Aryne Generation vs Truce-Smiles and Fries Rearrangements during the Kobayashi Fragmentation Reaction: A New Bi-Aryl Synthesis

Omer K. Rasheed, Ian R. Hardcastle, James Raftery and Peter Quayle*

Correponding author: peter.quayle@manchester.ac.uk

NOTE OF CAUTION: Many of the compounds prepared and utilised in this study are poly-nitroaramtics. While we have not tested the thermal/shock stability of these compouds we do suggest that every precaution be taken in their handling in order to avoid detonation.

All reactions were conducted in dry glassware under a nitrogen atmosphere, unless otherwise stated. All chemicals were purchased from a chemical supplier and used as received unless otherwise stated. THF was distilled from sodium wire and acetonitrile and DCM were redistilled from calcium hydride; methanol was dried over molecular sieves (4 Å). n-BuLi was purchased as a 1.6M solution in hexane from Aldrich Chemicals. PhLi was purchased as 1.8M solution in dibutylether from Aldrich Chemicals. Tetrabutylammonium fluoride was purchased as 1M solution in THF from Aldrich chemicals. Sodium hydride was purchased as 80% dispersion in mineral oil from Aldrich chemicals. ¹H NMR spectra were recorded at 300, 400 or 500 MHz and ¹³C NMR spectra at 75, 100 or 125 MHz on a Bruker AC300, AC400 or AC500 spectrometer. The splitting patterns for NMR spectra are designated as follows: s (singlet), br.s (broad singlet), d (doublet), t (triplet), q (quadruplet), m (multiplet), or combinations thereof. Assignments were made with the aid of DEPT135, COSY, HMBC and HMQC experiments. Mass spectra were recorded on one of the following: Waters QTOF (ES, HRMS), Thermo Finnigan MAT95XP (GC/MS, EI, and HRMS) or a Hewlett Packard 5971 MSD (GC/MS). Infrared spectra were recorded on a Bruker Alpha FT-IR. A Sanyo Gallenkamp melting point apparatus was used for melting points. Chromatographic purifications were performed using silica gel SDS (particle size 0.04-0.06 mm).

i. Attempted generation and trapping of benzyne (9).

Synthesis of 2-bromo-4-methyl-6-nitrophenol (5a):¹

To the stirred mixture of 2,6-dibromo-4-methylphenol (30.8 g, 0.12 mol) in glacial acetic acid (300 mL), sodium nitrite (88 g, 0.13 mol) was added. The reaction mixture was stirred overnight at rt. The mixture was poured into water (1.5 L). The product was precipitated out which was then filtered. The title compound was obtained as deep yellow solid (26.81 g, 93%, mp 66-68 °C, Lit¹ 67-69 °C). ¹H NMR (500 MHz, CDCl₃) δ ppm 2.33 (3H, s, CH₃) 7.67 (1H, d, J = 1.5 Hz, Ar-H₃) 7.86 (1H, d, J = 1 Hz, Ar-H₅) 10.90 (1H, br. s., OH).¹³**C** NMR (125 MHz, *CDCl*₃) δ ppm 20.0(CH₃), 112.6, 123.9 (**C**₅), 130.5, 137.5, 141.6 (C₃), 149.9. MS (ES-): [M] 230. Accurate Mass (ES-): [C₇H₆O₃N₁⁷⁹Br₁-¹H] requires 229.9458 found 229.9449. **v**_{max}(ATR): 1534, 1620, 1734, 3440 cm⁻¹.

Synthesis of (2-bromo-4-methyl-6-nitrophenoxy)trimethylsilane (5): The phenol (1.1 mmol, 1.1 eq.) was refluxed with 1,1,1,3,3,3hexamethyldisilazane (3.3 mmol, 3 eq.) for 3 hours. After cooling down the reaction mixture was concentrated in vacuo to si give pure title compound as an orange oil. 93% yield. ¹H NMR (300 MHz, CDCl₃) δ ppm 0.33 (9H, s, Si-CH₃) 2.33 (3H, s, \sim CH₃) 7.54 (1H, d, J = 1 Hz, Ar-H₃) 7.58 (1H, d, J = 2 Hz, Ar-H₅). ¹³C NMR (75 MHz, $CDCl_3$) δ ppm 0.88 (Si-CH₃), 20.1 O2N.6 Br (CH_3) , 117.7, 124.5 (C_5) , 132.3, 138.0, 142.7 (C_3) , 144.6. **MS** (EI+): [M]⁺ 303.0. **Accurate Mass** (EI+): $C_{10}H_{14}O_3^{79}Br_1Si_1N_1$ requires 302.9925 found 302.9928. $v_{max}(ATR)$: 1252, 1353, 1473, 1527, 2956 cm⁻¹.

Synthesis of 2-nitro-4-methyl-6-(trimethylsilyl)phenol (6):¹

Phenyllithium (5 mL, 2 M, 10 mmol) was added to the (2-bromo-4-methyl-6-nitrophenoxy)trimethylsilane (3.04 g, 10 mmol, 1 eq.) in THF (50 mL) at -78 °C over 10 min. The reaction mixture was stirred for 2 hrs and then quenched with water. After this allowed the reaction mixture to warm to room temperature poured into ether (50 mL) and washed with brine (3 x 50 mL). The organic layer was dried over MgSO4 and concentrated in vacuo. The crude product was purified by column chromatography (silica; ether : petroleum ether 5 : 95) to afford the title compound as bright yellow solid. (1.75 g, 77.7 %; mp 94.2-94.6 °C).¹H NMR (300 MHz, CDCl₃) δ ppm 0.36 (9H, s, Si-CH₃) 2.34 (3H, s, C-CH₃)

7.47 (1H, d, J = 2 Hz, Ar-H₅) 7.88 (1H, dd, J = 1.5 Hz, Ar-H₃) 10.88 (1H, s, OH). ¹³C NMR (75 MHz, CDC/₃) δ ppm -1.3 (Si-CH₃), 20.2 (C-CH₃), 125.2 (**C**₃), 127.1, 129.6, 131.4, 144.4 (**C**₅), 157.1. **MS** (EI+): [M⁺] 225.1. Accurate Mass (EI+): C₁₀H₁₅O₃N₁Si₁ requires 225.0821 found 225.0816. max(ATR): 1542, 1590, 1607, 1639, 2961, 3409 cm⁻¹.

General procedure for triflate synthesis:

To the stirred mixture of substituted trimethylsilyl phenol (1 eq.), dry pyridine (3 eq.) in DCM (5 mL), Trifluoromethanesulphonic anhydride (1.1 eq.) was added slowly at 0 °C. The reaction mixture was then stirred for sixteen hours and then poured into ether (30 mL). The organic phase was washed with water (3 x 30 mL), dried over MgSO₄ and concentrated in vacuo to give the title compound,

2-nitro-4-methyl-6-(trimethylsilyl)phenyl trifluoromethanesulfonate (7) as an orange oil, 95 % yeild. ¹H NMR (400 MHz, *CDCl*₃) δ ppm 0.43 (9H, s, Si-CH₃) 2.47 (3H, s, CH₃) 7.57 (1H, dd, J = 2, 1 Hz, Ar-H₅) 7.78 (1H, dd, J = 2, 1 Hz, Ar-H₃). NMR (125 MHz, CDCl₃) δ ppm -0.16 (Si-CH₃), 20.8 (CH₃), 127.5 (C₃), 138.6, 139.3, 139.8, 141.1 (C₅), 143.2. MS O₂N

¹ I. R. Hardcastle, R. F. Hunter, P. Quayle and P. N. Edwards, Tetrahedron lett. 1994, 35, 3805.b) I. R. Hardcastle, University of Manchester, PhD thesis, 1990. c) L. C. Railford, J. Am. Chem. Soc. 1919, 41, 2068

(ES+): [M⁺] 380.0. Accurate Mass(ES+): C₁₁H₁₄O₅Si₁N₁S₁¹⁹F₃ requires 380.0206 found 380.0206.**v** _{max}(ATR): 1254, 1353, 1404, 1539, 1575, 2957 cm⁻¹.

Attempted aryne generation

Synthesis of 4-methyl-2-nitro-6-((trifluromethyl)sulfonyl)phenol (10)

Tetrabutylammonium fluoride (3 mL, 1 M, 3 mmol) was added to the stirred mixture of 2-nitro-4-methyl-6-(trimethylsilyl)phenyl trifluoromethanesulfonate (0.32 g, 1 mmol), furan (0.1 mL, 2 mmol) and acetonitrile (5 mL). The reaction mixture was stirred for 16 hours and then poured into ether (30 mL). The organic layer was washed with HCI (2 M, 20 mL) and then with water (2 x 20 mL). The organic layer was dried and concentrated in vacuo. The crude product was purified by column chromatography (5-100% ether-petroleum ether) and afforded 7-methyl-5-nitro-1,4-dihydro-**1,4-epoxynaphthalene (9)**, yield 9.9 mg (5%), as a viscous yellow oil. ¹H NMR (80 MHz, *CDCl*₃) δppm 2.4 (3H, s, CH₃) 5.75 (1H, s) 6.4 (1H, s) 7.1 (2H, s) 7.3 (1H, s) 7.55 (1H, s). **MS** (EI): m/e = 203 (M^+) **Accurate Mass** (+EI): $C_{11}H_9O_3N_1$ requires

203.0582 found 203.0579. **v**_{max}(liq.): 1413, 1526, 1413 cm⁻¹.

The major product from this reaction, a yellow-coloured, crystalline solid (0.15 g, 69.7 %; mp 100.8-101 °C) was identified as 4-

methyl-2-nitro-6-((trifluromethyl)sulfonyl)phenol (10). ¹H NMR (400 MHz, *CDCl₃*) δ ppm 2.50 (3H, s, CH₃) 8.17 (1H, d, J = 2 Hz, Ar-H₃) 8.38 (1H, d, J = 2 Hz, Ar-H₅) 11.47 (1H, s, OH). ¹³C NMR (400 MHz, *CDCl₃*) δ ppm 20.3(CH₃), 112.8, 124.1, 130.7 (C₅), 133.5, 141.6 (C₃), 150.0. MS (EI+): 285. Accurate Mass (+EI): C₈H₆O₅N₁¹⁹F₃S₁ requires 284.9913 found 284.9907. Microanalysis: C₈H₆N₁F₁O₅S requires C 33.7; H 2.1; N 4.9%. Found C 33.7; H 2.2; N 4.9%. v_{max} (ATR): 1304, 1570, 1625, 3076, 3188 cm⁻¹.

ii. Truce Smiles rearrangement: initial observations

General procedure for preparation of Arene sulfonate esters:¹

To the stirred solution of sodium hydride (0.288 g, 12.12 mmol, 4.12 eq.) in dry THF (50 mL), substituted o-trimethylsilylphenol (3.01 mmol, 1 eq) was added. The reaction mixture was stirred for thirty minutes and then substituted benzenesulphonyl chloride (3.31 mmol, 1.1 eq.) was added. The reaction mixture was stirred for one hour and then poured it into ether (50 mL). The organic phase was washed with water, brine, and dried over MgSO₄ and the reaction mixture taken to dryness in vacuo. The product was purified by column chromatography.

Synthesis of 2-nitro-4-methyl-6-(trimethylsilyl)phenyl-4'-nitrobenzenesulfonate (12):

Column chromatography (silica, 10% ether, petroleum ether) afforded the compound as yellow oil (1.1 g, 81 %). ¹H NMR (300 MHz, *CDCl*₃) δ ppm 0.44 (9H, s) 2.46 (3H, s, CH₃) 7.57 (1H, d, *J* = 2 Hz, Ar-H₅) 7.67 (1H, d, *J* = 2 Hz, Ar-H₃) 8.17 (2H, d, *J* = 8 Hz, Ar-H₂) 8.45 (2H, d, *J* = 8 Hz, Ar-H₃). ¹³C NMR (75 MHz, *CDCl*₃) δ ppm 0.06 (Si-CH₃), 30.7 (CH₃), 124.5 (C₂), 127.0 (C₃), 128.5, 129.9 (C₃), 138.3, 139.1, 140.9, 141.1 (C₅), 143.5, 151.2. MS $(\text{EI+}): \ [\text{M}+\text{Na}]^+ \ 433.0. \ \text{Accurate} \ \text{Mass} \ (\text{ES+}): \ [\text{C}_{16}\text{H}_{18}\text{O}_7\text{S}_1\text{Si}_1\text{N}_2\text{Na}_1]^+ \ \text{requires} \ 433.0497 \ \text{found} \ 433.0508.$ umax(ATR): 1203, 1229, 1358, 1511, 1560, 1601, 2984 cm⁻¹

Synthesis of 2-nitro-4-methyl-6-(trimethylsilyl)phenyl-2'-nitrobenzenesulfonate (13):

Column chromatography (silica, 10% ether, petroleum ether) afforded the compound as oil (1.13 g, 83 %). ¹H NMR (300 MHz, CDCl₃) δ ppm 0.47 (9H, s, Si-CH₃) 2.45 (3H, s, CH₃) 7.57 (1H, d, J=2.2 Hz, Ar-H₅) 7.63 (1H, d, J = 2.2 Hz, Ar-H₃) 7.76 - 7.89 (2H, m, Ar-H_{5',6}) 7.93 (1H, td, J = 8, 1.5 Hz, Ar-H₄) 8.07 (1H, dd, J = 7.8, 1.5 Hz, Ar-H₃). ¹³C NMR (75 MHz, CDC/₃) δ ppm -0.24 (Si-CH₃), 20.7 (C-CH₃), 125.5 (C₄), 126.8 (C₃), 130.5 (C₃), 131.0 (C₆), 132.6 (C₅), 135.4, 138.0, 139.2, 141.1 (C₅), 142.6, 142.9, 148.0. MS (ES+): [M+Na]⁺ 433.0. Accurate Mass (ES+): C₁₆H₁₈O₇S₁Si₁N₂Na₁ requires 433.0502. found 433.0499. max(ATR): 1213, 1235, 1347, 1507, 1569, 1621, 3001 cm⁻¹.

Synthesis of 2-nitro-4-methyl-6-(trimethylsilyl)phenyl 2',4'-dinitrobenzenesulfonate (14):

Column chromatography (silica, 10% ether, petroleum ether) afforded the compound as oil (0.91 g, 74 %). ¹H NMR (300 MHz, CDC/₃) δ ppm 0.49 (9H, s, Si-CH₃) 2.46 (3H, s, C-CH₃) 7.59 (1H, d, J = 2.2 Hz, Ar-H₅) 7.68 (1H, d, J = 2.2 Hz, Ar-H₃) 8.30 (1H, d, J = 8.5 Hz, Ar-H₆) 8.60 (1H, dd, J=8.5, 2.2 Hz, Ar-H₅) 8.79 (1H, d, J = 2.2 Hz, Ar-H₃). ¹³C NMR (75 MHz, *CDCl*₃) δ ppm -0.33 (Si-CH₃), 20.8 (C-CH₃), 120.7 (C₃), 126.9 (C₃), 127.0 (C₅), 132.5 (C₃), 127.0 (C₅), 132.5 (C₃), 127.0 (C₃), 127. (C₆), 136.1, 138.6, 139.1, 141.5 (C₅), 142.2, 142.6, 150.7, 163.8. max(ATR): 1133, 1197, 1220, 1348, 1519, 1540, 1556, 1608, 2980 cm⁻¹.

General method for Truce-Smiles reacrrangement leading to bi-aryl synthesis:

To a stirred solution of trimethylsilylsulfonate ester (1 eq.) and furan (3 eq.) in dry acetonitrile (12 mL), Tetrabutylammonium fluroide (1 M, 3 eq.) was added slowly. The reaction mixture was stirred at rt for sixteen hours and then poured into ether. The resulting mixture was washed with dilute HCI (3 N, 10 mL) and then with water (2 x 10 mL), dried over MgSO₄ and the reaction mixture taken to dryness in vacuo. Coloumn chromatography (silica, ether : petrol) afforded the pure compound.

Synthesis of 5-methyl-3,4'-dinitro-[1,1'-biphenyl]-2-ol (15):

Coloumn chromatography (silica, 10% ether, petroleum ether) afforded the title compound as bright yellow solid (0.349 g, 74.4%; mp 196-197 C°). ¹H NMR (300 MHz, CDC/₃) δ ppm 2.43 (3H, s, CH₃) 7.50 (1H, d, J = 2 Hz, Ar-H₆) 7.75 (2H, d, J = 9 Hz, Ar-H₂₆) 8.03 (1H, d, J = 1.5 Hz, Ar-H₄) 8.32 (2H, d, J = 9 Hz, Ar-H₃₅) 10.96 (1H, s, OH). ¹³C NMR (75 MHz, *CDCl*₃) δ ppm 20.4 (CH₃), 123.5 (C₃₅), 125.1(C₄), 127.9, 130.2, 130.3(C₂₆), 133.9, 139.3, 142.5 (C₆), 146.5, 150.5. MS (EI+): [M] 273. Accurate Mass (ES-): [C₁₃H₁₀O₅N₂-¹H]⁻ requires 273.0511 found 273.0516. Microanalysis: C₁₃H₁₀N₂O₅ requires C 57.0; H 3.7; N 10.2%. Found C 57.0; H 3.3; N 10.1%. **u**_{max}(ATR):1138, 1253, 1346, 1518, 1535 2968, 3087 cm⁻¹

Synthesis of 5-methyl-2',3-dinitro-[1,1'-biphenyl]-2-ol (16):

Coloumn chromatography (silica, 10% ether, petroleum ether) afforded the title compound as bright yellow solid (0.359 g, 75 % ; mp 193-194 C°). ¹H NMR (300 MHz, CDC/3) δ ppm 2.42 (3H, s, CH₃) 7.39 - 7.45 (2H, m, Ar- $H_{3,6}$) 7.59 (1H, td, J = 8, 1.5 Hz, Ar- H_4) 7.72 (1H, td, J = 8, 2 Hz, Ar- H_5) 7.98 (1 H, s, Ar- H_4) 8.10 (1 H, dd, J = 8, 1 Hz, Ar- H_3) 10.73 (1H, s, OH). ¹³C NMR (75 MHz, *CDCl*₃) δ ppm 20.4 (CH₃), 124.5 (C₃), 124.6(C₄), 129.3 (C₄), 129.7, 130.0, 130.1, 132.4, 133.2, 138.2 (C_5), 149.1 (C_6), 150.3. **MS** (ES+): [M+Na]⁺ 297.3. **Accurate Mass** (ES+): $C_{13}H_{10}O_5N_2Na_1$ requires 297.0494 found 297.0487. **Microanalysis:** $C_{13}H_{10}N_2O_5$ requires C 56.9; H 3.6; N

10.2%. Found C 56.1; H 3.3; N 10.1%. u max(ATR):1126, 1344, 1401, 1458, 1517, 2915, 3228 cm⁻¹.

Synthesis of 5-methyl-2',3,4'-trinitro-[1,1'-biphenyl]-2-ol (17):

4-methyl-2-nitrophenol (18).² Column chromatography (silica, 5% ether : petroleum ether) afforded the *title compound* as an yellowish oil (0.023 g, 13 %). ¹H NMR (300 MHz, CDCl₃) δ ppm 2.35 (3H, s, CH₃) 7.06 (1H, d, J = 8.5 Hz, Ar-H₅) 7.41 (1H, dd, J=8.5, 2Hz, Ar-H₆) 7.91 (1H, s, Ar-H₃) 10.46 (1H, s, OH). ¹³C NMR (300 MHz, CDCl₃) δ ppm 20.3(CH₃), 119.3 (C₆), 124.5 (C₃), 130.1, 133.2, 138.8 (C₅), 153.2. Further elution (10% ether,petroleum ether) afforded **5-methyl-2',3,4'-trinitro-[1,1'-biphenyl]-2-ol (17)** as bright yellow solid (0.401 g, 63 % ; mp 177-179 C°). ¹H NMR (400 MHz, *CDCl₃*) δ ppm 2.49 (3H, s, CH₃) 7.46 (1H, d, J = 2 Hz, Ar-H₆) 7.66 (1 H, d, J = 8 Hz, Ar-H₆) 8.07 (1H, d, J = 1 Hz, Ar-H₄) 8.56 (1H, dd, J = 8, 2 Hz, Ar-H₅) 8.94 (1 H, d, J = 2 Hz, Ar-H₃) 10.75 (1H, s, OH). ¹³C NMR (125 MHz, *CDCl₃*) δ ppm 20.5(CH₃), 120.1 (C₃), 125.8 (C₄), 127.3 (C₅), 127.5, 130.6, 133.4, 133.7 (C₆), 136.9, 137.8 (C₆), 147.3, 149.2, 149.8. MS (ES+): [M]* 320.1. Accurate Mass (ES+): C₁₃H₉O₇N₃Na₁ requires 343.0441found 343.0452. **v**_{max}(ATR): 1527, 1548, 1640, 2930, 3101 cm⁻¹.

iii. Synthesis of substrtates for Truce-Smile rearrangements - electronic effects

Synthesis of (2-bromophenoxy)trimethylsilane:³

1,1,1,3,3,3-hexamethyldisilazane (12.18 mL, 61.96 mmol) was added slowly to o-bromophenol (17.15 g, 99.14 mmol) at rt. The reaction mixture was refluxed for three hours. The product was isolated by distillation as colourless oil (12.6 g, 84 %). ¹H NMR (300 MHz, CDCl₃) δ ppm 0.33 (9H, s, CH₃) 6.82 - 6.93 (2H, m, Ar-H_{6.4}) 7.18 (1H, t, J = 8 Hz, Ar-H₅) 7.54

(1H, dd, J = 8, 1.5 Hz, Ar-H₃). ¹³C NMR (300 MHz, *CDCl*₃) δ ppm 0.35(CH₃), 115.6, 120.7 (**C**₃), 122.6 (**C**₅), 128.3 (**C**₄), 133.3 (**C**₆), 152.4. **MS** (EI+): [M⁺] 244. Accurate Mass (EI+): C₉H₁₃O₁Si₁⁷⁹Br₁ requires 243.9914 found 243.9913.**v** max(ATR): 1284, 1474, 1583, 2959, 3064 cm⁻¹

Synthesis of 2-(trimethylsilyl)phenol:⁴

A solution of 2-bromo-1-trimethylsilyloxybenzene (7.6 g, 30.96 mmol, 1 eq.) in dry THF (10 mL) was added slowly to the stirred solution of n-BuLi (26.5 mL, 46.44 mmol, 1.5 eq.) in dry THF (10 mL) at -78 °C under nitrogen. At -78 °C stirred the reaction mixture for three hours and then at rt for one hour. Upon recooling to -78 °C the reaction mixture quenched by adding saturated ammonium chloride (3 mL). The reaction mixture was allowed to room temperature and then extracted it with ethyl acetate (2 x 15 mL). The organic phase was washed with water, brine, and dried over MgSO₄ and the reaction mixture

taken to dryness in vacuo. The product obtained as light brown oil in colour which is used without further purification (4.54 g, 83%). ¹**H NMR** (300 MHz, *CDCl*₃) δ ppm 0.37 (s, 9H, CH₃) 5.09 (1H, br. s., OH) 6.70 (1H, d, *J* = 8 Hz, Ar-H₆) 6.98 (1H, td, *J* = 7, 1 Hz, Ar-H₄) 7.28 (1H, td, *J* = 8, 2 Hz, Ar-H₅) 7.43 (1H, dd, J=7, 2 Hz, Ar-H₃) ¹³**C NMR** (75 MHz, *CDCl*₃) δ ppm -0.99 (CH₃), 114.4 (**C**₆), 120.4 (C₄), 128.4, 130.6 (C₅), 135.3 (C₃), 160.4. MS (EI+): [M]⁺ 166. Accurate Mass (EI+): C₉H₁₄O₁Si₁ requires 166.0808 found 166.0813. **v**_{max}(ATR): 1270, 1368, 1592, 3067, 2953 cm

Sulfonate esters (19)-(24) were prepared using the general methid as described above.

Synthesis of 2-(trimethylsilyl)phenyl-4'-nitrobenzenesulfonate (19):

The product was purified by recrystallisation (ether : petroleum ether) as white crystalline powder (1.05 g 90.6 %; mp 134-134.4 °C). ¹H NMR (300 MHz, CDC/₃) δ ppm 0.28 (9H, s, CH₃) 7.04 (1H, dd, J = 8, 1 Hz, Ar-H₆) 7.27 - 7.36 (2H, m, Ar-H_{4.5}) 7.50 (1H, dd, J = 7, 1 Hz, Ar-H₃) 8.19 (2H, d, J = 9 Hz, Ar-H_{2.6}) 8.44 (2H, d, J = 9 Hz, Ar-H_{3.5}). ¹³C NMR (75 MHz, CDCl₃) δ ppm -0.62 (Si-CH₃), 119.1 (C₄), 124.5 (C_{3.5}), 126.6 (C₆), 129.6 (C₃), 130.7 (C_{2,6}), 132.6, 136.3 (C₅), 142.5, 150.9, 154.8. Microanalysis: C₁₅H₁₇O₅SiSN requires C 51.3; H 4.9, N 4.0 %. Found C 51.0; H 4.8 %; N 4.0%. **MS** (ES+): $[M+Na]^{+}$ 374. **Accurate Mass** (+EI): $[C_{15}H_{17}N_1O_5S_1Si_1Na_1]^{+}$ requires 374.0489 found 374.0481.; **(EI+):** $[C_{15}H_{17}N_1O_5S_1Si_1-CH_3]^{+}$ requires 336.0356 found 336.0351. $\upsilon_{max}(ATR)$: 1176, 1311, 1348, 1528, 2956 cm⁻¹.

