Hz, 1H), 7.22 (dd, J = 7.8, 1.67 Hz, 1H), 7.16 (td, J = 7.5, 1.2 Hz, 1H), 5.51-5.49 (m, 1H), 5.13 (q, J = 0.9 Hz, 1H), 2.14 (t, J = 1.2 Hz, 3H), <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>),  $\delta$  164.0, 143.3, 138.1, 133.7, 133.5, 133.4, 129.1, 128.3, 128.1, 127.7, 124.1, 120.7, 116.8, 24.6.



**2-(4-Chlorophenyl)-4-methyl-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][1,3]oxazine (3g): White solid, yield (0.095g, 76%). m.p.: 66 – 68 °C, <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  8.08 (d, *J* = 8.6 Hz, 2H), 7.40 (d, *J* = 8.6 Hz, 2H), 7.34-7.29 (m, 2H), 7.22 (dd, *J* = 7.0, 1.6 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 2.88-2.79 (m, 1H), 1.9 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  154.7, 138.0, 137.8, 130.7, 129.4, 129.3, 128.5, 128.2, 127.2, 125.7, 125.0 (q, *J* = 278.7 Hz, CF<sub>3</sub>), 122.6, 76.7 (q, *J* = 2.1 Hz), 43.7 (q, *J* = 27.3Hz, CH<sub>2</sub>CF<sub>3</sub>), 26.3 (d, *J* = 1.59 Hz), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  - 59.9 (t, *J* = 10.5 Hz, 3F), HRMS (ESI), *m*/*z* calcd for C<sub>17</sub>H<sub>13</sub>ClF<sub>3</sub>NO [M+H]<sup>+</sup> 340.0711, found 340.0687.



**4-Bromo-N-(2-(prop-1-en-2-yl)phenyl)benzamide** (**1h**):<sup>5</sup> White solid, yield (0.59 g, 94%). m.p.: 104 – 108 °C, <sup>1</sup>H-NMR (500MHz, CDCl<sub>3</sub>),  $\delta$  8.42 (d, *J* = 8.3 Hz, 1H), 8.39 (bs, 1H), 7.67 (d, *J* = 8.64Hz, 2H), 7.60 (d, *J* = 8.6 Hz, 2H), 7.30 (td, *J* = 7.8, 1.6 Hz, 1H), 7.17 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.11 (td, *J* = 7.5, 1.2 Hz, 1H), 5.46-5.44 (m, 1H), 5.08 (q, *J* = 1.0 Hz, 1H), 2.09 (t, *J* = 1.2 Hz, 3H), <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>),  $\delta$  164.1, 143.3, 133.9, 133.7, 133.5, 132.1, 128.5, 128.1, 127.7, 126.5, 124.1, 120.7, 116.8, 24.6, HRMS (ESI), *m/z* calcd for C<sub>16</sub>H<sub>14</sub>BrNO [M+H]<sup>+</sup> 316.0332, found 316.0323.



**2-(4-Bromophenyl)-4-methyl-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][**1,3**]**oxazine** (**3h**): Pale yellow semi-solid, yield (0.087g, 74%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  8.01 (d, *J* = 8.5 Hz, 2H), 7.56 (d, *J* = 8.5 Hz, 2H), 7.35-7.29 (m, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.11 (d, *J* = 7.6 Hz, 1H), 2.89-2.77 (m, 1H), 2.64-2.52 (m, 1H), 1.90 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  154.8, 138.0, 131.5, 131.2, 129.5, 129.4, 128.2, 127.2, 126.3, 125.7, 125.1 (q, *J* <sub>C, F</sub> = 279 Hz, CF<sub>3</sub>), 122.6, 76.8 (q, *J* <sub>C, F</sub> = 2.2 Hz), 43.7(q, *J* <sub>C, F</sub> = 27.2 Hz, CH<sub>2</sub>CF<sub>3</sub>), 26.3 (d, *J* <sub>C, F</sub> = 1.6 Hz), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -59.9 (t, *J* = 10.6 Hz, 3F), HRMS (ESI), *m*/*z* calcd for C<sub>17</sub>H<sub>13</sub>BrF<sub>3</sub>NO [M+H]<sup>+</sup> 384.0224, found 384.0205.



**3-Methoxy-N-(2-(prop-1-en-2-yl)phenyl)benzamide** (**1i**): White semi-solid, yield (0.60 g, 85%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 8.47 (d, *J* = 8.2 Hz, 1H), 8.44 (bs, 1H), 7.42 (t, *J* = 2.0 Hz, 1H), 7.36 (t, *J* = 7.9 Hz, 1H), 7.32-7.29 (m, 2H), 7.17 (dd, *J* = 7.7 Hz, *J* = 1.6 Hz, 1H), 7.10 (td, *J* = 7.4, J = 1.2 Hz, 1H), 7.06 (ddd, *J* = 8.2, 2.6, 0.9 Hz, 1H), 5.46-5.46 (m, 1H), 5.10 (q, *J* = 0.1 Hz, 1H), 3.85 (s, 3H), 2.10 (t, *J* = 1.2 Hz, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 164.9, 160.0, 143.3, 136.6, 134.0, 133.5, 129.8, 128.0, 127.6, 123.9, 120.6, 118.4, 118.0, 116.8, 112.4, 55.4, 24.6, HRMS (ESI), *m/z* calcd for C<sub>17</sub>H<sub>17</sub>NO<sub>2</sub> [M+H]<sup>+</sup> 268.1332, found 268.1343.



**2-(3-Methoxyphenyl)-4-methyl-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][**1,3**]**oxazine.** (**3i**): White semi-solid, yield (0.058 g, 46%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  7.74 (d, *J* = 7.6 Hz, 1H), 7.69 (t, *J* = 1.9 Hz, 1H), 7.36-7.32 (m, 3H), 7.23-7.19 (m, 1H), 7.12 (d, *J* = 7.14 Hz, 1H), 7.04 (dd, *J* = 8.0, 2.7, Hz, 1H), 3.87 (s, 3H), 2.90-2.79 (m, 1H), 2.67-2.55 (m, 1H), 1.90 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  159.5, 155.5, 138.2, 133.6, 129.3, 129.2, 127.0, 125.6, 125.0 (q, *J*<sub>C, F</sub> = 279.0 Hz, CF<sub>3</sub>), 122.5, 121.2, 120.5, 118.0, 112.5, 77.2 (q, *J* = 2.12 Hz), 122.5, 121.2, 120.5, 118.0, 112.5, 77.2 Hz, CH<sub>2</sub>CF<sub>3</sub>), 26.7 (d, *J* = 1.61 Hz),

<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>), δ -59.8 (t, J = 10 0 Hz, 3F), HRMS (ESI), m/z calcd for C<sub>18</sub>H<sub>16</sub>F<sub>3</sub>NO<sub>2</sub> [M+H]<sup>+</sup> 336.1206, found 336.1222.



**3-Chloro-N-(2-(prop-1-en-2-yl)phenyl)benzamide (1j)**: White solid, yield (0.55 g, 79%). m.p.: 55 - 57 °C, <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  8.41 (d, J = 8.2 Hz, 1H), 8.38 (bs, 1H), 7.81 (t, J = 1.8 Hz, 1H), 7.6 (dq, J = 7.7, 1.5 Hz, 1H), 7.50 (ddd, J = 8.0, 2.1, 1.0 Hz, 1H), 7.40 (t, J = 7.8 Hz, 1H), 7.30 (td, J = 7.8, 1.6 Hz, 1H), 7.18 (dd, J = 7.8 Hz, 1.6 Hz, 1H), 7.12 (td, J = 7.5 Hz, J = 1.2 Hz, 1H), 5.47-5.46 (m, 1H), 5.09 (q, J = 0.92 Hz, 1H), 2.10 (t, J = 1.2 Hz, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  163.7, 143.2, 136.9, 135.1, 133.6, 131.8, 130.1, 128.1, 127.7, 127.5, 124.7, 124.2, 120.8, 116.9, 24.6, HRMS (ESI), *m*/*z* calcd for C<sub>16</sub>H<sub>14</sub>CINO [M+H]<sup>+</sup> 272.0837, found 272.0839.



**2-(3-Chlorophenyl)-4-methyl-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][**1,3**]**oxazine** (**3j**): White semi-solid, yield (0.084g, 67%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  8.13 (t, *J* = 1.7 Hz, 1H), 8.02 (d, *J* = 7.76 Hz, 1H), 7.45 (dq, *J* = 8.0, 1.0 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 1H), 7.32 (td, *J* = 8.0, 1.6 Hz, 2H), 7.23 (td, *J* = 6.2, 1.6 Hz, 1H), 7.12(d, *J* = 7.7 Hz, 1H), 2.87-2.79 (m, 1H), 2.66-2.57 (m, 1H), 1.91(s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  154.3, 137.9, 134.4, 134.0, 131.5, 129.5, 129.4, 128.1, 127.9, 127.3, 126.0, 125.8, 125.0 (q, *J*<sub>C, F</sub> = 278.2 Hz, CF<sub>3</sub>), 122.6, 76.9 (q, *J*<sub>C, F</sub> =

2.16 Hz), 43.8 (q,  $J_{C, F} = 27.3$  Hz, CH<sub>2</sub>CF<sub>3</sub>), 26.5 (d,  $J_{C, F} = 1.63$  Hz), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -59.9 (t, J = 10.5 Hz, 3F), HRMS (ESI), m/z calcd for C<sub>17</sub>H<sub>13</sub>ClF<sub>3</sub>NO [M+H]<sup>+</sup> 340.0711, found 340.0679.



**3-Nitro-N-(2-(prop-1-en-2-yl)phenyl)benzamide (1k)**: White solid, yield (0.50 g, 74%). m.p.: 166 – 168 °C, <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  8.64 (t, *J* = 2.0 Hz, 1H), 8.52 (bs, 1H), 8.40-8.36 (m, 2H), 8.14 (dt, *J* = 7.8, 1.3 Hz, 1H), 7.68 (t, *J* = 8.0 Hz, 1H), 7.31 (td, *J* = 7.8, 1.6 Hz, 1H), 7.20 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.14 (td, *J* = 7.8, 1.6 Hz, 1H), 5.51-5.49 (m, 1H), 5.12 (q, *J* = 1.0 Hz, 1H), 2.11 (t, *J* = 1.2 Hz, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  162.6, 148.4, 143.2, 136.7, 133.8, 133.3, 132.8, 130.1, 128.1, 126.8, 126.3, 124.6, 121.9, 120.9, 117.0, 24.6, HRMS (ESI), *m/z* calcd for C<sub>16</sub>H<sub>14</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> 283.1077, found 283.1097.



**4-Methyl-2-(3-nitrophenyl)-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][**1,3**]**oxazine** (**3k**): White solid, yield (0.113g, 91%). m.p.: 110 – 112 °C, <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  8.97 (t, *J* = 1.8 Hz, 1H), 8.42 (d, *J* = 7.8 Hz, 1H), 8.33 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.61 (t, *J* = 8.0 Hz, 1H), 7.38-7.33 (m, 2H), 7.28-7.24 (m, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 2.91-2.79 (m, 1H), 2.69-2.57 (m, 1H), 1.94 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  153.3, 148.3, 137.5, 134.1, 133.5, 129.5, 129.3, 128.0, 127.8, 126.0, 125.8, 124.9 (q, *J*<sub>C, F</sub> = 278.3Hz, CF<sub>3</sub>), 122.9, 122.7, 77.4 (q, *J*<sub>C, F</sub> = 2.18 Hz),

43.9 (q,  $J_{C, F} = 27.1$  Hz,  $CH_2CF_3$ ), 26.8 (d,  $J_{C, F} = 1.6$  Hz), <sup>19</sup>F NMR (376 MHz,  $CDCl_3$ ),  $\delta$  -60.0 (t, J = 10.5 Hz, 3F), HRMS (ESI), m/z calcd for  $C_{17}H_{13}F_3N_2O_3$  [M+H]<sup>+</sup> 351.0951, found 351.0968.



**3,5-Dimethoxy-N-(2-(prop-1-en-2-yl)phenyl)benzamide** (**1**): White solid, yield (0.46 g, 71%). m.p.: 52 – 54 °C, <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 8.44 (d, *J* = 8.3 Hz, 1H), 8.38 (bs, 1H), 7.30 (td, *J* = 7.8, 1.6 Hz, 1H), 7.16 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.09 (td, *J* = 7.4, 1.0 Hz, 1H), 6.92 (d, *J* = 2.2 Hz, 2H), 6.59 (t, *J* = 2.2 Hz, 1H), 5.45-5.46 (m, 1H), 5.09-5.08 (m, 1H), 3.82 (s, 6H), 2.09 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 164.8, 161.0, 143.3, 137.3, 133.9, 133.5, 128.0, 127.6, 123.9, 120.6, 116.8, 104.8, 103.7, 55.5, 24.6, HRMS (ESI), *m*/*z* calcd for C<sub>18</sub>H<sub>19</sub>NO<sub>3</sub> [M+H]<sup>+</sup> 298.1438, found 298.1457.



2-(3,5-Dimethoxyphenyl)-4-methyl-4-(2,2,2-trifluoroethyl)-4H-benzo[*d*][1,3]oxazine (3I): Pale yellow semi-solid, trace amount, <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  8.36 (d, *J* = 8.0 Hz, 1H), 7.52 (d, *J* = 7.3 Hz, 1H), 7.37-7.31 (m, 3H), 7.08 (s, 1H), 6.81-6.80 (m, 1H), 6.65-6.62 (m, 1H), 3.65-3.55 (m, 2H), 2.23 (s, 3H), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -59.8 (t, *J* = 10.5 Hz, 3F), HRMS (ESI) *m*/*z* calcd for C<sub>19</sub>H<sub>18</sub>F<sub>3</sub>NO<sub>3</sub> [M+ Na]<sup>+</sup> 388.1131, found 388.1143.



**3,5-Dichloro-N-(2-(prop-1-en-2-yl)phenyl)benzamide (1m)**: White solid, yield (0.49 g, 77%). m.p.: 82 – 84 °C, <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>), δ 8.34 (d, *J* = 8.3 Hz, 1H), 8.32 (bs, 1H), 7.64 (d, *J* = 1.8 Hz, 2H), 7.50 (t, *J* = 1.8 Hz, 1H), 7.30 (td, *J* = 7.8, 1.6 Hz, 1H), 7.19 (dd, *J* = 7.8, 1.6, Hz, 1H), 7.13 (td, *J* = 7.5 Hz, 1.13Hz, 1H), 5.48-5.47 (m, 1H), 5.09 (q, *J* = 1.0 Hz, 1H), 2.10 (t, *J* = 1.2 Hz, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.5, 138.0, 135.7, 133.8, 131.3, 131.6, 128.8, 128.8, 128.1, 127.7, 125.6, 124.6, 121.0, 116.9, 24.6, HRMS (ESI), *m/z* calcd for C<sub>16</sub>H<sub>13</sub>Cl<sub>2</sub>NO [M+H]<sup>+</sup> 306.0447, found 306.0452.



**2-(3,5-Dichlorophenyl)-4-methyl-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][1,3]oxazine (3m): White-solid, yield (0.087g, 74%). m.p.: 66 – 68 °C, <sup>1</sup>H-NMR (400MHz, CDCl<sub>3</sub>),  $\delta$  8.05 (d, *J* = 1.9 Hz, 2H), 7.46 (t, *J* = 1.9 Hz, 1H), 7.34 (td, *J* = 7.4, 1.1 Hz, 1H), 7.30 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.24 (td, *J* = 7.45 Hz, *J* = 1.60 Hz, 1H), 7.12 (d, J = 7.61 Hz, 1H), 2.88-2.76 (m, 1H), 2.67-2.55 (m, 1H), 1.90 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  153.1, 137.5, 135.2, 135.0, 131.2, 129.5, 128.0, 127.7, 126.2, 125.9, 125.1 (q, *J* <sub>C, F</sub> = 279.2 Hz, CF<sub>3</sub>), 122.7, 77.2 (q, *J* = 27.1 Hz), 43.9 (q, *J* = 27.1Hz, CH<sub>2</sub>CF<sub>3</sub>), 26.7 (d, *J* = 1.6 Hz), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -60.0 (t, *J* = 10.5 Hz, 3F), HRMS (ESI), *m*/*z* calcd for C<sub>17</sub>H<sub>12</sub>Cl<sub>2</sub>F<sub>3</sub>NO [M+H]<sup>+</sup> 374.0321, found 374.0320.



**2-Chloro-N-(2-(prop-1-en-2-yl)phenyl)benzamide** (**1n**):<sup>5</sup> White solid, yield (0.52 g, 83%). m.p.: 88 – 90 °C, <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  8.46(d, J = 8.25Hz, 1H), 8.28 (bs, 1H), 7.72 (dd, J = 7.4, 1.6 Hz, 1H), 7.41 (td, J = 7.8, 1.6 Hz, 1H), 7.39-7.33 (m, 2H), 7.31 (td, J = 7.8, 1.6 Hz, 1H), 7.16 (dd, J = 7.8, 1.6 Hz, 1H), 7.11 (td, J = 7.5, 1.0 Hz, 1H), 5.34-5.33 (m, 1H), 5.03 (q, J = 1.0 Hz, 1H), 2.05 (t, J = 1.2 Hz, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  164.4, 142.6, 135.5, 134.0, 133.8, 131.6, 130.5, 130.4, 130.3, 128.0, 127.8, 127.3, 124.3, 121.0, 117.3, 24.7, HRMS (ESI), m/z calcd for C<sub>16</sub>H<sub>14</sub>CINO [M+H]<sup>+</sup> 272.0837, found 272.0858.



**2-(2-Chlorophenyl)-4-methyl-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][1,3]oxazine (3n): Light brown semi-solid, yield (0.089 g, 71%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  7.73 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.44 (dd, *J* = 7.8, 1.2 Hz, 1H), 7.39-7.29 (m, 4H), 7.25 (td, *J* = 7.4, 2.0 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 2.97-2.74 (m, 2H), 1.90 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  155.8, 137.6, 133.1, 132.3, 131.3, 130.9, 130.6, 129.4, 127.4, 127.0, 126.7, 125.7, 125.0, (q, *J* = 278.1 Hz, CF<sub>3</sub>), 123.0, 77.9 (q, *J* = 2.2 Hz), 44.3 (q, *J* = 27.3 Hz, CH<sub>2</sub>CF<sub>3</sub>), 27.9 (d, *J* = 1.6 Hz), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -59.93 (t, *J* = 10.5 Hz, 3F), HRMS (ESI), *m/z* calcd for C<sub>17</sub>H<sub>13</sub>ClF<sub>3</sub>NO [M+H]<sup>+</sup> 340.0711, found 340.0716.



*N*-(2-(Prop-1-en-2-yl)phenyl)-2-(trifluoromethyl)benzamide (1o):<sup>8</sup> Yellow solid, yield (0.525 g, 82%). m.p.: 97 – 99 °C, <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 8.39 (d, *J* = 8.2 Hz, 1H), 7.84 (bs, 1H), 7.74 (d, *J* = 7.7 Hz, 1H), 7.65-7.55 (m, 3H), 7.32 (td, *J* = 7.7, 2.0 Hz, 1H), 7.18-7.11 (m, 2H), 5.29 (t, *J* = 1.4Hz, 1H), 4.98 (s, 1H), 2.04 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 165.5, 142.6, 136.0 (q, *J* = 2.1 Hz), 134.0, 133.6, 132.2, 130.1, 128.2, 128.0, 127.8, 126.6 (q, *J* = 4.9 Hz, CF<sub>3</sub>), 124.9, 124.5, 122.2, 121.2, 116.9, 24.4, HRMS (ESI), *m*/*z* calcd for C<sub>17</sub>H<sub>14</sub>F<sub>3</sub>NO [M+H]<sup>+</sup> 306.1100, found 306.1107.



**2-Methyl-N-(2-(prop-1-en-2-yl)phenyl)benzamide** (**1p**):<sup>5</sup> White solid, yield (0.628 g, 85%). m.p.: 52 – 54 °C, <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 8.45 (d, *J* = 7.5 Hz, 1H), 7.91 (bs, 1H), 7.43 (d, *J* = 7.6 Hz, 1H), 7.38-7.30 (m, 2H), 7.27-7.23 (m, 2H), 7.17 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.12 (td, *J* = 7.6, 1.0 Hz, 1H), 5.34 (t, *J* = 1.6 Hz, 1H), 5.03 (s, 1H), 2.51 (s, 3H), 2.06 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 167.8, 142.9, 136.5, 134.1, 133.8, 131.4, 130.2, 128.0, 127.8, 126.5, 126.0, 124.1, 120.9, 116.9, 24.5, 19.9.

### Scheme 2 Synthesis of substituted aniline ring substrates



To a stirred solution of Grignard reagent, methylmagnesium chloride (3 equiv, 3.0 M CH<sub>3</sub>MgCl) in THF at 0 °C was added solid 2-aminobenzonitrile (10 mmol, 1.0 equiv). The reaction mixture was allowed to warm to room temperature and was stirred overnight. Saturated NH<sub>4</sub>Cl was then cautiously added dropwise by syringe until gas evolution ceased. The reaction mixture was then diluted with water and dichloromethane. Standard aqueous workup (CH<sub>2</sub>Cl<sub>2</sub>) followed by flash column chromatography (hexane/ ethyl acetate, 10:1) afforded the desired ketone.<sup>13c</sup> Further, Wittig reaction followed by amide synthesis was done by following previously mentioned method (*vide supra*).



*N*-(**4-Bromo-2-(prop-1-en-2-yl)phenyl)benzamide** (**1q**): Light yellow solid, yield (0.30 g, 51%). m.p.: 112 – 114 °C, <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 12.57 (s, 1H), 8.91 (d, *J* = 9.0 Hz, 1H), 8.04-8.02 (m, 3H), 7.70 (dd, *J* = 9.0, 2.3 Hz, 1H), 7.56 (tt, *J* = 7.2, 2.3 Hz, 1H), 7.51 (tt, *J* = 7.2, 2.3 Hz, 1H), 4.99-4.95 (m, 1H), 2.70 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 166.1, 140.4,

139.3, 138.0, 134.4, 134.2, 132.2, 128.8, 127.5, 123.4, 122.6, 114.7, 114.0, 22.7, HRMS (ESI), *m/z* calcd for C<sub>16</sub>H<sub>14</sub>BrNO [M+Na]<sup>+</sup> 340.0307, found 339.9959.



**6-Bromo-4-methyl-2-phenyl-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][1,3]oxazine (3q): Light yellow semi-solid, trace amount. HRMS (ESI), m/z calcd for C<sub>17</sub>H<sub>13</sub>BrF<sub>3</sub>NO [M+H]<sup>+</sup> 384.0205, found 384.0219.



*N*-(5-chloro-2-(prop-1-en-2-yl)phenyl)benzamide (1r): White solid, yield (0.25 g, 78%). m.p.: 148 – 150 °C, 1H-NMR (500 MHz, CDCl<sub>3</sub>), 8.65 (d, *J* = 1.8 Hz, 1H), 8.50 (s, 1H), 7.84 (dd, *J* = 8.5 Hz, 2H), 7.59 (tt, *J* = 7.4, 1.2 Hz, 1H), 7.52 (td, *J* = 7.8, 1.5 Hz, 2H), 7.13-7.12 (m, 2H), 5.55-5.53 (m, 1H), 5.15 (q, *J* = 0.9 Hz, 1H), 2.13 (t, *J* = 1.2 Hz, 3H), <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>), δ 165.0, 142.4, 135.1, 134.6, 133.6, 132.0, 131.5, 128.9, 128.5, 126.9, 123.9, 120.5, 117.5, 24.5, HRMS (ESI), *m*/*z* calcd for C<sub>16</sub>H<sub>14</sub>CINO [M+H]<sup>+</sup> 272.0837, found 272.0857.



**7-Chloro-4-methyl-2-phenyl-4-**(2,2,2-trifluoroethyl)-4H-benzo[*d*][1,3]oxazine (3r): Yellow semi-solid, yield (0.090g, 72%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  8.13 (d, *J* = 7.4 Hz, 2H), 7.51 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 2H), 7.33 (d, *J* = 1.2 Hz, 1H), 7.18 (dd, *J* = 8.2, 2.0 Hz, 1H), 7.04 (d, *J* = 8.2 Hz, 1H), 2.88-2.78 (m, 1H), 2.66-2.55 (m, 1H), 1.89 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  156.6, 139.8, 134.8, 131.9, 131.8, 128.3, 128.1, 126.7, 126.5, 125.5, 124.9 (q, *J* = 277.5 Hz, CF<sub>3</sub>), 123.8, 76.6 (q, *J* = 2.1 Hz), 43.7 (q, *J* = 27.4 Hz, CF<sub>3</sub>), 26.5 (d, *J* = 1.5 Hz), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -59.9 (t, *J* = 10.6 Hz, 3F), HRMS (ESI), *m*/z calcd for C<sub>17</sub>H<sub>13</sub>ClF<sub>3</sub>NO [M+H]<sup>+</sup> 340.0711, found 340.0726.



*N*-(2-(prop-1-en-2-yl)phenyl)thiophene-2-carboxamide (1s):<sup>2</sup> White solid, yield (0.68 g, 90%). m.p.: 80 – 82 °C, <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>), δ 8.40 (d, J = 8.3 Hz, 1H), 8.32 (bs, 1H), 7.51-7.49 (m, 2H), 7.29 (td, J = 7.8, 1.6 Hz, 1H), 7.17 (dd, J = 78, 1.6 Hz, 1H), 7.11-7.10 (m, 1H), 7.08 (dd, J = 7.4, 1.2 Hz, 1H), 5.49-5.47 (m, 1H), 5.10 (q, J = 1.0 Hz, 1H), 2.10 (t, J = 1.2 Hz, 3H), <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>), δ 159.5, 143.2, 139.7, 133.7, 133.2, 130.6, 128.2, 128.1, 127.8, 127.6, 123.9, 120.6, 116.9, 24.6.



**4-Methyl-2-(thiophen-2-yl)-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][1,3]oxazine (3s): White semi-solid, yield (0.067g, 52%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  7.72 (dd, *J* = 3.8, 0.1 Hz, 1H),

7.49 (dd, J = 5.0, 1.0 Hz, 1H), 7.32 (td, J = 7.0, 1.2 Hz, 1H), 7.28 (dd, J = 8.0, 1.4 Hz, 1H), 7.20 (td, J = 7.4, 1.6 Hz, 1H), 7.12-7.08 (m, 2H), 2.88-2.79 (m, 1H), 2.61-2.53 (m, 1H), 1.91 (s, 1H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  152.4, 138.2, 136.6, 130.6, 130.3, 129.3, 127.7, 126.7, 125.0 (q, J = 279.0 Hz, CF<sub>3</sub>), 122.5, 76.9 (q, J = 2.15 Hz), 43.4 (q, J = 27.3 Hz, CH<sub>2</sub>CF<sub>3</sub>), 25.9 (d, J = 1.60 Hz), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -59.8 (t, J = 10.5 Hz, 3F), HRMS (ESI), *m*/*z* Calcd for C<sub>15</sub>H<sub>12</sub>F<sub>3</sub>NOS [M+H]<sup>+</sup> 312.0664, found 312.0680.



*N*-(2-(Prop-1-en-2-yl)phenyl)furan-2-carboxamide (1t):<sup>5</sup> yellow semi-solid, yield (0.69 g, 86%), <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>), δ 8.63 (bs, 1H), 8.43 (d, J = 8.3 Hz, 1H), 7.49-7.48 (m, 1H), 7.28 (td, J = 7.8, 1.6, 1H), 7.19 (d, J = 3.5 Hz, 1H), 7.16 (dd, J = 7.8, 1.6 Hz, 1H), 7.08 (td, J = 7.5 Hz, 1.1 Hz, 1H), 6.53-6.52 (m, 1H), 5.46 (t, J = 1.6 Hz, 1H), 5.09 (t, J = 0.9 Hz, 1H), 2.10(s, 3H), <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>), δ 155.9, 148.1, 144.3, 142.6, 133.6, 133.5, 128.0, 127.7, 123.9, 120.6, 117.1, 115.0, 112.5, 24.5.



**2-(Furan-2-yl)-4-methyl-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][1,3]oxazine (3t): White solid, yield (0.068, 53%). m.p.:80 – 82 °C, <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 7.39-7.32 (m, 2H), 7.29-7.19 (m, 2H), 7.15-7.07 (m, 2H), 6.90 (dd, *J* = 11.4, 3.5 Hz, 1H), 2.89-2.77 (m, 1H), 2.62-2.50 (m, 1H), 1.91 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 147.5, 137.1, 129.6, 128.2 (d, *J* = 29.0 Hz

), 127.8, 126.1, 125.1 (q, J = 278.8 Hz, CF<sub>3</sub>), 124.4, 122.6, 120.5, 117.1, 114.8, 113.1 (q, J = 2.9 Hz ), 77.1 (q, J = 2.3 Hz ), 43.5 (q, J = 27.1 Hz, CH<sub>2</sub>CF<sub>3</sub>), 26.1 (d, J = 1.6 Hz ), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -60.0 (t, J = 10.4 Hz, 3F), HRMS (ESI), m/z calcd for C<sub>15</sub>H<sub>12</sub>F<sub>3</sub>NO<sub>2</sub> [M+H]<sup>+</sup> 296.0893, found 296.0901.



*N*-(2-(**Prop-1-en-2-yl)phenyl)picolinamide** (1u): White semi-solid, yield (0.50 g, 64%), <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>),  $\delta$  10.4 (s, 1H), 8.59-8.57 (m, 2H), 8.27 (dt, *J* = 7.8, 1.0 Hz, 1H), 7.84 (td, *J* = 7.7 Hz, 1H), 7.42-7.39 (m, 1H), 7.31 (td, *J* = 7.8, 1.39 Hz, 1H), 7.19 (dd, *J* = 1.56 Hz, 1H), 7.09 (td, *J* = 7.5, 1.2 Hz, 1H), 5.48-5.47 (m, 1H), 5.12 (q, *J* = 1.0 Hz, 1H), 2.12 (t, *J* = 1.25 Hz, 3H), <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>),  $\delta$  161.9, 150.2, 142.4, 137.5, 134.1, 128.0, 127.9, 126.2, 123.9, 122.3, 120.4, 117.3, 24.3. HRMS (ESI), *m*/*z* calcd for C<sub>15</sub>H<sub>14</sub>N<sub>2</sub>O [M+H]<sup>+</sup> 239.1179, found 239.1197.



**4-Phenyl-2-(pyridin-2-yl)-4-(2,2,2-trifluoroethyl)-4H-benzo[d][1,3]oxazine (3u**): Light brown semi-solid, yield (0.063g, 49%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 8.58 (d, *J* = 5.0 Hz, 1H), 8.51 (d, *J* = 8.3 Hz, 1H), 8.28 (d, *J* = 7.8 Hz, 1H), 7.89 (td, *J* = 7.8, 1.6 Hz, 1H), 7.47-7.44 (m. 1H), 7.37 (td, *J* = 7.6, 1.6 Hz, 1H), 7.19 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.14 (td, *J* = 7.2, 0.9 Hz, 1H), 3.22 (q, *J* = 10.5 Hz, 2H), 1.57 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 162.0, 149.9, 148.1, 137.6,

134.4, 131.8, 128.7, 128.4, 126.3, 125.5 (q, J = 277.6 Hz, CF<sub>3</sub>), 124.1, 123.9, 122.3, 120.9, 77.2, 41.4 (q, J = 29.3 Hz, CH<sub>2</sub>CF<sub>3</sub>), 22.7 (d, J = 1.6 Hz), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -64.5 (t, J = 10.4 Hz, 3F), HRMS (ESI): m/z calcd for C<sub>16</sub>H<sub>13</sub>F<sub>3</sub>N<sub>2</sub>O [M+H]<sup>+</sup> 307.1053, found 307.1051.



*N*-(2-(**Prop-1-en-2-yl)phenyl)-2-naphthamide** (1v): White solid, yield (0.49 g, 74%). m.p.: 82 – 84 °C, <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>), δ 8.59 (bs, 1H), 8.52 (d, J = 8.3 Hz, 1H), 8.34 (d, J = 1.0 Hz, 1H), 7.95-7.92 (m, 2H), 7.89-7.85 (m, 2H), 7.59-7.53 (m, 2H), 7.34 (td, J = 7.8, 1.5 Hz, 1H), 7.12 (td, J = 7.5, 1.2 Hz, 1H), 5.50-5.49 (m, 1H), 5.15 (q, J = 1.0 Hz, 1H), 2.13 (t, J = 1.2 Hz, 3H), <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>), δ 165.2, 143.4, 134.8, 134.1, 133.6, 132.7, 132.3, 129.1, 128.8, 128.1, 127.9, 127.8, 127.7, 127.7, 126.9, 124.0, 123.3, 120.8, 116.8, 24.7, HRMS (ESI), m/z calcd for C<sub>20</sub>H<sub>17</sub>NO [M+H]<sup>+</sup> 288.1383, found 288.1403.



**4-Methyl-2-(naphthalen-2-yl)-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][1,3]oxazine (3v): White semi-solid, yield (0.089 g, 72%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 8.63 (s, 1H), 8.27 (dd, *J* = 8.7, 1.6 Hz, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.88 (t, *J* = 8.6 Hz, 2H), 7.56-7.50 (m, 2H), 7.39-7.35 (m, 2H), 7.26-7.22 (m, 1H), 7.15 (d, *J* = 7.5 Hz, 1H), 2.95-2.85 (m, 1H), 2.71-2.60 (m, 1H), 1.97 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 155.8, 138.4, 135.0, 132.8, 129.5, 129.3, 129.2, 128.6, 128.3, 127.9, 127.7, 127.5, 127.0, 126.4, 125.7, 125.3 (q, *J* = 278.3 Hz, CF<sub>3</sub>), 124.5, 122.6, 43.7

(q, J = 27.4 Hz, CH<sub>2</sub>CF<sub>3</sub>), 26.3, <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -59.8 (t, J = 10.5 Hz, 3F), HRMS (ESI), m/z calcd for C<sub>21</sub>H<sub>16</sub>F<sub>3</sub>NO [M+H]<sup>+</sup> 356.1257, found 356.1261.



*N*-(2-(Prop-1-en-2-yl)phenyl)acetamide (1w):<sup>9</sup> White solid, yield (0.42 g, 76%). m.p.: 50 – 52 <sup>o</sup>C, <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>), δ 8.20 (d, *J* = 8.2, Hz, 1H), 7.51 (bs, 1H), 7.23 (td, *J* = 7.8, 1.4 Hz, 1H), 7.11 (d, *J* = 7.4 Hz, 1H), 7.04 (t, *J* = 7.4 Hz, 1H), 5.35 (s, 1H), 4.99 (s, 1H), 2.12 (s, 3H), 2.04 (s, 3H), <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>), δ 168.1, 143.0, 133.9, 133.4, 127.8, 127.6, 123.8, 121.1, 116.7, 24.7, 24.4, HRMS (ESI), *m*/*z* calcd for C<sub>11</sub>H<sub>13</sub>NO [M+H]<sup>+</sup> 176.1070, found 176.1088.



**2,4-Dimethyl-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][**1,3**]**oxazine** (**3w**): Pale yellow semi-solid, yield (0.101g, 73%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  7.26 (td, *J* = 7.6, 1.4 Hz, 1H), 7.17-7.11 (m, 2H), 7.03 (dd, *J* = 7.5, 0.9 Hz, 1H), 2.77-2.65 (m, 1H), 2.52-2.40 (m, 1H), 2.10 (s, 3H), 1.79 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  159.3, 137.6, 129.2, 127.3, 126.6, 125.01 (q, *J* = 278.1 Hz, CF<sub>3</sub>), 124.6, 122.6, 76.1 (q, *J* = 2.19 Hz), 44.1 (q, *J* = 27.1 Hz, CH<sub>2</sub>CF<sub>3</sub>), 26.9 (d, *J* = 1.64 Hz), 21.5, <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -60.4 (t, *J* = 10.5Hz, 3F), HRMS (ESI), *m*/*z* calcd for C<sub>12</sub>H<sub>12</sub>F<sub>3</sub>NO [M+H]<sup>+</sup> 244.0944, found 244.0954.