Synthesis of 2-(trimethylsilyl)phenyl-2',4'-dinitrobenzenesulfonate (21):

The product was purified by recrystallisation (DCM : hexane) as light yellow powder (1 g, 76%; mp 134-135 °C). ¹H NMR (300 MHz, CDC/3) δ ppm 0.34 (9H, s, CH₃) 6.88 - 6.93 (1H, m, Ar-H₆) 7.28 - 7.34 (2H, m, Ar-H_{4.5}) 7.53 -7.58 (1H, m, Ar-H₃) 8.38 (1H, d, J = 8.5 Hz, Ar-H₆) 8.61 (1H, dd, J = 8.5, 2.1 Hz, Ar-H₅) 8.72 (1H, d, J = 2.2 Hz, Ar-H₃). ¹³C NMR (75 MHz, *CDCl*₃) δ ppm -0.63 (Si-CH₃), 119.6 (C₄), 120.8 (C₃), 126.7 (C₆), 127.1 (C₅), 130.8 (C₃), 132.9 (C₆), 133.1, 135.6, 136.4 (C₅), 148.7, 150.7, 154.7. Microanalysis: C₁₅H₁₆N₂O₇SSi requires C 45.4; H 4.1; N 7.1%; S 8.1%. Found C 45.1; H 4.1; N 7.1%; S 8.0% MS (ES+): [M+Na]⁺ 419. Accurate Mass (EI+): $[C_{15}H_{16}N_2O_7S_1Si_1-CH_3]^+ \text{ requires } 381.0213 \text{ found } 381.0217. \quad \textbf{v}_{max}(ATR): 1184, 1348, 1382, 1537, 1557, 3099, 10000, 1000, 1000, 1000, 1000, 1$

3105, 3312 cm⁻¹.

³ D. Pena, A. Cobas, D. Perez and E. Guitian, Synthesis, 2002, 10, 1454. b) G. M. Tierney, Third Year Undergraduate Project Report, University of Manchester, 1990-1991. c) T. Ikawa, A. Takagi, Y. Kurita, K. Saito, K. Azechi, M. Egi, K. Kakiguchi, Y. Kita and S. Akai, Angew. Chem. Int. Ed. 2010, 49, 5563. ⁴ T. Ikawa, T. Nishiyama, T. Nosaki, A. Takagi and S. Akai, Org. Lett. 2011, **13**, 1730.

Synthesis of 2-(trimethylsilyl)phenyl-2'-nitrobenzenesulfonate (20):

2'_NO2 SiMe₃

The product was purified by recrystallisation (DCM : petroleum ether) as white crystalline powder (1 g. 86.2 %; mp 98-100 °C). ¹H NMR (300 MHz, CDCl₃) δ ppm 0.32 (9H, s, CH₃) 6.94 - 6.99 (1H, m, Ar-H₄) 7.24 - 7.30 (2H, m, Ar-H_{3,6}) 7.49 - 7.53 (1H, m, Ar-H₅) 7.80 (1H, dd, J = 7.5, 2.0 Hz, Ar-H₆) 7.83 - 7.90 (2H, m, Ar-H_{4,5}) 8.15 (1 H, d, J = 8 Hz, Ar-H_{3'}).¹³C NMR (75 MHz, CDCl₃) δ ppm -0.85 (Si-CH₃), 119.5(C₄), 124.9 (C_{4'}), 126.4(C₆), 130.4 (C₃), 130.5, 130.9(C₃), 132.1 (C₆), 135.9 (C₅), 134.9 (C₅), 137.2, 148.3, 154.7. MS (EI+): [M]⁺ 336. Accurate Mass (EI+): [C₁₅H₁₇N₁O₅S₁Si₁-CH₃]⁺ requires 336.0356 found 336.0351. **Microanalysis:** C₁₅H₁₇NO₅SSi requires C 51.3; H 4.9; N 4.0%; S 9.1%. Found C 51.0; H 5.1; N 3.9%; S 9.0%. max(ATR): 1192, 1364, 1375, 1432, 1538, 2951 cm⁻¹

Synthesis of 2-(trimethylsilyl)phenyl-2',4'-dinitrobenzenesulfonate (21):

The product was purified by recrystallisation (DCM : hexane) as light yellow powder (1 g, 76%; mp 134-135 °C). ¹H NMR (300 MHz, *CDCl*₃) δ ppm 0.34 (9H, s, CH₃) 6.88 - 6.93 (1H, m, Ar-H₆) 7.28 - 7.34 (2H, m, Ar-H_{4.5}) 7.53 -7.58 (1H, m, Ar-H₃) 8.38 (1H, d, J = 8.5 Hz, Ar-H₆) 8.61 (1H, dd, J = 8.5, 2.1 Hz, Ar-H₅) 8.72 (1H, d, J = 2.2 Hz, Ar-H₃). ¹³C NMR (75 MHz, *CDCl*₃) δ ppm -0.63 (Si-CH₃), 119.6 (C₄), 120.8 (C₃), 126.7 (C₆), 127.1 (C₅), 130.8 (C₃), 132.9 (C₆), 133.1, 135.6, 136.4 (C₅), 148.7, 150.7, 154.7. Microanalysis: C₁₅H₁₆N₂O₇SSi requires C 45.4; H 4.1; N 7.1%; S 8.1%. Found C 45.1; H 4.1; N 7.1%; S 8.0% MS (ES+): [M+Na]* 419. Accurate Mass (EI+): [C15H16N2O7S1S11-CH3]* requires 381.0213 found 381.0217. Umax(ATR): 1184, 1348, 1382, 1537, 1557, 3099,

3105, 3312 cm⁻¹.

Synthesis of 2-(trimethylsilyl)phenyl-4'-chlorobenzenesulfonate (22):

The product was purified by recrystallisation (ether : petroleum ether) as white crystalline powder (1 g, 89.9%, mp 114-115 °C). ¹H NMR (300 MHz, CDC/₃) δ ppm 0.28 (9H, s, CH₃) 7.08 (1H, dd, J = 8, 1 Hz, Ar-H₆) 7.20 - 7.27 (1 H, m, Ar-H₄) 7.27 - 7.34 (1H, m, Ar-H₅) 7.48 (1H, dd, J = 7, 2 Hz, Ar-H₃) 7.56 (2H, d, J = 8 Hz, Ar-H_{3,5}) 7.92 (2H, d, J = 8 Hz, Ar-H_{2.6}). ¹³C NMR (75 MHz, *CDCl*₃) δ ppm -0.64 (Si-CH₃), 119.2 (C₄), 126.3 (C₆), 129.6 (C₃), 130.5 (C_{2.6}), 132.5 ($C_{3,5}$), 135.5, 136.0 (C_5), 140.6, 150.1, 155.0. **GC/MS** (EI+): [M]⁺ 325. **Accurate Mass** (EI+): [$C_{15}H_{17}O_3S_1S_{13}^{35}CI_1-CH_3$]⁺ requires 325.0116 found 325.0108. $\upsilon_{max}(ATR)$: 1176, 1376, 1442, 1589, 2954 cm⁻¹.

Synthesis of 2-(trimethylsilyl)phenyl benzenesulfonate (23):

Colourless oil (0.9 g, 89.9 %). ¹H NMR (300 MHz, CDCI₃) δ ppm 0.28 (9H, s, CH₃) 7.10 (1 H, dd, J = 8, 1 Hz, Ar-H₆) 7.19 - 7.34 (2H, m, Ar-H₄) 7.48 (1H, dd, J = 7, 2 Hz, Ar-H₃) 7.56 - 7.63 (2H, m, Ar-H₃) 7.68 - 7.74 (1H, m, Ar-H₄) 8.00 (2H, dd, J = 7, 1 Hz, Ar-H₂). ¹³C NMR (75 MHz, *CDCl*₃) δ ppm -0.67 (Si-CH₃), 119.3 (C₄), 126.1(C₆), 128.2 (C₂), 129.2 (C₃), 130.5 (C₃), 132.5, 134.1 (C₄), 135.8(C₅), 137.1, 155.1. MS (El+): [M]⁺ 307. Accurate Mass (El+): [C15H17O3S1S1-CH3]*. requires 291.0506 found 291.0504 Microanalysis: C15H18O3SSi requires C 58.7; H 6.0; S 10.4%. Found C 58.7; H 6.4; S 10.4%. **v**_{max}(ATR): 1193, 1371, 1431, 2954 cm⁻¹.

Synthesis of 2-(trimethylsilyl)phenyl naphthalene-1-sulfonate (24):

The product was purified by recrystallisation (DCM : petroleum ether) as white crystalline powder. (1.0 g. 85.5 %; mp 114-115 °C). ¹H NMR (300 MHz, CDCl₃) δppm 0.34 (9H, s, CH₃) 6.67 (1H, dd, J = 7, 1.5 Hz, Ar-H₆) 7.11 - 7.23 (2H, m, Ar-H_{4,5}) 7.49 (1H, dd, J = 7, 2 Hz, Ar-H₃) 7.61 (1H, t, J = 8, Ar-H₇) 7.69 (1H, t, J = 8, Ar-H₈), 7.75 (1H, t, J = 7.00Hz, Ar-H₃) 8.01 (1H, d, J = 8 Hz, Ar-H₂) 8.20 (1H, d, J = 8 Hz, Ar-H₄) 8.31 (1 H, dd, J = 8, 1 Hz, Ar-H₆) 8.81 (1H, d, J = 8 Hz, Ar-H₉). ¹³C NMR (75 MHz, *CDCl*₃) δ ppm -0.62 (Si-CH₃), 119.2 (C₄), 124.0, 125.1, 126.1 (C₆), 127.4 (C₃), 128.4 (C₇), 128.8 (C₂), 129.9 (C₆), 130.4, 132.9 (C₃), 133.3, 134.2, 135.5 (C₄), 135.8 (C₅), 155.0. **MS** (EI+): [M⁺] 341. Accurate Mass (EI+): [C19H20O3S1S1-CH3]⁺ requires 341.0662 found 341.0655. vmax(ATR): 1192, 1367, 1434, 1562, 2952 cm

General method for synthesis of bi-aryls:

To a stirred solution of the sulfonate ester compound (1 eq.) and furan (3 eq.) in dry acetonitrile (12 mL), Tetrabutylammonium fluroide (1 M, 3 eq.) was added slowly. The reaction mixture was stirred at rt for sixteen hours and then poured into ether. The resulting mixture was washed with dilute HCI (3 N, 10 mL) and then with water (2 x 10 mL), dried over MgSO₄ and the reaction mixture taken to dryness in vacuo. Coloumn chromatography (silica, ether : petrol) afforded the pure compound.

Synthesis of 4'-nitro-[1,1'-biphenyl]-2-ol (25):5

The title compound was prepared by using general procedure using 2-(trimethylsilyl)phenyl-4'-nitrobenzenesulfonate 19.

Fraction A: Column chromatography (silica, 10% ether, petroleum ether) afforded the title compound as bright yellow solid (44.4 %; mp 110.5-113 °C, Lit 107-108 °C). ¹H NMR (300 MHz, CDCl₃) δ ppm 5.28 (1H, s, OH) 6.97 (1H, dd, J = 8, 1 Hz, Ar-H₃) 7.03 - 7.10 (1 H, m, Ar-H₄) 7.28 - 7.37 (2H, m, Ar-H_{5.6}) 7.73 (2H, dd, J = 8, 2 Hz, Ar-H₂₆) 8.31 (2H, dd, J=8, 2 Hz, Ar-H₃₅). ¹³C NMR (75 MHz, CDC/₃) δ ppm 116.5 (C₃), 121.5 (C₄), 123.8 (C₃₅), 126.1, 130.1 (C_{26}), 130.2 (C_{5}), 130.5 (C_{6}), 144.6, 144.9, 152.4. **MS** (ES-): [M]: 214. **Accurate Mass** (ES-): [$C_{12}H_9O_3N_{1}$ -¹H]⁻ requires 214.0502 found 214.0509. **Microanalysis:** $C_{12}H_9N_1O_3$ requires C 66.9; H 4.2; N 6.5%. Found C 66.9; H 4.4; N 6.5%. umax(ATR): 1332, 1455, 1503, 1592, 3473 cm⁻¹.

Fraction B: phenyl-4'-nitrobenzenesulfonate (31):⁶Coloumn chromatography (silica, 20% ether,petroleum ether) afforded the title compound as bright yellow solid (19%-36%**; mp 77-78 °C). ¹H NMR (300 MHz, CDC/₃) δ ppm 6.98 - 7.02 (2H, m, Ar-H_{2.6}) 7.29 - 7.38 (3H, m, Ar-H_{3.4.5}) 8.04 (2H, dd, J = 8, 2 Hz, Ar-H_{2.6}) 8.38 (2H, dd, J = 8, 2 Hz, Ar-H_{3'5}). ¹³C NMR (75 MHz, *CDCl*₃) δ ppm 122.1 (C_{2,6}), 124.3 (C_{3'5'}), 127.7(C₄), 129.8 (C_{2'6'}), 129.9 (C_{3,5}),

133.7, 141.0, 149.2. u_{max}(ATR):1185, 1364, 1350, 1531, 1495, 1605 cm⁻¹

⁵ J. C. Colbert and D. P. Denny, J. Org. Chem. 1959, 24, 348. b) J. H. Chu, P. S. Li and M. J. Wu, Organometallics 2010, 29, 4058.

Synthesis of 2'-nitro-[1,1'-biphenyl]-2-ol (26):6

The title compound was prepared by using general procedure using 2-(trimethylsilyl)phenyl-2'-nitrobenzenesulfonate (20).

2 .OH 6'

Coloumn chromatography (silica, 10% ether, petroleum ether) afforded the title compound as bright yellow solid (38.8 % ; mp 141-143 C°; Lit⁸ 142-144 °C). ¹H NMR (300 MHz, CDCl₃) δ ppm 4.97 (1 H, br. s., OH), 6.85 (1 H, dd, J=8, 1 Hz, Ar-H₃), 7.06 (1 H, td, J = 7.5, 1 Hz, Ar-H₅), 7.22 - 7.34 (2H, m, Ar-H₄₆), 7.46 (1H, dd, J = 8, 1.5 Hz, Ar-H₆), 7.53 (1H, td, J = 8, 1.5 Hz, Ar-H₅), 7.68 (1H, t, J = 8 Hz, Ar-H₄), 7.99 (1H, dd, J = 8, 1 Hz, Ar-H₃). ¹³C NMR (75 MHz, CDCl₃) δ ppm 115.4 (C₄), 121.3 (C₅), 124.6 (C₅), 125.1 (C₄), 128.9 (C₃), 130.1 (C₆), 132.4(C₃), 133.5 (C₆), 149.2,

152.6. **MS (ES+):** [M + Na]⁺ 238. MS (ES-): [M⁻] 214. Accurate Mass (ES-): [C₁₂H₉O₃N₁-¹H]⁻ requires 214.0509 found 214.0515. Microanalysis: C₁₂H₉N₁O₃ requires C 66.9; H 4.2; N 6.5%. Found C 66.6; H 4.1; N 6.5%. *v*_{max}(ATR): 1336, 1450, 1513, 1591, 3470 cm⁻¹

Table 1: Optimized reaction cond	ditions for synthesis	of bi-aryls (25)	, (26) and (15).
		•••••••••••••••••••••••••••••••••••••••	, (==)

These bi-aryl forming reactions were optimised as follows:

Reactant	Reaction conditions	%age Yield	%age Yield
		biaryl (25)	disylation (31)
19 (1.0 eq)	TBAF (1.1 eq), dry acetonitrile, rt, 16 h	32%	36%
	TBAF (1.1 eq), furan (2 eq.), dry acetonitrile, rt, 16 h	33%	26.5%
	TBAF (2 eq), dry acetonitrile, rt, 16 h	35%	27%
	TBAF (3 eq), furan (3 eq.), dry acetonitrile, rt, 16 h	43%	17%
	TBAF (3 eq), dry acetonitrile, rt, 16 h	45%	19%
	TBAF (4 eq), dry acetonitrile, rt, 16 h	42.5%	21%
	CsF (2 eq), dry acetonitrile, rt, 16 h	nr	nr
	CsF (5 eq), dry acetonitrile, rt, 16 h	nr	nr
	CsF (5 eq), dry acetonitrile, reflux, 16 h	nr	nr
	TBAF (15% wt on alumina; 3 eq), , dry acetonitrile, rt, 16 h	nr	nr
	TBAT (2 eq.), dry acetonitrile, rt, 16 h	nr	nr
20 (1.0 eq)		(26)	(32)
	TBAF (1.1 eq), dry acetonitrile, rt, 16 h	26%	-
	TBAF (3 eq), dry acetonitrile, rt, 16 h	38.8%	-
	TBAF (3 eq), furan (3 eq.)dry acetonitrile, rt, 16 h	34.2%	-
	CsF (2 eq), dry acetonitrile, rt, 16 h	nr	nr
	CsF (5 eq), dry acetonitrile, rt, 16 h	nr	nr
	CsF (5 eq), dry acetonitrile, reflux, 16 h	nr	nr
12 (1.0 eq)		(15)	
	TBAF (1 eq), furan (3 eq.)dry acetonitrile, rt, 16 h	53%	-
	TBAF (2 eq), furan (3 eq.)dry acetonitrile, rt, 16 h	60%	-
	TBAF (3 eq), furan (3 eq.)dry acetonitrile, rt, 16 h	66%	-
	TBAF (3 eq),dry acetonitrile, rt, 16 h	74%	-

Synthesis of 2',4'-dinitro-[1,1'-biphenyl]-2-ol (27):^{3b}

The title compound was prepared by using general procedure using 2-(trimethylsilyl)phenyl-2'-nitrobenzenesulfonate (21).

Coloumn chromatography (silica, 5% ether, petroleum ether) afforded the *title compound* as yellow solid (49%). ¹H NMR (300 MHz, CDCl₃) δ ppm 5.15 (1H, br. s., OH), 6.85 (1H, dd, J=8, 1 Hz, Ar-H₃), 7.15 (1H, td, J = 7.5, 1 Hz, Ar- H_5), 7.30 - 7.44 (2H, m, Ar- $H_{4,6}$), 7.68 (H, d, J = 8, Ar- H_6), 8.5 (1H, dd, J = 8, 2 Hz, Ar- H_5), 8.85 (1H, d, J = 2 Hz, Ar- H_6), 8.85 (1H, d, J = 2Ar-H_{3'}). **v**_{max}(ATR): 1346, 1528, 1607, 3465 cm⁻¹

4-Chlorophenylbenzenesulfonate (33):⁷

The title compound was prepared by using general procedure using 2-(trimethylsilyl)phenyl-4'-chlorobenzenesulfonate (22). Coloumn chromatography (silica, 15% ether, petroleum ether) afforded the compound as white solid. (0.400 g, 74.6%; mp 97-98 °C). ¹H NMR (300 MHz, CDCl₃) δppm 6.98 - 7.03 (2H, d, J = 7, Ar-H_{2.6}) 7.28 - 7.34 (3H, m, Ar-H_{3.4.5}) 7.52 (2H, d, J = 8 Hz, Ar-H_{3,5}) 7.78 (2H, d, J = 8 Hz, Ar-H_{2,6}). ¹³C NMR (300 MHz, $CDCl_3$) δ ppm 122.2 (C_{2,6}), 127.3 (C_{3,5}), 129.5 (C_{3,5}), 129.7 (C₄), 129.8(C₂₆), 133.8, 140.9, 149.4. $\upsilon_{max}(ATR)$: 1377, 1397, 1455, 1585, 3057 cm⁻¹. MS (EI+):[M⁺] 268. Accurate Mass (EI+): C₁₂H₉O₃³⁵Cl₁S₁ requires 267.9955 found 267.9951.

⁶ J. H. Choi, B. C. Lee, H. W. Lee and I. Lee, *J. Org. Chem.* 2002, **67**, 1277.

⁷ W. Cabri, S. D. Bernardinis, F. Francalanci, S. Penco, R. Santi, J. Org. Chem. 1990, 55, 350.

Phenyl benzenesulfonate (34):5

The title compound was prepared by using general procedure using 2-(trimethylsilyl)phenyl benzenesulfonate (23).

Column chromatography (silica, 15% ether : petroleum ether) afforded the *title compound* as an oil (0.410, 87.6%). ¹**H NMR** (300 MHz, CDCl₃) δ ppm 7.01 (2H, dd, J = 8, 2 Hz, Ar-H_{2.6}) 7.27 - 7.32 (4H, m, Ar-H_{3.5, 3.5}) 7.54 (1H, t, J = 8 Hz, Ar-H₄) 7.69 (1H, t, J = 7.5 Hz, Ar-H₄) 7.85 (2H, d, J = 8 Hz, Ar-H_{2.6}). ¹³**C NMR** (300 MHz, CDCl₃) δ ppm 122.3(**C**_{2.6}), 127.1(**C**₄), 128.4(**C**_{2.6}), 129.0(**C**_{3.5}), 129.6 (**C**_{3.5}), 134.1(**C**₄), 135.4, 149.6. **MS** (EI+): [M⁺] 234.1. **Accurate Mass** (EI+): C₁₂H₁₀O₃S₁ requires 234.0345 found 234.0347.**v** max(ATR): 1197, 1371, 1448, 1487, 3067 cm⁻¹.

Phenyl naphthalene-1'-sulfonate (35):⁶

The title compound was prepared by using general procedure using 2-(trimethylsilyl)phenyl naphthalene-1-sulfonate (24).

Column chromatography (silica, 15% ether,petroleum ether) afforded the *title compound* as white solid (0.285, 84%; mp 114-116 °C). ¹H NMR (300 MHz, *CDCl*₃) δ ppm 6.85 - 6.90 (2H, m, Ar-H_{2,6}) 7.17 - 7.20 (3H, m, Ar-H_{3,4,5}) 7.47 (1H, t, *J* = 8 Hz, Ar-H₈) 7.69 (1H, t, *J* = 7.5 Hz, Ar-H₃) 7.80 (1H, t, *J* = 8 Hz, Ar-H₇) 8.00 (1H, d, *J* = 8 Hz, Ar-H₂) 8.10 (1 H, dd, *J* = 7.5, 1 Hz, Ar-H₆) 8.14 (1 H, d, *J* = 8 Hz, Ar-H₄) 8.85 (1 H, d, *J*=8.5 Hz, Ar-H₉). ¹³C NMR (75 MHz, *CDCl*₃) δ ppm 122.0 (C_{2,6}), 123.9 (C₈), 125.1 (C₉), 127.1 (C₄), 127.3 (C₃), 128.5 (C₂), 128.9 (C₇), 129 (C_{3,5}), 129.5, 130.8 (C₆), 131.2, 134, 135.6 (C₄). MS (EI+): [M⁺] 284.1. Accurate Mass(+EI): C₁₆H₁₂O₃S₁ requires 284.0502 found

284.050. **v** max(ATR): 1133, 1365, 1586, 1485, 3063 cm⁻¹.

iv. Truce-Smile rearrangements - more highly functionalised substrates

Synthesis of (2,6-dibromo-4-methylphenoxy)trimethylsilane:

The phenol (1.1 mmol, 1.1 eq.) was refluxed with 1,1,1,3,3,3-hexamethyldisilazane (3.3 mmol, 3 eq.) for 3 hours. After cooling down the reaction mixture was concentrated in vacuo to give pure title compound as a pale yellow oil. 97.8% yield. ¹H NMR (500 MHz, CDCl₃) δ ppm 0.38 (9H, s, Si-CH₃) 2.25 (3H, s, C-CH₃) 7.29 (2H, s, Ar-H_{3,5}). ¹³C NMR (125 MHz, CDCl₃) δ ppm 1.25 (Si-CH₃), 19.9 (C-CH₃), 115.6, 132.8 (C_{3.5}), 133.3, 148.3. MS (EI+): [M⁺] 335.9, 337.8. Accurate Mass (+El): C₁₀H₁₄O₁⁷⁹Br₂Si₁ requires 335.9175 found 335.9165. **v**_{max}(ATR): 1534, 1580, 1604, 2962, 3401 cm⁻¹.

Synthesis of 2-bromo-4-methyl-6-(trimethylsilyl)phenol:⁸

Br

Ċ

Br.

To the stirred solution of (2,6-dibromo-phenoxy)trimethylsilane (0.507 g, 1.5 mmol, 1 eq.) in THF (50 mL), t-Butyllithium (1.7 M in pentane, 3.53 mL, 6 mmol, 4 eq.) was added at -78 °C over 10 min. The reaction mixture was stirred for 2 hrs and upon recooling to -78 °C quenched with water. The reaction mixture was allowed to warm to room temperature and then poured into ether (50 mL) and washed with brine (3 x 50 mL). The organic layer was dried over MgSO4 and concentrated in vacuo. The crude product was purified by column chromatography (silica; ether : petroleum ether 20 : 80) to afford the *title compound* as oil (0.29 g, 74.4 %). ¹H NMR (300 MHz, CDCl₃) δ ppm 0.32 (9H, s, Si-

CH₃), 2.28 (3H, s, C-CH₃), 5.56 (1H, s, OH), 7.10 (1H, s, Ar-H₃), 7.30 (1H, s, Ar-H₅).¹³C NMR (75 MHz, CDCl₃) δ ppm -1.1 (Si-CH₃), 20.2 (C-CH₃), 110.0, 126.6, 130.9, 133.1 (**C**₅), 135.1 (**C**₃), 153.6. **v**_{max}(ATR): 1268, 1301, 1386, 1417, 1650, 3101 cm⁻¹

Synthesis of 2-hydroxy-5-methyl-3-(trimethylsilyl)benzaldehyde:9

A solution of (2,6-dibromo-4-methylphenoxy)trimethylsilane (1.0 g, 3.0 mmol, 1 eq.) in dry THF (10 mL) was cooled to -78 °C and treated slowly with t-BuLi (7.6 mL,12.0 mmol, 4 eq.) under nitrogen. At -78 °C stirred the reaction mixture for two hours and then at rt for one hour. Upon recooling the reaction mixture to -78 °C DMF (1.0 mL, 12 mmol, 4 eq.) was added all at once. The reaction mixture was stirred for 1 hour while warming to 0 °C and then quenched by adding saturated ammonium chloride (3 mL). The reaction mixture was allowed to room temperature and then extracted it with ethyl acetate (2 x 15 mL). The organic phase was washed with water, brine, and dried over MgSO4 and the reaction mixture taken to dryness in vacuo. The product obtained as light yellow colour solid which is used without further purification (0.504, 80.4%; mp 60-61 °C, Lit⁹ 61 °C). ¹H NMR (400 MHz, CDCl₃) δ ppm 0.32 (9H, s, Si-CH₃) 2.34 (3H, s, C-CH₃) 7.33 (1H, d, J = 2 Hz, Ar-H₄) 7.42 (1H, d, J = 2 Hz, Ar-H₆) 9.84 (1H, s, CHO) 11.14 (1H, s, OH). ¹³C NMR (125 MHz, *CDCl*₃) δ ppm -0.96 (Si-CH₃), 20.6 (C-CH₃), 119.5, 128.8, 134.8 (C₄), 144.0(C₆), 164.6, 192.1. **MS** (ES-): [M] 207.06. Accurate Mass (EI-): C₁₁H₁₆O₂Si₁-¹H requires 207.0840 found 207.0841. Microanalysis: C11H16O2Si1 requires C 63.4; H 7.7%. Found C 63.2; H 7.7%. Umax(ATR): 3147, 2946, 2831, 2739, 1640, 1619, 1586, 1400, 1319, cm⁻¹

Sulfonate esters (36)-(40) were prepared using the general methid as described above.