*N*-(2-(Prop-1-en-2-yl)phenyl)pivalamide (1x):<sup>2</sup> White solid, yield (0.63 g, 87%). m.p.: 55 – 57 <sup>o</sup>C, <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>), δ 8.36 (d, J = 8.25 Hz, 1H), 7.98 (bs, 1H), 7.28 (td, J = 7.69, 1.59 Hz, 1H), 7.15 (dd, J = 7.69, 1.59Hz, 1H), 7.08 (td, J = 7.69, 1.59 Hz, 1H), 5.46-5.44 (m, 1H), 5.06-5.05 (m, 1H), 2.10 (s, 3H), 1.30 (s, 9H), <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>), δ 176.3, 143.3, 134.2, 133.2, 127.9, 127.5, 123.4, 120.4, 116.6, 39.9, 27.5, 24.5.



**2-**(*tert*-**Butyl**)-**4-**methyl-**4-**(**2**,**2**,**2-**trifluoroethyl)-**4H**-benzo[*d*][**1**,**3**]oxazine (**3**x): Yellow semisolid, yield (0.091g, 74%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  7.26 (td, *J* = 7.5, 1.2 Hz, 1H), 7.02 (d, *J* = 7.5 Hz, 1H), 2.80-2.62 (m, 2H), 1.70 (s, 3H), 1.25(s, 9H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$ 166.6, 138.0, 129.0, 127.4, 126.4, 125.3, 125.1 (q, *J* = 278.8 Hz, CF<sub>3</sub>), 122.5, 75.9 (q, *J* = 2.2 Hz), 43.7(q, *J* = 27.1 Hz, CH<sub>2</sub>CF<sub>3</sub>), 37.1, 27.3, 27.2 (d, J = 1.6 Hz), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -59.7 (t, *J* = 10.5 Hz, 3F), HRMS (ESI), *m*/*z* calcd for C<sub>15</sub>H<sub>18</sub>F<sub>3</sub>NO [M+H]<sup>+</sup> 286.1413, found 286.1426.
Scheme 3 Synthesis of 2-vinylaniline



2-Vinylaniline was synthesized according to a known procedure.<sup>6</sup> Amide synthesis was done by previously mentioned method (*vide supra*).



*N*-(2-Vinylphenyl)benzamide (1y):<sup>6</sup> White solid, yield (0.49 g, 77%). m.p.: 152 - 154 °C, <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>),  $\delta$  7.96 (d, *J* = 7.8 Hz, 1H), 7.93 (bs, 1H), 7.86 (d, *J* = 7.4 Hz, 2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.43(d, *J* = 7.8 Hz, 1H), 7.31(t, *J* = 7.8 Hz, 1H), 7.17(t, *J* = 7.4 Hz, 1H), 6.84 (dd, *J* = 18.0, 11.0 Hz, 1H), 5.69 (dd, *J* = 18.0, 1.0 Hz, 1H), 5.43 (dd, *J* = 11.0 Hz, 1.0 Hz, 1H), <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>),  $\delta$  165.7, 134.7, 134.4, 132.3, 131.9, 130.6, 128.8, 128.6, 127.1, 125.4, 123.6, 118.5, HRMS (ESI), *m*/*z* calcd for C<sub>15</sub>H<sub>13</sub>NO [M+H]<sup>+</sup> 224.1070, found 224.1093.



**2-Phenyl-4-**(**2**,**2**,**2**-**trifluoroethyl**)-**4H**-**benzo**[*d*][**1**,**3**]**oxazine** (**3y**): Pale yellow semi-solid; yield (0.117g, 90%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  8.17 (d, *J* = 7.9 Hz, 2H), 7.51 (t, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.9 Hz, 2H), 7.39-7.32 (m, 2H), 7.25-7.20 (m, 1H), 7.03 (d, *J*.= 7.5 Hz, 1H), 5.82 (dd, *J* = 10.0, 2.4 Hz, 1H), 2.89-2.77 (m, 1H), 2.55-2.43 (m, 1H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  155.7, 138.9, 131.9, 131.7, 129.7, 128.1, 126.9, 125.4, 125.2 (q, *J* = 278.0 Hz, CF<sub>3</sub>), 123.5, 123.3, 70.4, (q, *J* = 3.34 Hz, CH<sub>2</sub>CF<sub>3</sub>), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -63.2 (t, *J* = 10.5Hz, 3F), HRMS (ESI), *m*/*z* calcd for C<sub>16</sub>H<sub>12</sub>F<sub>3</sub>NO [M+H]<sup>+</sup> 292.0944, found 292.0970.

# General procedure for the synthesis of *N*-(2-(1-phenylvinyl)phenyl)benzamide 1z (substrate for trifluoromethylated benzoxazine 3z)

The substrate 1z for 3z was prepared from 2-aminobenzophenone by following two steps: a) conversion of 2-aminobenzophenone into 2-(1-phenylvinyl)aniline; b) preparation of *N*-(2-(1-phenylvinyl)phenyl)benzamide by coupling of 2-(1-phenylvinyl)aniline. with benzoyl chloride as mentioned earlier.

#### Scheme 4





#### (a) Typical procedure for conversion of 2-aminobenzophenone into 2-(1-phenylvinyl)aniline

To a stirred solution of Ph<sub>3</sub>PMeBr (8.37 mmol, 1.5 equiv) in Dry THF (15 mL) was added KO'Bu (8.37 mmol, 1.5 equiv) in portions under nitrogen. After the mixture was stirred at room temperature for 0.5 h, a solution of 2-aminobenzophenone (5.58 mmol, 1 equiv) in THF (15 mL) was added dropwise. The reaction mixture was then stirred at room temperature under nitrogen overnight. The reaction mixture was quenched with water and extracted with EtOAc (50 mL x 2). The combined organic layers were washed with saturated NaHCO<sub>3</sub> (50 mL) and brine (50 mL), dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated on a rotary evaporator under vacuum and the residue was purified by column chromatography on silica gel. A light yellow oil was obtained.<sup>1</sup> yield (1.0 g, 93%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  7.40 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.35-7.29 (m, 3H), 7.17 (td, *J* = 7.6, 1.5 Hz, 1H), 7.12 (dd, *J* = 7.6, 1.5 Hz, 1H), 6.80 (td, *J* = 7.5 1.0 Hz, 1H), 6.7 (d, *J* = 8.0 Hz, 1H), 5.80 (d, *J* = 1.4 Hz, 1H), 5.36 (d, *J* = 1.47 Hz, 1H), 3.55 (s, 2H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  147.2, 143.3, 139.6, 130.8, 128.8, 128.6, 128.1, 127.3, 126.6, 118.3, 116.1, 115.6.

General Method for the Conversion of 2-(1-Phenylvinyl)aniline into *N*-(2-(1-Phenylvinyl)phenyl)benzamides 1: 2-(1-Phenylvinyl)aniline was converted into *N*-(2-(1-Phenylvinyl)phenyl)benzamides 1 by following synthetic protocol as mentioned above (Scheme 1).



*N*-(2-(1-phenylvinyl)phenyl)benzamide (1z):<sup>2</sup> White solid, yield (0.68 g, 79%). m.p.: 79 – 81 <sup>o</sup>C, <sup>1</sup>H-NMR (500 MHz, CDCl<sub>3</sub>),  $\delta$  8.49 (d, J = 8.2 Hz, 1H), 7.79 (s, 1H), 7.45-7.34 (m, 8H), 7.32-7.30 (m, 1H), 7.29-7.27 (m, 3H), 7.19 (td, J = 7.5 Hz, 1H), 5.90 (d, J = 1.0 Hz, 1H), 5.42 (s, J = 1.0 Hz, 1H), <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>),  $\delta$  165.0, 146.3, 138.9, 135.4, 134.8, 131.6, 131.5, 130.6, 129.1, 129.0, 128.8, 128.5, 126.8, 126.7, 124.3, 121.0, 117.8.



**2,4-Diphenyl-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][**1,3**]**oxazine (3z**):<sup>4</sup> White solid, yield (0.116 g, 94%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  8.26 (d, *J* = 8.5 Hz, 2H), 7.54-7.45 (m, 3H), 7.38-7.34 (m, 4H), 7.31-7.20 (m, 5H), 3.28 (q, *J* = 10.0 Hz, 2H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  155.4, 141.7, 138.7, 132.0, 131.6, 129.4, 128.5, 128.4, 128.3, 127.9, 126.5, 126.3, 125.9, 125.4, 125.0 (q, *J* = 279.1 Hz, CF<sub>3</sub>), 124.2, 80.0 (q, *J* = 2.2 Hz), 43.4 (q, *J* = 27.1 Hz, CH<sub>2</sub>CF<sub>3</sub>), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -58.5 (t, *J* = 10.0 Hz, 3F), HRMS (ESI), *m*/*z* calcd for C<sub>22</sub>H<sub>16</sub>F<sub>3</sub>NO [M+H]<sup>+</sup> 368.1257, found 368.1273.

#### Scheme 5. Synthesis of alkene substituted substrates (1aa-1bb)



To a stirred solution of Grignard reagent (3 equiv, 3.0 M EtMgBr, 2.0 M <sup>*i*</sup>PrMgCl) in THF at 0  $^{\circ}$ C was added solid 2-aminobenzonitrile (1.0 equiv, 10 mmol). The reaction mixture was allowed to warm to room temperature and was stirred overnight. Saturated NH<sub>4</sub>Cl was then cautiously added dropwise by syringe until gas evolution ceased. The reaction mixture was then diluted with water and dichloromethane. Standard aqueous workup (CH<sub>2</sub>Cl<sub>2</sub>) followed by flash column chromatography (hexane/ ethyl acetate, 10:1) afforded the desired ketone.<sup>2</sup> Further, Wittig reaction followed by amide synthesis was carried out as mentioned earlier.



*N*-(2-(But-1-en-2-yl)phenyl)benzamide (1aa):<sup>2</sup> White solid, yield (0.40 g, 55%). m.p.: 48 – 50 <sup>o</sup>C, <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 8.50 (d, *J* = 8.0 Hz, 1H), 8.41 (s, 1H), 7.80 (d, *J* = 7.3 Hz, 2H), 7.53 (t, *J* = 7.3 Hz, 1H), 7.48 (t, *J* = 2.0 Hz, 2H), 7.32 (td, *J* = 7.6 Hz, 1.8 Hz, 1H), 7.15-7.10 (m, 2H), 5.45 (s, 1H), 5.11 (s, 1H), 2.40 (q, *J* = 7.4 Hz, 2H), 1.06 (t, *J* = 7.4 Hz, 3H), <sup>13</sup>C

NMR (125 MHz, CDCl<sub>3</sub>), δ 164.9, 149.2, 135.1, 134.5, 133.0, 131.7, 128.8, 128.0, 127.9, 126.8, 123.7, 120.4, 114.9, 31.1, 12.5.



**4-Ethyl-2-phenyl-4-**(**2,2,2-trifluoroethyl)-4H-benzo**[*d*][**1,3**]**oxazine** (**3aa**): Light yellow semisolid, yield (0.094g, 74%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 8.14 (d, J = 7.2 Hz, 2H), 7.50-7.42 (m, 3H), 7.31 (d, J = 4.0 Hz, 2H), 7.22-7.18 (m, 1H), 7.04 (d, J = 7.6 Hz, 1H), 2.89-2.66 (m, 2H), 2.27-2.17 (m, 1H), 2.16-2.08 (m, 1H), 0.91 (t, J = 7.3 Hz, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 155.6, 139.1, 132.3, 131.4, 129.1, 128.2, 127.8, 126.6, 125.8, 125.1, 125.0 (q, J = 278.8 Hz, CF<sub>3</sub>), 123.3, 79.9 (q, J = 2.21 Hz), 43.9 (q, J = 26.8 Hz, CH<sub>2</sub>CF<sub>3</sub>), 33.9 (d, J = 1.0 Hz), 7.7, <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>), δ -59.5 (t, J = 10.5 Hz, 3F), HRMS (ESI), *m*/*z* calcd for C<sub>18</sub>H<sub>16</sub>F<sub>3</sub>NO [M+H]<sup>+</sup> 320.1257, found 320.1280.



*N*-(2-(3-Methylbut-1-en-2-yl)phenyl)benzamide (1bb):<sup>2</sup> Yellow solid, yield (0.46 g, 69%). m.p.: 60 – 62 °C, <sup>1</sup>H-NMR (400MHz, CDCl<sub>3</sub>), δ 8.56 (d, *J* = 8.3 Hz, 1H), 8.42 (s, 1H), 7.85-7.83 (m, 2H), 7.58 (tt, *J* = 7.3, 1.3 Hz, 1H), 7.52 (tt, *J* = 7.3, 1.3 Hz, 2H), 7.39-7.35 (m, 1H), 7.16-7.13 (m, 1H), 5.48 (t, *J* = 1.5 Hz, 1H), 5.14-5.13 (m, 1H), 2.68-2.61 (m, 1H), 1.13 (d, *J* = 6.8 Hz, 6H), <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>), δ 164.8, 153.7, 135.0, 134.8, 133.1, 131.7, 128.8, 128.2, 127.9, 126.8, 123.5, 120.3, 113.7, 35.4, 21.4.

## Formation of Benzoxazine (3bb) and Allylic Trifluoromethylation (4bb)



#### **Proposed Mechanism for 3bb**







**4-Isopropyl-2-phenyl-4-(2,2,2-trifluoroethyl)-4H-benzo**[*d*][1,3]oxazine (3bb): Pale yellow semi-solid, yield (0.044g, 35%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 8.12 (d, *J* = 7.5 Hz, 2H), 7.48-7.42 (m, 3H), 7.29 (d, *J* = 3.4 Hz, 2H), 7.19-7.15 (m, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 3.01-2.94 (m, 1H), 2.82-2.75 (m, 1H), 2.27-2.20 (m, 1H), 1.09 (d, *J* = 6.7 Hz, 3H), 0.89 (d, *J* = 6.72 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 155.2, 139.1, 132.4, 131.3, 128.9, 128.2, 127.6, 126.2, 125.8, 125.4 (q, *J* = 277.6 Hz, CF<sub>3</sub>), 124.2, 123.9, 81.8 (q, *J* = 2.2 Hz), 41.9 (q, *J* = 26.4 Hz, CH<sub>2</sub>CF<sub>3</sub>), 39.7, 16.8, 15.9, <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>), δ -59.3 (t, *J* = 10.3 Hz, 3F), HRMS (ESI), *m/z* calcd for C<sub>19</sub>H<sub>18</sub>F<sub>3</sub>NO [M+H]<sup>+</sup> 334.1413, found 334.1430.



*N*-(2-(5,5,5-Trifluoro-2-methylpent-2-en-3-yl)phenyl)benzamide (4bb): White semi-solid, yield (0.057g), 45%, <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 8.46 (d, J = 8.3 Hz, 1H), 8.04 (s, 1H), 7.77 (J = 7.1, 1.5 Hz, 2H), 7.53 (t, J = 7.1 Hz, 1H), 7.47 (t, J = 7.1 Hz, 2H), 7.33 (td, J = 7.8, 1.4 Hz, 1H), 7.13 (td, J = 7.4 Hz, 1H), 7.08-7.05 (m, 1H), 3.47-3.36 (m, 1H), 3.1-3.0 (m, 1H), 1.96 (s, 3H), 1.55 (s, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 164.8, 140.8, 135.4, 134.9, 131.8, 128.8, 128.5, 128.2, 126.7, 126.6, 126.4 (q, J = 278.5 Hz, CF<sub>3</sub>), 124.3, 122.6, 120.7, 119.8 (q, J = 2.5 Hz), 38.6 (q, J = 28.5 Hz, CH<sub>2</sub>CF<sub>3</sub>), 22.2, 20.7, <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>), δ -57.7 (dd, J = 8.12, 1.9 Hz), -64.0 (t, J = 10.5 Hz, 3F), HRMS (ESI), m/z calcd for C<sub>19</sub>H<sub>18</sub>F<sub>3</sub>NO [M+H]<sup>+</sup> 334.1413, found 334.1442.



*N*-(2-(4,4,4-Trifluorobut-1-en-2-yl)phenyl)benzamide (4a): White solid, yield (0.027g). m.p.: 94 – 96 °C, 45%. <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 8.43 (d, *J* = 8.3 Hz, 1H), 8.20 (s, 1H), 7.81 (d, *J* = 7.1, 1.5 Hz, 2H), 7.54 (tt, *J* = 7.3, 1.2 Hz), 7.48 (t, *J* = 7.3 Hz, 2H), 7.38-7.34 (m, 1H), 7.17-7.14 (m, 1H), 5.74 (s, 1H), 5.45 (s, 1H), 3.21 (q, *J* = 10.4 Hz, 2H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 165.2, 136.1 (q, *J* = 3.0 Hz), 134.7, 134.5, 131.9, 131.3, 128.9 (d, *J* = 5.17 Hz), 127.8, 126.8, 125.5 (q, *J* = 278.1 Hz, CF<sub>3</sub>), 124.2, 123.7, 121.7, 77.2, 42.0 (q, *J* = 29.1 Hz), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -64.5 (t, J = 10.5 Hz, 3F), HRMS (ESI), m/z calcd for C<sub>17</sub>H<sub>14</sub>F<sub>3</sub>NO [M+H]<sup>+</sup> 306.1100, found 306.1104.

#### Scheme 6 Further Modification of Trifluoromethylated Benzoxazines



General procedure for ring opening reaction by using KO'Bu (conversion of substituted 4methyl-2-phenyl-4-(2,2,2-trifluoroethyl)-4H-benzo[*d*][1,3]oxazine to substituted *N*-(2-(4,4,4trifluorobut-1-en-2-yl)phenyl)benzamide): To a single neck flask, KO'Bu (0.010 g, 0.090 mmol) was added in one portion to the solution of the respective benzoxazine (0.025 g, 0.068 mmol) in DMSO (1 mL) at room temperature. The resulted reaction mixture was stirred at room temperature for 6 h. Next, saturated aqueous NaHCO<sub>3</sub> solution (10 mL) was added and the resulting mixture was extracted with ethyl acetate (10 mL  $\times$  3). The organic layers were combined, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated *in vacuo*. The crude product was purified by column chromatography using (hexane/ethyl acetate, 80:20) to get desired product.