2-Bromo-4-methyl-6-(trimethylsilyl)phenyl-4'-nitrobenzenesulfonate (36):

Column chromatography (silica, 10% ether, Petrol) afforded the compound as oil (1.18 g, 89 %). ¹H NMR (300 MHz, *CDCl*₃) δ ppm 0.45 (9H, s, Si-CH₃) 2.34 (3H, s, C-CH₃) 7.29 (1H, s, Ar-H₃) 7.31 (1H, s, Ar-H₅) 8.15 (2H, d, J = 8 Hz, Ar-H_{2'6}) 8.40 (2H, d, J = 8 Hz, Ar-H_{3'5}). ¹³C NMR (75 MHz, *CDCl*₃) δ ppm 0.26 (Si-CH₃), 20.5 (C-CH₃), 116.3, 124.1(C_{3',5}), 130.1(C_{2'6}), 135.4(C₃), 136.3, 138.1, 138.5, 142.8 (C₅), 148.1, 150.9. MS (ES+): [M+Na]⁺ 466. Accurate Mass (ES+): C₁₆H₁₈O₅ ⁷⁹Br₁S₁Si₁Na₁ requires 465.9777 found 465.8956. \mathbf{v}_{max} (ATR): 1233, 1369, 1501, 1574, 1599, 3012 cm⁻

2-Formyl-2-6-(trimethylsilyl)phenyl-4'-nitrobenzenesulfonate (37):

Column chromatography (silica, 10% ether, Petrol) afforded the compound as yellow solid (1.0 g, 77 %, mp 107-109 °C). ¹H NMR (300 MHz, *CDCl*₃) δ ppm 0.41 (9H, s, Si-CH₃) 2.43 (3H, s, CH₃) 7.60 (1H, s, Ar-H₅) 7.62 (1H, s, Ar-H₂) 8 08 (2H d J = 9 Hz, Ar-H₂) 8.43 (2H, d, J = 9 Hz, Ar-H₃; s) 9.67 (s, 1H, CHO). ¹³C NMR (75 MHz, Ar-H₃) 8.08 (2H, d, J = 9 Hz, Ar-H_{2.6}) 8.43 (2H, d, J = 9 Hz, Ar-H_{3.5}) 9.67 (s, 1H, CHO). [C₁₇H₁₉O₆S₁Si₁N₁ + NH₄]^{*} requires 411.1046 found 411.1040. **v**_{max}(ATR): 1161, 1237, 1460, 1585, 1681,

2829 cm⁻¹.

⁸ F.i. Carroll, T. P. Robinson, L. E. Brieaddy, R. N. Atkinson, S. Wayne, M. I. Damaj, B.R. Martin and H. A. Navarro, J. Med. Chem, 2007, 50, 6383. A. N. Thandi, Y. Huang and V. H. Rawal, Org. Lett. 2007, 9, 3873.

2-Nitro-4-methyl-6-(trimethylsilyl)phenyl-4'-(trifluoromethyl)benzenesulfonate (38):

Column chromatography (silica, 10% ether, Petrol) afforded the compound as oil (1.25 g, 85 %). ¹H NMR (300 MHz, *CDCl*₃) δ ppm 0.43 (9H, s, Si-CH₃) 2.45 (3H, s, CH₃) 7.56 (1H, dd, J = 1.5, 0.75 Hz, Ar-H₅) 7.67 (1H, s, Ar-H₃) 7.88 (2H, d, J = 8 Hz, Ar-H_{2,6}) 8.11 (2H, d, J = 8 Hz, Ar-H_{3,5}). ¹³C NMR (300 MHz, *CDCl*₃) δ ppm 0.06 (Si-CH₃), 20.7 (C-CH₃), 126.5, 126.6 (C₃), 126.9 (C_{2,6}), 127.0, 129.2(C_{3,5}), 138.1, 140.9, , 141.1(C₅), 143.7, 144.4. **MS** (ES+): [M⁺] 455.9. Accurate Mass(+ESI): C₁₇H₁₈O₅S₁Si₁N₁¹⁹F₃Na₁ requires 456.0519 found 456.0508. **v**_{max}(ATR): 1130, 1234, 1257, 1307, 1569, 1581, 1601, 2921 cm⁻¹.

Methyl 2-((4-methyl-2-nitro-6-(trimethylsilyl)phenoxy)sulfonyl)benzoate (39):

Column chromatography (silica, 10% ether, Petrol) afforded the compound as oil (1.05 g, 80 %). ¹H NMR (300 MHz, *CDCl*₃) δ ppm 0.42 (9H, s, Si-CH₃) 2.43 (3H, s, C-CH₃) 3.85 (3H, s, OCH₃) 7.54 (1H, d, J = 2 Hz, Ar-H₅) 7.58 (1H, d, J = 2 Hz, Ar-H₃) 7.64 - 7.80 (3H, m, Ar-H_{4',5',6}) 7.99 (1H, dd, J = 8, 0.75 Hz, Ar-H₃). ¹³C NMR (75 MHz, 12.56) 1.58 (3H, m, Ar-H_{4',5',6}) 7.99 (1H, dd, J = 8, 0.75 Hz, Ar-H₃). CDCl₃) δ ppm -0.07 (Si-CH₃), 20.7 (C-CH₃), 53.2 (OCH₃), 126.7 (**C**₃), 127.1, 129.7, 130.0 (**C**₃), 131.1, 133.3, 134.3, 137.6, 139.4, 139.3, 140.8 (C₅), 142.8, 143.6, 166.6. MS (ES+): [M⁺] 445.9. Accurate Mass(+ESI): C₁₈H₂₁O₇S₁Si₁N₁Na₁ requires 446.0757 found 446.0689. **v**_{max}(ATR): 1131, 1230, 1470, 1595, 1701, 2835 cm⁻¹

4-Methyl-2-nitro-6-(trimethylsilyl)phenyl 3-nitrobenzenesulfonate (40):

Column chromatography (silica, 10% ether, Petrol) afforded the compound as oil (1.1 g, 83 %). ¹H NMR (300 MHz, CDCl₃) δ ppm 0.45 (9H, s, Si-CH₃) 2.45 (3H, s, C-CH₃) 7.57 (1H, d, J = 2 Hz, Ar-H₅) 7.64 (1H, d, J = 2 Hz, Ar-H₃) 7.85 (1H, t, Ar-H₅) 8.30 (1H, dd, J = 8, 1.5 Hz, Ar-H₆) 8.60 (1H, dd, J = 8, 1.5 Hz, Ar-H₄) 8.76 (1H, t, J = 2 Hz, Ar-H₂). ¹³**C** NMR (75 MHz, *CDCl*₃) δ ppm -0.08 (Si-CH₃), 20.7 (C-CH₃), 126.9 (**C**₃), 129.1 (**C**₂), 130.9, 133.9(**C**₄), 137.5(**C**_{5'}), 138.3(**C**_{6'}), 139.2, 141.1,141.2 (**C**₅), 143.4, 148.2.

General method for synthesis of bi-aryls:

To a stirred solution of the sulfonate ester compound (1 eq.) and furan (3 eq.) in dry acetonitrile (12 mL), Tetrabutylammonium fluroide (1 M, 3 eq.) was added slowly. The reaction mixture was stirred at rt for sixteen hours and then poured into ether. The resulting mixture was washed with dilute HCI (3 N, 10 mL) and then with water (2 x 10 mL), dried over MgSO₄ and the reaction mixture taken to dryness in vacuo. Coloumn chromatography (silica, ether : petrol) afforded the pure compound.

Synthesis of 3-bromo-5-methyl-4'-nitro-[1,1'-biphenyl]-2-ol (41):

Column chromatography (silica, 10% ether, petroleum ether) afforded the compound as bright yellow solid (0.401 g, 63 % ; mp 177-179 C°). ¹H NMR (300 MHz, *CDCl*₃) δ ppm 2.34 (3H, s, CH₃) 5.65 (1H, s, OH) 7.10 (1H, d, *J* = 1.5 Hz, Ar-H₆) 7.36 (1H, d, J = 1.5 Hz, Ar-H₄) 7.73 (2H, d, J = 8.5 Hz, Ar-H₂₆) 8.27 (2H, d, J = 8.5 Hz, Ar-H₃₅). ¹³C NMR (75 MHz, *CDCl*₃) δ ppm 20.2 (CH₃), 111.3, 123.4 (**C**₃₅), 126.7 (**C**₄), 130.0 (**C**₂₆), 130.1, 131.6, 132.6, 144.3 (**C**₆), 146.9, 147.0. **MS** (ES-): [M] 306.0. Accurate Mass (ESI-): C₁₃H₉O₃N₁⁷⁹Br₁-¹H requires 305.9771

found 305.9760. Microanalysis: C₁₃H₁₀N₂O₃Br requires C 50.7; H 3.3; N 4.5%. Found C 50.7; H 3.5; N 4.5%. **v**_{max}(ATR): 1237, 1348, 1468, 1514, 1573 cm⁻¹.

Synthesis of 2-hydroxy-5-methyl-4'-nitro-[1,1'-biphenyl]-3-carbaldehyde (42):

Column chromatography (silica, 10% ether, petroleum ether) afforded the compound as bright yellow solid (0.364 g, 71 %; mp 167-169 C°). ¹H NMR (300 MHz, CDCl₃) δppm 2.43 (3H, s, CH₃) 7.43 - 7.48 (2H, m, Ar-H_{4,6}) 7.78 (2H, d, J = 8.5 Hz, Ar-H₂₆) 8.29 (2H, d, J = 8.5 Hz, Ar-H₃₅) 9.94 (1H, s, CHO) 11.47 (1 H, s, OH). ¹³C NMR (300 MHz, CDCl₃) δ ppm 20.3 (CH₃), 120.8, 123.4 (C₃₅), 127.7 (C₄), 129.5 (C₂₆), 130.1, 134.4, 138.5, 143.2 (C₆), 147.1, 156.7, 196.7 (CHO). MS (ES-): [M] 256.0. Accurate Mass (ESI-): C₁₄H₁₀O₄N₁ requires 256.0615 found 256.0604. **v**_{max}(ATR): 1245, 1334, 1376, 1530, 1544, 1597, 1650, 2961, 3112 cm⁻¹.

The following protodesilylated products compounds were isolated/observed from failed Truce-Smiles rearrangements. 4-Methyl-2-nitrophenyl 4'-(trifluoromethyl)benzenesulfonate (46):

¹**H NMR** (300 MHz, *CDCl*₃) δppm **(crude)** 2.33 (3H, s, CH₃) 7.08 (1H, d, *J* = 8.5 Hz, Ar-**H**₆) 7.38 (1H, dd, *J* = 8.5, 2 Hz, Ar-H₅) 7.57 (2H, d, J = 8 Hz, Ar-H_{2.6}) 7.87 (1 H, s, Ar-H₃) 8.02 (2 H, d, J = 8 Hz, Ar-H_{3.5}).

4-Methyl-2-nitrophenyl 3'-nitrobenzenesulfonate:

¹H NMR (300 MHz, *CDCl*₃) δppm (crude) 2.39 (3 H, s, CH₃) 7.10 (1H, d, *J* = 8.5 Hz, Ar-H₆) 7.44 (1H, dd, *J* = 8.5, 2 Hz, Ar-H₅) 7.56 (1H, t, J = 8 Hz, Ar-H₅) 7.94 (1H, s, Ar-H₃) 8.22 (1H, d, J = 9 Hz, Ar-H₆) 8.33 (1H, d, J = 8 Hz, Ar-H₅) 7.94 (1H, s, Ar-H₃) 8.22 (1H, d, J = 9 Hz, Ar-H₆) 8.33 (1H, d, J = 8 Hz, Ar-H₅) 7.94 (1H, s, Ar-H₅) 7.94 (1H, s, Ar-H₅) 7.94 (1H, s, Ar-H₅) 8.22 (1H, d, J = 9 Hz, Ar-H₆) 8.33 (1H, d, J = 8 Hz, Ar-H₅) 7.94 (1H, s, Ar-H₅) 7.94 (1H, s, Ar-H₅) 8.22 (1H, d, J = 9 Hz, Ar-H₆) 8.33 (1H, d, J = 8 Hz, Ar-H₅) 7.94 (1H, s, Ar-H₅) 8.22 (1H, d, J = 9 Hz, Ar-H₆) 8.33 (1H, d, J = 8 Hz, Ar-H₅) 7.94 (1H, s, Ar-H₆) 8.33 (1H, d, J = 8 Hz, Ar-H₆) 8.33 (1H, d, J = 8 Hz, Ar-H₆) 8.33 (1H, d, J = 8 Hz, Ar-H₆) 8.34 (1H, s, Ar-H₆) 8 H_D) 8.79 (1H, t, J = 2 Hz, Ar- $H_{2'}$).

Methyl 2-((4-methyl-2-nitrophenoxy)sulfonyl)benzoate (47):

¹H NMR (300 MHz, *CDCl*₃) δ ppm (crude) 2.34 (3H, s, C-CH₃) 3.90 (3H, s, O-CH₃) 7.06 (1H, d, *J* = 8.5 Hz, Ar-H₆) 7.30 - 7.44 (4H, m, Ar- $H_{5,4',5',6'}$) 7.89 (1H, s, Ar- H_3) 8.05 (1H, d, J = 8 Hz, Ar- H_3').

v. Synthersis of dibenzofuran, (48)

Synthesis of Dibenzofuran (48):¹⁰

A solution of 2'-nitro-[1,1'-biphenyl]-2-ol, (**26**), (0.215 g, 1.0 mmol) in hexamethylphosphoric triamide (1.5 mL) was added to a stirred solution of sodium hydride (0.072 g, 3.0 mmol) in hexamethylphosphoric triamide (2.0 mL). The reaction mixture was heated at 70 °C for 24 hrs and then allawed to cool to room temperature. 5% HCl was added to the reaction mixture and then extracted with diethyl ether. The organic layer was dried and concentrated *in vacuo*. The crude product was purified by column chromatography (20:80 ether-petroleum ether) afforded the *title compound*, (**48**), as white powder (43%; **mp** 80-81°C Lit¹⁰ **mp** 83.5). ¹**H NMR** (400 MHz, *CDCl*₃) δ ppm 7.37 (2H, td, *J* = 8, 1 Hz, Ar-H₄) 7.49 (2H, td, *J* = 8, 1 Hz, Ar-H₃) 7.61 (2H, d, *J* = 8 Hz, Ar-H₂) 7.99 (2H, dd, *J* = 7.5, 0.76 Hz, Ar-H₅).¹³**C NMR** (125 MHz, *CDCl*₃) δ ppm 111.6 (**C**₂), 120.6 (**C**₅), 122.6 (**C**₄), 124.2 (**C**₃), 127.1, 156.2.

¹⁰ A. F. Sierakowski, Aust. J. Chem. 1983, **36**, 1281.

vi. Synthesis of pyridones

Synthesis of 3-trimethylsilyl-2-hydroxypyridine (49):¹¹

a stirred solution of 2-hydroxypyridine (10 g, 105 mmol) in THF (250 mL) at 0 °C was added Lithium diisopropylamide (2 M, 115 mL, 231 mmol) over 15 min under nitrogen. The solution was stirred at 0 °C for 15 min and for 1 hour while warming to room temperature. Upon recooling to 0 °C chlorotrimethylsilane (15 mL, 115 mmol) was added dropwise to the reaction mixture. The solution was allowed to stir overnight at room temperature. The THF was evaporated and extracted with ethyl acetate. The organic phase was washed with water, brine, and dried over MgSO4 and the reaction mixture taken to dryness in vacuo. The product obtained as off-white solid (11.8 g, 67%; mp 93-94 °C; Lit¹¹ 91-92 °C) after flash chromatography (ethyl acetate). ¹H NMR (400 MHz, CDCl₃) δ ppm 0.28 (9H, s, CH₃) 6.24 (1H, t, J = 6.5 Hz, Ar-H₅) 7.37 (1H, dd, J = 6.5, 2 Hz, Ar-H₄) 7.55 (1H, dd, J = 6.5, 2 Hz, Ar-H₆) 12.90 (1 H, br. s., OH). ¹³C NMR (125 MHz, CDCl₃) δ ppm -1.55(Si-CH₃), 106.9

(C₅), 131.8 (C₆), 135.8 (C₄), 147.6, 168.0. MS (ES+): [M+Na]⁺ 190.4. Accurate Mass (ES+): C₈H₁₃N₁O₁Si₁Na₁ requires 190.664

Synthesis of 3-(trimethylsilyl)pyridin-2-yl-4-nitrobenzenesulfonate (50):

found 190.0670. **v**_{max}(ATR): 1241, 1429, 1465, 1536, 1616, 2951 cm⁻¹.

To

The title compound was prepared by using general procedure as above. 4-nitrobenzenesulfonylchloride (0.728 g, 3.31 mmol, 1.1 eq) was added to the reaction mixture of 3-(trimethylsilyl)pyridine-2-ol (0.505 g, 3.01 mmol, 1 eq.) and sodium hydride (0.288 g, 12.04 mmol) in THF (50 mL). Column chromatography (silica, 10% ether, Petrol) afforded the compound as yellow crystalline solid (1.05 g, 90 %; mp 164-166 °C). ¹H NMR (400 MHz, CDCl₃) δ ppm 0.16 (9H, s, CH₃) 6.28 - 6.32 (1H, m, Ar-H₅) 7.45 (1H, dd, J = 6, 2 Hz, Ar-H₆) 8.04 (1 H, dd, J=7.57, 2.02 Hz, Ar-H₄) 8.30 (2H, d, J = 9 Hz, Ar-H₂₆) 8.39 (2H, d, J = 9 Hz, Ar-H₃₅). ¹³C NMR (125 MHz, *CDCl*₃) δ ppm -1.98 (CH₃), 107.3 (C₅), 123.9 (C₃₅), 131.0 (C₂₆), 132.0 (C₄), 136.4, 142.5, 147.8, 150.9 (C₆), 162.1. MS (EI+): [M⁺] 353.4. Accurate Mass (ES+): C14H16O5S1Si1N2Na1 requires 375.0447 found 375.0431 Microanalysis: C14H16O5S1Si1N2 requires C 47.7; H 4.6; N 7.9; S 9.1%. Found C 47.5; H 4.6; N 7.7; S 8.9%. **v** max(ATR): 1162, 1334, 1367, 1530, 1600, 1656, 2953 cm⁻¹

Synthesis of 3-(4-nitrophenyl)pyridin-2(1H)-one (52):12

Following the general method for bi-aryl synthesis, column chromatography (silica, 15% ether, petroleum ether) of the reation between (50) and TBAF afforded the compound as bright yellow solid (0.266 g, 61.4%; mp 187-189 C°). ¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 6.35 - 6.40 (1H, m, Ar-H₅) 7.52 (1H, dd, *J* = 6.5, 2 Hz, Ar-H₄) 7.87 (1H, dd, J = 7, 2 Hz, Ar-**H**₆) 8.07 (2H, d, J = 9 Hz, Ar-**H**₂₆) 8.24 (2H, d, J = 9 Hz, Ar-**H**₃₅) 12.06 (1H, br. s.). ¹³C NMR (75 MHz, DMSO-d₆) δ ppm 105.6 (C₅), 123.1 (C₃₅), 127.2, 128.9 (C₂₆), 136.7 (C₅), 140.6 (C₆), 143.4,

146.1, 160.8(C₂). MS (ES+): [M⁺] 217.4; Accurate Mass (ES+): C₁₁H₉N₂O₃ requires 217.0613 found 217.0628. U_{max}(ATR): 1247, 1328, 1499, 1556, 1591, 1658, 2792 cm⁻¹

¹¹ F.I. Carroll, T. P. Robinson, L. E. Brieaddy, R. N. Atkinson, S. Wayne, M. I. Damaj, B.R. Martin and H. A. Navarro, J. Med. Chem. 2007, 50, 6383. 12 J. Witherington, V. Bordas, A. Gaiba, A. Naylor, N. Parr, D. G. Smith, A. K. Takle and R. W. Ward, Bioorg and Med. Chem. Lett. 2006, 16, 2256.

vii. Attempted halogen metal excahnge reactions on (53) and (54).

Synthesis of 2-bromophenyl 4'-nitrobenzenesulfonate (53)¹³

2-bromophenol (1.5 g, 8.67 mmol) was added to a stirred suspension of sodium hydride (0.550 g, 17.34 mmol) in dry THF (15 mL). After 40 minutes 4-nittrobenzenesulphonylchloride (2.114 g, 9.55 mmol) was slowly added in dry THF (13 mL). the reaction mixture was stirred at room temperature for two hours. After this reaction mixture was poured into ether (50 mL) and washed with water. The organic layer was dried and concentrated *in vacuo*. The crude product was purified by recrystalisation (petroleum ether) afforded the *title compound* as brown solid (2.055 g, 76%).¹H NMR (400 MHz, *CDCl*₃) δ ppm 7.03 - 7.07 (1H, m) 7.40 - 7.43 (2H, m) 7.78 (1 H, d, *J*=8.07 Hz) 8.14 (2 (2 Hz) a 40 (2 H dd - 8.83 - 2.02 Hz)) and (ATR): 1390 - 1534 - 1608 - 3109 cm⁻¹

H, dd, *J*=8.83, 1.77 Hz) 8.40 (2 H, dd, *J*=8.83, 2.02 Hz). $v_{max}(ATR)$: 1390, 1534, 1608, 3109 cm⁻¹.

Synthesis of 2-iodophenyl 4'-nitrobenzenesulfonate (54):^{3b}

2-iodophenol (1.89 g, 8.67 mmol) was added to a stirred suspension of sodium hydride (0.550 g, 17.34 mmol) in dry THF (15 mL). After 40 minutes 4-nittrobenzenesulphonylchloride (2.114 g, 9.55 mmol) was slowly added in dry THF (13 mL). the reaction mixture was stirred at room temperature for two hours. After this reaction mixture was poured into ether (50 mL) and washed with water. The organic layer was dried and concentrated *in vacuo*. The crude product was purified by recrystalisation (petroleum ether) afforded the *title compound* as brown solid (1.141 g, 82%).

¹H NMR (400 MHz, *CDCl₃*) δ ppm 6.99 - 7.09 (1H, m) 7.38 - 7.45 (2H, m) 7.78 (1H, d, *J* = 7.3 Hz, Ar-**H**₃) 8.14 (2H, dd, *J* = 8.8, 2.2 Hz, Ar-**H**₂) 8.40 (2H, dd, *J* = 8.8, 2.2 Hz, Ar-**H**₃).¹³**C NMR** (125 MHz, *CDCl₃*) δ ppm 89.5, 123.2, 124.3, 129.0, 129.9, 130.3, 140.3, 141.3, 149.5, 151.2. **v**_{max}(ATR): 1394, 1578, 1615, 3106 cm⁻¹.

Attempted Truce Smiles reactions using (53) and (54).

Reaction of either 2-iodophenyl 4'-nitrobenzenesulfonate or 2-bromophenyl 4'-nitrobenzenesulfonate with PhLi (2 eq.) or *iso*propylmagnesium chloride (1.5 eq. 2M THF solution) at -78 °C in THF, under an atmosphere of nitrogen, for 1 hour afforded none of the desired rearranged products as judged by an examination of the ¹H NMR sprectra of the crude reaction mixtures. Part B: Spectroscopic data

Compound 5a:

-0.35

Chemical Shift (ppm)

Precursors for Scheme 2:

Compound 5:

Precursors for Scheme 7: 2,6-DIBROMO-4-METHYL SILYLETHER.010.001.1R.esp

Precursors for Scheme7: B-BROMOTRIMETHYLSILYL PHENOL.015.001.1R.esp Si(CH₃)₃ Br Chemical Shift (ppm) -135.06 Si(CH₃)₃ Br -20.20 -130.89 153.86 10.08 -126.60

150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Chemical Shift (ppm)

Precursors for Scheme 7:

Compound 6:

Compound 19:

Compound 20:

Precursors for Scheme 9:

Compound 12:

Compound 13:

Compound 14:

Compound 39:

Compound 36:

Compound 37:

Compound 38:

Compound 40: 13-05-07-PAG-49.010.001.1R.esp

Compound 22:

Compound 7:

Compound 25:

Compound 52:

Compound 16:

Compound 15:

Compound 41:

Compound 10:

Compound 9:

Compound 54:

Compound 53:

Compound 18:

Part C: X-ray crystal structure data

Cpd no.	UoM Identifier	CCDC no.
10	s3767	1056926
16	s3898	1056929
20	s3726	1056923
25	S3776	1056927
50	s3883	1056928
21	S3727	1056924

Cif files of these structures can be obtained, frre of charge, from the Cambridge Crystallographic Data Centre: http://www.ccdc.cam.ac.uk/

CCDC 1056923
Formula: C15 H17 N1 O5 S1 Si1
Unit Cell Parameters: a 9.8463(2) b 9.1987(2) c 18.7908(5) P21/c
Summary of Data CCDC 1056924
Formula: C15 H16 N2 O7 S1 Si1
Unit Cell Parameters: a 13.5825(3) b 10.5322(2) c 12.8580(3) P21/c
Summary of Data CCDC 1056926
Compound Name:
Formula: C8 H6 F3 N1 O5 S1
Unit Cell Parameters: a 5.3555(6) b 12.8070(14) c 16.0563(15) P21/n
Summary of Data CCDC 1056927
Formula: C12 H9 N1 O3
Unit Cell Parameters: a 20.5236(9) b 7.6948(3) c 18.8253(9) Cc
Summary of Data CCDC 1056928
Compound Name:
Formula: C14 H16 N2 O5 S1 Si1
Unit Cell Parameters: a 13.2148(2) b 10.9938(2) c 12.0527(2) P21/c
Summary of Data CCDC 1056929
Compound Name:
Formula: C13 H10 N2 O5
Unit Cell Parameters: a 15.6137(4) b 7.7484(2) c 21.2252(5) P21/n

Crystal data and structure refinement for s3727na.