**4-Nitro**-*N*-(**2**-(**4**,**4**,**4**-trifluorobut-1-en-2-yl)phenyl)benzamide (**5a**): White semi-solid, yield (0.012g, 50%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>),  $\delta$  8.41 (d, *J* = 8.2 Hz, 1H), 8.34 (dd, *J* = 8.7, 3.4 Hz, 2H), 8.23 (bs, 1H), 7.96 (d, *J* = 8.7 Hz, 2H), 7.40-7.37 (m, 1H), 7.19 (dd, *J* = 5.3, 2.0 Hz, 2H), 5.76 (s, 1H), 3.23 (q, *J* = 10.5 Hz, 2H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>),  $\delta$  163.1, 149.8, 140.8, 136.0, 133.8, 131.8, 131.4, 129.0, 129.0, 127.8, 125.6, 125.1 (q, *J* = 276.8 Hz, CF<sub>3</sub>), 124.9, 124.1, 121.6, 77.2, 42.2 (q, *J* = 29.7 Hz, CH<sub>2</sub>CF<sub>3</sub>), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>),  $\delta$  -64.4 (t, *J* = 10.5 Hz, 3F), HRMS (ESI), *m*/*z* calcd for C<sub>17</sub>H<sub>13</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub> [M-H]<sup>-</sup> 349.0795, found 349.0821.



**3-Nitro**-*N*-(**2**-(**4**,**4**,**4**-trifluorobut-1-en-2-yl)phenyl)benzamide (**5**b): White semi-solid, yield (0.018g, 75%), <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 8.66-8.65 (m, 1H), 8.42-8.37 (m, 2H), 8.27 (s, 1H), 8.13 (t, *J* = 7.76 Hz, 1H), 7.69 (td, *J* = 8.0, 3.3 Hz, 1H), 7.40-7.37 (m, 1H), 7.20-7.18 (m, 1H), 5.79 (s, 1H), 5.47 (s, 1H), 3.24 (q, *J* = 10.5 Hz, 2H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 162.7, 148.5, 136.4, 133.8, 132.6, 131.6, 130.1, 128.9, 127.9, 126.4, 125.6, 125.2 (q, *J* = 277.6 Hz, CF<sub>3</sub>), 124.0, 123.1, 121.9, 77.2, 42.2 (q, *J* = 29.1 Hz), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>), -64.5 (t, *J* = 10.4 Hz, 3F), HRMS (ESI), *m/z* calcd for C<sub>17</sub>H<sub>13</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub> [M-H]<sup>-</sup> 349.0795, found 349.0825.

General procedure for ring opening reaction by using organolithium reagents (conversion of 4-Methyl-2-phenyl-4-(2,2,2-trifluoroethyl)-4H-benzo[*d*][1,3]oxazine to (*E*)-*N*-(2-(4,4,4-Trifluorobut-2-en-2-yl)phenyl)benzamide): To a solution of trifluoromethylated benzoxazine (40 mg, 0.131 mmol) in THF (2 mL) was added MeLi or MeLi.LiBr (1.5M, 1.5 equiv) at -40  $^{0}$ C. The reaction mixture was allowed to warm gradually to 0  $^{0}$ C and stirred for 3 h. The reaction mixture was quenched with water (2 mL) and extracted with CH<sub>2</sub>Cl<sub>2</sub> (5 mL x 3). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under vacuum. The residue was purified by silica gel column chromatography (hexane /ethyl acetate, 10:1) to get desired product.



*N*-(2-(4,4,4-Trifluorobut-2-en-2-yl)phenyl)benzamide (5c): Pale yellow semi-solid, yield, 0.021 g, 52%, <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 8.26 (d, J = 8.4 Hz, 1H), 7.93 (bs, 1H), 7.81 (d, J = 7.3 Hz, 2H), 7.56 (t, J = 7.3 Hz, 1H), 7.49 (t, J = 7.3 Hz, 2H), 7.40-7.36 (m, 1H), 7.19-7.17 (m, 2H), 5.49 (qd, J = 8.1, 1.3 Hz, 1H), 2.25 (t, J = 1.8 Hz, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 165.2, 148.2 (d. J = 5.5 Hz), 134.4, 133.5, 132.1, 129.2, 129.0, 128.2, 127.4, 126.8, 124.9, 122.8 (q, J = 271.2 Hz, CF<sub>3</sub>), 122.6, 120 (q, J = 33.9 Hz), 19.8 (d, J = 33.9 Hz), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>), δ -57.9 (s, 3F), HRMS (ESI), m/z calcd for C<sub>17</sub>H<sub>14</sub>F<sub>3</sub>NO [M+H]<sup>+</sup> 306.1100, found 306.1116.



*N*-(2-(3,3,3-Trifluoro-1-phenylprop-1-en-1-yl)phenyl)benzamide (5d): White solid, yield (0.018.g, 45%). m.p.: 94 – 96 °C, <sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>), δ 8.41 (d, J = 8.3 Hz, 1H), 7.52-7.33 (m, 12H), 7.28-7.25 (m, 2H), 6.43 (q, J = 7.8 Hz, 1H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>), δ 165.2, 148.6 (q, J = 5.5 Hz), 137.1, 135.0, 134.7, 131.8, 130.5, 129.9, 129.2, 128.7, 127.2, 127.1, 126.7, 124.2, 122.8 (q, J = 271.0 Hz, CF<sub>3</sub>), 121.9, 118.0 (q, J = 33.8 Hz), <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>), δ -56.9 (d J = 7.6 Hz, 3F), HRMS (ESI), m/z calcd for C<sub>22</sub>H<sub>16</sub>F<sub>3</sub>NO [M-H]<sup>-</sup> 366.1100, found 366.1127.

# S1 <sup>1</sup>H NMR of 2-(prop-1-en-2-yl)aniline





## S2 <sup>13</sup>C NMR of 2-(prop-1-en-2-yl)aniline







### S4<sup>13</sup>C NMR of 1a



## S5 $^{1}$ H NMR of **3a**



# S6 $^{13}$ C NMR of **3a**



# S7 $^{19}$ F NMR of 3a





S58





### S11 <sup>13</sup>C NMR of **3b**



#### S12 $^{19}$ F NMR of **3b**





S63





#### S16 $^{13}$ C NMR of **3**c






















S26  $^{13}$ C NMR of **3e** 













### S32 $^{19}\mathrm{F}\,\mathrm{NMR}$ of 3f





S34  $^{13}$ C NMR of **1g** 



# S35 $^{1}$ H NMR of **3**g



# S36 $^{13}$ C NMR of **3**g



# S37 $^{19}$ F NMR of **3**g





S39  $^{13}$ C NMR of **1h** 







S42 <sup>19</sup>F NMR of **3h** 





#### S44<sup>13</sup>C NMR of 1i





S95







# S49 $^{13}$ C NMR of **1**j









S101





#### S54<sup>13</sup>C NMR of 1k





### S56<sup>13</sup>C NMR of 3k







S108




# S61<sup>19</sup>F NMR of **3**





S63  $^{1}$ H NMR of **1m** 













### S68 $^{1}$ H NMR of **3n**









## S71<sup>1</sup>H NMR of **10**



#### S72 $^{13}$ C NMR of **10**



## S73 $^{1}$ H NMR of **1**p





## S75 $^{1}$ H NMR of **1**q



### S76<sup>13</sup>C NMR of **1q**

### S77 $^{1}$ H NMR of 1r





#### S79 $^{1}$ H NMR of **3**r













### S84 $^{1}$ H NMR of **3s**



| 0 -             |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
|-----------------|---|--------|--------|-------|--------------|--------|--------------|------|-------|----------------|---------|--------------|----------|--------------|-------|-------|---------|------------------------------|---------|------------------------------|-------|---------|
|                 |   | H      | 14     | H     | н            | н      | щ            | а н  |       | 0              | 00      |              | 7        | 5            | ы     | 4     | ω       |                              | 2       | н                            |       |         |
| 10              |   | 6 Spe  | 5 Acc  | 4 Nuc | 3 Lov<br>Fre | 2 Spe  | 1 Spe<br>Fre | Sca  |       | 1 1            | Mo      | Dat          | Aco      | Sec          | Sol   | Ow    | Orig    |                              | Title   | Nan                          | P     |         |
| -               |   | ectral | luired | deus  | quen         | ith a  | quen         | Ins  | npera | ĥ              | dificat | 8            | luisitio | se           | vent  | ner   | g;      |                              | rD      | ne File                      | arame |         |
| -20             |   | Size   | Size   |       | Q            |        | ry           | a di | ure   |                | ion     |              | ä        | n            |       |       |         |                              |         |                              | eter  |         |
| -<br>- 8        |   | 131072 | 65536  | 19F   | -82292       | 89285. | 376.50       | P    | 298.2 | 3              |         |              | 2015-0   | zgflqn       | CDCl3 | nmrsu | Bruker  | F19 CD<br>topspin<br>Sangit/ | Sangit- | C:/Use<br>Desktop<br>AA-127  |       |         |
| -               |   |        |        |       | 'n           | 7      |              |      |       |                |         |              | 3-261    |              |       |       | BioSp   | / nmr<br>MAR                 | SJ-AA   | o/ Sar<br>-repe              | Valu  |         |
| <del>'4</del> - |   |        |        |       |              |        |              |      |       |                |         |              | 04:58:4  |              |       |       | in GmbH | opt/<br>su/<br>Inmrsu        | -127-   | o/<br>ngit-SJ-<br>at/ 2/ fic | n     |         |
|                 |   |        |        |       |              |        |              |      |       |                |         |              | 60       |              |       |       |         |                              |         | u                            |       |         |
| -50             |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| _               | - |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       | ~ 59.39 |
| - 89            | - |        |        |       |              |        |              | -    |       |                |         |              |          |              |       |       |         |                              |         |                              |       | ₹-59.89 |
| -               |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| - 6             |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| _               |   |        |        |       |              |        |              |      | F     | <sub>3</sub> С | ;       | $\checkmark$ | ,        |              |       |       |         |                              |         |                              |       |         |
| ġ -             |   |        |        |       |              |        |              |      | 6     | $\hat{}$       | Y       | ~            | ò        | )            |       |       |         |                              |         |                              |       |         |
|                 |   |        |        |       |              |        |              |      | Ľ     | 2              | 人       | N            | 汄        | $\checkmark$ | .s    |       |         |                              |         |                              |       |         |
| 1) IJ           | 1 |        |        |       |              |        |              |      |       |                |         |              |          | լլ           | _     | >     |         |                              |         |                              |       |         |
|                 |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| 00              |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| <u> </u>        |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| 10              |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| . ]             |   |        |        |       |              | -59.   |              | N    | 222   |                |         |              |          |              |       |       |         | 4                            |         | 59.39                        |       |         |
| 20              |   |        |        |       |              | 4      | [            |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| <u>.</u> ]      |   |        |        |       | 11 (p)       | -59.6  |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| 30              |   |        |        |       | pm)          | . 1    | ļ            |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| 4               |   |        |        |       |              | - 59.8 | 2            | _    | _     | _              | -       |              |          |              |       |       |         |                              |         | 50.00                        |       |         |
| 40              |   |        |        |       |              |        | 1            | _    |       | -              | -       |              |          |              |       |       |         | 5                            |         | 39.69                        |       |         |
| ]               |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| 50              |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| ]               |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| 60              |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| ]               |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| 70              |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| 4               |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| 8               |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| .⊢ ]            |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |
| 90              |   |        |        |       |              |        |              |      |       |                |         |              |          |              |       |       |         |                              |         |                              |       |         |





S88<sup>13</sup>C NMR of 1t














#### S95<sup>13</sup>C NMR of **3u**



# S96 $^{19}$ F NMR of 3u





### S99 <sup>1</sup>H NMR of 3v





#### S100 $^{13}$ C NMR of **3v**

| 0 -                 | 1 |    |            |            |           |                      |                     |                       |                    |           |                    |      |            |                   |           |         |             |                                           |                          |            |       |       |
|---------------------|---|----|------------|------------|-----------|----------------------|---------------------|-----------------------|--------------------|-----------|--------------------|------|------------|-------------------|-----------|---------|-------------|-------------------------------------------|--------------------------|------------|-------|-------|
| -10                 |   |    |            |            |           |                      |                     |                       |                    |           |                    |      |            |                   |           |         |             |                                           |                          |            |       |       |
| -20                 |   |    | 16 Spectra | 15 Acquire | 14 Nudeus | 13 Lowest<br>Frequer | 12 Spectra<br>Width | 11 Spectro<br>Frequer | 10 Number<br>Scans | 9 Tempera | 8 Modifica<br>Date | Date | 7 Acquisit | 6 Pulse<br>Sequen | 5 Solvent | 4 Owner | 3 Origin    | 2 Title                                   | Name                     | 1 Data Fil | Paran |       |
| -30                 |   |    | I Size 13  | d Size 65  | 19        | 1CY -63              | 68                  | meter 37<br>Icy       | OF IN              | ature 29  | tion               |      | ion 20     | ce zg             | 8         | nn      | Bru         | Sa top                                    | fid<br>Sa                | 0          | neter |       |
| <u></u> - 4         |   |    | 1072       | 536        | П         | 2292.5               | 285.7               | 6.50                  |                    | 8.1       |                    |      | 15-04-13T  | fiqn              | ĊI3       | Irsu    | Jker BioSpi | 9 CDCl3 / o<br>ospin/ nmrs<br>ngit/ APR 1 | sktop/ San<br>ngit-SJ-AA | /Users/hp  | Valu  |       |
| - 55                |   |    |            |            |           |                      |                     |                       |                    |           |                    |      | 10:10:53   |                   |           |         | n GmbH      | su/<br>5 nmrsu                            | igit/<br>-140/ 2/        | -          | n     |       |
| - 8                 | F | i. |            |            |           |                      |                     |                       |                    |           |                    |      |            |                   |           |         |             |                                           |                          |            |       | <br>4 |
| -<br>- 6            |   |    |            |            |           |                      |                     |                       |                    | F.        | c.—                |      |            |                   |           |         |             |                                           |                          |            |       |       |
| - 8                 |   |    |            |            |           |                      |                     |                       |                    |           |                    | X    | 0          |                   |           |         |             |                                           |                          |            |       |       |
| -90 -10<br>f1 (ppm) |   |    |            |            |           |                      |                     |                       |                    |           |                    | N    |            | Ú                 | ~<br>~    | Ì       | ~<br>~      |                                           |                          |            |       |       |
| 0 -11               |   |    |            |            |           |                      |                     |                       |                    |           |                    |      |            |                   |           |         |             |                                           |                          |            |       |       |
| 10 -120             |   |    |            |            |           |                      | -59,80              | -                     | L                  |           |                    |      |            |                   |           |         |             |                                           |                          |            |       |       |
| -130                |   |    |            |            |           |                      | ) -59<br>f1 (ppm)   |                       | (                  |           |                    |      | 2          |                   |           |         | -           | -                                         |                          | -59        | .84   |       |
| -140                |   |    |            |            |           |                      | 8                   |                       | (                  |           |                    |      | ~          |                   |           |         |             |                                           |                          |            |       |       |
| -150                |   |    |            |            |           |                      |                     | L                     | (                  |           |                    |      |            |                   |           |         |             |                                           |                          |            |       |       |
| - 160               |   |    |            |            |           |                      |                     |                       |                    |           |                    |      |            |                   |           |         |             |                                           |                          |            |       |       |
| -170                |   |    |            |            |           |                      |                     |                       |                    |           |                    |      |            |                   |           |         |             |                                           |                          |            |       |       |
| - 180               |   |    |            |            |           |                      |                     |                       |                    |           |                    |      |            |                   |           |         |             |                                           |                          |            |       |       |
| -190                |   |    |            |            |           |                      |                     |                       |                    |           |                    |      |            |                   |           |         |             |                                           |                          |            |       |       |

S101 <sup>19</sup>F NMR of 3v





### S103 $^{13}$ C NMR of 1w

# S104 $^{1}$ H NMR of **3w**





#### S105 $^{13}$ C NMR of **3**w



### S106 $^{19}$ F NMR of **3**w





### S108 $^{13}$ C NMR of 1x

# S109 <sup>1</sup>H NMR of 3x





#### S110 $^{13}$ C NMR of 3x



# S111 <sup>19</sup>F NMR of 3x





# **S**113 <sup>13</sup>**C NMR** of **1y**







# S115 $^{13}$ C NMR of **3**y



# S116 $^{19}$ F NMR of **3**y

# S117 <sup>1</sup>H NMR of **2-(1-Phenylvinyl)aniline**



# S118 <sup>13</sup>C NMR of 2-(1-Phenylvinyl)aniline



# S119 $^{1}$ H NMR of 1z





### S120 $^{13}$ C NMR of 1z



# S121 <sup>1</sup>H NMR of 3z



# S122 $^{13}$ C NMR of 3z

| 0 -                           |   |  |                  |                 |            |           |       |             |           |          |                       |               |      |                |      |                     |          |         |           |         |                     |                                                              |     |                      |                                 |           |  |
|-------------------------------|---|--|------------------|-----------------|------------|-----------|-------|-------------|-----------|----------|-----------------------|---------------|------|----------------|------|---------------------|----------|---------|-----------|---------|---------------------|--------------------------------------------------------------|-----|----------------------|---------------------------------|-----------|--|
| -10 -20                       |   |  | 16 Spectral Size | 15 Acquired Siz | 14 Nucleus | ID LOWEST | Width | 12 Spectral | Frequency |          | 10 Number of<br>Scans | 9 Temperature | Date | 8 Modification | Date | 7 Acquisition       | Sequence |         | 5 Solvent | 4 Owner | 3 Origin            | 2 litte                                                      |     |                      | 1 Data File<br>Name             | Parameter |  |
| -   -  <br>-30 -40            |   |  | 131072           | e 65536         | 19F        | C.76770-  | 1     | 89285.7     | 1 3/6.30  | - 376 60 | 16                    | 298.2         |      |                |      | 2015-04-13T10:16:06 | - Suda   | to floo | 0003      | nmrsu   | Bruker BioSpin GmbH | r 19 CUCI3 / opt/<br>topspin/ nmrsu/<br>Sangit/ APR 15 nmrsu | fid | Sangit-SJ-AA-146/ 2/ | C:/Users/hp/<br>Desktop/Sangit/ | Value     |  |
| -50 -60                       | _ |  |                  |                 |            |           |       |             |           |          |                       |               |      |                |      | 10.5                |          |         |           |         |                     |                                                              |     |                      |                                 |           |  |
| - 1<br>- 70                   |   |  |                  |                 |            |           |       |             |           |          |                       |               | F    | 3C             | ;—   | 7                   | Pł       | 1       |           |         |                     |                                                              |     |                      |                                 |           |  |
| - 8                           |   |  |                  |                 |            |           |       |             |           |          |                       |               | ĺ    |                | Ì    |                     |          |         |           | ~       |                     |                                                              |     |                      |                                 |           |  |
| 1 1 1<br>-90 -100<br>f1 (ppm) |   |  |                  |                 |            |           |       |             |           |          |                       |               |      | Ý              |      | ~N                  | 1-       |         | Ĺ         |         | )                   |                                                              |     |                      |                                 |           |  |
| -110                          |   |  |                  |                 | -58,50     | _         |       | L           | _         |          |                       |               |      |                |      |                     |          |         |           |         |                     |                                                              |     |                      |                                 |           |  |
| -120                          |   |  |                  |                 | f1 (       | 1         |       | <           |           |          |                       | 100           |      |                |      | _                   | _        |         |           |         |                     |                                                              |     | 58                   | 2 54                            |           |  |
| -130                          |   |  |                  |                 | 90m)       | ]         |       | (           |           | _        |                       | -             |      |                |      |                     |          |         |           |         |                     |                                                              |     |                      |                                 |           |  |
| -140                          |   |  |                  |                 | -58,60     | -         |       | (           |           |          |                       |               |      |                |      |                     |          |         |           |         |                     |                                                              |     |                      |                                 |           |  |
| -150                          |   |  |                  |                 |            |           |       |             |           |          |                       |               |      |                |      |                     |          |         |           |         |                     |                                                              |     |                      |                                 |           |  |
| - 160                         |   |  |                  |                 |            |           |       |             |           |          |                       |               |      |                |      |                     |          |         |           |         |                     |                                                              |     |                      |                                 |           |  |
| -170                          |   |  |                  |                 |            |           |       |             |           |          |                       |               |      |                |      |                     |          |         |           |         |                     |                                                              |     |                      |                                 |           |  |
| - 180                         |   |  |                  |                 |            |           |       |             |           |          |                       |               |      |                |      |                     |          |         |           |         |                     |                                                              |     |                      |                                 |           |  |
| -190                          |   |  |                  |                 |            |           |       |             |           |          |                       |               |      |                |      |                     |          |         |           |         |                     |                                                              |     |                      |                                 |           |  |

# S123 <sup>19</sup>F NMR of 3z

# S124 $^{1}$ H NMR of **1aa**









### S127 <sup>13</sup>C NMR of 3aa





### S128 <sup>19</sup>F NMR of 3aa

### S129 $^{1}$ H NMR of **1bb**





### S130 $^{13}$ C NMR of **1bb**


### S131 $^{1}$ H NMR of **3bb**





### S133 $^{19}\mathrm{F}\,\mathrm{NMR}$ of $\mathbf{3bb}$

#### S134 $^{1}$ H NMR of **4bb**





### S135 $^{13}$ C NMR of **4bb**



#### S136 $^{19}$ F NMR of **4bb**

#### S137 $^{1}$ H NMR of **4a**





#### S138 $^{13}$ C NMR of 4a



#### S139 $^{19}$ F NMR of 4a

### S140 $^{1}$ H NMR of **5a**





S191

| 10          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -           | 1 Da<br>1 Da<br>2 Tit<br>2 Tit<br>3 Ori<br>3 Ori<br>5 Sol<br>6 Pul<br>4 Ow<br>5 Sol<br>6 Pul<br>9 Ten<br>10 Nur<br>11 Spe<br>11 Spe<br>11 Spe<br>12 Sol<br>9 Ten<br>13 Low<br>13 Low<br>15 Acc<br>16 Spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | aramete<br>ta File<br>me<br>le<br>le<br>le<br>quiner<br>vivent<br>se<br>quence<br>quence<br>ectrone<br>ectrone<br>ectrone<br>ectrone<br>ectrone<br>ectrone<br>ectrone<br>ectrone<br>ectrone<br>squency<br>duined<br>sans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6 -         | ۲۲<br>۲۲<br>۲۲<br>۲۲<br>۲۲<br>۲۲<br>۲۲<br>۲۲<br>۲۲<br>۲۲<br>۲۲<br>۲۲<br>۲۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -20         | Val<br>Users/F<br>Users/F<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-443/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-453/<br>2011-4 |
|             | ue<br>pp/<br>12/fid<br>12/fid<br>15.<br>rsu/<br>rsu/<br>rsu/<br>rsu/<br>su/<br>rsu/<br>rsu/<br>cmbi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| - 4         | 4 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5-          | CE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| -<br>-      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 05-         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -<br>g -    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8 -<br>2, - | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (ppm)       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -110        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -120        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -130        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -140        | fi <sup>45</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| -150        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 16          | ت<br>چ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8 _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 70 -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -190        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -200        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -210        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

# S142 <sup>19</sup>F NMR of **5a**



### S143 $^{1}$ H NMR of **5b**

#### S144 $^{13}$ C NMR of **5b**



S194



### S145 $^{19}\mathrm{F}$ NMR of $\mathbf{5b}$







| 0 -            | 1 |   |             |             |       |                 |               |             |                 |           |             |            |        |        |       |       |             |                                                          |                                         |                       |  |
|----------------|---|---|-------------|-------------|-------|-----------------|---------------|-------------|-----------------|-----------|-------------|------------|--------|--------|-------|-------|-------------|----------------------------------------------------------|-----------------------------------------|-----------------------|--|
| - 10           |   |   | 16 Sp       | 15 Ac       | 14 NL | 13 Lo           | 12 Sp<br>Wi   | 11 Sp<br>Fr | 10 NL           | 9 Te      | 8 Mo        | 7 Ac       | Se     | 6 Pu   | 5 So  | 4 0   | 3 Or        | 2 Tit                                                    | 1 Da                                    |                       |  |
| -20            |   |   | ectral Size | quired Size | Ideus | west<br>equency | ectral<br>dth | ectrometer  | imber of<br>ans | mperature | odification | quisition  | quence | lse    | lvent | vner  | igin        | ħ                                                        | ita File<br>ime                         | <sup>3</sup> arameter |  |
| - 96-          |   |   | 131072      | 65536       | 19F   | -82292.5        | 89285.7       | 376.50      | 32              | 298.1     |             | 2015-05-09 |        | zaflan | CDCl3 | nmrsu | Bruker BioS | Sangit-SJ-3<br>F 19 CDCl3 ,<br>topspin/ nm<br>Sangit/ MA | C:/Users/h<br>Desktop/Sa<br>SJ-340-II/: | Val                   |  |
| <del>4</del> - |   |   |             |             |       |                 |               |             |                 |           |             | T05:26:(   |        |        |       |       | pin GmbH    | /40-11<br>/ opt/<br>irsu/<br>/ 15 nmrsi                  | np/<br>2/fid                            | Le                    |  |
| - 50           |   |   |             |             |       |                 |               |             |                 |           |             |            |        |        |       |       |             |                                                          |                                         |                       |  |
| <del>6</del> - |   | - |             | -           | -     |                 |               |             |                 | _         |             | - Al-      |        |        |       |       |             |                                                          |                                         |                       |  |
| - v            |   |   |             |             |       |                 |               |             |                 |           |             |            |        |        |       |       |             | _                                                        |                                         |                       |  |
| - 8            |   |   |             |             |       |                 |               |             |                 |           |             |            | ~      |        |       | Í     | C           | F <sub>3</sub>                                           |                                         |                       |  |
| - 90<br>-90    |   |   |             |             |       |                 |               |             |                 |           |             | Ĺ          | ><br>/ | Ĭ      |       | 11-   | •           |                                                          |                                         |                       |  |
| -100<br>m)     |   |   |             |             |       |                 |               |             |                 |           |             |            |        | Ő      |       |       | Y.          |                                                          |                                         |                       |  |
| -110           |   |   |             |             |       |                 |               |             |                 |           |             |            |        |        |       |       | Ų           |                                                          |                                         |                       |  |
| -120           |   |   |             |             |       |                 |               |             |                 |           |             |            |        |        |       |       |             |                                                          |                                         |                       |  |
| -130           |   |   |             |             |       |                 |               |             |                 |           |             |            |        |        |       |       |             |                                                          |                                         |                       |  |
| -140           |   |   |             |             |       |                 |               |             |                 |           |             |            |        |        |       |       |             |                                                          |                                         |                       |  |
| - 150          | - |   |             |             |       |                 |               |             |                 |           |             |            |        |        |       |       |             |                                                          |                                         |                       |  |
| -160           |   |   |             |             |       |                 |               |             |                 |           |             |            |        |        |       |       |             |                                                          |                                         |                       |  |
| · 1<br>-170    |   |   |             |             |       |                 |               |             |                 |           |             |            |        |        |       |       |             |                                                          |                                         |                       |  |
| -180           | • |   |             |             |       |                 |               |             |                 |           |             |            |        |        |       |       |             |                                                          |                                         |                       |  |
| · T<br>-190    | ] |   |             |             |       |                 |               |             |                 |           |             |            |        |        |       |       |             |                                                          |                                         |                       |  |

# S148 $^{19}$ F NMR of **5**c

### S149 $^{1}$ H NMR of **5d**



S199



| 0 -             |                                    |                                      |                      |                            |                       |              |                        |                       |          |           |         |            |                                   |                        |             |           |  |
|-----------------|------------------------------------|--------------------------------------|----------------------|----------------------------|-----------------------|--------------|------------------------|-----------------------|----------|-----------|---------|------------|-----------------------------------|------------------------|-------------|-----------|--|
| - 10            | 15 Acquired Siz<br>16 Spectral Siz | 13 Lowest<br>Frequency<br>14 Nucleus | 12 Spectral<br>Width | 11 Spectromet<br>Frequency | 10 Number of<br>Scans | 9 Temperatur | 8 Modification<br>Date | 7 Acquisition<br>Date | Sequence | 5 Solvent | 4 Owner | 3 Origin   | 2 Title                           | Name                   | 1 Data File | Parameter |  |
|                 | ze 65536<br>e 131072               | -82292.9                             | 89285.7              | er 376.50                  | 16                    | e 298.2      | -                      | 2014-09               | uhufi7   |           | nmrsu   | Bruker Bi  | F19 CDC<br>topspin/<br>Sangit/ s  | Desktop/<br>SJ-231-I   | C:/Usen     |           |  |
|                 |                                    |                                      |                      |                            |                       |              |                        | -15T05:54:            |          |           |         | oSpin Gmbl | 13 / opt/<br>nmrsu/<br>EP 14 nmrs | /Sangit-<br>II/ 2/ fid | /ho/        | Value     |  |
| -               |                                    |                                      |                      |                            |                       |              |                        |                       |          |           |         | 57540      | CF <sub>2</sub>                   |                        |             |           |  |
| - 8<br>-        |                                    |                                      |                      |                            |                       | -            |                        |                       |          |           |         | Í          | - 3                               |                        |             |           |  |
| ģ -             |                                    |                                      |                      |                            |                       |              |                        |                       |          | J         |         |            | Ph                                |                        |             |           |  |
| - א             |                                    |                                      |                      |                            |                       |              |                        |                       |          | C         |         |            | '<br>~^                           |                        |             |           |  |
| ģ -             |                                    |                                      |                      |                            |                       |              |                        |                       |          | U         | ,       |            | L.                                |                        |             |           |  |
| -90<br>f1 (ppm) |                                    |                                      |                      |                            |                       |              |                        |                       |          |           |         |            |                                   |                        |             |           |  |
| -110            |                                    |                                      |                      | f1 (ppm)                   |                       | 100          |                        |                       |          |           | _       |            |                                   | 91                     |             |           |  |
| -120            |                                    |                                      |                      |                            |                       | 1            |                        |                       |          |           |         |            |                                   |                        |             |           |  |
| -130            |                                    |                                      |                      |                            | Ċ.                    |              |                        |                       |          |           |         |            |                                   |                        |             |           |  |
| -140            |                                    |                                      |                      |                            |                       |              |                        |                       |          |           |         |            |                                   |                        |             |           |  |
| -150            |                                    |                                      |                      |                            |                       |              |                        |                       |          |           |         |            |                                   |                        |             |           |  |
| -160            |                                    |                                      |                      |                            |                       |              |                        |                       |          |           |         |            |                                   |                        |             |           |  |
| -170            |                                    |                                      |                      |                            |                       |              |                        |                       |          |           |         |            |                                   |                        |             |           |  |
| -180            |                                    |                                      |                      |                            |                       |              |                        |                       |          |           |         |            |                                   |                        |             |           |  |
| -190            |                                    |                                      |                      |                            |                       |              |                        |                       |          |           |         |            |                                   |                        |             |           |  |

# S151 <sup>19</sup>F NMR of **5d**

**ORTEP** View of 3f with 50% ellipsoidal probability





| Identification code                      | SJ-AA-121 (CCDC No. 1              | 1063690)                       |
|------------------------------------------|------------------------------------|--------------------------------|
| Empirical formula                        | $C_{17}H_{13}F_4NO$                |                                |
| Formula weight                           | 323.28                             |                                |
| Temperature                              | 296(2) K                           |                                |
| Wavelength                               | 0.71073 Å                          |                                |
| Crystal system                           | Triclinic                          |                                |
| Space group                              | P -1                               |                                |
| Unit cell dimensions                     | a = 7.3417(10) Å                   | α= 75.006(4)°.                 |
|                                          | b = 10.0649(14) Å                  | β= 89.015(4)°.                 |
|                                          | c = 10.3982(14) Å                  | $\gamma = 78.726(4)^{\circ}$ . |
| Volume                                   | 727.42(17) Å <sup>3</sup>          |                                |
| Z                                        | 2                                  |                                |
| Density (calculated)                     | 1.476 Mg/m <sup>3</sup>            |                                |
| Absorption coefficient                   | 0.127 mm <sup>-1</sup>             |                                |
| F(000)                                   | 332                                |                                |
| Theta range for data collection          | 2.029 to 26.435°.                  |                                |
| Index ranges                             | -9<=h<=9, -12<=k<=12, -            | -13<=l<=13                     |
| Reflections collected                    | 21469                              |                                |
| Independent reflections                  | 2970 [R(int) = 0.0366]             |                                |
| Completeness to theta = $25.242^{\circ}$ | 99.8 %                             |                                |
| Absorption correction                    | None                               |                                |
| Refinement method                        | Full-matrix least-squares          | on F <sup>2</sup>              |
| Data / restraints / parameters           | 2970 / 0 / 209                     |                                |
| Goodness-of-fit on F <sup>2</sup>        | 1.033                              |                                |
| Final R indices [I>2sigma(I)]            | R1 = 0.0481, wR2 = 0.119           | 94                             |
| R indices (all data)                     | $R1 = 0.0819, wR2 = 0.13^{\circ}$  | 73                             |
| Extinction coefficient                   | n/a                                |                                |
| Largest diff. peak and hole              | 0.213 and -0.202 e.Å <sup>-3</sup> |                                |

## Table 1. Crystal data and structure refinement for 3f

|       | Х       | У        | Z       | U(eq)  |  |
|-------|---------|----------|---------|--------|--|
| O(1)  | 8355(2) | 3570(1)  | 4009(1) | 53(1)  |  |
| F(1)  | 8564(2) | -1374(1) | 9075(1) | 83(1)  |  |
| F(4)  | 7044(2) | 3393(2)  | 551(2)  | 99(1)  |  |
| F(2)  | 6803(3) | 2117(1)  | 2494(2) | 108(1) |  |
| N(1)  | 7343(2) | 4885(2)  | 5524(2) | 46(1)  |  |
| F(3)  | 4390(2) | 3263(2)  | 1318(2) | 104(1) |  |
| C(1)  | 7232(2) | 6134(2)  | 4506(2) | 40(1)  |  |
| C(11) | 7867(2) | 3725(2)  | 5225(2) | 38(1)  |  |
| C(12) | 8065(2) | 2367(2)  | 6235(2) | 39(1)  |  |
| C(7)  | 7867(3) | 4731(2)  | 2820(2) | 43(1)  |  |
| C(17) | 8362(3) | 1110(2)  | 5877(2) | 48(1)  |  |
| C(6)  | 7491(3) | 6123(2)  | 3184(2) | 43(1)  |  |
| C(8)  | 6065(3) | 4573(2)  | 2206(2) | 50(1)  |  |
| C(13) | 7932(3) | 2338(2)  | 7576(2) | 49(1)  |  |
| C(2)  | 6838(3) | 7405(2)  | 4846(2) | 51(1)  |  |
| C(3)  | 6671(3) | 8657(2)  | 3882(2) | 55(1)  |  |
| C(14) | 8096(3) | 1082(2)  | 8532(2) | 57(1)  |  |
| C(4)  | 6905(3) | 8648(2)  | 2570(2) | 60(1)  |  |

Table 2. Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for 3f U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| C(10) | 9547(3) | 4585(2) | 1963(2) | 58(1) |
|-------|---------|---------|---------|-------|
| C(16) | 8531(3) | -152(2) | 6828(2) | 54(1) |
| C(5)  | 7319(3) | 7390(2) | 2224(2) | 59(1) |
| C(15) | 8391(3) | -133(2) | 8134(2) | 53(1) |
| C(9)  | 6095(3) | 3323(2) | 1670(2) | 64(1) |

# Table 3. Selected bond lengths [Å] for 3f

| O1—C11  | 1.348 (2) | C8—C9    | 1.499 (3) |
|---------|-----------|----------|-----------|
| 01—C7   | 1.459 (2) | С8—Н8А   | 0.99      |
| F1—C15  | 1.358 (2) | С8—Н8В   | 0.99      |
| F4—C9   | 1.338 (3) | C13—C14  | 1.376 (3) |
| F2—C9   | 1.307 (3) | C13—H13  | 0.95      |
| N1—C11  | 1.271 (2) | C2—C3    | 1.377 (3) |
| N1—C1   | 1.409 (2) | С2—Н2    | 0.95      |
| F3—C9   | 1.327 (3) | C3—C4    | 1.375 (3) |
| C1—C6   | 1.387 (3) | С3—Н3    | 0.95      |
| C1—C2   | 1.390 (3) | C14—C15  | 1.367 (3) |
| C11—C12 | 1.475 (2) | C14—H14  | 0.95      |
| C12—C17 | 1.386 (2) | C4—C5    | 1.380 (3) |
| C12—C13 | 1.390 (3) | C4—H4    | 0.95      |
| C7—C10  | 1.515 (3) | C10—H10A | 0.98      |

| С7—С6   | 1.517 (2) | C10—H10B | 0.98      |
|---------|-----------|----------|-----------|
| С7—С8   | 1.532 (3) | C10—H10C | 0.98      |
| C17—C16 | 1.378 (3) | C16—C15  | 1.365 (3) |
| С17—Н17 | 0.95      | C16—H16  | 0.95      |
| C6—C5   | 1.387 (3) | С5—Н5    | 0.95      |