Identification code	s3727na
Empirical formula	C15 H16 N2 O7 S Si
Formula weight	396.45
Temperature	150(2) K
Wavelength	1.54178 A
Crystal system, space group	Monoclinic, P2(1)/c
Unit cell dimensions	a = 13.5825(3) A alpha = 90 deg. b = 10.5322(2) A beta = 101.968(2) deg. c = 12.8580(3) A gamma = 90 deg.
Volume	1799.40(7) A^3
Z, Calculated density	4, 1.463 Mg/m ³
Absorption coefficient	2.617 mm ⁻¹
F(000)	824
Crystal size	0.15 x 0.14 x 0.10 mm
Theta range for data collection	3.33 to 67.80 deg.
Limiting indices	-15<=h<=16, -12<=k<=12, -15<=1<=13
Reflections collected / unique	9327 / 3225 [R(int) = 0.0490]
Completeness to theta = 66.60	98.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7798 and 0.477511
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3225 / 0 / 238
Goodness-of-fit on F^2	1.036
Final R indices [I>2sigma(I)]	R1 = 0.0367, wR2 = 0.0961
R indices (all data)	R1 = 0.0437, wR2 = 0.1016
Largest diff. peak and hole	0.343 and -0.303 e.A^-3
Table 2. Atomic coordinates (displacement parameters (A^2 x U(eq) is defined as one third o Uij tensor.	x 10^4) and equivalent isotropic 10^3) for s3727na. of the trace of the orthogonalized

2	x	У	Z	U(eq)
---	---	---	---	-------

C(1)	2698(1)	6361(2)	9570(1)	20(1)
C(2)	3421(1)	6000(2)	9009(1)	20(1)
C(3)	3497(2)	4682(2)	8863(2)	25(1)
C(4)	2893(2)	3820(2)	9265(2)	28(1)
C(5)	2206(2)	4249(2)	9848(2)	27(1)
C(6)	2103(1)	5542(2)	10009(2)	25(1)
C(7)	5268(2)	6290(2)	8032(2)	34(1)
C(8)	3513(2)	8144(2)	7427(2)	33(1)
C(9)	4877(2)	8224(2)	9664(2)	33(1)
C(10)	1119(1)	8742(2)	10422(1)	19(1)
C(11)	1452(1)	9652(2)	11205(1)	19(1)
C(12)	949(1)	9878(2)	12013(2)	21(1)
C(13)	107(1)	9156(2)	12030(1)	21(1)
C(14)	-260(1)	8258(2)	11271(2)	24(1)
C(15)	246(1)	8065(2)	10447(2)	24(1)
N(1)	2371(1)	10403(2)	11221(1)	24(1)
N(2)	-421(1)	9346(2)	12912(1)	27(1)
0(1)	2648(1)	7698(1)	9775(1)	22(1)
O(2)	1009(1)	7796(2)	8538(1)	30(1)
0(3)	2045(1)	9716(1)	9046(1)	29(1)
O(4)	3150(1)	9829(1)	11238(1)	30(1)
0(5)	2288(1)	11552(1)	11254(2)	44(1)
0(6)	-1078(1)	8589(2)	12999(1)	38(1)
0(7)	-158(1)	10243(2)	13510(1)	37(1)
S(1)	1692(1)	8513(1)	9310(1)	21(1)
Si(1)	4278(1)	7189(1)	8529(1)	22(1)

Table 3. Bond lengths [A] and angles [deg] for s3727na.

C(1) - C(6) C(1) - C(2) C(1) - O(1) C(2) - C(3) C(2) - Si(1) C(3) - C(4) C(3) - H(3) C(4) - C(5) C(4) - H(4) C(5) - C(6) C(5) - H(5) C(6) - H(6) C(7) - Si(1) C(7) - H(7A) C(7) - H(7A) C(7) - H(7B) C(7) - H(7C) C(8) - Si(1) C(8) - H(8B) C(8) - H(8B) C(8) - H(8B) C(8) - H(8B) C(9) - Si(1) C(9) - H(9B) C(9) - H(9B) C(9) - H(9C) C(10) - C(11) C(10) - S(1) C(11) - C(12)	1.380(3) 1.387(3) 1.437(2) 1.407(3) 1.8989(19) 1.393(3) 0.9500 1.389(3) 0.9500 1.388(3) 0.9500 1.862(2) 0.9800 0.9800 1.868(2) 0.9800 1.868(2) 0.9800 1.867(2) 0.9800 0.9800 1.390(3) 1.395(3) 1.7796(18) 1.379(3)
C(10) - C(11) $C(10) - S(1)$ $C(11) - C(12)$ $C(11) - N(1)$ $C(12) - C(13)$	1.395(3) 1.7796(18) 1.379(3) 1.474(2) 1.376(3)
C(12)-H(12) $C(13)-C(14)$ $C(13)-N(2)$ $C(14)-C(15)$ $C(14)-H(14)$ $C(15)-H(15)$ $N(1)-O(5)$ $N(1)-O(4)$ $N(2)-O(6)$ $N(2)-O(7)$ $O(1)-S(1)$ $O(2)-S(1)$ $O(3)-S(1)$	0.9500 1.376(3) 1.476(2) 1.391(3) 0.9500 0.9500 1.217(2) 1.215(2) 1.219(2) 1.224(2) 1.5685(13) 1.4256(15) 1.4203(16)
--	--
C(6) - C(1) - C(2) $C(6) - C(1) - O(1)$ $C(2) - C(1) - O(1)$ $C(1) - C(2) - C(3)$ $C(1) - C(2) - Si(1)$ $C(3) - C(2) - Si(1)$ $C(4) - C(3) - C(2)$ $C(4) - C(3) - C(2)$ $C(4) - C(3) - H(3)$ $C(2) - C(3) - H(3)$ $C(5) - C(4) - C(3)$ $C(5) - C(4) - H(4)$ $C(6) - C(5) - C(4)$ $C(6) - C(5) - H(5)$ $C(1) - C(6) - H(6)$ $C(5) - C(6) - H(6)$ $Si(1) - C(7) - H(7R)$ $Si(1) - C(8) - H(8R)$ $Si(1) - C(8) - H(8R)$ $Si(1) - C(8) - H(8R)$ $H(8R) - C(8) - H(8R)$ $Si(1) - C(8) - H(8R)$ $H(8R) - C(8) - H(8C)$ $H(8R) - C(8) - H(8C)$ $H(8R) - C(8) - H(8C)$ $H(8R) - C(9) - H(9R)$ $Si(1) - C(1) - S(1)$ $C(11) - C(10) - S(1)$ $C(11) - C(10) - S(1)$ $C(11) - C(11) - N(1)$ $C(13) - C(12) - C(11)$ $C(13) - C(12) - C(11)$ $C(13) - C(12) - H(12)$ $C(14) - C(13) - C(12)$	125.35(18) $118.97(17)$ $115.45(16)$ $114.81(17)$ $122.43(14)$ $122.71(14)$ $121.89(18)$ 119.1 $120.10(19)$ 119.9 119.9 $119.96(19)$ 120.0 120.0 $127.82(18)$ 121.1 121.1 109.5 100.5 109.5 100.5 10
C(14)-C(13)-N(2) C(12)-C(13)-N(2)	118.43(17) 118.35(17)

C(13) - C(14) - C(15)	118.50(18)
C(13) - C(14) - H(14)	120.7
C(15)-C(14)-H(14)	120.7
C(10) - C(15) - C(14)	120.07(18)
C(10)-C(15)-H(15)	120.0
C(14)-C(15)-H(15)	120.0
O(5)-N(1)-O(4)	125.50(18)
O(5) - N(1) - C(11)	116.81(16)
O(4) - N(1) - C(11)	117.65(16)
O(6)-N(2)-O(7)	124.82(17)
O(6)-N(2)-C(13)	117.64(17)
O(7)-N(2)-C(13)	117.53(17)
C(1) - O(1) - S(1)	122.24(12)
O(3)-S(1)-O(2)	120.62(9)
O(3) - S(1) - O(1)	106.57(8)
O(2) - S(1) - O(1)	110.05(8)
O(3) - S(1) - C(10)	107.23(9)
O(2) - S(1) - C(10)	107.57(9)
O(1) - S(1) - C(10)	103.49(8)
C(7) - Si(1) - C(9)	109.71(10)
C(7) - Si(1) - C(8)	109.96(11)
C(9) - Si(1) - C(8)	111.24(11)
C(7) - Si(1) - C(2)	108.12(10)
C(9) - Si(1) - C(2)	109.15(9)
C(8) - Si(1) - C(2)	108.60(9)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for s3727na. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 Ull + \dots + 2 h k a* b* Ul2]

	U11	U22	U33	U23	U13	U12
C(1) C(2) C(3) C(4) C(5) C(6) C(7) C(6) C(7) C(8) C(9) C(10) C(11) C(12)	U11 20(1) 20(1) 26(1) 30(1) 27(1) 23(1) 28(1) 44(1) 27(1) 18(1) 18(1) 23(1)	U22 18(1) 20(1) 22(1) 19(1) 27(1) 32(1) 39(1) 27(1) 32(1) 20(1) 18(1) 21(1)	U33 19(1) 18(1) 26(1) 31(1) 25(1) 21(1) 40(1) 30(1) 40(1) 18(1) 20(1) 20(1)	U23 0(1) 0(1) -1(1) 2(1) 6(1) 1(1) -8(1) 5(1) -10(1) 0(1) 2(1) 0(1)	U13 0(1) 2(1) 4(1) -1(1) 0(1) 5(1) 16(1) 11(1) 8(1) 4(1) 3(1) 4(1)	U12 2(1) 2(1) 5(1) 0(1) -6(1) -1(1) 0(1) 0(1) -5(1) 5(1) 3(1) 3(1)
C(13) C(14) C(15) N(1) N(2) O(1) O(2) O(3) O(3) O(4) O(5) O(6)	21(1) 19(1) 21(1) 27(1) 26(1) 20(1) 28(1) 35(1) 20(1) 44(1) 36(1)	24(1) 24(1) 22(1) 33(1) 21(1) 38(1) 27(1) 30(1) 17(1) 46(1)	19(1) 29(1) 26(1) 25(1) 23(1) 26(1) 22(1) 28(1) 41(1) 76(1) 39(1)	$\begin{array}{c} 4(1) \\ 2(1) \\ -4(1) \\ -2(1) \\ 5(1) \\ -4(1) \\ -8(1) \\ 5(1) \\ -2(1) \\ -4(1) \\ 5(1) \end{array}$	6(1) 7(1) 3(1) 8(1) 9(1) 5(1) 0(1) 14(1) 9(1) 25(1) 21(1)	$\begin{array}{c} 6(1) \\ 1(1) \\ 0(1) \\ -2(1) \\ 6(1) \\ 3(1) \\ 6(1) \\ 6(1) \\ 0(1) \\ -4(1) \\ -5(1) \end{array}$

0(7)	40(1)	46(1)	29(1)	-9(1)	15(1)	0(1)	
S(1)	22(1)	24(1)	18(1)	-1(1)	5(1)	5(1)	
Si(1)	22(1)	22(1)	25(1)	-2(1)	8(1)	-1(1)	

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for s3727na.

	x	У	Z	U(eq)
H(3)	3973	4372	8478	30
H(4)	2951	2937	9139	33
H(5)	1806	3659	10136	32
Н(б)	1639	5852	10409	30
H(7A)	5753	6887	7837	52
H(7B)	4955	5791	7407	52
H(7C)	5616	5719	8591	52
H(8A)	3961	8571	7031	50
H(8B)	3123	8780	7725	50
H(8C)	3053	7582	6948	50
H(9A)	5113	7699	10296	49
H(9B)	4383	8840	9811	49
H(9C)	5448	8675	9481	49
H(12)	1173	10508	12537	26
H(14)	-845	7780	11308	29
H(15)	-6	7470	9902	29

Table 6. Torsion angles [deg] for s3727na.

C(6) - C(1) - C(2) - C(3)	2.6(3)
O(1) - C(1) - C(2) - C(3)	176.86(16)
C(6)-C(1)-C(2)-Si(1)	-174.91(15)
O(1) - C(1) - C(2) - Si(1)	-0.6(2)
C(1) - C(2) - C(3) - C(4)	-0.6(3)
Si(1) - C(2) - C(3) - C(4)	$176\ 88(15)$
C(2) - C(3) - C(4) - C(5)	-1 4(3)
C(3) - C(4) - C(5) - C(6)	1 5(3)
C(3) C(4) C(3) C(0)	1.J(J)
C(2) - C(1) - C(0) - C(5)	-2.5(3)
O(1) - C(1) - C(6) - C(5)	-1/0.55(10)
C(4) - C(5) - C(6) - C(1)	0.3(3)
C(15) - C(10) - C(11) - C(12)	1.2(3)
S(1)-C(10)-C(11)-C(12)	174.86(14)
C(15)-C(10)-C(11)-N(1)	-179.87(17)
S(1)-C(10)-C(11)-N(1)	-6.2(3)
C(10) - C(11) - C(12) - C(13)	1.0(3)
N(1)-C(11)-C(12)-C(13)	-177.95(16)
C(11)-C(12)-C(13)-C(14)	-1.8(3)
C(11) - C(12) - C(13) - N(2)	177.58(16)
C(12) - C(13) - C(14) - C(15)	0.3(3)
N(2) - C(13) - C(14) - C(15)	-179.09(17)
C(11) - C(10) - C(15) - C(14)	-2.8(3)
S(1) - C(10) - C(15) - C(14)	-176 73(15)
C(13) = C(14) = C(15) = C(10)	2 1(2)
C(12) C(11) N(1) O(5)	54 = (2)
C(12) - C(11) - N(1) - O(5)	-54.5(2)
C(10) - C(11) - N(1) - O(5)	102.05(2)
C(12) - C(11) - N(1) - O(4)	123.05(19)
C(10) - C(11) - N(1) - O(4)	-55.9(2)

C(14) - C(13) - N(2) - O(6)	9.1(3)
C(12) - C(13) - N(2) - O(6)	-170.27(18)
C(14) - C(13) - N(2) - O(7)	-171.78(18)
C(12) - C(13) - N(2) - O(7)	8.8(3)
C(6)-C(1)-O(1)-S(1)	-68.7(2)
C(2)-C(1)-O(1)-S(1)	116.63(16)
C(1) - O(1) - S(1) - O(3)	-142.98(14)
C(1) - O(1) - S(1) - O(2)	-10.59(16)
C(1) - O(1) - S(1) - C(10)	104.12(14)
C(15) - C(10) - S(1) - O(3)	141.06(15)
C(11) - C(10) - S(1) - O(3)	-32.66(18)
C(15) - C(10) - S(1) - O(2)	9.95(17)
C(11) - C(10) - S(1) - O(2)	-163.76(15)
C(15)-C(10)-S(1)-O(1)	-106.52(15)
C(11) - C(10) - S(1) - O(1)	79.76(16)
C(1)-C(2)-Si(1)-C(7)	170.23(16)
C(3)-C(2)-Si(1)-C(7)	-7.06(19)
C(1)-C(2)-Si(1)-C(9)	50.94(18)
C(3)-C(2)-Si(1)-C(9)	-126.35(17)
C(1)-C(2)-Si(1)-C(8)	-70.49(17)
C(3)-C(2)-Si(1)-C(8)	112.22(17)

Table 7. Hydrogen bonds for s3727na [A and deg.].

D-H...A

d(D-H) d(H...A) d(D...A) <(DHA)

Crystal data and structure refinement for s3883ma.

```
Identification code
                                         s3883ma
                                         C14 H16 N2 O5 S Si
      Empirical formula
      Formula weight
                                         352.44
      Temperature
                                         100(2) K
      Wavelength
                                         1.54178 A
      Crystal system, space group
                                         Monoclinic, P2(1)/c
      Unit cell dimensions
                                         a = 13.2148(2) A
                                                             alpha = 90 deg.
                                         b = 10.9938(2) A
                                                             beta = 111.8790(10)
deg.
                                         c = 12.0527(2) A gamma = 90 deg.
      Volume
                                         1624.90(5) A^3
      Z, Calculated density
                                         4, 1.441 Mg/m^3
      Absorption coefficient
                                         2.726 mm^-1
                                         736
      F(000)
      Crystal size
                                         0.29 \times 0.19 \times 0.16 mm
      Theta range for data collection
                                         3.60 to 72.15 deg.
                                         -16<=h<=16, -13<=k<=13, -14<=1<=14
      Limiting indices
                                         15650 / 3176 [R(int) = 0.0266]
      Reflections collected / unique
      Completeness to theta = 66.60
                                         99.7 %
      Absorption correction
                                         Semi-empirical from equivalents
      Max. and min. transmission
                                         0.6695 and 0.553297
      Refinement method
                                         Full-matrix least-squares on F<sup>2</sup>
                                         3176 / 0 / 211
      Data / restraints / parameters
      Goodness-of-fit on F^2
                                         1.049
                                         R1 = 0.0289, wR2 = 0.0791
      Final R indices [I>2sigma(I)]
      R indices (all data)
                                         R1 = 0.0313, wR2 = 0.0807
      Largest diff. peak and hole
                                         0.297 and -0.403 e.A^-3
         Table 2. Atomic coordinates ( x \ 10^4) and equivalent isotropic
         displacement parameters (A<sup>2</sup> x 10<sup>3</sup>) for s3883ma.
         U(eq) is defined as one third of the trace of the orthogonalized
         Uij tensor.
```

```
x
```

z

C(1)	10657(1)	2731(2)	13186(1)	33(1)
C(2)	9943(1)	1302(1)	10871(1)	27(1)
C(3)	11018(1)	3837(1)	11046(1)	28(1)
C(4)	8708(1)	3572(1)	11046(1)	20(1)
C(5)	8008(1)	3505(1)	9787(1)	18(1)
C(6)	6589(1)	4542(1)	10321(1)	28(1)
C(7)	7272(1)	4666(1)	11458(1)	30(1)
C(8)	8328(1)	4132(1)	11825(1)	25(1)
C(9)	6265(1)	4399(1)	7099(1)	20(1)
C(10)	5935(1)	5608(1)	6960(1)	26(1)
C(11)	6124(1)	6302(1)	6099(1)	28(1)
C(12)	6624(1)	5756(1)	5407(1)	23(1)
C(13)	6956(1)	4554(1)	5537(1)	27(1)
C(14)	6776(1)	3864(1)	6405(1)	26(1)
N(1)	6913(1)	3911(1)	9508(1)	21(1)
N(2)	6816(1)	6502(1)	4482(1)	29(1)
0(1)	8269(1)	3114(1)	8984(1)	23(1)
0(2)	6087(1)	2266(1)	7968(1)	30(1)
0(3)	4952(1)	3959(1)	8197(1)	33(1)
0(4)	7368(1)	6063(1)	3964(1)	38(1)
0(5)	6415(1)	7516(1)	4290(1)	45(1)
S(1)	5957(1)	3522(1)	8156(1)	23(1)
Si(1)	10103(1)	2857(1)	11520(1)	19(1)

Table 3. Bond lengths [A] and angles [deg] for s3883ma.

C(1) -Si(1) $C(1) -H(1A)$ $C(1) -H(1B)$ $C(1) -H(1C)$ $C(2) -Si(1)$ $C(2) -H(2A)$ $C(2) -H(2B)$ $C(2) -H(2C)$ $C(3) -Si(1)$ $C(3) -H(3A)$ $C(3) -H(3B)$ $C(3) -H(3B)$ $C(3) -H(3C)$ $C(4) -C(8)$ $C(4) -C(8)$ $C(4) -C(5)$ $C(4) -Si(1)$ $C(5) -O(1)$ $C(5) -O(1)$ $C(5) -N(1)$ $C(6) -C(7)$ $C(6) -H(6)$ $C(7) -C(8)$ $C(7) -H(7)$ $C(8) -H(8)$ $C(9) -C(14)$ $C(9) -C(10)$ $C(9) -S(1)$ $C(10) -H(10)$ $C(11) -C(12)$	$\begin{array}{c} 1.8686(16)\\ 0.9800\\ 0.9800\\ 0.9800\\ 1.8595(15)\\ 0.9800\\ 0.9800\\ 0.9800\\ 1.8617(15)\\ 0.9800\\ 0.9800\\ 0.9800\\ 1.3652(19)\\ 1.4553(19)\\ 1.4553(19)\\ 1.4553(19)\\ 1.8867(14)\\ 1.2198(16)\\ 1.4293(17)\\ 1.338(2)\\ 1.3919(18)\\ 0.9500\\ 1.424(2)\\ 0.9500\\ 1.387(2)\\ 1.389(2)\\ 1.7624(14)\\ 1.384(2)\\ 0.9500\\ 1.387(2)\\ 1.389(2)\\ 1.7624(14)\\ 1.384(2)\\ 0.9500\\ 1.380(2)\\ \end{array}$
C(10) -H(10) C(11) -C(12) C(11) -H(11) C(12) -C(13) C(12) -N(2)	0.9500 1.380(2) 0.9500 1.383(2) 1.4793(19)

C(13)-C(14)	1.383(2)
C(13)-H(13)	0.9500
C(14)-H(14)	0.9500
N(1) - S(1)	1.7027(12)
N(2)-O(5)	1.2194(19)
N(2)-O(4)	1.2221(18)
O(2) - S(1)	1.4203(11)
O(3) - S(1)	1.4304(11)
Si(1)-C(1)-H(1A)	109.5
Si(1)-C(1)-H(1B)	109.5
H(1A) - C(1) - H(1B)	109.5
Si(1)-C(1)-H(1C)	109.5
H(1A) - C(1) - H(1C)	109.5
H(1B) - C(1) - H(1C)	109.5
Si(1)-C(2)-H(2A)	109.5
Si(1)-C(2)-H(2B)	109.5
H(2A)-C(2)-H(2B)	109.5
Si(1)-C(2)-H(2C)	109.5
H(2A)-C(2)-H(2C)	109.5
H(2B)-C(2)-H(2C)	109.5
Si(1)-C(3)-H(3A)	109.5
Si(1)-C(3)-H(3B)	109.5
H(3A)-C(3)-H(3B)	109.5
Si(1)-C(3)-H(3C)	109.5
H(3A) - C(3) - H(3C)	109.5
H(3B) - C(3) - H(3C)	109.5
C(8) - C(4) - C(5)	119.09(13)
C(8) - C(4) - Si(1)	123.24(11)
C(5) - C(4) - Si(1)	117.66(10)
O(1) - C(5) - N(1)	118.96(12)
O(1) - C(5) - C(4)	125.95(12)
N(1) - C(5) - C(4)	115.07(11)
C(7) - C(6) - N(1)	120.31(13)
C(7) - C(6) - H(6)	119.8
N(1) - C(6) - H(6)	119.8
C(6) - C(7) - C(8)	119.02(13)
C(6) - C(7) - H(7)	120.5
C(8) - C(7) - H(7)	120.5
C(4) - C(8) - C(7)	122.78(14)
C(4)-C(8)-H(8)	118.6
C(7) - C(8) - H(8)	118.6
C(14) - C(9) - C(10)	122.33(13)
C(14) - C(9) - S(1)	119.93(11)
C(10) - C(9) - S(1)	117.67(11)
C(11) - C(10) - C(9)	118.83(13)
C(11)-C(10)-H(10)	120.6
C(9) - C(10) - H(10)	120.6
C(12) - C(11) - C(10)	118.30(13)
C(12) - C(11) - H(11)	120.8
C(10) - C(11) - H(11)	120.8
C(11)-C(12)-C(13)	123.40(14)
C(11) - C(12) - N(2)	118.02(13)
C(13) - C(12) - N(2)	118.58(13)
C(14)-C(13)-C(12)	118.25(13)
C(14) - C(13) - H(13)	120.9
C(12) - C(13) - H(13)	120.9
C(13) - C(14) - C(9)	118.88(13)
C(13) - C(14) - H(14)	120.6
C(9) - C(14) - H(14)	120.6
C(6) - N(1) - C(5)	122.70(12)
C(6) - N(1) - S(1)	119.07(10)

C(5) - N(1) - S(1)	118.11(9)
O(5)-N(2)-O(4)	124.28(14)
O(5) - N(2) - C(12)	117.76(13)
O(4) - N(2) - C(12)	117.96(13)
O(2) - S(1) - O(3)	120.07(7)
O(2) - S(1) - N(1)	107.86(6)
O(3) - S(1) - N(1)	104.44(6)
O(2) - S(1) - C(9)	110.05(7)
O(3) - S(1) - C(9)	107.98(7)
N(1) - S(1) - C(9)	105.39(6)
C(2) - Si(1) - C(3)	112.84(7)
C(2)-Si(1)-C(1)	108.74(7)
C(3)-Si(1)-C(1)	109.50(8)
C(2) - Si(1) - C(4)	108.11(6)
C(3) - Si(1) - C(4)	109.85(6)
C(1) - Si(1) - C(4)	107.66(7)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for s3883ma. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + \dots + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12
C(1)	32(1)	40(1)	22(1)	2(1)	3(1)	3(1)
C(2)	26(1)	20(1)	32(1)	0(1)	8(1)	1(1)
C(3)	23(1)	26(1)	34(1)	-1(1)	10(1)	-4(1)
C(4)	21(1)	17(1)	20(1)	0(1)	7(1)	-3(1)
C(5)	18(1)	16(1)	22(1)	1(1)	8(1)	-1(1)
C(6)	24(1)	29(1)	35(1)	-2(1)	16(1)	4(1)
C(7)	33(1)	32(1)	32(1)	-8(1)	18(1)	1(1)
C(8)	29(1)	25(1)	22(1)	-4(1)	10(1)	-3(1)
C(9)	15(1)	22(1)	20(1)	-1(1)	2(1)	0(1)
C(10)	26(1)	26(1)	27(1)	-2(1)	10(1)	6(1)
C(11)	30(1)	22(1)	29(1)	1(1)	9(1)	7(1)
C(12)	19(1)	28(1)	18(1)	0(1)	2(1)	-1(1)
C(13)	26(1)	30(1)	25(1)	-5(1)	10(1)	4(1)
C(14)	26(1)	22(1)	28(1)	-2(1)	8(1)	5(1)
N(1)	17(1)	23(1)	23(1)	0(1)	8(1)	1(1)
N(2)	27(1)	36(1)	20(1)	0(1)	2(1)	-5(1)
0(1)	21(1)	28(1)	20(1)	-1(1)	8(1)	4(1)
0(2)	28(1)	24(1)	33(1)	0(1)	5(1)	-7(1)
0(3)	16(1)	45(1)	37(1)	4(1)	9(1)	0(1)
O(4)	36(1)	53(1)	28(1)	-2(1)	15(1)	-4(1)
0(5)	60(1)	37(1)	37(1)	13(1)	17(1)	8(1)
S(1)	15(1)	25(1)	26(1)	1(1)	5(1)	-2(1)
Si(1)	18(1)	19(1)	18(1)	0(1)	4(1)	-1(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for s3883ma.