# Table 4. Selected bond angles [°] for 3f

| C11—O1—C7   | 121.02 (13) | C3—C2—H2      | 119.6       |
|-------------|-------------|---------------|-------------|
| C11—N1—C1   | 118.15 (15) | C1—C2—H2      | 119.6       |
| C6—C1—C2    | 119.74 (17) | C4—C3—C2      | 119.64 (18) |
| C6—C1—N1    | 121.71 (16) | С4—С3—Н3      | 120.2       |
| C2-C1-N1    | 118.55 (16) | С2—С3—Н3      | 120.2       |
| N1-C11-O1   | 125.89 (16) | C15—C14—C13   | 118.62 (18) |
| N1—C11—C12  | 121.77 (16) | C15—C14—H14   | 120.7       |
| O1—C11—C12  | 112.30 (14) | C13—C14—H14   | 120.7       |
| C17—C12—C13 | 118.78 (17) | C3—C4—C5      | 120.07 (19) |
| C17—C12—C11 | 121.48 (16) | C3—C4—H4      | 120         |
| C13—C12—C11 | 119.73 (16) | C5—C4—H4      | 120         |
| O1—C7—C10   | 104.03 (14) | C7—C10—H10A   | 109.5       |
| O1—C7—C6    | 110.55 (14) | C7—C10—H10B   | 109.5       |
| C10—C7—C6   | 112.08 (16) | H10A—C10—H10B | 109.5       |

| O1—C7—C8    | 107.60 (15) | C7—C10—H10C   | 109.5       |
|-------------|-------------|---------------|-------------|
| С10—С7—С8   | 114.80 (16) | H10A—C10—H10C | 109.5       |
| C6—C7—C8    | 107.66 (15) | H10B—C10—H10C | 109.5       |
| C16—C17—C12 | 121.01 (18) | C15—C16—C17   | 118.26 (18) |
| С16—С17—Н17 | 119.5       | C15—C16—H16   | 120.9       |
| C12—C17—H17 | 119.5       | C17—C16—H16   | 120.9       |
| C5—C6—C1    | 118.94 (17) | C4—C5—C6      | 120.9 (2)   |
| C5—C6—C7    | 121.75 (17) | С4—С5—Н5      | 119.6       |
| C1—C6—C7    | 119.26 (16) | С6—С5—Н5      | 119.6       |
| С9—С8—С7    | 118.47 (17) | F1—C15—C16    | 118.47 (18) |
| С9—С8—Н8А   | 107.7       | F1—C15—C14    | 118.80 (18) |
| С7—С8—Н8А   | 107.7       | C16—C15—C14   | 122.73 (18) |
| С9—С8—Н8В   | 107.7       | F2—C9—F3      | 107.5 (2)   |
| С7—С8—Н8В   | 107.7       | F2—C9—F4      | 106.5 (2)   |
| H8A—C8—H8B  | 107.1       | F3—C9—F4      | 104.46 (19) |
| C14—C13—C12 | 120.59 (18) | F2—C9—C8      | 114.70 (18) |
| C14—C13—H13 | 119.7       | F3—C9—C8      | 110.58 (19) |
| C12—C13—H13 | 119.7       | F4—C9—C8      | 112.4 (2)   |
| C3—C2—C1    | 120.71 (19) |               |             |

|       | U11    | U <sup>22</sup> | U33    | U23    | U13    | U12    |
|-------|--------|-----------------|--------|--------|--------|--------|
| O(1)  | 84(1)  | 36(1)           | 32(1)  | -6(1)  | 2(1)   | 2(1)   |
| F(1)  | 135(1) | 47(1)           | 54(1)  | 7(1)   | 6(1)   | -16(1) |
| F(4)  | 130(1) | 106(1)          | 75(1)  | -57(1) | 6(1)   | -17(1) |
| F(2)  | 179(2) | 44(1)           | 99(1)  | -17(1) | -48(1) | -14(1) |
| N(1)  | 65(1)  | 36(1)           | 38(1)  | -10(1) | 5(1)   | -10(1) |
| F(3)  | 107(1) | 101(1)          | 123(1) | -50(1) | -22(1) | -36(1) |
| C(1)  | 44(1)  | 35(1)           | 42(1)  | -9(1)  | 2(1)   | -9(1)  |
| C(11) | 43(1)  | 39(1)           | 32(1)  | -9(1)  | -1(1)  | -7(1)  |
| C(12) | 40(1)  | 38(1)           | 37(1)  | -8(1)  | -1(1)  | -6(1)  |
| C(7)  | 59(1)  | 35(1)           | 31(1)  | -5(1)  | 2(1)   | -5(1)  |
| C(17) | 65(1)  | 41(1)           | 37(1)  | -10(1) | -1(1)  | -8(1)  |
| C(6)  | 51(1)  | 36(1)           | 40(1)  | -6(1)  | 2(1)   | -8(1)  |
| C(8)  | 61(1)  | 43(1)           | 43(1)  | -10(1) | 1(1)   | -8(1)  |
| C(13) | 65(1)  | 42(1)           | 39(1)  | -11(1) | 1(1)   | -7(1)  |
| C(2)  | 64(1)  | 43(1)           | 50(1)  | -16(1) | 5(1)   | -13(1) |
| C(3)  | 61(1)  | 36(1)           | 68(1)  | -15(1) | 2(1)   | -10(1) |
| C(14) | 80(2)  | 53(1)           | 34(1)  | -7(1)  | 4(1)   | -10(1) |
| C(4)  | 74(2)  | 36(1)           | 63(1)  | -1(1)  | 1(1)   | -12(1) |

Table 5. Anisotropic displacement parameters  $(\text{\AA}^2 x \ 10^3)$  for 3f The anisotropic displacement factor exponent takes the form:  $-2\pi^2 [\text{ h}^2 a^{*2} U^{11} + .... + 2 \text{ h k } a^* \text{ b}^* U^{12}]$ 

| C(10) | 65(1) | 53(1) | 55(1) | -14(1) | 15(1)  | -8(1)  |
|-------|-------|-------|-------|--------|--------|--------|
| C(16) | 75(1) | 36(1) | 50(1) | -10(1) | 2(1)   | -9(1)  |
| C(5)  | 82(2) | 44(1) | 44(1) | -3(1)  | 6(1)   | -11(1) |
| C(15) | 68(1) | 40(1) | 43(1) | 3(1)   | 1(1)   | -10(1) |
| C(9)  | 80(2) | 61(2) | 51(1) | -18(1) | -11(1) | -8(1)  |
|       |       |       |       |        |        |        |

Table 6. Hydrogen coordinates (  $x\;10^4$  ) and isotropic displacement parameters (Å  $^2x\;10^3$  ) for 3f

|        | x     | у    | Z    | U(eq) |  |
|--------|-------|------|------|-------|--|
| H(17)  | 8452  | 1117 | 4963 | 58    |  |
| H(8A)  | 5112  | 4563 | 2892 | 59    |  |
| H(8B)  | 5642  | 5425 | 1471 | 59    |  |
| H(13)  | 7727  | 3192 | 7835 | 59    |  |
| H(2)   | 6683  | 7411 | 5754 | 61    |  |
| H(3)   | 6396  | 9521 | 4123 | 66    |  |
| H(14)  | 8005  | 1060 | 9450 | 69    |  |
| H(4)   | 6781  | 9509 | 1900 | 72    |  |
| H(10A) | 10627 | 4723 | 2417 | 87    |  |
| H(10B) | 9299  | 5291 | 1106 | 87    |  |
| H(10C) | 9803  | 3645 | 1812 | 87    |  |

| H(16) | 8738 | -1013 | 6581 | 65 |
|-------|------|-------|------|----|
| H(5)  | 7489 | 7393  | 1315 | 70 |

## **ORTEP** view of 3z with 50% ellipsoidal probability



Packing diagram of 3z



| Identification code                      | AA-146 (CCDC No. 1402833)                      |                         |  |
|------------------------------------------|------------------------------------------------|-------------------------|--|
| Empirical formula                        | $C_{22}H_{16}F_3NO$                            |                         |  |
| Formula weight                           | 367.36                                         |                         |  |
| Temperature                              | 140(2) K                                       |                         |  |
| Wavelength                               | 0.71073 Å                                      |                         |  |
| Crystal system                           | Monoclinic                                     |                         |  |
| Space group                              | P 2 <sub>1/c</sub>                             |                         |  |
| Unit cell dimensions                     | a = 16.972(3) Å                                | α=90°.                  |  |
|                                          | b = 11.3201(16) Å                              | β=98.676(5)°.           |  |
|                                          | c = 18.722(3) Å                                | $\gamma = 90^{\circ}$ . |  |
| Volume                                   | 3555.7(10) Å <sup>3</sup>                      |                         |  |
| Z                                        | 8                                              |                         |  |
| Density (calculated)                     | 1.372 Mg/m <sup>3</sup>                        |                         |  |
| Absorption coefficient                   | 0.106 mm <sup>-1</sup>                         |                         |  |
| F(000)                                   | 1520                                           |                         |  |
| Theta range for data collection          | 2.109 to 24.432°.                              |                         |  |
| Index ranges                             | -19<=h<=19, -13<=k<=13, -21<=l<=2              |                         |  |
| Reflections collected                    | 72735                                          |                         |  |
| Independent reflections                  | 5859 [R(int) = 0.1793]                         |                         |  |
| Completeness to theta = $25.242^{\circ}$ | 90.9 %                                         |                         |  |
| Absorption correction                    | None                                           |                         |  |
| Refinement method                        | od Full-matrix least-squares on F <sup>2</sup> |                         |  |
| Data / restraints / parameters           | 5859 / 0 / 487                                 |                         |  |
| Goodness-of-fit on F <sup>2</sup>        | 1.149                                          |                         |  |
| Final R indices [I>2sigma(I)]            | R1 = 0.0842, wR2 = 0.2066                      |                         |  |
| R indices (all data)                     | ndices (all data) $R1 = 0.1296, wR2 = 0.2331$  |                         |  |
| Extinction coefficient                   | n/a                                            |                         |  |
| Largest diff. peak and hole              | 0.742 and -0.503 e.Å <sup>-3</sup>             |                         |  |

## Table 7. Crystal data and structure refinement for 3z

|       |         |         |         | <b></b> |  |
|-------|---------|---------|---------|---------|--|
|       | Х       | У       | Z       | U(eq)   |  |
| O(2)  | 6302(2) | 5272(2) | 3309(2) | 28(1)   |  |
| O(1)  | 2094(2) | 4763(3) | 3306(2) | 32(1)   |  |
| F(1)  | 4495(2) | 5658(3) | 3449(2) | 58(1)   |  |
| F(4)  | 6467(2) | 8720(3) | 3978(2) | 67(1)   |  |
| F(5)  | 7104(2) | 7199(4) | 4401(2) | 84(1)   |  |
| F(3)  | 3715(2) | 4325(3) | 3735(2) | 85(1)   |  |
| F(6)  | 5860(2) | 7120(3) | 4065(2) | 88(1)   |  |
| N(1)  | 1176(2) | 4171(3) | 2312(2) | 29(1)   |  |
| F(2)  | 3749(2) | 4717(3) | 2624(2) | 81(1)   |  |
| N(2)  | 6262(2) | 3786(3) | 2437(2) | 30(1)   |  |
| C(1)  | 1585(2) | 4859(4) | 1863(2) | 25(1)   |  |
| C(16) | 1425(3) | 4155(3) | 2984(2) | 26(1)   |  |
| C(2)  | 1430(3) | 4682(4) | 1124(2) | 32(1)   |  |
| C(28) | 6819(2) | 5721(4) | 2206(2) | 27(1)   |  |
| C(32) | 7730(3) | 5630(4) | 3388(2) | 28(1)   |  |
| C(23) | 6533(3) | 4620(4) | 1960(2) | 30(1)   |  |
| C(31) | 6526(3) | 7550(4) | 3897(3) | 39(1)   |  |
| C(38) | 6144(2) | 4155(4) | 3054(2) | 27(1)   |  |

Table 8. Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for 3z. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| C(29) | 6887(3) | 5961(4) | 3009(2) | 27(1) |
|-------|---------|---------|---------|-------|
| C(17) | 1083(3) | 3383(4) | 3487(2) | 28(1) |
| C(39) | 5796(3) | 3406(4) | 3565(2) | 32(1) |
| C(7)  | 2280(3) | 5867(4) | 2966(2) | 31(1) |
| C(30) | 6668(3) | 7251(4) | 3155(2) | 34(1) |
| C(3)  | 1808(3) | 5332(4) | 659(2)  | 38(1) |
| C(6)  | 2154(3) | 5709(4) | 2148(2) | 30(1) |
| C(24) | 6475(3) | 4327(4) | 1232(2) | 36(1) |
| C(8)  | 3146(3) | 6143(4) | 3296(3) | 34(1) |
| C(25) | 6715(3) | 5124(5) | 751(3)  | 42(1) |
| C(27) | 7054(3) | 6510(4) | 1712(2) | 38(1) |
| C(10) | 1748(3) | 6861(4) | 3196(2) | 30(1) |
| C(20) | 401(3)  | 1912(4) | 4411(3) | 43(1) |
| C(44) | 5483(3) | 2301(4) | 3338(3) | 41(1) |
| C(33) | 7869(3) | 4704(4) | 3866(3) | 40(1) |
| C(22) | 457(3)  | 2641(4) | 3215(3) | 38(1) |
| C(18) | 1373(3) | 3372(4) | 4224(3) | 40(1) |
| C(26) | 7011(3) | 6217(5) | 990(3)  | 43(1) |
| C(40) | 5777(3) | 3759(5) | 4273(3) | 42(1) |
| C(5)  | 2542(3) | 6337(4) | 1679(3) | 39(1) |
| C(4)  | 2368(3) | 6171(5) | 938(3)  | 45(1) |
| C(19) | 1024(3) | 2643(4) | 4683(3) | 44(1) |

| C(21) | 112(3)  | 1915(5) | 3674(3) | 46(1) |
|-------|---------|---------|---------|-------|
| C(34) | 8639(3) | 4387(5) | 4166(3) | 49(1) |
| C(9)  | 3763(3) | 5209(4) | 3274(3) | 43(1) |
| C(37) | 8387(3) | 6251(5) | 3229(3) | 43(1) |
| C(15) | 1435(4) | 6758(5) | 3831(3) | 53(2) |
| C(35) | 9282(3) | 4995(5) | 3994(3) | 51(2) |
| C(13) | 910(3)  | 8695(5) | 3693(3) | 48(1) |
| C(42) | 5160(3) | 1944(6) | 4531(3) | 56(2) |
| C(41) | 5451(3) | 3036(5) | 4754(3) | 54(2) |
| C(43) | 5170(3) | 1575(5) | 3828(3) | 55(2) |
| C(11) | 1626(3) | 7880(4) | 2818(3) | 43(1) |
| C(36) | 9155(3) | 5958(6) | 3534(3) | 55(2) |
| C(14) | 1008(4) | 7643(5) | 4072(3) | 59(2) |
| C(12) | 1207(3) | 8802(5) | 3067(3) | 50(1) |
|       |         |         |         |       |

# Table 9. Selected bond lengths [Å] for 3z.

| O2—C38 | 1.364 (5) | C25—C26 | 1.383 (7) |
|--------|-----------|---------|-----------|
| O2—C29 | 1.442 (5) | С25—Н18 | 0.95      |
| O1—C16 | 1.385 (5) | C27—C26 | 1.383 (7) |
| O1—C7  | 1.458 (5) | С27—Н20 | 0.95      |
| F1—C9  | 1.336 (6) | C10—C11 | 1.354 (7) |
| F4—C31 | 1.338 (5) | C10—C15 | 1.378 (7) |
| F5—C31 | 1.316 (6) | C20—C19 | 1.377 (7) |

| F3—C9   | 1.333 (6) | C20—C21 | 1.392 (7) |
|---------|-----------|---------|-----------|
| F6—C31  | 1.314 (6) | C20—H14 | 0.95      |
| N1—C16  | 1.265 (5) | C44—C43 | 1.396 (7) |
| N1—C1   | 1.404 (5) | C44—H32 | 0.95      |
| F2—C9   | 1.334 (6) | C33—C34 | 1.389 (7) |
| N2—C38  | 1.272 (5) | C33—H23 | 0.95      |
| N2—C23  | 1.423 (6) | C22—C21 | 1.382 (7) |
| C1—C2   | 1.383 (6) | C22—H16 | 0.95      |
| C1—C6   | 1.410 (6) | C18—C19 | 1.388 (7) |
| C16—C17 | 1.467 (6) | C18—H12 | 0.95      |
| C2—C3   | 1.370 (7) | C26—H19 | 0.95      |
| C2—H1   | 0.95      | C40—C41 | 1.392 (7) |
| C28—C27 | 1.387 (6) | C40—H28 | 0.95      |
| C28—C23 | 1.391 (6) | C5—C4   | 1.387 (7) |
| C28—C29 | 1.514 (6) | C5—H4   | 0.95      |
| C32—C33 | 1.376 (6) | C4—H3   | 0.95      |
| C32—C37 | 1.388 (6) | C19—H13 | 0.95      |
| C32—C29 | 1.544 (6) | C21—H15 | 0.95      |
| C23—C24 | 1.392 (6) | C34—C35 | 1.369 (8) |
| C31—C30 | 1.484 (7) | C34—H24 | 0.95      |
| C38—C39 | 1.468 (6) | C37—C36 | 1.381 (7) |
| C29—C30 | 1.541 (6) | C37—H27 | 0.95      |
| C17—C22 | 1.390 (6) | C15—C14 | 1.354 (7) |
| C17—C18 | 1.393 (6) | C15—H11 | 0.95      |
| C39—C40 | 1.388 (7) | C35—C36 | 1.386 (8) |
| C39—C44 | 1.401 (7) | C35—H25 | 0.95      |
| С7—С6   | 1.524 (6) | C13—C12 | 1.349 (7) |
| С7—С8   | 1.537 (6) | C13—C14 | 1.383 (8) |
| C7—C10  | 1.545 (6) | С13—Н9  | 0.95      |
| C30—H22 | 0.99      | C42—C41 | 1.372 (8) |
|---------|-----------|---------|-----------|
| C30—H21 | 0.99      | C42—C43 | 1.384 (8) |
| C3—C4   | 1.389 (7) | С42—Н30 | 0.95      |
| C3—H2   | 0.95      | C41—H29 | 0.95      |
| C6—C5   | 1.372 (6) | C43—H31 | 0.95      |
| C24—C25 | 1.379 (7) | C11—C12 | 1.383 (7) |
| C24—H17 | 0.95      | С11—Н7  | 0.95      |
| C8—C9   | 1.493 (7) | С36—Н26 | 0.95      |
| C8—H5   | 0.99      | C14—H10 | 0.95      |
| С8—Н6   | 0.99      | С12—Н8  | 0.95      |

Table 10. Selected bond angles [°] for 3z.