H(1A)	11347	2281	13452	50	
H(1B)	10132	2298	13440	50	
H(1C)	10782	3547	13538	50	
H(2A)	9520	1343	10009	40	
H(2B)	9562	785	11252	40	
H(2C)	10664	957	11009	40	
H(3A)	11720	3426	11228	41	
H(3B)	11135	4613	11476	41	
H(3C)	10682	3988	10183	41	
Н(б)	5879	4887	10067	33	
H(7)	7056	5104	12012	37	
H(8)	8787	4166	12646	30	
H(10)	5586	5951	7447	31	
H(11)	5914	7133	5987	33	
H(13)	7298	4211	5042	32	
H(14)	6999	3037	6524	31	

Table 6. Torsion angles [deg] for s3883ma.

C(8) - C(4) - C(5) - O(1)	174 27(13)
Si(1) - C(4) - C(5) - O(1)	-6.33(18)
C(8) - C(4) - C(5) - N(1)	-7.57(18)
Si(1) - C(4) - C(5) - N(1)	171.84(9)
N(1) - C(6) - C(7) - C(8)	-0.7(2)
C(5) - C(4) - C(8) - C(7)	-0.5(2)
Si(1) - C(4) - C(8) - C(7)	-179.87(12)
C(6) - C(7) - C(8) - C(4)	5.0(2)
C(14) - C(9) - C(10) - C(11)	-0.1(2)
S(1) - C(9) - C(10) - C(11)	-177.17(11)
C(9) - C(10) - C(11) - C(12)	0.7(2)
C(10) - C(11) - C(12) - C(13)	-0.6(2)
C(10) - C(11) - C(12) - N(2)	179.54(13)
C(11) - C(12) - C(13) - C(14)	0.0(2)
N(2)-C(12)-C(13)-C(14)	179.86(13)
C(12) - C(13) - C(14) - C(9)	0.5(2)
C(10) - C(9) - C(14) - C(13)	-0.5(2)
S(1)-C(9)-C(14)-C(13)	176.50(11)
C(7) - C(6) - N(1) - C(5)	-8.2(2)
C(7) - C(6) - N(1) - S(1)	167.76(12)
O(1) - C(5) - N(1) - C(6)	-169.62(13)
C(4) - C(5) - N(1) - C(6)	12.07(18)
O(1) - C(5) - N(1) - S(1)	14.43(16)
C(4) - C(5) - N(1) - S(1)	-163.88(9)
C(11) - C(12) - N(2) - O(5)	-8.0(2)
C(13) - C(12) - N(2) - O(5)	172.20(14)
C(11) - C(12) - N(2) - O(4)	171.73(14)
C(13) - C(12) - N(2) - O(4)	-8.1(2)
C(6) - N(1) - S(1) - O(2)	-130.05(11)
C(5) - N(1) - S(1) - O(2)	46.05(11)
C(6) - N(1) - S(1) - O(3)	-1.25(12)
C(5) - N(1) - S(1) - O(3)	174.85(10)
C(6) - N(1) - S(1) - C(9)	112.42(11)
C(5) - N(1) - S(1) - C(9)	-71.48(11)
C(14) - C(9) - S(1) - O(2)	-12.37(13)
C(10) - C(9) - S(1) - O(2)	164.77(11)
C(14) - C(9) - S(1) - O(3)	-145.15(12)
C(10) - C(9) - S(1) - O(3)	31.99(13)
C(14) - C(9) - S(1) - N(1)	103.67(12)
C(10) - C(9) - S(1) - N(1)	-79.19(12)

C(8)-C(4)-Si(1)-C(2)	130.89(12)
C(5)-C(4)-Si(1)-C(2)	-48.48(12)
C(8)-C(4)-Si(1)-C(3)	-105.59(13)
C(5)-C(4)-Si(1)-C(3)	75.03(11)
C(8)-C(4)-Si(1)-C(1)	13.58(14)
C(5)-C(4)-Si(1)-C(1)	-165.80(10)

Table 7. Hydrogen bonds for s3883ma [A and deg.].

D-H...A

d(D-H) d(H...A) d(D...A) <(DHA)

Crystal data and structure refinement for s3776na.

Identification code	s3776na
Empirical formula	C12 H9 N O3
Formula weight	215.20
Temperature	100(2) K
Wavelength	1.54178 A
Crystal system, space group	Monoclinic, Cc
Unit cell dimensions	a = 20.5236(9) A alpha = 90 deg. b = 7.6948(3) A beta = 96.529(2) deg. c = 18.8253(9) A gamma = 90 deg.
Volume	2953.7(2) A^3
Z, Calculated density	12, 1.452 Mg/m ³
Absorption coefficient	0.881 mm^-1
F(000)	1344
Crystal size	0.22 x 0.15 x 0.07 mm
Theta range for data collection	4.34 to 70.00 deg.
Limiting indices	-24<=h<=23, -8<=k<=9, -21<=1<=22
Reflections collected / unique	6146 / 3891 [R(int) = 0.0421]
Completeness to theta = 66.60	98.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9409 and 0.659741
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3891 / 2 / 437
Goodness-of-fit on F^2	1.033
Final R indices [I>2sigma(I)]	R1 = 0.0441, wR2 = 0.1187
R indices (all data)	R1 = 0.0465, wR2 = 0.1211
Absolute structure parameter	0.06(19)
Largest diff. peak and hole	0.379 and -0.342 e.A ⁻³
Table 2. Atomic coordinates (displacement parameters (A^2 x U(eq) is defined as one third o Uij tensor.	x 10^4) and equivalent isotropic 10^3) for s3776na. of the trace of the orthogonalized

	х	У	Z	U(eq)	
C(1)	6902(1)	3541(3)	2177(2)	17(1)	
C(2)	6826(1)	4116(3)	2875(2)	14(1)	
C(3)	6756(1)	5900(3)	2983(2)	18(1)	
C(4)	6758(1)	7091(4)	2428(2)	21(1)	
C(5)	6824(1)	6491(4)	1749(2)	22(1)	
C(6)	6897(1)	4728(4)	1622(2)	19(1)	
C(7)	6837(1)	2882(4)	3479(2)	15(1)	
C(8)	6499(1)	1302(3)	3404(1)	15(1)	
C(9)	6527(1)	115(3)	3958(2)	16(1)	
C(10)	6891(1)	540(3)	4600(2)	15(1)	
C(11)	7213(1)	2119(3)	4710(2)	15(1)	
C(12)	7186(1)	3279(3)	4145(2)	16(1)	
C(13)	5231(1)	1455(3)	6174(2)	17(1)	
C(14)	5292(1)	889(3)	5477(2)	17(1)	
C(15)	5348(1)	-908(3)	5365(2)	18(1)	
C(16)	5351(1)	-2089(4)	5922(2)	20(1)	
C(17)	5293(1)	-1496(4)	6610(2)	21(1)	
C(18)	5231(1)	275(4)	6733(2)	21(1)	
C(19)	5276(1)	2117(3)	4871(2)	16(1)	
C(20)	4902(1)	1743(3)	4217(2)	17(1)	
C(21)	4859(1)	2922(3)	3658(2)	17(1)	
C(22)	5199(1)	4479(4)	3756(2)	15(1)	
C(23)	5590(1)	4870(3)	4386(2)	17(1)	
C(24)	5629(1)	3683(3)	4936(2)	17(1)	
C(25)	8302(1)	8650(4)	4125(2)	19(1)	
C(26)	8591(1)	8907(4)	4831(2)	18(1)	
C(27)	8932(1)	10459(3)	4977(2)	19(1)	
C(28)	8969(1)	11722(3)	4464(2)	22(1)	
C(29)	8655(1)	11484(4)	3///(2)	22(1)	
C(30)	8326(1)	9937(4)	3609(2)	23(1) 17(1)	
C(31)	8554(1)	/61U(3)	5413(2)	\perp / (\perp)	
C(32)	85/8(1)	5818(3)	5292(2)	18(1)	
C(33)	8508(1) 9509(1)	4034(4)	5840(Z) 6520(2)	20(1)	
C(34)	0520(I) 0500(2)	5254(5)	6530(2)	22(1)	
C(35)	0509(2)	7014(3) 9101(2)	6114(2)	$2 \perp (\perp)$ 20(1)	
C(30)	6020(1)	0191(3)	0114(2) 5170(1)	20(1) 17(1)	
N(1) N(2)	5124(1)	= 729(3)	3100(1)	$\pm 7(\pm)$ 19(1)	
N(2)	3124(1) 8512(1)	4008(3)	5190(1) 7107(1)	19(1) 26(1)	
$\Omega(3)$	7003(1)	1813(2)	2087(1)	20(1)	
O(1)	7003(1)	-212(3)	2007(1) 5786(1)	22(1)	
O(2)	6782(1)	-2252(2)	5036(1)	23(1) 24(1)	
O(4)	5150(1)	3195(2)	6278(1)	20(1)	
O(5)	4889(1)	5314(3)	2586(1)	20(1) 27(1)	
O(6)	5297(1)	7271(2)	3333(1)	24(1)	
O(7)	8522(1)	2455(3)	6968(1)	38(1)	
0(8)	8481(1)	4567(3)	7713(1)	36(1)	
0(9)	7991(1)	7129(3)	3958(1)	31(1)	
/		- (-)	/-/	- , - ,	

_

Table 3. Bond lengths [A] and angles [deg] for s3776na.

C(1) - O(1)	1.359(3)
C(1)-C(6)	1.387(4)
C(1)-C(2)	1.413(4)
C(2)-C(3)	1.398(4)
C(2)-C(7)	1.479(4)
C(3)-C(4)	1.390(4)

С(3)-Н(3)	0.9500
C(4)-C(5)	1.380(4)
C(4)-H(4)	0.9500
C(5)-C(6)	1.389(4)
C(5) - H(5)	0.9500
C(6) - H(6)	0.9500
C(7) - C(8)	1 399(4)
C(7) = C(12)	1 404(4)
C(8) = C(9)	1 384/4
C(0) - U(0)	
$C(0) = \Pi(0)$	1 206/4)
$C(\mathcal{F}) = C(\mathcal{I} \mathcal{O})$	L.300(4)
C(y) = H(y)	
C(10) - C(11)	1.386(4)
C(10) - N(1)	1.45/(3)
C(11) - C(12)	1.386(4)
C(11)-H(11)	0.9500
C(12)-H(12)	0.9500
C(13)-O(4)	1.366(3)
C(13)-C(18)	1.390(4)
C(13)-C(14)	1.402(4)
C(14) - C(15)	1.406(4)
C(14) - C(19)	1.480(4)
C(15) - C(16)	1.387(4)
C(15) - H(15)	0.9500
C(16) - C(17)	1 389(4)
C(16) - H(16)	0.9500
C(17) = C(18)	1 201//
C(17) = U(17)	
$C(1) = \Pi(1)$	
$C(1\delta) = H(1\delta)$	
C(19) - C(20)	1.404(4)
C(19) - C(24)	1.404(4)
C(20)-C(21)	1.385(4)
С(20)-Н(20)	0.9500
C(21)-C(22)	1.388(4)
C(21)-H(21)	0.9500
C(22)-C(23)	1.386(4)
C(22)-N(2)	1.456(3)
C(23)-C(24)	1.376(4)
С(23)-Н(23)	0.9500
C(24)-H(24)	0.9500
C(25) - O(9)	1.352(3)
C(25) - C(30)	1.392(4)
C(25) - C(26)	1,405(4)
C(26) - C(27)	1 395(4)
C(26) - C(31)	1 491(4)
C(27) - C(28)	1 378(4)
C(27) = U(27)	1.5/5(1) 0.9500
$C(2) = \Pi(2)$	
C(20) = C(29)	1.309(4) 0.0500
$C(2\delta) - H(2\delta)$	
C(29) - C(30)	1.30/(4)
C(29) - H(29)	0.9500
C(30)-H(30)	0.9500
C(31)-C(32)	1.400(4)
C(31)-C(36)	1.401(4)
C(32)-C(33)	1.379(4)
C(32)-H(32)	0.9500
C(33)-C(34)	1.395(4)
C(33)-H(33)	0.9500
C(34) - C(35)	1.383(4)
C(34) - N(3)	1,452(4)
C(35) - C(36)	1 394(4)
C(35) = H(35)	
C(JJ)=n(JJ)	0.2300

С(36)-Н(36)	0.9500
N(1)-O(2)	1.231(3)
N(1)-O(3)	1.236(3)
N(2)-O(6)	1.224(3)
N(2)-O(5)	1.237(3)
N(3)-O(7)	1.224(3)
N(3)-O(8)	1.227(4)
O(1)-H(1)	0.8400
O(4) - H(4A)	0.8400
O(9) - H(9A)	0.8400
O(1) - C(1) - C(6)	122.6(3)
O(1) - C(1) - C(2)	117.2(2)
C(6) - C(1) - C(2)	120.2(2)
C(3) - C(2) - C(1)	117.8(2)
C(3) - C(2) - C(7)	120.8(3)
C(1) - C(2) - C(7)	121.4(2)
C(4) - C(3) - C(2)	122.0(3)
C(4) - C(3) - H(3)	119.0
C(2) - C(3) - H(3)	119.0
C(5) - C(4) - C(3)	119.0(3)
C(5) - C(4) - H(4)	120.5
C(3) - C(4) - H(4)	120.5
C(4) - C(5) - C(6)	120.7(3)
C(4) - C(5) - H(5)	119 7
C(6) - C(5) - H(5)	119 7
C(1) - C(6) - C(5)	120 3(3)
C(1) - C(6) - H(6)	119 8
C(5) - C(6) - H(6)	119.8
C(8) - C(7) - C(12)	1185(2)
C(8) - C(7) - C(2)	121 0(2)
C(12) = C(7) = C(2)	120.5(2)
C(12) - C(7) - C(2)	120.3(2)
C(9) - C(8) - C(7)	121.2(2)
C(9) - C(8) - H(8)	119.4
C(7) - C(8) - H(8)	119.4
C(8) - C(9) - C(10)	118.3(2)
C(8) - C(9) - H(9)	120.8
C(10) - C(9) - H(9)	
C(9) - C(10) - C(11)	122.5(3)
C(9) - C(10) - N(1)	118.4(2)
C(11) - C(10) - N(1)	119.1(2)
C(12) - C(11) - C(10)	118.3(2)
C(12) - C(11) - H(11)	120.9
C(10) - C(11) - H(11)	120.9
C(11) - C(12) - C(7)	
C(11) - C(12) - H(12)	119.4
C(7) - C(12) - H(12)	119.4
O(4) - C(13) - C(18)	121.4(3)
O(4) - C(13) - C(14)	11/.6(2)
C(18) - C(13) - C(14)	120.9(2)
C(13) - C(14) - C(15)	11/.6(3)
C(13) - C(14) - C(19)	121.8(2)
C(15) - C(14) - C(19)	120.5(3)
C(16) - C(15) - C(14)	121.0(3)
C(16) - C(15) - H(15)	119.2
C(14) - C(15) - H(15)	119.2
C(15) - C(16) - C(17)	119.7(3)
C(15) - C(16) - H(16)	120.1
C(17)-C(16)-H(16)	120.1
C(16) - C(17) - C(18)	119.8(3)
C(16) - C(17) - H(17)	120.1
C(18) - C(17) - H(17)	120.1

C(13) - C(18) - C(17)	120.3(3)
C(13)-C(18)-H(18)	119.8
C(17)-C(18)-H(18)	119.8
C(20) - C(19) - C(24)	118.6(3)
C(20) - C(19) - C(14)	120.5(2)
C(24) - C(19) - C(14)	121.0(2)
C(21) - C(20) - C(19)	120.9(3)
С(21)-С(20)-Н(20)	119.6
С(19)-С(20)-Н(20)	119.6
C(20) - C(21) - C(22)	118.5(3)
С(20)-С(21)-Н(21)	120.8
С(22)-С(21)-Н(21)	120.8
C(23) - C(22) - C(21)	122.3(3)
C(23) - C(22) - N(2)	118.6(2)
C(21)-C(22)-N(2)	119.0(2)
C(24) - C(23) - C(22)	118.5(2)
С(24)-С(23)-Н(23)	120.7
С(22)-С(23)-Н(23)	120.7
C(23) - C(24) - C(19)	121.2(3)
С(23)-С(24)-Н(24)	119.4
С(19)-С(24)-Н(24)	119.4
O(9)-C(25)-C(30)	120.4(3)
O(9) - C(25) - C(26)	118.6(2)
C(30)-C(25)-C(26)	120.9(3)
C(27) - C(26) - C(25)	117.1(3)
C(27) - C(26) - C(31)	119.6(2)
C(25) - C(26) - C(31)	123.3(2)
C(28)-C(27)-C(26)	122.1(3)
С(28)-С(27)-Н(27)	118.9
С(26)-С(27)-Н(27)	118.9
C(27)-C(28)-C(29)	120.2(3)
С(27)-С(28)-Н(28)	119.9
С(29)-С(28)-Н(28)	119.9
C(30) - C(29) - C(28)	119.2(3)
С(30)-С(29)-Н(29)	120.4
С(28)-С(29)-Н(29)	120.4
C(29)-C(30)-C(25)	120.4(3)
С(29)-С(30)-Н(30)	119.8
С(25)-С(30)-Н(30)	119.8
C(32)-C(31)-C(36)	118.3(2)
C(32)-C(31)-C(26)	122.3(2)
C(36)-C(31)-C(26)	119.4(2)
C(33)-C(32)-C(31)	121.7(2)
С(33)-С(32)-Н(32)	119.2
С(31)-С(32)-Н(32)	119.2
C(32)-C(33)-C(34)	118.6(2)
С(32)-С(33)-Н(33)	120.7
С(34)-С(33)-Н(33)	120.7
C(35)-C(34)-C(33)	121.7(3)
C(35) - C(34) - N(3)	119.7(3)
C(33) - C(34) - N(3)	118.6(2)
C(34)-C(35)-C(36)	118.9(3)
С(34)-С(35)-Н(35)	120.5
C(36)-C(35)-H(35)	120.5
C(35)-C(36)-C(31)	120.9(2)
C(35)-C(36)-H(36)	119.6
C(31)-C(36)-H(36)	119.6
O(2)-N(1)-O(3)	123.7(2)
O(2)-N(1)-C(10)	117.6(2)
O(3)-N(1)-C(10)	118.7(2)
O(6)-N(2)-O(5)	123.1(2)
O(6)-N(2)-C(22)	118.7(2)

O(5)-N(2)-C(22)	118.2(2)
O(7)-N(3)-O(8)	123.0(3)
O(7) - N(3) - C(34)	118.9(2)
O(8) - N(3) - C(34)	118.1(2)
C(1) - O(1) - H(1)	109.5
C(13)-O(4)-H(4A)	109.5
C(25)-O(9)-H(9A)	109.5

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for s3776na. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 Ul1 + \dots + 2 h k a* b* Ul2]

	U11	U22	U33	U23	U13	U12
C(1)	20(1)	16(1)	16(2)	-1(1)	1(1)	0(1)
C(2)	14(1)	20(1)	8(1)	1(1)	0(1)	0(1)
C(3)	19(1)	21(1)	14(1)	-5(1)	0(1)	0(1)
C(4)	25(1)	17(1)	20(2)	2(1)	1(1)	2(1)
C(5)	26(1)	23(2)	16(2)	4(1)	0(1)	-2(1)
C(6)	24(1)	24(2)	10(1)	-2(1)	1(1)	-3(1)
C(7)	14(1)	17(1)	13(1)	-1(1)	2(1)	3(1)
C(8)	17(1)	21(1)	8(1)	-1(1)	1(1)	1(1)
C(9)	18(1)	17(1)	16(1)	-3(1)	4(1)	-1(1)
C(10)	16(1)	16(1)	13(1)	1(1)	3(1)	4(1)
C(11)	16(1)	19(1)	10(1)	-4(1)	-1(1)	-1(1)
C(12)	19(1)	17(1)	12(1)	-2(1)	2(1)	-1(1)
C(13)	16(1)	19(1)	17(2)	-5(1)	0(1)	-2(1)
C(14)	15(1)	17(1)	18(1)	-1(1)	-1(1)	0(1)
C(15)	19(1)	20(1)	14(2)	-1(1)	0(1)	2(1)
C(16)	22(1)	17(1)	21(2)	1(1)	-2(1)	-1(1)
C(17)	24(1)	21(2)	17(2)	5(1)	-2(1)	2(1)
C(18)	23(1)	23(2)	17(2)	0(1)	2(1)	2(1)
C(19)	17(1)	17(1)	14(1)	-4(1)	4(1)	2(1)
C(20)	18(1)	17(1)	15(1)	-2(1)	3(1)	$-\perp(\perp)$
C(21)	17(1)	21(1)	14(1)	-3(1)	2(1)	$\perp(\perp)$
C(22)	18(1)	19(1)	9(1)	$0(\perp)$	4(1)	2(1)
C(23)	20(1)	16(1)	15(1)	$-\perp(\perp)$	4(1)	0(1)
C(24)	16(1)	20(1) 20(1)	15(1)	-4(1)	$\perp (\perp)$	$U(\perp)$
C(25)	$Z \perp (\perp)$	20(1)	10(2)	0(1)	$Z(\perp)$	$\perp(\perp)$
C(26)	18(1)	$\angle \perp (\perp)$	$\pm 4(\pm)$	-2(1)	3(1)	3(1)
C(27)	$\pm \delta(\pm)$	$2 \perp (\perp)$	$\perp / (\perp)$	0(1)	$\angle (\perp)$	3(1)
C(28)	23(1)	20(1)	24(2) 10(2)	$U(\perp)$	5(1) 9(1)	Z(1)
C(29)	20(1)	∠4(⊥) 22(2)	10(2)	4(1) 1(1)	O(⊥) 2(1)	0(1) 7(1)
C(30)	24(1) 14(1)	32(2)	14(2) 15(1)	-1(1)	2(1) 1(1)	7(1) 0(1)
C(31)	$\pm \pm (\pm)$ 22(1)	22(1) 19(1)	13(1)	-2(1)	-1(1)	0(1)
C(32)	22(1)	17(1)	13(1)	-2(1)	0(1)	-1(1)
C(34)	20(1)	25(1)	19(2)	3(1)	-1(1)	1(1)
C(3-1)	25(1)	23(1) 27(1)	12(1)	-1(1)	(1)	7(1)
C(35)	25(1)	21(1)	12(1)	-1(1)	2(1) 4(1)	3(1)
N(1)	18(1)	21(1) 20(1)	13(1)	1(1)	3(1)	2(1)
N(2)	22(1)	21(1)	16(1)	1(1)	6(1)	0(1)
N(3)	32(1)	26(1)	20(1)	$\frac{1}{6(1)}$	3(1)	3(1)
O(1)	38(1)	18(1)	9(1)	-3(1)	6(1)	2(1)
O(2)	35(1)	24(1)	11(1)	1(1)	1(1)	-1(1)
J (1 /	55(1)		/ /	- \ - /	- \ - <i>\</i>	± (± /

0(3)	32(1)	16(1)	24(1)	1(1)	3(1)	-2(1)
O(4)	31(1)	18(1)	12(1)	-2(1)	1(1)	1(1)
0(5)	42(1)	28(1)	10(1)	2(1)	-2(1)	-5(1)
0(6)	33(1)	19(1)	22(1)	4(1)	2(1)	-4(1)
0(7)	65(2)	21(1)	30(1)	6(1)	13(1)	6(1)
O(8)	59(2)	35(1)	15(1)	5(1)	4(1)	4(1)
0(9)	43(1)	34(1)	14(1)	-3(1)	0(1)	-13(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for s3776na.