\_

| 118.3 (3) | C11—C10—C7                                                                                                                                                                            | 121.6 (4)                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 117.0 (3) | C15—C10—C7                                                                                                                                                                            | 119.9 (4)                                                                                                                                                                                                                                                                                                                                                                                                           |
| 118.8 (4) | C19—C20—C21                                                                                                                                                                           | 120.1 (5)                                                                                                                                                                                                                                                                                                                                                                                                           |
| 117.5 (4) | C19—C20—H14                                                                                                                                                                           | 120                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 118.9 (4) | C21—C20—H14                                                                                                                                                                           | 120                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 119.5 (4) | C43—C44—C39                                                                                                                                                                           | 119.4 (5)                                                                                                                                                                                                                                                                                                                                                                                                           |
| 121.6 (4) | C43—C44—H32                                                                                                                                                                           | 120.3                                                                                                                                                                                                                                                                                                                                                                                                               |
| 123.7 (4) | C39—C44—H32                                                                                                                                                                           | 120.3                                                                                                                                                                                                                                                                                                                                                                                                               |
| 122.8 (4) | C32—C33—C34                                                                                                                                                                           | 121.2 (5)                                                                                                                                                                                                                                                                                                                                                                                                           |
| 113.2 (4) | С32—С33—Н23                                                                                                                                                                           | 119.4                                                                                                                                                                                                                                                                                                                                                                                                               |
| 121.4 (4) | С34—С33—Н23                                                                                                                                                                           | 119.4                                                                                                                                                                                                                                                                                                                                                                                                               |
| 119.3     | C21—C22—C17                                                                                                                                                                           | 120.3 (4)                                                                                                                                                                                                                                                                                                                                                                                                           |
| 119.3     | C21—C22—H16                                                                                                                                                                           | 119.9                                                                                                                                                                                                                                                                                                                                                                                                               |
| 118.5 (4) | C17—C22—H16                                                                                                                                                                           | 119.9                                                                                                                                                                                                                                                                                                                                                                                                               |
| 124.1 (4) | C19—C18—C17                                                                                                                                                                           | 119.9 (5)                                                                                                                                                                                                                                                                                                                                                                                                           |
| 117.4 (4) | C19—C18—H12                                                                                                                                                                           | 120.1                                                                                                                                                                                                                                                                                                                                                                                                               |
| 117.4 (4) | C17—C18—H12                                                                                                                                                                           | 120.1                                                                                                                                                                                                                                                                                                                                                                                                               |
|           | 118.3 (3) $117.0 (3)$ $118.8 (4)$ $117.5 (4)$ $118.9 (4)$ $119.5 (4)$ $121.6 (4)$ $123.7 (4)$ $122.8 (4)$ $113.2 (4)$ $121.4 (4)$ $119.3$ $119.3$ $118.5 (4)$ $124.1 (4)$ $117.4 (4)$ | 118.3 (3) $C11-C10-C7$ $117.0$ (3) $C15-C10-C7$ $118.8$ (4) $C19-C20-C21$ $117.5$ (4) $C19-C20-H14$ $118.9$ (4) $C21-C20-H14$ $119.5$ (4) $C43-C44-C39$ $121.6$ (4) $C43-C44-H32$ $123.7$ (4) $C32-C33-C34$ $122.8$ (4) $C32-C33-H23$ $121.4$ (4) $C34-C33-H23$ $119.3$ $C21-C22-C17$ $119.3$ $C21-C22-H16$ $118.5$ (4) $C17-C22-H16$ $118.5$ (4) $C19-C18-C17$ $117.4$ (4) $C19-C18-H12$ $117.4$ (4) $C17-C18-H12$ |

| C33—C32—C29 | 122.7 (4) | C27—C26—C25 | 119.6 (5) |
|-------------|-----------|-------------|-----------|
| C37—C32—C29 | 119.9 (4) | C27—C26—H19 | 120.2     |
| C28—C23—C24 | 120.5 (4) | C25—C26—H19 | 120.2     |
| C28—C23—N2  | 121.1 (4) | C39—C40—C41 | 121.1 (5) |
| C24—C23—N2  | 118.3 (4) | C39—C40—H28 | 119.4     |
| F6—C31—F5   | 106.9 (5) | C41—C40—H28 | 119.4     |
| F6—C31—F4   | 104.9 (4) | C6—C5—C4    | 121.3 (5) |
| F5—C31—F4   | 106.1 (4) | C6—C5—H4    | 119.3     |
| F6—C31—C30  | 114.0 (4) | C4—C5—H4    | 119.3     |
| F5—C31—C30  | 113.3 (4) | C5—C4—C3    | 119.9 (5) |
| F4—C31—C30  | 111.0 (4) | С5—С4—Н3    | 120.1     |
| N2-C38-O2   | 125.0 (4) | С3—С4—Н3    | 120.1     |
| N2—C38—C39  | 122.4 (4) | C20—C19—C18 | 120.3 (5) |
| O2—C38—C39  | 112.6 (4) | C20—C19—H13 | 119.9     |
| O2—C29—C28  | 109.7 (3) | C18—C19—H13 | 119.9     |
| O2—C29—C30  | 104.1 (3) | C22—C21—C20 | 119.9 (5) |
| C28—C29—C30 | 111.2 (3) | C22—C21—H15 | 120.1     |
| O2—C29—C32  | 109.6 (3) | C20—C21—H15 | 120.1     |
| C28—C29—C32 | 109.8 (3) | C35—C34—C33 | 120.6 (5) |
| C30—C29—C32 | 112.3 (4) | C35—C34—H24 | 119.7     |
| C22—C17—C18 | 119.6 (4) | C33—C34—H24 | 119.7     |
| C22—C17—C16 | 118.6 (4) | F3—C9—F2    | 106.4 (4) |
| C18—C17—C16 | 121.8 (4) | F3—C9—F1    | 105.8 (4) |
| C40—C39—C44 | 119.0 (4) | F2—C9—F1    | 105.7 (4) |
| C40—C39—C38 | 121.7 (4) | F3—C9—C8    | 113.7 (5) |
| C44—C39—C38 | 119.3 (4) | F2—C9—C8    | 113.8 (4) |
| O1—C7—C6    | 109.3 (3) | F1—C9—C8    | 110.7 (4) |
| O1—C7—C8    | 104.8 (3) | C36—C37—C32 | 121.9 (5) |
| С6—С7—С8    | 114.1 (4) | С36—С37—Н27 | 119       |

| O1—C7—C10   | 109.1 (3) | С32—С37—Н27 | 119       |
|-------------|-----------|-------------|-----------|
| C6—C7—C10   | 111.5 (4) | C14—C15—C10 | 121.4 (5) |
| C8—C7—C10   | 107.7 (3) | C14—C15—H11 | 119.3     |
| C31—C30—C29 | 117.4 (4) | C10—C15—H11 | 119.3     |
| C31—C30—H22 | 107.9     | C34—C35—C36 | 119.1 (5) |
| C29—C30—H22 | 107.9     | C34—C35—H25 | 120.4     |
| C31—C30—H21 | 107.9     | C36—C35—H25 | 120.4     |
| C29—C30—H21 | 107.9     | C12—C13—C14 | 119.4 (5) |
| H22—C30—H21 | 107.2     | С12—С13—Н9  | 120.3     |
| C2—C3—C4    | 119.2 (4) | С14—С13—Н9  | 120.3     |
| С2—С3—Н2    | 120.4     | C41—C42—C43 | 120.4 (5) |
| C4—C3—H2    | 120.4     | C41—C42—H30 | 119.8     |
| C5—C6—C1    | 118.6 (4) | C43—C42—H30 | 119.8     |
| C5—C6—C7    | 125.0 (4) | C42—C41—C40 | 119.5 (5) |
| C1—C6—C7    | 116.4 (4) | C42—C41—H29 | 120.2     |
| C25—C24—C23 | 119.9 (5) | C40—C41—H29 | 120.2     |
| C25—C24—H17 | 120.1     | C42—C43—C44 | 120.5 (5) |
| C23—C24—H17 | 120.1     | C42—C43—H31 | 119.7     |
| C9—C8—C7    | 118.5 (4) | C44—C43—H31 | 119.7     |
| С9—С8—Н5    | 107.7     | C10—C11—C12 | 120.9 (5) |
| С7—С8—Н5    | 107.7     | C10—C11—H7  | 119.6     |
| С9—С8—Н6    | 107.7     | C12—C11—H7  | 119.6     |
| С7—С8—Н6    | 107.7     | C37—C36—C35 | 119.6 (5) |
| Н5—С8—Н6    | 107.1     | С37—С36—Н26 | 120.2     |
| C24—C25—C26 | 120.2 (4) | С35—С36—Н26 | 120.2     |
| C24—C25—H18 | 119.9     | C15—C14—C13 | 119.6 (5) |
| C26—C25—H18 | 119.9     | C15—C14—H10 | 120.2     |
| C26—C27—C28 | 121.3 (5) | C13—C14—H10 | 120.2     |
| C26—C27—H20 | 119.3     | C13—C12—C11 | 120.2 (5) |

| C28—C27—H20 | 119.3     | С13—С12—Н8 | 119.9 |
|-------------|-----------|------------|-------|
| C11—C10—C15 | 118.3 (5) | С11—С12—Н8 | 119.9 |

Table 11. Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for 3z. The anisotropic displacement factor exponent takes the form:  $-2\pi^2$ [ h<sup>2</sup>a<sup>\*2</sup>U<sup>11</sup> + ... + 2 h k a<sup>\*</sup> b<sup>\*</sup> U<sup>12</sup> ]

|       | U11    | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U13    | U <sup>12</sup> |
|-------|--------|-----------------|-----------------|-----------------|--------|-----------------|
| O(2)  | 35(2)  | 22(2)           | 26(2)           | -3(1)           | 7(1)   | -1(1)           |
| O(1)  | 37(2)  | 22(2)           | 36(2)           | 2(1)            | -3(1)  | -7(1)           |
| F(1)  | 37(2)  | 45(2)           | 89(2)           | -8(2)           | -6(2)  | -3(1)           |
| F(4)  | 101(3) | 31(2)           | 71(2)           | -21(2)          | 19(2)  | 1(2)            |
| F(5)  | 104(3) | 105(3)          | 35(2)           | -22(2)          | -14(2) | 51(2)           |
| F(3)  | 49(2)  | 47(2)           | 152(4)          | 45(2)           | -9(2)  | 5(2)            |
| F(6)  | 91(3)  | 74(3)           | 116(3)          | -57(2)          | 72(3)  | -41(2)          |
| N(1)  | 31(2)  | 27(2)           | 27(2)           | 0(2)            | 0(2)   | -4(2)           |
| F(2)  | 66(2)  | 71(2)           | 98(3)           | -44(2)          | -14(2) | 26(2)           |
| N(2)  | 38(2)  | 19(2)           | 34(2)           | 2(2)            | 6(2)   | 2(2)            |
| C(1)  | 26(2)  | 20(2)           | 28(2)           | -2(2)           | 1(2)   | 6(2)            |
| C(16) | 33(3)  | 12(2)           | 31(3)           | -5(2)           | 0(2)   | -1(2)           |
| C(2)  | 33(3)  | 28(3)           | 34(3)           | -4(2)           | 0(2)   | 6(2)            |
| C(28) | 26(2)  | 26(2)           | 29(2)           | 2(2)            | 2(2)   | 1(2)            |
| C(32) | 36(3)  | 27(2)           | 21(2)           | -3(2)           | 2(2)   | 0(2)            |
| C(23) | 33(3)  | 29(3)           | 26(2)           | 2(2)            | 3(2)   | 7(2)            |
| C(31) | 44(3)  | 24(3)           | 48(3)           | -10(2)          | 9(3)   | -3(2)           |
| C(38) | 28(2)  | 21(2)           | 32(3)           | 1(2)            | 3(2)   | 2(2)            |
| C(29) | 35(3)  | 16(2)           | 30(2)           | 3(2)            | 6(2)   | 2(2)            |
| C(17) | 35(3)  | 16(2)           | 32(3)           | -1(2)           | 6(2)   | -1(2)           |
| C(39) | 28(3)  | 31(3)           | 38(3)           | 5(2)            | 9(2)   | 2(2)            |
| C(7)  | 46(3)  | 14(2)           | 32(3)           | 2(2)            | 6(2)   | -12(2)          |
| C(30) | 47(3)  | 17(2)           | 37(3)           | -1(2)           | 3(2)   | 1(2)            |
| C(3)  | 47(3)  | 41(3)           | 25(2)           | -4(2)           | 3(2)   | 11(2)           |

| C(6)  | 37(3) | 18(2) | 37(3) | -1(2) | 8(2)  | 2(2)   |
|-------|-------|-------|-------|-------|-------|--------|
| C(24) | 49(3) | 28(3) | 31(3) | -5(2) | 7(2)  | 7(2)   |
| C(8)  | 34(3) | 25(2) | 40(3) | -2(2) | -3(2) | -1(2)  |
| C(25) | 56(3) | 45(3) | 27(3) | 2(2)  | 5(2)  | 10(3)  |
| C(27) | 48(3) | 34(3) | 29(3) | 4(2)  | -1(2) | -7(2)  |
| C(10) | 27(2) | 32(3) | 28(2) | -2(2) | -4(2) | -10(2) |
| C(20) | 49(3) | 34(3) | 49(3) | 12(2) | 17(3) | 0(2)   |
| C(44) | 35(3) | 37(3) | 51(3) | 2(2)  | 8(2)  | -7(2)  |
| C(33) | 47(3) | 33(3) | 39(3) | 5(2)  | 3(2)  | 5(2)   |
| C(22) | 36(3) | 40(3) | 36(3) | 1(2)  | 1(2)  | -5(2)  |
| C(18) | 54(3) | 23(3) | 41(3) | 0(2)  | 0(2)  | -7(2)  |
| C(26) | 52(3) | 47(3) | 31(3) | 12(2) | 9(2)  | -2(3)  |
| C(40) | 40(3) | 48(3) | 40(3) | 7(2)  | 9(2)  | -9(2)  |
| C(5)  | 45(3) | 29(3) | 42(3) | -4(2) | 8(2)  | -5(2)  |
| C(4)  | 62(4) | 40(3) | 34(3) | 6(2)  | 16(3) | -1(3)  |
| C(19) | 63(4) | 34(3) | 36(3) | 6(2)  | 12(3) | -3(3)  |
| C(21) | 42(3) | 42(3) | 54(3) | 8(3)  | 4(3)  | -18(2) |
| C(34) | 57(4) | 44(3) | 43(3) | 7(3)  | -6(3) | 19(3)  |
| C(9)  | 42(3) | 31(3) | 52(3) | -2(3) | -9(2) | -10(2) |
| C(37) | 45(3) | 45(3) | 39(3) | 9(2)  | 6(2)  | -3(2)  |
| C(15) | 80(4) | 38(3) | 43(3) | 10(3) | 20(3) | 12(3)  |
| C(35) | 42(3) | 71(4) | 38(3) | -7(3) | -2(2) | 20(3)  |
| C(13) | 61(4) | 33(3) | 51(3) | -7(3) | 11(3) | 15(3)  |
| C(42) | 43(3) | 70(4) | 54(4) | 24(3) | 7(3)  | -12(3) |
| C(41) | 53(4) | 68(4) | 41(3) | 13(3) | 6(3)  | -13(3) |
| C(43) | 45(3) | 40(3) | 78(4) | 14(3) | 6(3)  | -16(3) |
| C(11) | 50(3) | 36(3) | 45(3) | 2(2)  | 13(2) | 9(2)   |
| C(36) | 38(3) | 82(5) | 45(3) | -4(3) | 5(3)  | -8(3)  |
| C(14) | 82(4) | 58(4) | 43(3) | -1(3) | 31(3) | 21(3)  |
| C(12) | 61(4) | 32(3) | 56(4) | 8(3)  | 8(3)  | 12(3)  |

|       | Х    | У    | Z    | U(eq) |  |
|-------|------|------|------|-------|--|
| H(1)  | 1055 | 4098 | 934  | 39    |  |
| H(22) | 7102 | 7764 | 3036 | 41    |  |
| H(21) | 6181 | 7455 | 2816 | 41    |  |
| H(2)  | 1688 | 5210 | 152  | 46    |  |
| H(17) | 6269 | 3579 | 1066 | 43    |  |
| H(5)  | 3316 | 6850 | 3047 | 41    |  |
| H(6)  | 3148 | 6362 | 3808 | 41    |  |
| H(18) | 6678 | 4923 | 255  | 51    |  |
| H(20) | 7248 | 7266 | 1872 | 46    |  |
| H(14) | 169  | 1405 | 4726 | 52    |  |
| H(32) | 5484 | 2048 | 2854 | 49    |  |
| H(23) | 7430 | 4274 | 3994 | 48    |  |
| H(16) | 265  | 2633 | 2711 | 45    |  |
| H(12) | 1810 | 3863 | 4412 | 48    |  |
| H(19) | 7183 | 6762 | 660  | 52    |  |
| H(28) | 5990 | 4507 | 4431 | 51    |  |
| H(4)  | 2938 | 6896 | 1866 | 46    |  |
| H(3)  | 2632 | 6631 | 621  | 53    |  |
| H(13) | 1214 | 2647 | 5187 | 52    |  |
| H(15) | -322 | 1418 | 3488 | 55    |  |
| H(24) | 8720 | 3742 | 4493 | 59    |  |
| H(27) | 8307 | 6895 | 2901 | 51    |  |
| H(11) | 1521 | 6052 | 4106 | 63    |  |
| H(25) | 9808 | 4760 | 4188 | 61    |  |
| H(9)  | 636  | 9337 | 3872 | 58    |  |
| H(30) | 4951 | 1439 | 4862 | 67    |  |
| H(29) | 5431 | 3296 | 5233 | 65    |  |

Table 12. Hydrogen coordinates (  $x\;10^4$ ) and isotropic displacement parameters (Å $^2x\;10^3$ ) for 3z.

| H(31) | 4961 | 821  | 3678 | 66 |
|-------|------|------|------|----|
| H(7)  | 1830 | 7963 | 2376 | 52 |
| H(26) | 9593 | 6415 | 3430 | 66 |
| H(10) | 776  | 7543 | 4500 | 70 |
| H(8)  | 1128 | 9513 | 2797 | 60 |

**ORTEP** View of 5d with 50% ellipsoidal probability



Packing diagram of 5d



| Identification code                      | SJ-231 (CCDC No. 1402)             | 832)                    |
|------------------------------------------|------------------------------------|-------------------------|
| Empirical formula                        | $C_{22}$ H <sub>16</sub> $F_2$ N O | /                       |
| Formula weight                           | 367.36                             |                         |
| Temperature                              | 296(2) K                           |                         |
| Wavelength                               | 0.71073 Å                          |                         |
| Crystal system                           | Monoclinic                         |                         |
| Space group                              | P 2 <sub>1</sub> /n                |                         |
| Unit cell dimensions                     | a = 12.8017(8) Å                   | α=90°.                  |
|                                          | b = 9.6398(6) Å                    | β= 105.362(4)°.         |
|                                          | c = 15.4464(10) Å                  | $\gamma = 90^{\circ}$ . |
| Volume                                   | 1838.1(2) Å <sup>3</sup>           |                         |
| Z                                        | 4                                  |                         |
| Density (calculated)                     | 1.328 Mg/m <sup>3</sup>            |                         |
| Absorption coefficient                   | 0.102 mm <sup>-1</sup>             |                         |
| F(000)                                   | 760                                |                         |
| Theta range for data collection          | 2.406 to 25.394°.                  |                         |
| Index ranges                             | -15<=h<=15, -11<=k<=12             | 1, -18<=l<=18           |
| Reflections collected                    | 46069                              |                         |
| Independent reflections                  | 3384 [R(int) = 0.1770]             |                         |
| Completeness to theta = $25.242^{\circ}$ | 100.0 %                            |                         |
| Absorption correction                    | None                               |                         |
| Refinement method                        | Full-matrix least-squares          | on F <sup>2</sup>       |
| Data / restraints / parameters           | 3384 / 0 / 244                     |                         |
| Goodness-of-fit on F <sup>2</sup>        | 1.012                              |                         |
| Final R indices [I>2sigma(I)]            | R1 = 0.0563, wR2 = 0.126           | 54                      |
| R indices (all data)                     | R1 = 0.1246, wR2 = 0.152           | 25                      |
| Extinction coefficient                   | n/a                                |                         |
| Largest diff. peak and hole              | 0.300 and -0.241 e.Å <sup>-3</sup> |                         |

## Table 13. Crystal data and structure refinement for 5d.

|       | Х       | у       | Z        | U(eq)  |  |
|-------|---------|---------|----------|--------|--|
| O(1)  | 2120(2) | 6369(2) | 7261(1)  | 64(1)  |  |
| N(1)  | 2527(2) | 4147(2) | 7036(1)  | 40(1)  |  |
| F(2)  | 6079(2) | 6873(2) | 6649(2)  | 98(1)  |  |
| F(1)  | 5383(2) | 7688(3) | 7622(2)  | 131(1) |  |
| F(3)  | 5270(2) | 8772(2) | 6403(2)  | 126(1) |  |
| C(6)  | 2873(2) | 5031(3) | 5660(2)  | 39(1)  |  |
| C(17) | 2678(2) | 4936(3) | 8552(2)  | 41(1)  |  |
| C(1)  | 2215(2) | 4299(3) | 6079(2)  | 39(1)  |  |
| C(10) | 4779(2) | 4359(3) | 6466(2)  | 42(1)  |  |
| C(16) | 2424(2) | 5218(3) | 7574(2)  | 43(1)  |  |
| C(7)  | 3975(2) | 5501(3) | 6174(2)  | 41(1)  |  |
| C(8)  | 4166(2) | 6847(3) | 6313(2)  | 50(1)  |  |
| C(11) | 4901(2) | 3378(3) | 5839(2)  | 52(1)  |  |
| C(22) | 2087(3) | 5654(3) | 9041(2)  | 55(1)  |  |
| C(2)  | 1249(2) | 3751(3) | 5585(2)  | 54(1)  |  |
| C(18) | 3453(2) | 3998(3) | 8993(2)  | 54(1)  |  |
| C(5)  | 2513(2) | 5235(3) | 4738(2)  | 53(1)  |  |
| C(4)  | 1544(3) | 4696(3) | 4250(2)  | 61(1)  |  |
| C(3)  | 913(3)  | 3939(3) | 4669(2)  | 63(1)  |  |
| C(12) | 5629(3) | 2297(3) | 6092(3)  | 66(1)  |  |
| C(9)  | 5203(3) | 7529(4) | 6747(3)  | 68(1)  |  |
| C(21) | 2261(3) | 5407(4) | 9951(2)  | 69(1)  |  |
| C(15) | 5388(3) | 4207(3) | 7344(2)  | 64(1)  |  |
| C(20) | 3018(3) | 4471(4) | 10373(2) | 70(1)  |  |
| C(19) | 3625(3) | 3770(4) | 9900(2)  | 71(1)  |  |
| C(13) | 6235(3) | 2175(4) | 6958(3)  | 74(1)  |  |
| C(14) | 6109(3) | 3121(4) | 7585(3)  | 81(1)  |  |

Table 14. Atomic coordinates (  $x \ 10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for 5d. U(eq) is defined as one third of the trace of the orthogonalized U<sup>ij</sup> tensor.

| O1—C16  | 1.232 (3) | С22—Н16 | 0.95      |
|---------|-----------|---------|-----------|
| N1—C16  | 1.354 (3) | С2—С3   | 1.377 (4) |
| N1—C1   | 1.433 (3) | С2—Н2   | 0.95      |
| N1—H1   | 0.88      | C18—C19 | 1.378 (4) |
| F2—C9   | 1.331 (4) | C18—H12 | 0.95      |
| F1—C9   | 1.318 (4) | C5—C4   | 1.371 (4) |
| F3—C9   | 1.323 (4) | С5—Н5   | 0.95      |
| C6—C1   | 1.384 (3) | C4—C3   | 1.371 (4) |
| C6—C5   | 1.390 (4) | C4—H4   | 0.95      |
| C6—C7   | 1.494 (4) | С3—Н3   | 0.95      |
| C17—C18 | 1.381 (4) | C12—C13 | 1.362 (5) |
| C17—C22 | 1.388 (4) | С12—Н8  | 0.95      |
| C17—C16 | 1.483 (4) | C21—C20 | 1.358 (5) |
| C1—C2   | 1.375 (4) | C21—H15 | 0.95      |
| C10—C15 | 1.381 (4) | C15—C14 | 1.380 (5) |
| C10—C11 | 1.392 (4) | C15—H11 | 0.95      |
| C10—C7  | 1.493 (4) | C20—C19 | 1.377 (5) |
| C7—C8   | 1.327 (4) | C20—H14 | 0.95      |
| C8—C9   | 1.473 (4) | С19—Н13 | 0.95      |

## Table 15. Selected bond lengths [Å] and angles $[^{\circ}]$ for 5d

| С8—Н6   | 0.95      | C13—C14 | 1.371 (5) |
|---------|-----------|---------|-----------|
| C11—C12 | 1.384 (4) | С13—Н9  | 0.95      |
| С11—Н7  | 0.95      | C14—H10 | 0.95      |
| C22—C21 | 1.384 (4) |         |           |

## Table 16. Selected bond angles [°] for 5d

| C16—N1—C1   | 120.6 (2) | C4—C5—C6    | 121.0 (3) |
|-------------|-----------|-------------|-----------|
| C16—N1—H1   | 119.7     | C4—C5—H5    | 119.5     |
| C1—N1—H1    | 119.7     | С6—С5—Н5    | 119.5     |
| C1—C6—C5    | 118.2 (3) | C5—C4—C3    | 120.2 (3) |
| C1—C6—C7    | 120.9 (2) | С5—С4—Н4    | 119.9     |
| C5—C6—C7    | 120.8 (2) | C3—C4—H4    | 119.9     |
| C18—C17—C22 | 118.8 (3) | C4—C3—C2    | 119.5 (3) |
| C18—C17—C16 | 123.9 (3) | С4—С3—Н3    | 120.3     |
| C22—C17—C16 | 117.3 (3) | С2—С3—Н3    | 120.3     |
| C2—C1—C6    | 120.4 (3) | C13—C12—C11 | 120.6 (3) |
| C2—C1—N1    | 119.8 (2) | С13—С12—Н8  | 119.7     |
| C6—C1—N1    | 119.8 (2) | C11—C12—H8  | 119.7     |
| C15—C10—C11 | 118.2 (3) | F1—C9—F3    | 107.0 (3) |
| C15—C10—C7  | 122.7 (3) | F1—C9—F2    | 104.3 (3) |
| C11—C10—C7  | 119.1 (3) | F3—C9—F2    | 103.8 (3) |
| 01—C16—N1   | 121.2 (3) | F1—C9—C8    | 114.2 (3) |

| O1—C16—C17  | 121.8 (2) | F3—C9—C8    | 111.6 (3) |
|-------------|-----------|-------------|-----------|
| N1—C16—C17  | 117.1 (2) | F2—C9—C8    | 115.0 (3) |
| C8—C7—C10   | 126.1 (3) | C20—C21—C22 | 120.3 (3) |
| C8—C7—C6    | 119.4 (3) | C20—C21—H15 | 119.8     |
| С10—С7—С6   | 114.5 (2) | C22—C21—H15 | 119.8     |
| С7—С8—С9    | 127.9 (3) | C14—C15—C10 | 120.6 (3) |
| С7—С8—Н6    | 116       | C14—C15—H11 | 119.7     |
| С9—С8—Н6    | 116       | C10-C15-H11 | 119.7     |
| C12—C11—C10 | 120.4 (3) | C21—C20—C19 | 120.2 (3) |
| С12—С11—Н7  | 119.8     | C21—C20—H14 | 119.9     |
| С10—С11—Н7  | 119.8     | C19—C20—H14 | 119.9     |
| C21—C22—C17 | 120.2 (3) | C20—C19—C18 | 120.0 (3) |
| С21—С22—Н16 | 119.9     | C20—C19—H13 | 120       |
| С17—С22—Н16 | 119.9     | C18—C19—H13 | 120       |
| C1—C2—C3    | 120.6 (3) | C12-C13-C14 | 119.5 (3) |
| C1—C2—H2    | 119.7     | С12—С13—Н9  | 120.2     |
| С3—С2—Н2    | 119.7     | С14—С13—Н9  | 120.2     |
| C19—C18—C17 | 120.5 (3) | C13—C14—C15 | 120.7 (3) |
| C19—C18—H12 | 119.8     | C13—C14—H10 | 119.7     |
| C17—C18—H12 | 119.8     | C15—C14—H10 | 119.7     |

|       | U11    | U <sup>22</sup> | U33    | U <sup>23</sup> | U13   | U12    |  |
|-------|--------|-----------------|--------|-----------------|-------|--------|--|
| O(1)  | 105(2) | 32(1)           | 61(1)  | 3(1)            | 30(1) | 12(1)  |  |
| N(1)  | 51(1)  | 28(1)           | 44(1)  | 0(1)            | 17(1) | 3(1)   |  |
| F(2)  | 52(1)  | 88(2)           | 146(2) | -16(2)          | 14(1) | -16(1) |  |
| F(1)  | 131(2) | 166(3)          | 93(2)  | -63(2)          | 22(2) | -63(2) |  |
| F(3)  | 95(2)  | 61(1)           | 201(3) | 23(2)           | 2(2)  | -30(1) |  |
| C(6)  | 42(2)  | 35(2)           | 41(2)  | -1(1)           | 12(1) | 0(1)   |  |
| C(17) | 49(2)  | 34(2)           | 46(2)  | -5(1)           | 20(1) | -5(1)  |  |
| C(1)  | 45(2)  | 30(1)           | 43(2)  | -4(1)           | 13(1) | 0(1)   |  |
| C(10) | 39(2)  | 39(2)           | 51(2)  | 4(1)            | 17(1) | -8(1)  |  |
| C(16) | 49(2)  | 33(2)           | 51(2)  | -2(1)           | 20(1) | -4(1)  |  |
| C(7)  | 46(2)  | 44(2)           | 37(2)  | 0(1)            | 17(1) | -6(1)  |  |
| C(8)  | 48(2)  | 45(2)           | 58(2)  | -5(2)           | 13(2) | -4(2)  |  |
| C(11) | 50(2)  | 53(2)           | 59(2)  | 1(2)            | 22(2) | -2(2)  |  |
| C(22) | 70(2)  | 49(2)           | 56(2)  | -1(2)           | 31(2) | 0(2)   |  |
| C(2)  | 51(2)  | 52(2)           | 61(2)  | -5(2)           | 18(2) | -11(2) |  |
| C(18) | 55(2)  | 53(2)           | 56(2)  | -3(2)           | 16(2) | 5(2)   |  |
| C(5)  | 58(2)  | 57(2)           | 44(2)  | 4(2)            | 15(2) | -3(2)  |  |
| C(4)  | 66(2)  | 68(2)           | 43(2)  | -3(2)           | 5(2)  | 3(2)   |  |

Table 17. Anisotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for 5d. The anisotropic displacement factor exponent takes the form:  $-2\pi^2$ [ h<sup>2</sup>a\*<sup>2</sup>U<sup>11</sup> + ... + 2 h k a\* b\* U<sup>12</sup> ]

| C(3)  | 52(2) | 66(2) | 63(2)  | -11(2) | 2(2)  | -11(2) |
|-------|-------|-------|--------|--------|-------|--------|
| C(12) | 63(2) | 53(2) | 90(3)  | -1(2)  | 35(2) | 4(2)   |
| C(9)  | 71(3) | 47(2) | 83(3)  | -12(2) | 17(2) | -14(2) |
| C(21) | 85(3) | 70(2) | 62(2)  | -11(2) | 37(2) | -2(2)  |
| C(15) | 68(2) | 59(2) | 59(2)  | 0(2)   | 6(2)  | 3(2)   |
| C(20) | 77(2) | 90(3) | 43(2)  | -4(2)  | 15(2) | -10(2) |
| C(19) | 70(2) | 84(3) | 53(2)  | 4(2)   | 7(2)  | 11(2)  |
| C(13) | 60(2) | 63(2) | 100(3) | 18(2)  | 21(2) | 12(2)  |
| C(14) | 76(3) | 77(3) | 76(3)  | 14(2)  | -2(2) | 8(2)   |
|       |       |       |        |        |       |        |

Table 18. Hydrogen coordinates (  $x\;10^4$ ) and isotropic displacement parameters (Å  $^2x\;10^3$ ) for 5d.

|       | Х    | У    | Z    | U(eq) |  |
|-------|------|------|------|-------|--|
| H(1)  | 2787 | 3349 | 7276 | 48    |  |
| H(6)  | 3560 | 7444 | 6109 | 61    |  |
| H(7)  | 4480 | 3450 | 5233 | 63    |  |
| H(16) | 1561 | 6316 | 8750 | 66    |  |
| H(2)  | 809  | 3238 | 5879 | 65    |  |
| H(12) | 3869 | 3506 | 8668 | 65    |  |
| H(5)  | 2944 | 5756 | 4441 | 63    |  |

| H(4)  | 1309 | 4848 | 3621  | 73 |
|-------|------|------|-------|----|
| H(3)  | 250  | 3547 | 4330  | 75 |
| H(8)  | 5708 | 1635 | 5658  | 79 |
| H(15) | 1850 | 5896 | 10281 | 83 |
| H(11) | 5311 | 4856 | 7785  | 77 |
| H(14) | 3128 | 4298 | 10997 | 84 |
| H(13) | 4164 | 3129 | 10200 | 85 |
| H(9)  | 6742 | 1439 | 7126  | 89 |
| H(10) | 6521 | 3027 | 8191  | 97 |

## **References:**

- Y. Pei, M. J. Lilly, D. J. Owen, L. J. D'Souza, X.-Q. Tang, J. Yu, R. Nazarbaghi, A. Hunter, C. M. Anderson, S. Glasco, N. J. Ede, I. W. James, U. Maitra, S. Chandrasekaran, W. H. Moos and S. S. Ghosh, J. Org. Chem., 2003, 68, 92.
- Y.-M. Wang, J. Wu, C. Hoong, V. Rauniyar and F. D. Toste, J. Am. Chem. Soc., 2012, 134, 12928.
- C.-P. Zhang, Z.-L. Wang, Q.-Y. Chen, C.-T. Zhang, Y.-C. Gu and J.-C. Xiao, Angew. Chem. Int. Ed., 2011, 50, 1896.
- Q.-H. Deng, J.-R. Chen, Q. Wei, Q.-Q. Zhao, L.-Q. Lu and W.-J. Xiao, *Chem. Commun.*, 2015, **51**, 3537.
- 5) H. Yang, X.-H. Duan, J.-F. Zhao and L.-N. Guo, Org. Lett., 2015, 17, 1998.
- Y.-y. Chen, X.-j. Zhang, H.-m. Yuan, W.-t. Wei and M. Yan, *Chem. Commun.*, 2013, 49, 10974.
- 7) P. Molina, M. Alajarín and P. Sánchez-Andrada, Synthesis 1993, 2, 225.
- E. Karl, G. Norbert, H. Albrecht, A. Eberhard, L. Gisela, R. Harald, Eur. Pat. Appl. EP0545099, 1993.
- 9) J. Ferguson, F. Zeng, N. Alwis and H. Alper, Org. Lett., 2013, 15, 1998.