xyz $U(eq)$ $H(3)$ 6706 6311 3449 22 $H(4)$ 6715 8299 2515 25 $H(5)$ 6819 7293 1365 26 $H(6)$ 6944 4333 1152 23 $H(8)$ 6244 1040 2963 18 $H(9)$ 6302 -964 3901 20 $H(11)$ 7445 2398 5161 18 $H(12)$ 7407 4362 4209 19 $H(15)$ 5384 -1325 4896 21 $H(16)$ 5393 -3297 5835 24 $H(17)$ 5297 -2297 6994 26 $H(18)$ 5188 681 7202 25 $H(20)$ 4676 666 4157 20 $H(21)$ 4602 2673 3218 21 $H(23)$ 5824 5935 4437 20 $H(24)$ 5900 3926 5368 20 $H(27)$ 9145 10652 5445 22 $H(28)$ 9210 12757 4580 27 $H(28)$ 9210 12757 4580 27 $H(30)$ 8116 9754 3139 28 $H(32)$ 8601 5407 4819 21 $H(33)$ 8588 3421 5750 24 $H(35)$ 8487 7415 7149 25 $H(36)$ 8509 9403 6207 24 </th <th></th> <th></th> <th></th> <th></th> <th></th>					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		x	У	Z	U(eq)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н(3)	6706	6311	3449	22
H(5) 6819 7293 1365 26 $H(6)$ 6944 4333 1152 23 $H(8)$ 6244 1040 2963 18 $H(9)$ 6302 -964 3901 20 $H(11)$ 7445 2398 5161 18 $H(12)$ 7407 4362 4209 19 $H(15)$ 5384 -1325 4896 21 $H(16)$ 5393 -3297 5835 24 $H(17)$ 5297 -2297 6994 26 $H(18)$ 5188 681 7202 25 $H(20)$ 4676 666 4157 20 $H(21)$ 4602 2673 3218 21 $H(23)$ 5824 5935 4437 20 $H(24)$ 5900 3926 5368 20 $H(27)$ 9145 10652 5445 22 $H(28)$ 9210 12757 4580 27 $H(29)$ 8665 12370 3427 26 $H(30)$ 8116 9754 3139 28 $H(32)$ 8601 5407 4819 21 $H(33)$ 8588 3421 5750 24 $H(36)$ 8509 9403 6207 24 $H(1)$ 7023 1605 1652 32 $H(4A)$ 5108 3382 6710 $24(8)$	H(4)	6715	8299	2515	25
H(6) 6944 4333 1152 23 $H(8)$ 6244 1040 2963 18 $H(9)$ 6302 -964 3901 20 $H(11)$ 7445 2398 5161 18 $H(12)$ 7407 4362 4209 19 $H(15)$ 5384 -1325 4896 21 $H(16)$ 5393 -3297 5835 24 $H(16)$ 5393 -3297 5835 24 $H(17)$ 5297 -2297 6994 26 $H(18)$ 5188 681 7202 25 $H(20)$ 4676 666 4157 20 $H(21)$ 4602 2673 3218 21 $H(23)$ 5824 5935 4437 20 $H(24)$ 5900 3926 5368 20 $H(27)$ 9145 10652 5445 22 $H(28)$ 9210 12757 4580 27 $H(29)$ 8665 12370 3427 26 $H(30)$ 8116 9754 3139 28 $H(32)$ 8601 5407 4819 21 $H(33)$ 8588 3421 5750 24 $H(35)$ 8487 7415 7149 25 $H(4A)$ 5108 3382 6710 $24(8)$ $H(9A)$ 7994 6928 3520 46	H(5)	6819	7293	1365	26
H(8) 6244 1040 2963 18 $H(9)$ 6302 -964 3901 20 $H(11)$ 7445 2398 5161 18 $H(12)$ 7407 4362 4209 19 $H(15)$ 5384 -1325 4896 21 $H(16)$ 5393 -3297 5835 24 $H(17)$ 5297 -2297 6994 26 $H(18)$ 5188 681 7202 25 $H(20)$ 4676 666 4157 20 $H(21)$ 4602 2673 3218 21 $H(23)$ 5824 5935 4437 20 $H(24)$ 5900 3926 5368 20 $H(27)$ 9145 10652 5445 22 $H(28)$ 9210 12757 4580 27 $H(29)$ 8665 12370 3427 26 $H(30)$ 8116 9754 3139 28 $H(32)$ 8601 5407 4819 21 $H(33)$ 8588 3421 5750 24 $H(36)$ 8509 9403 6207 24 $H(1)$ 7023 1605 1652 32 $H(4A)$ 5108 3382 6710 $24(8$ $H(9A)$ 7994 6928 3520 46	H(6)	6944	4333	1152	23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(8)	6244	1040	2963	18
H(11)74452398516118 $H(12)$ 74074362420919 $H(15)$ 5384 -1325 489621 $H(16)$ 5393 -3297 583524 $H(17)$ 5297 -2297 699426 $H(18)$ 5188681720225 $H(20)$ 4676666415720 $H(21)$ 46022673321821 $H(23)$ 58245935443720 $H(24)$ 59003926536820 $H(27)$ 914510652544522 $H(28)$ 921012757458027 $H(29)$ 866512370342726 $H(30)$ 81169754313928 $H(32)$ 86015407481921 $H(33)$ 85883421575024 $H(35)$ 84877415714925 $H(36)$ 85099403620724 $H(1)$ 70231605165232 $H(4A)$ 51083382671024(8 $H(9A)$ 79946928352046	H(9)	6302	-964	3901	20
H(12) 7407 4362 4209 19 $H(15)$ 5384 -1325 4896 21 $H(16)$ 5393 -3297 5835 24 $H(17)$ 5297 -2297 6994 26 $H(18)$ 5188 681 7202 25 $H(20)$ 4676 666 4157 20 $H(21)$ 4602 2673 3218 21 $H(23)$ 5824 5935 4437 20 $H(24)$ 5900 3926 5368 20 $H(27)$ 9145 10652 5445 22 $H(28)$ 9210 12757 4580 27 $H(29)$ 8665 12370 3427 26 $H(30)$ 8116 9754 3139 28 $H(32)$ 8601 5407 4819 21 $H(33)$ 8588 3421 5750 24 $H(35)$ 8487 7415 7149 25 $H(36)$ 8509 9403 6207 24 $H(1)$ 7023 1605 1652 32 $H(4A)$ 5108 3382 6710 $24(8$ $H(9A)$ 7994 6928 3520 46	H(11)	7445	2398	5161	18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H(12)	7407	4362	4209	19
H(16) 5393 -3297 5835 24 $H(17)$ 5297 -2297 6994 26 $H(18)$ 5188 681 7202 25 $H(20)$ 4676 666 4157 20 $H(21)$ 4602 2673 3218 21 $H(23)$ 5824 5935 4437 20 $H(24)$ 5900 3926 5368 20 $H(27)$ 9145 10652 5445 22 $H(28)$ 9210 12757 4580 27 $H(29)$ 8665 12370 3427 26 $H(30)$ 8116 9754 3139 28 $H(32)$ 8601 5407 4819 21 $H(33)$ 8588 3421 5750 24 $H(35)$ 8487 7415 7149 25 $H(36)$ 8509 9403 6207 24 $H(1)$ 7023 1605 1652 32 $H(4A)$ 5108 3382 6710 $24(8$ $H(9A)$ 7994 6928 3520 46	H(15)	5384	-1325	4896	21
H(17) 5297 -2297 6994 26 $H(18)$ 5188 681 7202 25 $H(20)$ 4676 666 4157 20 $H(21)$ 4602 2673 3218 21 $H(23)$ 5824 5935 4437 20 $H(24)$ 5900 3926 5368 20 $H(27)$ 9145 10652 5445 22 $H(28)$ 9210 12757 4580 27 $H(29)$ 8665 12370 3427 26 $H(30)$ 8116 9754 3139 28 $H(32)$ 8601 5407 4819 21 $H(33)$ 8588 3421 5750 24 $H(35)$ 8487 7415 7149 25 $H(36)$ 8509 9403 6207 24 $H(1)$ 7023 1605 1652 32 $H(4A)$ 5108 3382 6710 $24(8)$ $H(9A)$ 7994 6928 3520 46	H(16)	5393	-3297	5835	24
H(18) 5188 681 7202 25 $H(20)$ 4676 666 4157 20 $H(21)$ 4602 2673 3218 21 $H(23)$ 5824 5935 4437 20 $H(24)$ 5900 3926 5368 20 $H(27)$ 9145 10652 5445 22 $H(28)$ 9210 12757 4580 27 $H(29)$ 8665 12370 3427 26 $H(30)$ 8116 9754 3139 28 $H(32)$ 8601 5407 4819 21 $H(33)$ 8588 3421 5750 24 $H(35)$ 8487 7415 7149 25 $H(36)$ 8509 9403 6207 24 $H(1)$ 7023 1605 1652 32 $H(4A)$ 5108 3382 6710 $24(8)$ $H(9A)$ 7994 6928 3520 46	H(17)	5297	-2297	6994	26
H(20)4676666415720 $H(21)$ 46022673321821 $H(23)$ 58245935443720 $H(24)$ 59003926536820 $H(27)$ 914510652544522 $H(28)$ 921012757458027 $H(29)$ 866512370342726 $H(30)$ 81169754313928 $H(32)$ 86015407481921 $H(33)$ 85883421575024 $H(35)$ 84877415714925 $H(36)$ 85099403620724 $H(1)$ 70231605165232 $H(4A)$ 51083382671024(8 $H(9A)$ 79946928352046	H(18)	5188	681	7202	25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H(20)	4676	666	4157	20
H(23)58245935443720 $H(24)$ 59003926536820 $H(27)$ 914510652544522 $H(28)$ 921012757458027 $H(29)$ 866512370342726 $H(30)$ 81169754313928 $H(32)$ 86015407481921 $H(33)$ 85883421575024 $H(35)$ 84877415714925 $H(36)$ 85099403620724 $H(1)$ 70231605165232 $H(4A)$ 51083382671024(8 $H(9A)$ 79946928352046	H(21)	4602	2673	3218	21
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Н(23)	5824	5935	4437	20
H(27) 9145 10652 5445 22 $H(28)$ 9210 12757 4580 27 $H(29)$ 8665 12370 3427 26 $H(30)$ 8116 9754 3139 28 $H(32)$ 8601 5407 4819 21 $H(33)$ 8588 3421 5750 24 $H(35)$ 8487 7415 7149 25 $H(36)$ 8509 9403 6207 24 $H(1)$ 7023 1605 1652 32 $H(4A)$ 5108 3382 6710 $24(8)$ $H(9A)$ 7994 6928 3520 46	H(24)	5900	3926	5368	20
H(28)921012757458027 $H(29)$ 866512370342726 $H(30)$ 81169754313928 $H(32)$ 86015407481921 $H(33)$ 85883421575024 $H(35)$ 84877415714925 $H(36)$ 85099403620724 $H(1)$ 70231605165232 $H(4A)$ 51083382671024(8 $H(9A)$ 79946928352046	H(27)	9145	10652	5445	22
H(29)866512370342726H(30)81169754313928H(32)86015407481921H(33)85883421575024H(35)84877415714925H(36)85099403620724H(1)70231605165232H(4A)51083382671024(8H(9A)79946928352046	H(28)	9210	12757	4580	27
H(30)81169754313928H(32)86015407481921H(33)85883421575024H(35)84877415714925H(36)85099403620724H(1)70231605165232H(4A)51083382671024(8H(9A)79946928352046	Н(29)	8665	12370	3427	26
H(32)86015407481921H(33)85883421575024H(35)84877415714925H(36)85099403620724H(1)70231605165232H(4A)51083382671024(8H(9A)79946928352046	H(30)	8116	9754	3139	28
H(33)85883421575024H(35)84877415714925H(36)85099403620724H(1)70231605165232H(4A)51083382671024(8H(9A)79946928352046	H(32)	8601	5407	4819	21
H(35)84877415714925H(36)85099403620724H(1)70231605165232H(4A)51083382671024(8H(9A)79946928352046	Н(33)	8588	3421	5750	24
H(36)85099403620724H(1)70231605165232H(4A)51083382671024(8H(9A)79946928352046	H(35)	8487	7415	7149	25
H(1)70231605165232H(4A)51083382671024(8H(9A)79946928352046	Н(36)	8509	9403	6207	24
H(4A)51083382671024(8H(9A)79946928352046	H(1)	7023	1605	1652	32
H(9A) 7994 6928 3520 46	H(4A)	5108	3382	6710	24(8)
	H(9A)	7994	6928	3520	46

Table 6. Torsion angles [deg] for s3776na.

C(3) - C(2) - C(7) - C(12)	-41.6(3)
C(1) - C(2) - C(7) - C(12)	136.7(3)
C(12) - C(7) - C(8) - C(9)	-2.8(4)
C(2) - C(7) - C(8) - C(9)	177.6(2)
C(7) - C(8) - C(9) - C(10)	1.2(4)
C(8) - C(9) - C(10) - C(11)	1.0(4) 170 1(2)
C(9) - C(10) - C(11) - C(12)	-1/0.1(2)
N(1) - C(10) - C(11) - C(12)	177 2(2)
C(10) - C(11) - C(12) - C(7)	0.7(4)
C(8) - C(7) - C(12) - C(11)	1.9(4)
C(2) - C(7) - C(12) - C(11)	-178.6(2)
O(4) - C(13) - C(14) - C(15)	-177.4(2)
C(18) - C(13) - C(14) - C(15)	0.4(4)
O(4) - C(13) - C(14) - C(19)	0.6(4)
C(18) - C(13) - C(14) - C(19)	178.4(2)
C(13) - C(14) - C(15) - C(16)	-0.7(4)
C(19) - C(14) - C(15) - C(16)	-1/8.8(2)
C(14) - C(15) - C(16) - C(17) C(15) - C(16) - C(17)	0.4(4)
O(4) - O(13) - O(18) - O(17)	0.2(4) 177 Q(2)
C(14) - C(13) - C(16) - C(17)	(1,7,3)(2)
C(16) - C(17) - C(18) - C(13)	-0.5(4)
C(13) - C(14) - C(19) - C(20)	-135.2(3)
C(15) - C(14) - C(19) - C(20)	42.8(4)
C(13) - C(14) - C(19) - C(24)	44.4(4)
C(15) - C(14) - C(19) - C(24)	-137.6(3)
C(24) - C(19) - C(20) - C(21)	-2.8(4)
C(14) - C(19) - C(20) - C(21)	176.8(2)
C(19) - C(20) - C(21) - C(22)	0.7(4)
C(20) - C(21) - C(22) - C(23)	1.4(4)
C(20) - C(21) - C(22) - N(2) C(21) - C(22) - C(22)	-1/6.1(2)
N(2) - C(22) - C(23) - C(24)	-1.2(4) 176 3(2)
C(22) - C(23) - C(24) - C(19)	-1.0(4)
C(20) - C(19) - C(24) - C(23)	3.0(4)
C(14) - C(19) - C(24) - C(23)	-176.6(2)
O(9)-C(25)-C(26)-C(27)	177.3(2)
C(30)-C(25)-C(26)-C(27)	-3.5(4)
O(9)-C(25)-C(26)-C(31)	-2.1(4)
C(30) - C(25) - C(26) - C(31)	177.1(2)
C(25) - C(26) - C(27) - C(28)	2.1(4)
C(31) - C(26) - C(27) - C(28)	-1/8.4(2)
C(27) - C(28) - C(29) - C(29)	-2 4(4)
C(28) - C(29) - C(30) - C(25)	1 0(4)
O(9) - C(25) - C(30) - C(29)	-178.9(3)
C(26) - C(25) - C(30) - C(29)	2.0(4)
C(27) - C(26) - C(31) - C(32)	-142.9(3)
C(25)-C(26)-C(31)-C(32)	36.6(4)
C(27)-C(26)-C(31)-C(36)	34.4(3)
C(25)-C(26)-C(31)-C(36)	-146.1(3)
C(36) - C(31) - C(32) - C(33)	0.2(4)
C(26) - C(31) - C(32) - C(33)	177.5(2)
C(31) - C(32) - C(33) - C(34) C(32) - C(32) - C(34) - C(35)	U.0(4) _1 1/4)
C(32) - C(33) - C(34) - C(35) C(32) - C(33) - C(34) - M(3)	-1.1(4) 179 5/3)
C(33) - C(34) - C(35) - C(36)	0.9(4)
N(3) - C(34) - C(35) - C(36)	-179.8(3)
C(34) - C(35) - C(36) - C(31)	-0.1(4)
C(32) - C(31) - C(36) - C(35)	-0.5(4)
C(26)-C(31)-C(36)-C(35)	-177.9(3)

C(9)-C(10)-N(1)-O(2)	-163.8(2)
C(11)-C(10)-N(1)-O(2)	16.5(3)
C(9) - C(10) - N(1) - O(3)	15.8(3)
C(11) - C(10) - N(1) - O(3)	-163.9(2)
C(23)-C(22)-N(2)-O(6)	-14.0(3)
C(21)-C(22)-N(2)-O(6)	163.5(2)
C(23)-C(22)-N(2)-O(5)	165.8(2)
C(21)-C(22)-N(2)-O(5)	-16.6(4)
C(35)-C(34)-N(3)-O(7)	179.2(3)
C(33)-C(34)-N(3)-O(7)	-1.4(4)
C(35)-C(34)-N(3)-O(8)	0.2(4)
C(33)-C(34)-N(3)-O(8)	179.5(3)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for s3776na [A and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)O(2)#1	0.84	1.98	2.780(3)	157.9
O(4)-H(4A)O(5)#2	0.84	2.02	2.822(3)	158.5
O(9)-H(9A)O(8)#3	0.84	2.23	2.958(3)	144.8

Symmetry transformations used to generate equivalent atoms: #1 x,-y,z-1/2 #2 x,-y+1,z+1/2 #3 x,-y+1,z-1/2

Crystal data and structure refinement for s3726ma.

Identification code s3726ma C15 H17 N 05 S Si Empirical formula Formula weight 351.45 Temperature 150(2) K Wavelength 1.54178 A Crystal system, space group Monoclinic, P2(1)/c Unit cell dimensions a = 9.8463(2) A alpha = 90 deg. b = 9.1987(2) Abeta = 92.4730(10) deg.c = 18.7908(5) A gamma = 90 deg. Volume 1700.36(7) A^3 Z, Calculated density 4, 1.373 Mg/m^3 Absorption coefficient 2.586 mm^-1 F(000) 736 Crystal size 0.22 x 0.18 x 0.15 mm Theta range for data collection 4.49 to 72.28 deg. -12<=h<=12, -9<=k<=11, -22<=l<=23 Limiting indices 8472 / 3227 [R(int) = 0.0333]Reflections collected / unique Completeness to theta = 72.2896.0 % Absorption correction Semi-empirical from equivalents Max. and min. transmission 0.6977 and 0.476706 Refinement method Full-matrix least-squares on F² 3227 / 0 / 212 Data / restraints / parameters Goodness-of-fit on F^2 1.039 R1 = 0.0358, wR2 = 0.0977Final R indices [I>2sigma(I)] R indices (all data) R1 = 0.0402, wR2 = 0.1011Extinction coefficient 0.0005(2) Largest diff. peak and hole 0.413 and -0.343 e.A^-3 Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (A^2 x 10^3) for s3726ma. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
C(1)	2698(2)	1794(2)	878(1)	24(1)
C(2)	2822(2)	2830(2)	1415(1)	24(1)
C(3)	3210(2)	4218(2)	1193(1)	32(1)
C(4)	3465(2)	4513(2)	487(1)	40(1)
C(5)	3322(2)	3440(2)	-20(1)	39(1)
C(6)	2918(2)	2052(2)	171(1)	31(1)
C(7)	2590(2)	4160(2)	2882(1)	41(1)
C(8)	788(2)	1573(3)	2456(1)	45(1)
C(9)	3856(2)	1167(2)	2737(1)	42(1)
C(10)	2488(2)	-1715(2)	141(1)	25(1)
C(11)	1241(2)	-2410(2)	23(1)	28(1)
C(12)	916(2)	-3121(2)	-606(1)	38(1)
C(13)	1851(2)	-3127(2)	-1137(1)	41(1)
C(14)	3084(2)	-2426(2)	-1037(1)	39(1)
C(15)	3407(2)	-1731(2)	-398(1)	32(1)
N(1)	204(2)	-2410(2)	562(1)	38(1)
0(1)	2214(1)	408(1)	1092(1)	28(1)
0(2)	4453(1)	-687(1)	950(1)	38(1)
0(3)	2588(2)	-2004(1)	1512(1)	39(1)
O(4)	-156(1)	-1235(2)	790(1)	52(1)
0(5)	-266(2)	-3584(2)	727(1)	54(1)
S(1)	3046(1)	-1033(1)	984(1)	27(1)
Si(1)	2495(1)	2419(1)	2381(1)	27(1)

Table 3. Bond lengths [A] and angles [deg] for s3726ma.

C(1)-C(6) C(1)-C(2) C(1)-O(1) C(2)-C(3) C(2)-Si(1)	1.377(2) 1.389(2) 1.4253(18) 1.402(2)
C(3) - C(4)	1.388(3)
С(3)-Н(3)	0.9500
C(4) - C(5)	1.374(3)
C(4)-H(4)	0.9500
C(5)-C(6)	1.389(3)
C(5)-H(5)	0.9500
С(б)-Н(б)	0.9500
C(7) - Si(1)	1.858(2)
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7) - H(7C)	0.9800
C(8) - Si(1)	1.8623(19)
C(8) - H(8A)	0.9800
C(8) - H(8B)	0.9800
C(8) - H(8C)	0.9800
C(9) - S1(1)	1.869(2)
C(9) - H(9A)	0.9800
C(9) - H(9B)	0.9800
C(9) - H(9C)	0.9800
C(10) - C(15)	1.380(2)
C(10) - C(11)	1.394(2) 1.7607(16)
C(10) - S(1)	1.7097(10) 1.276(2)
C(11) = N(1)	1.370(2)
C(12) - C(13)	1 387(3)
C(12) - H(12)	0 9500
C(12/ 11(12)	0.2000

C(13)-C(14)	1.381(3)
C(13)-H(13)	0.9500
C(14)-C(15)	1.385(3)
C(14)-H(14)	0.9500
C(15)-H(15)	0.9500
N(1) - O(4)	1.220(2)
N(1) - O(5)	1.221(2)
O(1) - S(1)	1.5765(12)
O(2) - S(1)	1.4253(13)
O(3) - S(1)	1.4236(13)
C(6) - C(1) - C(2)	124 80(15)
C(6) - C(1) - O(1)	119 71(14)
C(2) - C(1) - O(1)	115.33(13)
C(1) - C(2) - C(3)	115.10(15)
C(1) - C(2) - Si(1)	123.08(12)
C(3) - C(2) - Si(1)	121.82(13)
C(4) - C(3) - C(2)	121.74(17)
C(4) - C(3) - H(3)	119.1
С(2)-С(3)-Н(3)	119.1
C(5) - C(4) - C(3)	120.34(17)
С(5)-С(4)-Н(4)	119.8
С(3)-С(4)-Н(4)	119.8
С(4)-С(5)-С(б)	120.17(16)
С(4)-С(5)-Н(5)	119.9
С(б)-С(5)-Н(5)	119.9
C(1) - C(6) - C(5)	117.83(17)
C(1)-C(6)-H(6)	121.1
С(5)-С(6)-Н(6)	121.1
Si(1) - C(7) - H(7A)	109.5
$S_1(1) - C(7) - H(7B)$	
H(/A) - C(/) - H(/B)	
S1(1) - C(7) - H(7C)	109.5
H(7R) - C(7) - H(7C)	109.5
n(7B) - C(7) - n(7C) Si(1) - C(8) - H(8A)	109.5
Si(1) - C(8) - H(8B)	109.5
H(8A) - C(8) - H(8B)	109.5
Si(1) - C(8) - H(8C)	109.5
H(8A) - C(8) - H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
Si(1)-C(9)-H(9A)	109.5
Si(1)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
Si(1)-C(9)-H(9C)	109.5
H(9A) - C(9) - H(9C)	109.5
H(9B) - C(9) - H(9C)	109.5
C(15) - C(10) - C(11)	118.56(15)
C(15) - C(10) - S(1)	118.04(13)
C(11) - C(10) - S(1) C(12) - C(11) - C(10)	122.01(12) 121.61(16)
C(12) - C(11) - C(10)	116 76(16)
C(12) = C(11) = N(1)	121 63(15)
C(11) - C(12) - C(13)	118,93(18)
C(11) - C(12) - H(12)	120.5
C(13) - C(12) - H(12)	120.5
C(14) - C(13) - C(12)	120.47(17)
C(14)-C(13)-H(13)	119.8
C(12)-C(13)-H(13)	119.8
C(13)-C(14)-C(15)	120.08(17)
C(13)-C(14)-H(14)	120.0
C(15)-C(14)-H(14)	120.0

C(14) - C(15) - C(10)	120.34(17)
C(14)-C(15)-H(15)	119.8
C(10)-C(15)-H(15)	119.8
O(4) - N(1) - O(5)	125.13(16)
O(4) - N(1) - C(11)	117.62(15)
O(5) - N(1) - C(11)	117.19(16)
C(1) - O(1) - S(1)	122.23(9)
O(3) - S(1) - O(2)	120.62(9)
O(3) - S(1) - O(1)	104.80(7)
O(2) - S(1) - O(1)	109.27(7)
O(3) - S(1) - C(10)	107.83(8)
O(2) - S(1) - C(10)	107.67(8)
O(1) - S(1) - C(10)	105.73(7)
C(7) - Si(1) - C(8)	110.35(9)
C(7) - Si(1) - C(9)	109.28(10)
C(8)-Si(1)-C(9)	110.56(11)
C(7) - Si(1) - C(2)	107.85(9)
C(8) - Si(1) - C(2)	110.29(8)
C(9)-Si(1)-C(2)	108.45(8)

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for s3726ma. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 Ul1 + \dots + 2 h k a* b* Ul2]

	U11	U22	U33	U23	U13	U12
C(1)	23(1)	20(1)	29(1)	2(1)	3(1)	-1(1)
C(2)	22(1)	20(1)	28(1)	0(1)	2(1)	1(1)
C(3)	35(1)	19(1)	43(1)	-1(1)	7(1)	1(1)
C(4)	48(1)	22(1)	52(1)	13(1)	14(1)	5(1)
C(5)	48(1)	34(1)	34(1)	14(1)	11(1)	8(1)
C(6)	38(1)	29(1)	27(1)	1(1)	3(1)	3(1)
C(7)	38(1)	46(1)	40(1)	-17(1)	6(1)	1(1)
C(8)	38(1)	62(1)	36(1)	-1(1)	10(1)	-15(1)
C(9)	49(1)	50(1)	28(1)	1(1)	-2(1)	12(1)
C(10)	29(1)	17(1)	28(1)	0(1)	3(1)	2(1)
C(11)	29(1)	23(1)	31(1)	-2(1)	4(1)	-1(1)
C(12)	41(1)	32(1)	41(1)	-9(1)	-5(1)	1(1)
C(13)	58(1)	35(1)	31(1)	-8(1)	-2(1)	13(1)
C(14)	56(1)	30(1)	32(1)	4(1)	16(1)	15(1)
C(15)	34(1)	22(1)	40(1)	5(1)	11(1)	3(1)
N(1)	32(1)	43(1)	42(1)	-10(1)	8(1)	-13(1)
0(1)	33(1)	21(1)	32(1)	-3(1)	8(1)	-6(1)
0(2)	30(1)	30(1)	53(1)	2(1)	-6(1)	-4(1)
0(3)	58(1)	27(1)	32(1)	7(1)	-1(1)	-10(1)
0(4)	39(1)	54(1)	65(1)	-28(1)	23(1)	-11(1)
0(5)	54(1)	52(1)	56(1)	-2(1)	15(1)	-26(1)
S(1)	31(1)	20(1)	30(1)	2(1)	-1(1)	-4(1)
Si(1)	25(1)	30(1)	25(1)	-4(1)	3(1)	-1(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for s3726ma.

	x	У	Z	U(eq)
Н(3)	3300	4977	1534	39
H(4)	3740	5460	353	48
H(5)	3500	3649	-503	46
Н(б)	2798	1305	-175	38
H(7A)	1981	4873	2649	62
H(7B)	3525	4527	2892	62
H(7C)	2315	3997	3371	62
H(8A)	656	1307	2953	68
H(8B)	726	700	2157	68
H(8C)	84	2267	2296	68
H(9A)	4747	1622	2687	64
H(9B)	3817	252	2469	64
H(9C)	3719	969	3241	64
H(12)	66	-3599	-675	46
H(13)	1642	-3618	-1573	50
H(14)	3712	-2419	-1407	47
H(15)	4263	-1263	-328	38

Table 6. Torsion angles [deg] for s3726ma.

C(6) - C(1) - C(2) - C(3)	-0.4(2)
O(1) - C(1) - C(2) - C(3)	-175.83(13)
C(6) - C(1) - C(2) - Si(1)	1/9.58(13)
O(1) - C(1) - C(2) - S1(1)	4.10(19)
C(1) - C(2) - C(3) - C(4) C(1) - C(2) - C(3) - C(4)	-0.9(2)
SI(1) - C(2) - C(3) - C(4)	1 0(2)
C(2) - C(3) - C(4) - C(5)	1.0(3)
C(3) - C(4) - C(5) - C(6)	0.1(3)
C(2) - C(1) - C(6) - C(5)	176 69(15)
C(4) - C(5) - C(6) - C(1)	-1 2(3)
C(15) = C(10) = C(11) = C(12)	1.2(3)
C(13) = C(10) = C(11) = C(12)	-170 13(14)
C(15) - C(10) - C(11) - N(1)	-178 53(16)
S(1) - C(10) - C(11) - N(1)	10.4(2)
C(10)-C(11)-C(12)-C(13)	-0.7(3)
N(1) - C(11) - C(12) - C(13)	178.75(17)
C(11)-C(12)-C(13)-C(14)	-0.3(3)
C(12)-C(13)-C(14)-C(15)	1.2(3)
C(13) - C(14) - C(15) - C(10)	-1.0(3)
C(11) - C(10) - C(15) - C(14)	0.0(2)
S(1)-C(10)-C(15)-C(14)	171.45(13)
C(12)-C(11)-N(1)-O(4)	-124.93(19)
C(10) - C(11) - N(1) - O(4)	54.6(3)
C(12)-C(11)-N(1)-O(5)	52.4(3)
C(10) - C(11) - N(1) - O(5)	-128.12(19)
C(6)-C(1)-O(1)-S(1)	61.65(19)
C(2)-C(1)-O(1)-S(1)	-122.63(13)
C(1) - O(1) - S(1) - O(3)	155.19(12)
C(1) - O(1) - S(1) - O(2)	24.61(14)
C(1) - O(1) - S(1) - C(10)	-91.02(13)
C(15) - C(10) - S(1) - O(3)	-135.10(14)
C(11) - C(10) - S(1) - O(3)	36.01(16)
C(15)-C(10)-S(1)-O(2)	-3.49(15)
C(11) - C(10) - S(1) - O(2)	167.62(13)
C(15) - C(10) - S(1) - O(1)	113.23(13)

C(11) - C(10) - S(1) - O(1)	-75 66(15)
	75.00(15)
C(1) - C(2) - Si(1) - C(7)	-173.63(14)
C(3)-C(2)-Si(1)-C(7)	6.30(16)
C(1)-C(2)-Si(1)-C(8)	-53.06(16)
C(3)-C(2)-Si(1)-C(8)	126.87(15)
C(1)-C(2)-Si(1)-C(9)	68.14(16)
C(3)-C(2)-Si(1)-C(9)	-111.93(15)

Table 7. Hydrogen bonds for s3726ma [A and deg.].

D-H...A

d(D-H) d(H...A) d(D...A) <(DHA)

Crystal data and structure refinement for s3898ma.

Identification code	s3898ma	
Empirical formula	C13 H10 N2 O5	
Formula weight	274.23	
Temperature	100(2) K	
Wavelength	1.54178 A	
Crystal system, space group	Monoclinic, P2(1),	/n
Unit cell dimensions	a = 15.6137(4) A b = 7.7484(2) A c = 21.2252(5) A	alpha = 90 deg. beta = 110.1920(10) deg. gamma = 90 deg.
Volume	2410.03(10) A^3	
Z, Calculated density	8, 1.512 Mg/m^3	
Absorption coefficient	1.010 mm^-1	
F(000)	1136	
Crystal size	0.23 x 0.19 x 0.15	mm
Theta range for data collection	6.04 to 72.30 deg.	
Limiting indices	-19<=h<=18, -9<=k<=	=9, -18<=1<=26
Reflections collected / unique	12895 / 4561 [R(int	t) = 0.0231]
Completeness to theta = 66.60	96.5 %	
Absorption correction	Semi-empirical from	m equivalents
Max. and min. transmission	0.8633 and 0.65858	7
Refinement method	Full-matrix least-s	squares on F^2
Data / restraints / parameters	4561 / 0 / 365	
Goodness-of-fit on F^2	1.081	
Final R indices [I>2sigma(I)]	R1 = 0.0448, wR2 =	0.1116
R indices (all data)	R1 = 0.0475, wR2 =	0.1131
Largest diff. peak and hole	0.294 and -0.336 e	.A^-3
Table 2. Atomic coordinates (displacement parameters (A^2 x U(eq) is defined as one third o Uij tensor.	x 10^4) and equival 10^3) for s3898ma. of the trace of the	lent isotropic orthogonalized

x	v	Z	U(eq)
	1	-	0(01)

C(12)	5981(1)	10577(2)	971(1)	19(1)	
C(1)	8758(1)	10754(2)	2871(1)	15(1)	
C(2)	9168(1)	10929(2)	3570(1)	16(1)	
C(3)	8745(1)	10361(2)	4016(1)	16(1)	
C(4)	7889(1)	9622(2)	3773(1)	17(1)	
C(5)	7474(1)	9462(2)	3076(1)	15(1)	
C(6)	7888(1)	9985(2)	2626(1)	15(1)	
C(7)	7405(1)	9003(3)	4236(1)	22(1)	
C(8)	7379(1)	9843(2)	1891(1)	14(1)	
C(9)	7686(1)	9094(2)	1405(1)	14(1)	
C(10)	7165(1)	9060(2)	727(1)	16(1)	
C(11)	6308(1)	9817(2)	507(1)	19(1)	
C(13)	6504(1)	10573(2)	1648(1)	17(1)	
C(14)	1556(1)	9176(2)	2795(1)	14(1)	
C(15)	1814(1)	8991(2)	3494(1)	16(1)	
C(16)	2664(1)	9545(2)	3930(1)	17(1)	
C(17)	3287(1)	10260(2)	3680(1)	18(1)	
C(18)	3038(1)	10432(2)	2982(1)	16(1)	
C(19)	2190(1)	9934(2)	2541(1)	15(1)	
C(20)	4215(1)	10866(3)	4134(1)	23(1)	
C(21)	1981(1)	10083(2)	1803(1)	15(1)	
C(22)	1189(1)	10817(2)	1343(1)	16(1)	
C(23)	1010(1)	10801(2)	655(1)	19(1)	
C(24)	1635(1)	10061(3)	405(1)	21(1)	
C(25)	2438(1)	9369(2)	847(1)	21(1)	
C(26)	2602(1)	9376(2)	1532(1)	18(1)	
N(1)	10060(1)	11728(2)	3856(1)	18(1)	
N(2)	8576(1)	8217(2)	1589(1)	15(1)	
N(3)	1193(1)	8229(2)	3786(1)	19(1)	
N(4)	508(1)	11705(2)	1565(1)	17(1)	
0(1)	9117(1)	11293(2)	2414(1)	17(1)	
0(2)	10462(1)	12205(2)	3472(1)	27(1)	
0(3)	10399(1)	11906(2)	4466(1)	27(1)	
O(4)	8922(1)	7652(2)	2161(1)	17(1)	
0(5)	8921(1)	8054(2)	1154(1)	25(1)	
0(6)	757(1)	8668(2)	2344(1)	16(1)	
0(7)	1414(1)	8148(2)	4399(1)	28(1)	
O(8)	444(1)	7680(2)	3408(1)	28(1)	
0(9)	759(1)	12338(2)	2131(1)	19(1)	
0(10)	-275(1)	11812(2)	1166(1)	28(1)	

Table 3. Bond lengths [A] and angles [deg] for s3898ma.

С(7)-Н(7В)	0.9800	
C(7)-H(7C)	0.9800	
C(8)-C(13)	1.402(2)	
C(8)-C(9)	1.405(2)	
C(9) - C(10)	1.386(3)	
C(9)-N(2)	1.474(2)	
C(10)-C(11)	1.386(3)	
C(10)-H(10)	0.9500	
C(11)-H(11)	0.9500	
C(13)-H(13)	0.9500	
C(14)-O(6)	1.343(2)	
C(14)-C(15)	1.403(2)	
C(14)-C(19)	1.409(2)	
C(15)-C(16)	1.398(3)	
C(15)-N(3)	1.445(2)	
C(16)-C(17)	1.376(3)	
C(16)-H(16)	0.9500	
C(17)-C(18)	1.402(3)	
C(17)-C(20)	1.511(3)	
C(18)-C(19)	1.386(2)	
C(18)-H(18)	0.9500	
C(19)-C(21)	1.490(2)	
C(20)-H(20A)	0.9800	
C(20)-H(20B)	0.9800	
C(20)-H(20C)	0.9800	
C(21)-C(26)	1.399(2)	
C(21)-C(22)	1.405(2)	
C(22)-C(23)	1.388(3)	
C(22)-N(4)	1.473(2)	
C(23)-C(24)	1.385(3)	
С(23)-Н(23)	0.9500	
C(24)-C(25)	1.389(3)	
C(24)-H(24)	0.9500	
C(25)-C(26)	1.386(3)	
C(25)-H(25)	0.9500	
С(26)-Н(26)	0.9500	
N(1)-O(3)	1.226(2)	
N(1)-O(2)	1.244(2)	
N(2)-O(5)	1.225(2)	
N(2)-O(4)	1.2276(19)	
N(3)-O(7)	1.226(2)	
N(3)-O(8)	1.243(2)	
N(4)-O(10)	1.226(2)	
N(4) - O(9)	1.230(2)	
O(1)-H(1)	0.8400	
O(6)-H(6)	0.8400	
	100 26(17)	
C(13) - C(12) - C(11)	120.36(17)	
C(13) - C(12) - H(12)	119.8	
C(11) - C(12) - H(12)	119.8	
O(1) - C(1) - C(2)	125.54(16)	
O(1) - C(1) - C(6)	117.02(16)	
C(2) - C(1) - C(6)	11/.41(10)	
C(3) - C(2) - C(1)	$\frac{1}{2} \frac{1}{2} \frac{1}$	
C(3) - C(2) - N(1)	120 17/16)	
C(1) - C(2) - N(1)	120.17(10)	
C(4) = C(3) = C(2) C(4) = C(3) = U(2)	120.00(1/)	
C(4) - C(3) - H(3)	120.0	
C(2) - C(3) - H(3)	117 77/16\	
C(3) - C(4) - C(5)	$\pm \pm / \cdot / / (\pm 0)$	
C(3) - C(4) - C(7)	121.04(1/) 120.20(17)	
	12U.JO(1/)	

C(6) - C(5) - C(4)	123.13(16)
С(б)-С(5)-Н(5)	118.4
C(4)-C(5)-H(5)	118.4
C(5) - C(6) - C(1)	119.24(17)
C(5)-C(6)-C(8)	119.54(16)
C(1) - C(6) - C(8)	121.07(16)
C(4)-C(7)-H(7A)	109.5
C(4)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(4) - C(7) - H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(13) - C(8) - C(9)	115.66(16)
C(13) - C(8) - C(6)	117.07(15)
C(9)-C(8)-C(6)	127.25(16)
C(10) - C(9) - C(8)	122.92(16)
C(10) - C(9) - N(2)	115.30(15)
C(8) - C(9) - N(2)	121.74(15)
C(11) - C(10) - C(9)	119.62(17)
C(11) - C(10) - H(10)	120.2
C(9) - C(10) - H(10)	120.2
C(10) - C(11) - C(12)	119.27(17)
C(10) - C(11) - H(11)	120.4
C(12) - C(11) - H(11)	120.4
C(12) - C(13) - C(8)	122.16(17)
C(12) - C(13) - H(13)	118.9
C(8) - C(13) - H(13)	118.9
O(6) - C(14) - C(15)	125.50(16)
O(6) - C(14) - C(19)	116.8/(15)
C(15) - C(14) - C(19)	11/.62(16)
C(16) - C(15) - C(14)	121.97(10)
C(10) - C(15) - N(3)	11/./1(10)
C(14) - C(15) - N(3)	120.32(10)
C(17) - C(16) - C(15)	120.20(17)
C(17) - C(16) - H(16)	119.9
C(15) - C(10) - H(10) C(16) - C(17) - C(18)	119.9
C(16) - C(17) - C(20)	$121 \ 95(17)$
C(18) - C(17) - C(20)	121.95(17) 120 00(17)
C(10) - C(18) - C(17)	120.00(17) 122.66(16)
C(19) - C(18) - H(18)	118 7
C(17) - C(18) - H(18)	118 7
C(18) - C(19) - C(14)	$119 \ 39(16)$
C(18) - C(19) - C(21)	120.02(15)
C(14) - C(19) - C(21)	120.44(15)
C(17) - C(20) - H(20A)	109.5
C(17) - C(20) - H(20B)	109.5
H(20A) - C(20) - H(20B)	109.5
C(17) - C(20) - H(20C)	109.5
H(20A) - C(20) - H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(26)-C(21)-C(22)	116.17(16)
C(26) - C(21) - C(19)	118.06(16)
C(22) - C(21) - C(19)	125.72(16)
C(23)-C(22)-C(21)	122.54(17)
C(23)-C(22)-N(4)	115.73(15)
C(21)-C(22)-N(4)	121.70(16)
C(24)-C(23)-C(22)	119.53(17)
C(24)-C(23)-H(23)	120.2
C(22)-C(23)-H(23)	120.2
C(23)-C(24)-C(25)	119.54(17)
C(23)-C(24)-H(24)	120.2

С(25)-С(24)-Н(24)	120.2
C(26)-C(25)-C(24)	120.20(17)
С(26)-С(25)-Н(25)	119.9
С(24)-С(25)-Н(25)	119.9
C(25)-C(26)-C(21)	121.98(17)
С(25)-С(26)-Н(26)	119.0
С(21)-С(26)-Н(26)	119.0
O(3)-N(1)-O(2)	121.82(15)
O(3)-N(1)-C(2)	119.33(15)
O(2)-N(1)-C(2)	118.85(15)
O(5)-N(2)-O(4)	123.44(15)
O(5)-N(2)-C(9)	117.91(15)
O(4) - N(2) - C(9)	118.63(14)
O(7)-N(3)-O(8)	121.69(16)
O(7) - N(3) - C(15)	119.40(16)
O(8)-N(3)-C(15)	118.91(15)
O(10) - N(4) - O(9)	123.52(16)
O(10)-N(4)-C(22)	117.99(15)
O(9)-N(4)-C(22)	118.47(14)
C(1)-O(1)-H(1)	109.5
C(14)-O(6)-H(6)	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for s3898ma. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 Ul1 + \dots + 2 h k a* b* Ul2]

	U11	U22	U33	U23	U13	U12
C(12)	12(1)	18(1)	24(1)	-2(1)	1(1)	1(1)
C(1)	14(1)	12(1)	18(1)	0(1)	5(1)	2(1)
C(2)	13(1)	13(1)	18(1)	-2(1)	1(1)	1(1)
C(3)	18(1)	13(1)	16(1)	-1(1)	2(1)	4(1)
C(4)	19(1)	12(1)	20(1)	0(1)	7(1)	3(1)
C(5)	14(1)	12(1)	20(1)	-2(1)	4(1)	0(1)
C(6)	14(1)	11(1)	17(1)	-2(1)	4(1)	2(1)
C(7)	24(1)	21(1)	21(1)	0(1)	10(1)	-1(1)
C(8)	13(1)	12(1)	16(1)	0(1)	3(1)	-3(1)
C(9)	11(1)	12(1)	16(1)	1(1)	3(1)	-1(1)
C(10)	18(1)	15(1)	17(1)	-1(1)	6(1)	-2(1)
C(11)	18(1)	18(1)	15(1)	0(1)	0(1)	-2(1)
C(13)	16(1)	16(1)	19(1)	-4(1)	5(1)	0(1)
C(14)	13(1)	12(1)	18(1)	0(1)	4(1)	2(1)
C(15)	18(1)	14(1)	19(1)	2(1)	8(1)	4(1)
C(16)	19(1)	16(1)	17(1)	1(1)	5(1)	5(1)
C(17)	16(1)	14(1)	20(1)	0(1)	2(1)	3(1)
C(18)	14(1)	12(1)	22(1)	1(1)	6(1)	2(1)
C(19)	14(1)	12(1)	18(1)	1(1)	5(1)	2(1)
C(20)	19(1)	22(1)	22(1)	-1(1)	0(1)	0(1)
C(21)	14(1)	13(1)	17(1)	2(1)	5(1)	-4(1)
C(22)	14(1)	14(1)	20(1)	2(1)	6(1)	-2(1)
C(23)	19(1)	18(1)	18(1)	4(1)	2(1)	-3(1)
C(24)	25(1)	23(1)	16(1)	1(1)	8(1)	-7(1)
C(25)	22(1)	20(1)	23(1)	-1(1)	12(1)	-2(1)
C(26)	16(1)	16(1)	21(1)	2(1)	7(1)	-1(1)
N(1)	15(1)	16(1)	20(1)	-3(1)	2(1)	1(1)

N(2)	14(1)	14(1)	18(1)	0(1)	5(1)	-1(1)
N(3)	19(1)	18(1)	20(1)	5(1)	9(1)	4(1)
N(4)	15(1)	15(1)	20(1)	4(1)	5(1)	0(1)
0(1)	13(1)	19(1)	19(1)	0(1)	5(1)	-4(1)
O(2)	18(1)	35(1)	28(1)	-7(1)	7(1)	-9(1)
O(3)	22(1)	32(1)	19(1)	-6(1)	-3(1)	-4(1)
O(4)	16(1)	18(1)	16(1)	4(1)	4(1)	1(1)
O(5)	20(1)	39(1)	20(1)	2(1)	11(1)	7(1)
О(б)	13(1)	18(1)	18(1)	2(1)	5(1)	-3(1)
0(7)	33(1)	37(1)	18(1)	6(1)	12(1)	1(1)
O(8)	18(1)	42(1)	25(1)	8(1)	7(1)	-6(1)
0(9)	19(1)	16(1)	20(1)	-2(1)	6(1)	-1(1)
0(10)	14(1)	40(1)	25(1)	2(1)	0(1)	5(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for s3898ma.

	x	У	Z	U(eq)
н(3)	9048	10484	4486	20
H(5)	6880	8971	2904	18
H(7A)	7845	8900	4693	32
H(7B)	7127	7874	4083	32
H(7C)	6928	9832	4231	32
H(10)	7395	8521	416	20
H(11)	5949	9815	43	22
H(12)	5395	11103	824	22
H(13)	6261	11082	1958	21
H(16)	2812	9426	4402	21
H(18)	3467	10909	2804	19
H(20A)	4231	10882	4600	34
H(20B)	4329	12031	4002	34
H(20C)	4685	10078	4095	34
H(23)	462	11295	358	23
H(24)	1514	10028	-65	26
H(25)	2877	8888	680	25
Н(26)	3153	8887	1826	21
H(1)	9643	11686	2611	25
Н(б)	420	8279	2546	25

Table 6. Torsion angles [deg] for s3898ma.

O(1) - C(1) - C(2) - C(3)	178.92(16)
C(6) - C(1) - C(2) - C(3)	0.5(3)
O(1) - C(1) - C(2) - N(1)	-0.9(3)
C(6) - C(1) - C(2) - N(1)	-179.32(15)
C(1) - C(2) - C(3) - C(4)	-1.1(3)
N(1) - C(2) - C(3) - C(4)	178.73(15)
C(2) - C(3) - C(4) - C(5)	0.3(3)
C(2) - C(3) - C(4) - C(7)	-179.56(16)
C(3) - C(4) - C(5) - C(6)	1.0(3)
C(7) - C(4) - C(5) - C(6)	-179.14(16)
C(4) - C(5) - C(6) - C(1)	-1.5(3)
C(4) - C(5) - C(6) - C(8)	-177.10(16)
O(1) - C(1) - C(6) - C(5)	-177.79(15)
C(2) - C(1) - C(6) - C(5)	0.8(2)

O(1)-C(1)-C(6)-C(8)	-2.3(2)
C(2)-C(1)-C(6)-C(8)	176.28(15)
C(5) - C(6) - C(8) - C(13)	51.7(2)
C(1) - C(6) - C(8) - C(13)	-123.74(18)
C(5) - C(6) - C(8) - C(9)	-130.06(19)
C(1) - C(6) - C(8) - C(9)	54.5(2)
C(13) - C(8) - C(9) - C(10)	-0.3(2)
C(6) - C(8) - C(9) - C(10)	-178.50(16)
C(13) - C(8) - C(9) - N(2)	-177.51(15)
C(6) - C(8) - C(9) - N(2)	4.3(3)
U(8) - U(9) - U(10) - U(11)	1.1(3)
R(2) - C(3) - C(10) - C(11) C(9) - C(10) - C(11) - C(12)	_0 8(3)
C(13) - C(12) - C(11) - C(10)	-0.3(3)
C(11) - C(12) - C(13) - C(8)	1 2(3)
C(9) - C(8) - C(13) - C(12)	-0.9(3)
C(6) - C(8) - C(13) - C(12)	177.53(16)
O(6) - C(14) - C(15) - C(16)	179.54(16)
C(19) - C(14) - C(15) - C(16)	0.5(3)
O(6) - C(14) - C(15) - N(3)	-1.2(3)
C(19)-C(14)-C(15)-N(3)	179.76(15)
C(14) - C(15) - C(16) - C(17)	-1.5(3)
N(3) - C(15) - C(16) - C(17)	179.21(16)
C(15)-C(16)-C(17)-C(18)	0.8(3)
C(15)-C(16)-C(17)-C(20)	-179.68(17)
C(16) - C(17) - C(18) - C(19)	0.9(3)
C(20) - C(17) - C(18) - C(19)	-178.61(17)
C(17) - C(18) - C(19) - C(14)	-1.9(3)
C(17) - C(18) - C(19) - C(21)	-177.45(16)
O(6) - C(14) - C(19) - C(18)	-1/7.96(15)
C(15) - C(14) - C(19) - C(18) O(6) - C(14) - C(19) - C(21)	$\perp \perp (2)$
O(0) - C(14) - C(19) - C(21) C(15) - C(14) - C(21)	-2.4(2)
C(18) - C(19) - C(21) - C(21)	50 6(2)
C(14) - C(19) - C(21) - C(26)	-124 87(18)
C(11) - C(12) - C(21) - C(22)	-132.04(19)
C(14) - C(19) - C(21) - C(22)	52.5(2)
C(26) - C(21) - C(22) - C(23)	2.1(3)
C(19) - C(21) - C(22) - C(23)	-175.28(17)
C(26)-C(21)-C(22)-N(4)	-175.95(15)
C(19) - C(21) - C(22) - N(4)	6.7(3)
C(21)-C(22)-C(23)-C(24)	-1.0(3)
N(4) - C(22) - C(23) - C(24)	177.15(16)
C(22) - C(23) - C(24) - C(25)	-1.0(3)
C(23) - C(24) - C(25) - C(26)	1.7(3)
C(24) - C(25) - C(26) - C(21)	-0.6(3)
C(22)-C(21)-C(26)-C(25)	-1.3(3)
C(19) - C(21) - C(26) - C(25) C(2) - C(2) - N(1) - O(2)	1/6.29(16)
C(3) - C(2) - N(1) - O(3)	-1.4(2) 178 36(16)
C(3) - C(2) - N(1) - O(2)	178 17(16)
C(1) - C(2) - N(1) - O(2)	-2 0(2)
C(10) - C(9) - N(2) - O(5)	23.9(2)
C(8) - C(9) - N(2) - O(5)	-158.62(16)
C(10) - C(9) - N(2) - O(4)	-154.34(15)
C(8) - C(9) - N(2) - O(4)	23.1(2)
C(16) - C(15) - N(3) - O(7)	2.5(2)
C(14) - C(15) - N(3) - O(7)	-176.81(16)
C(16) - C(15) - N(3) - O(8)	-177.87(16)
C(14) - C(15) - N(3) - O(8)	2.9(2)
C(23) - C(22) - N(4) - O(10)	25.3(2)
C(21) - C(22) - N(4) - O(10)	-156.58(17)

C(23)-C(22)-N(4)-O(9)	-152.82(16)
C(21) - C(22) - N(4) - O(9)	25.3(2)

Table 7. Hydrogen bonds for s3898ma [A and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)O(2)	0.84	1.88	2.5880(18)	141.6
O(1)-H(1)O(9)#1	0.84	2.36	2.9419(17)	127.2
O(1)-H(1)N(1)	0.84	2.49	2.921(2)	112.7
O(6)-H(6)O(8)	0.84	1.88	2.5853(18)	141.3
O(6)-H(6)O(4)#2	0.84	2.25	2.8655(17)	130.4
O(6)-H(6)N(3)	0.84	2.49	2.917(2)	112.6

Symmetry transformations used to generate equivalent atoms: #1 x+1, y, z = #2 x-1, y, z

Crystal data and structure refinement for s3767na.

Identification code	s3767na
Empirical formula	C8 H6 F3 N O5 S
Formula weight	285.20
Temperature	100(2) K
Wavelength	1.5418 A
Crystal system, space group	Monoclinic, P 1 21/n 1
Unit cell dimensions	a = 5.3555(6) A alpha = 90 deg. b = 12.8070(14) A beta = 96.773(8) deg. c = 16.0563(15) A gamma = 90 deg.
Volume	1093.6(2) A^3
Z, Calculated density	4, 1.732 Mg/m ³
Absorption coefficient	3.248 mm ⁻¹
F(000)	576
Crystal size	0.18 x 0.08 x 0.02 mm
Theta range for data collection	2.7728 to 73.9454 deg.
Limiting indices	-6<=h<=5, -15<=k<=9, -19<=l<=15
Reflections collected / unique	4685 / 2078 [R(int) = 0.0724]
Completeness to theta = 66.60	96.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.63119
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2078 / 0 / 165
Goodness-of-fit on F^2	1.036
Final R indices [I>2sigma(I)]	R1 = 0.0703, wR2 = 0.1827
R indices (all data)	R1 = 0.0968, wR2 = 0.2202
Largest diff. peak and hole	0.473 and -0.475 e.A ⁻³
Table 2. Atomic coordinates (displacement parameters (A^2 x U(eq) is defined as one third o Uij tensor.	x 10^4) and equivalent isotropic 10^3) for s3767na. of the trace of the orthogonalized

x	У	Z	U(eq)
	1		- (- <u>-</u> 1)

C(1)	1562(7)	9565(3)	2932(2)	39(1)	
C(2)	460(8)	10486(3)	3187(2)	40(1)	
C(3)	-1218(8)	10349(3)	3793(3)	44(1)	
C(4)	-1693(9)	9385(3)	4114(2)	48(1)	
C(5)	-587(9)	8493(3)	3857(3)	53(1)	
C(6)	1067(9)	8601(3)	3254(3)	49(1)	
C(7)	1699(10)	9698(4)	1159(3)	56(1)	
C(8)	-1135(12)	7429(4)	4203(3)	75(2)	
F(1)	232(8)	8901(4)	1057(2)	118(2)	
F(2)	3169(7)	9704(3)	570(2)	78(1)	
F(3)	403(7)	10560(3)	1111(2)	95(1)	
N(1)	-2600(8)	11241(3)	4065(2)	56(1)	
0(1)	4926(7)	8618(2)	2171(2)	59(1)	
0(2)	5177(5)	10544(2)	2245(2)	48(1)	
O(3)	952(6)	11392(2)	2840(2)	49(1)	
O(4)	-4253(7)	11092(3)	4510(2)	72(1)	
O(5)	-2062(8)	12116(3)	3830(3)	77(1)	
S(1)	3709(2)	9610(1)	2179(1)	42(1)	

Table	3.	Bond	lengths	[A]	and	angles	[deg]	for	s3767na.	

C(1) - C(6) $C(1) - C(2)$ $C(1) - S(1)$ $C(2) - O(3)$ $C(2) - C(3)$ $C(3) - C(4)$ $C(3) - N(1)$ $C(4) - C(5)$ $C(4) - H(4)$ $C(5) - C(6)$ $C(5) - C(6)$ $C(5) - C(8)$ $C(6) - H(6)$ $C(7) - F(1)$ $C(7) - F(2)$ $C(7) - F(2)$ $C(7) - F(3)$ $C(7) - F(3)$ $C(7) - S(1)$ $C(8) - H(8B)$ $C(8) - H(8B)$ $C(8) - H(8B)$ $C(8) - H(8C)$ $N(1) - O(4)$ $N(1) - O(5)$ $O(1) - S(1)$ $O(2) - S(1)$ $O(3) - H(3)$	1.376(6) $1.401(5)$ $1.766(4)$ $1.327(4)$ $1.411(5)$ $1.373(6)$ $1.456(5)$ $1.372(6)$ 0.9500 $1.394(5)$ $1.513(6)$ 0.9500 $1.287(6)$ $1.301(5)$ $1.301(6)$ $1.853(5)$ 0.9800 0.9800 0.9800 $1.217(4)$ $1.227(5)$ $1.429(3)$ $1.428(3)$ 0.8400
C(6)-C(1)-C(2) $C(6)-C(1)-S(1)$ $C(2)-C(1)-S(1)$ $O(3)-C(2)-C(1)$ $O(3)-C(2)-C(3)$ $C(1)-C(2)-C(3)$ $C(4)-C(3)-C(2)$ $C(4)-C(3)-N(1)$ $C(2)-C(3)-N(1)$ $C(5)-C(4)-C(3)$ $C(5)-C(4)-H(4)$ $C(3)-C(4)-H(4)$ $C(4)-C(5)-C(6)$	122.6(3) 117.2(3) 120.2(3) 120.1(3) 125.0(3) 114.9(3) 122.1(4) 118.0(4) 119.8(4) 122.0(4) 119.0 119.0 119.3(4)

C(4) - C(5) - C(8)	122.0(4)
C(6) - C(5) - C(8)	120.7(4)
C(1) - C(6) - C(5)	121.1(4)
C(1) - C(6) - H(6)	119.5
C(5)-C(6)-H(6)	119.5
F(1) - C(7) - F(2)	109.0(4)
F(1) - C(7) - F(3)	110.6(5)
F(2) - C(7) - F(3)	108.4(4)
F(1)-C(7)-S(1)	110.3(4)
F(2)-C(7)-S(1)	107.7(4)
F(3) - C(7) - S(1)	110.8(3)
C(5) - C(8) - H(8A)	109.5
C(5)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(5) - C(8) - H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
O(4) - N(1) - O(5)	122.4(4)
O(4) - N(1) - C(3)	119.0(4)
O(5) - N(1) - C(3)	118.6(3)
C(2)-O(3)-H(3)	109.5
O(2) - S(1) - O(1)	119.9(2)
O(2) - S(1) - C(1)	111.94(17)
O(1) - S(1) - C(1)	108.18(18)
O(2) - S(1) - C(7)	105.8(2)
O(1) - S(1) - C(7)	105.3(2)
C(1)-S(1)-C(7)	104.4(2)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for s3767na. The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 Ull + \dots + 2 h k a* b* Ul2]

	U11	U22	U33	U23	U13	U12
C(1)	49(2)	30(2)	41(2)	0(1)	12(2)	-2(2)
C(2)	50(2)	33(2)	39(2)	1(1)	9(2)	-2(2)
C(3)	53(2)	36(2)	46(2)	-3(2)	13(2)	-1(2)
C(4)	68(3)	35(2)	42(2)	-1(2)	17(2)	-5(2)
C(5)	81(3)	31(2)	50(2)	4(2)	22(2)	-8(2)
C(6)	65(3)	35(2)	49(2)	-3(2)	16(2)	1(2)
C(7)	72(3)	52(3)	45(2)	-5(2)	12(2)	-13(2)
C(8)	125(5)	32(3)	77(3)	4(2)	48(3)	-10(3)
F(1)	145(4)	130(4)	75(2)	1(2)	-5(2)	-89(3)
F(2)	98(2)	88(3)	53(2)	-4(1)	29(2)	-4(2)
F(3)	105(3)	112(3)	63(2)	-11(2)	-12(2)	49(2)
N(1)	71(3)	40(2)	61(2)	1(2)	29(2)	6(2)
0(1)	72(2)	31(2)	81(2)	4(1)	36(2)	8(1)
0(2)	50(2)	36(2)	60(2)	5(1)	13(1)	-5(1)
0(3)	68(2)	24(2)	59(2)	3(1)	26(1)	2(1)
0(4)	88(2)	55(2)	81(2)	8(2)	50(2)	9(2)
O(5)	110(3)	32(2)	102(3)	2(2)	62(2)	6(2)
S(1)	50(1)	30(1)	49(1)	2(1)	15(1)	0(1)

Table 5. Hydrogen coordinates (x 10^4) and isotropic
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		x	У	Z	U(eq)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	н(4)	-2823	9334	4526	57
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	н(б)	1865	8000	3062	59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	H(8A)	339	7183	4570	112
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H(8B)	-1521	6937	3739	112
H(3)7511864302474Table 6. Torsion angles [deg] for s3767na.Table 6. Torsion angles [deg] for s3767na.C(6)-C(1)-C(2)-O(3) $-178.2(4)$ S(1)-C(1)-C(2)-O(3) $-178.2(4)$ S(1)-C(1)-C(2)-O(3) $-179.9(3)$ $O.6(6)$ S(1)-C(1)-C(2)-C(3)-C(4) $-179.9(3)$ $O(3)-C(2)-C(3)-C(4)$ $-179.9(3)$ $O(3)-C(2)-C(3)-C(4)$ $-179.9(3)$ $O(3)-C(2)-C(3)-C(4)$ $-179.3(5)$ $C(2)-C(3)-N(1)$ $-179.3(5)$ $C(2)-C(3)-C(4)-C(5)$ $-179.3(5)$ $C(2)-C(1)-C(6)-C(5)$ $-179.3(5)$ $C(2)-C(1)-C(6)-C(5)$ $-179.3(5)$ $C(2)-C(1)-C(6)-C(5)$ $-179.3(5)$ $C(2)-C(1)-C(6)-C(5)$ $-179.3(5)$ $C(2)-C(1)-C(6)-C(1)$ $-179.3(5)$ $C(2)-C(1)-C(6)-C(5)$ $-179.3(5)$ $C(2)-C(1)-C(6)-C(5)$ $-179.3(5)$ $C(2)-C(1)-C(6)-C(5)$ $-179.3(5)$ $C(2)-C(1)-C(6)-C(5)$ $-179.3(5)$ $C(2)-C(3)-N(1)-O(4)$ $-179.2(3)-N(1)-O(4)$ $-179.2(3)-N(1)-O(2)$	H(8C)	-2577	7479	4524	112
Table 6. Torsion angles [deg] for s3767na. $C(6)-C(1)-C(2)-O(3)$ $-178.2(4)$ $S(1)-C(1)-C(2)-O(3)$ $-0.6(6)$ $S(1)-C(1)-C(2)-C(3)$ $-179.9(3)$ $O(3)-C(2)-C(3)-C(4)$ $178.4(4)$ $C(1)-C(2)-C(3)-C(4)$ $0.9(6)$ $O(3)-C(2)-C(3)-N(1)$ $1.5(7)$ $C(1)-C(2)-C(3)-N(1)$ $-176.0(4)$ $C(2)-C(3)-N(1)$ $-176.0(4)$ $C(3)-C(4)-C(5)$ $176.2(4)$ $C(3)-C(4)-C(5)-C(6)$ $0.3(7)$ $C(3)-C(4)-C(5)-C(6)$ $0.3(7)$ $C(3)-C(4)-C(5)-C(6)$ $0.2(7)$ $S(1)-C(1)-C(6)-C(5)$ $179.4(4)$ $C(4)-C(5)-C(6)-C(1)$ $0.0(7)$ $C(3)-C(1)-C(6)-C(5)$ $179.4(4)$ $C(4)-C(3)-N(1)-O(4)$ $-5.7(7)$ $C(2)-C(3)-N(1)-O(4)$ $-7.7(7)$ $C(4)-C(3)-N(1)-O(4)$ $171.4(4)$ $C(4)-C(3)-N(1)-O(5)$ $-8.2(7)$ $C(6)-C(1)-S(1)-O(2)$ $-145.7(3)$ $C(2)-C(1)-S(1)-O(2)$ $-145.7(3)$ $C(2)-C(1)-S(1)-O(2)$ $-11.5(4)$ $C(2)-C(1)-S(1)-O(2)$ $-177.7(4)$ $F(2)-C(7)-S(1)-O(2)$ $-54.9(4)$ $F(1)-C(7)-S(1)-O(1)$ $-54.9(4)$ $F(1)-C(7)-S(1)-O(1)$ $-77.2(3)$ $F(1)-C(7)-S(1)-O(1)$ $-77.2(3)$ $F(1)-C(7)-S(1)-O(1)$ $-78.2(3)$ $F(1)-C(7)-S(1)-C(1)$ $-78.2(3)$ $F(3)-C(7)-S(1)-C(1)$ $-78.2(3)$	Н(З)	75	11864	3024	74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Table 6.	Torsion angle	s [deg] for s3	767na.	
$\begin{array}{llllllllllllllllllllllllllllllllllll$					150.0(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(6) - C(1)) - C(2) - O(3)			-1/8.2(4)
$\begin{array}{c} (0) - ((1) - ((2) - ((3)) \\ -179.9 (3) \\ 0(3) - ((2) - ((3) - ((4)) \\ 0.9 (6) \\ 0(3) - ((2) - ((3) - ((4)) \\ (1) - ((2) - ((3) - ((4)) \\ (1) - ((2) - ((3) - ((4)) \\ (1) - ((2) - ((3) - ((1)) \\ (1) - ((3) - ((4) - ((5)) \\ (1) - ((3) - ((4) - ((5)) \\ (1) - ((3) - ((4) - ((5)) \\ (1) - ((3) - ((4) - ((5)) \\ (1) - ((3) - ((4) - ((5)) \\ (1) - ((1) - ((6) - ((5)) \\ (1) - ((1) - ((6) - ((5)) \\ (1) - ((1) - ((6) - ((5)) \\ (1) - ((1) - ((6) - ((5)) \\ (1) - ((1) - ((6) - ((5)) \\ (1) - ((1) - ((6) - ((1)) \\ (1) - ((1) - ((6) - ((1)) \\ (1) - ((1) - ((6) - ((1)) \\ (1) - ((1) - ((6) - ((1)) \\ (1) - ((1) - ((6) - ((1)) \\ (1) - ((1) - ((1) - ((1)) \\ (1) - ((1) - ((1) - ((1)) \\ (1) - ((1) - ((1) - ((1)) \\ (1) - ((1) - ((1) - ((1)) \\ (1) - ((1) - ((1) - ((1) - ((1)) \\ (1) - ((1) - ((1) - ((1) - ((1)) \\ (1) - ((1) -$	S(1) - C(1)) - C(2) - O(3)			2.5(6)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	S(1) - C(1)) = C(2) = C(3)			-1799(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(3) - C(2)) - C(3) - C(4)			178.4(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(1) - C(2)) - C(3) - C(4)			0.9(6)
$\begin{array}{cccccc} C(1)-C(2)-C(3)-N(1) & -176.0(4) \\ C(2)-C(3)-C(4)-C(5) & -0.8(7) \\ N(1)-C(3)-C(4)-C(5)-C(6) & 0.3(7) \\ C(3)-C(4)-C(5)-C(6) & -179.3(5) \\ C(2)-C(1)-C(6)-C(5) & 0.2(7) \\ S(1)-C(1)-C(6)-C(5) & 179.4(4) \\ C(4)-C(5)-C(6)-C(1) & 0.0(7) \\ C(8)-C(5)-C(6)-C(1) & 179.6(5) \\ C(4)-C(3)-N(1)-O(4) & -5.7(7) \\ C(2)-C(3)-N(1)-O(4) & 171.4(4) \\ C(4)-C(3)-N(1)-O(5) & -8.2(7) \\ C(6)-C(1)-S(1)-O(2) & -145.7(3) \\ C(2)-C(3)-N(1)-O(1) & -11.5(4) \\ C(2)-C(1)-S(1)-O(2) & -33.6(4) \\ C(2)-C(1)-S(1)-O(2) & -145.7(3) \\ C(2)-C(1)-S(1)-O(1) & -11.5(4) \\ C(2)-C(1)-S(1)-O(1) & -11.5(4) \\ C(2)-C(1)-S(1)-O(2) & -33.6(4) \\ C(2)-C(1)-S(1)-O(2) & -177.7(4) \\ F(2)-C(7)-S(1)-O(2) & -54.9(4) \\ F(3)-C(7)-S(1)-O(1) & -64.3(4) \\ F(2)-C(7)-S(1)-O(1) & -59.4(4) \\ F(2)-C(7)-S(1)-O(1) & -59.4(4) \\ F(2)-C(7)-S(1)-O(1) & -59.4(4) \\ F(2)-C(7)-S(1)-C(1) & -50.4(4) \\ F(2)-C(7)-S(1)-C(1) $	O(3)-C(2) - C(3) - N(1)			1.5(7)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(1)-C(2)-C(3)-N(1)			-176.0(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(2)-C(3)-C(4)-C(5)			-0.8(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N(1)-C(3)-C(4)-C(5)			176.2(4)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(3)-C(4)-C(5)-C(6)			0.3(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(3) - C(4))-C(5)-C(8)			-179.3(5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2) - C(1)) - C(6) - C(5)			0.2(7)
$\begin{array}{c} C(4) - C(5) - C(6) - C(1) & 0.0(7) \\ C(8) - C(5) - C(6) - C(1) & 179.6(5) \\ C(4) - C(3) - N(1) - O(4) & -5.7(7) \\ C(2) - C(3) - N(1) - O(4) & 171.4(4) \\ C(4) - C(3) - N(1) - O(5) & 174.8(5) \\ C(2) - C(3) - N(1) - O(5) & -8.2(7) \\ C(6) - C(1) - S(1) - O(2) & -145.7(3) \\ C(2) - C(1) - S(1) - O(2) & 33.6(4) \\ C(6) - C(1) - S(1) - O(1) & -11.5(4) \\ C(2) - C(1) - S(1) - O(1) & 167.8(3) \\ C(6) - C(1) - S(1) - O(1) & 167.8(3) \\ C(2) - C(1) - S(1) - C(7) & -80.4(4) \\ F(1) - C(7) - S(1) - O(2) & -177.7(4) \\ F(2) - C(7) - S(1) - O(2) & -54.9(4) \\ F(3) - C(7) - S(1) - O(1) & 54.4(4) \\ F(1) - C(7) - S(1) - O(1) & -64.3(4) \\ F(3) - C(7) - S(1) - O(1) & 177.2(3) \\ F(1) - C(7) - S(1) - O(1) & -59.4(4) \\ F(2) - C(7) - S(1) - C(1) & -178.2(3) \\ F(3) - C(7) - S(1) - $	S(1) - C(1)) - C(6) - C(5)			1/9.4(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(4) - C(5)) - C(6) - C(1)			0.0(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(8) = C(3)) = C(0) = C(1)			-5 7(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(2) - C(3)	(1) - N(1) - O(4)			$171 \ 4(4)$
$\begin{array}{ccccc} C(2) - C(3) - N(1) - O(5) & -8 \cdot 2(7) \\ C(6) - C(1) - S(1) - O(2) & -145 \cdot 7(3) \\ C(2) - C(1) - S(1) - O(2) & 33 \cdot 6(4) \\ C(6) - C(1) - S(1) - O(1) & -11 \cdot 5(4) \\ C(2) - C(1) - S(1) - O(1) & 167 \cdot 8(3) \\ C(6) - C(1) - S(1) - C(7) & 100 \cdot 3(4) \\ C(2) - C(1) - S(1) - C(7) & -80 \cdot 4(4) \\ F(1) - C(7) - S(1) - O(2) & -177 \cdot 7(4) \\ F(2) - C(7) - S(1) - O(2) & -54 \cdot 9(4) \\ F(3) - C(7) - S(1) - O(1) & 54 \cdot 4(4) \\ F(2) - C(7) - S(1) - O(1) & -64 \cdot 3(4) \\ F(3) - C(7) - S(1) - O(1) & 177 \cdot 2(3) \\ F(1) - C(7) - S(1) - O(1) & -59 \cdot 4(4) \\ F(2) - C(7) - S(1) - C(1) & -59 \cdot 4(4) \\ F(2) - C(7) - S(1) - C(1) & -178 \cdot 2(3) \\ F(3) - C(7) - S(1) - C(1) & -178 \cdot$	C(4) - C(3)	-N(1) - O(5)			174.8(5)
$\begin{array}{ccccc} -C(1) -S(1) -O(2) & -145.7(3) \\ C(2) -C(1) -S(1) -O(2) & 33.6(4) \\ C(6) -C(1) -S(1) -O(1) & -11.5(4) \\ C(2) -C(1) -S(1) -O(1) & 167.8(3) \\ C(6) -C(1) -S(1) -C(7) & 100.3(4) \\ C(2) -C(1) -S(1) -C(7) & -80.4(4) \\ F(1) -C(7) -S(1) -O(2) & -177.7(4) \\ F(2) -C(7) -S(1) -O(2) & 63.5(4) \\ F(3) -C(7) -S(1) -O(2) & -54.9(4) \\ F(1) -C(7) -S(1) -O(1) & 54.4(4) \\ F(2) -C(7) -S(1) -O(1) & -64.3(4) \\ F(3) -C(7) -S(1) -O(1) & 177.2(3) \\ F(1) -C(7) -S(1) -C(1) & -59.4(4) \\ F(2) -C(7) -S(1) -C(1) & -178.2(3) \\ F(3) -C(7) -S(1) -C(1) & 63.4(4) \\ \end{array}$	C(2) - C(3)) - N(1) - O(5)			-8.2(7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(6) - C(1))-S(1)-O(2)			-145.7(3)
$\begin{array}{ccccc} C(6) - C(1) - S(1) - O(1) & -11.5(4) \\ C(2) - C(1) - S(1) - O(1) & 167.8(3) \\ C(6) - C(1) - S(1) - C(7) & 100.3(4) \\ C(2) - C(1) - S(1) - C(7) & -80.4(4) \\ F(1) - C(7) - S(1) - O(2) & -177.7(4) \\ F(2) - C(7) - S(1) - O(2) & 63.5(4) \\ F(3) - C(7) - S(1) - O(2) & -54.9(4) \\ F(1) - C(7) - S(1) - O(1) & 54.4(4) \\ F(2) - C(7) - S(1) - O(1) & -64.3(4) \\ F(3) - C(7) - S(1) - O(1) & 177.2(3) \\ F(1) - C(7) - S(1) - C(1) & -59.4(4) \\ F(2) - C(7) - S(1) - C(1) & -178.2(3) \\ F(3) - C(7) - S(1) - C(1) & 63.4(4) \\ \end{array}$	C(2) - C(1))-S(1)-O(2)			33.6(4)
$\begin{array}{ccccc} C(2) - C(1) - S(1) - O(1) & 167.8(3) \\ C(6) - C(1) - S(1) - C(7) & 100.3(4) \\ C(2) - C(1) - S(1) - O(7) & -80.4(4) \\ F(1) - C(7) - S(1) - O(2) & -177.7(4) \\ F(2) - C(7) - S(1) - O(2) & 63.5(4) \\ F(3) - C(7) - S(1) - O(2) & -54.9(4) \\ F(1) - C(7) - S(1) - O(1) & 54.4(4) \\ F(2) - C(7) - S(1) - O(1) & -64.3(4) \\ F(3) - C(7) - S(1) - O(1) & 177.2(3) \\ F(1) - C(7) - S(1) - C(1) & -59.4(4) \\ F(2) - C(7) - S(1) - C(1) & -178.2(3) \\ F(3) - C(7) - S(1) - C(1) & 63.4(4) \\ \end{array}$	C(6)-C(1)-S(1)-O(1)			-11.5(4)
$\begin{array}{c} C(6) - C(1) - S(1) - C(7) & 100.3(4) \\ C(2) - C(1) - S(1) - C(7) & -80.4(4) \\ F(1) - C(7) - S(1) - O(2) & -177.7(4) \\ F(2) - C(7) - S(1) - O(2) & 63.5(4) \\ F(3) - C(7) - S(1) - O(2) & -54.9(4) \\ F(1) - C(7) - S(1) - O(1) & 54.4(4) \\ F(2) - C(7) - S(1) - O(1) & -64.3(4) \\ F(3) - C(7) - S(1) - O(1) & 177.2(3) \\ F(1) - C(7) - S(1) - C(1) & -59.4(4) \\ F(2) - C(7) - S(1) - C(1) & -178.2(3) \\ F(3) - C(7) - S(1) - C(1) & 63.4(4) \\ \end{array}$	C(2)-C(1)-S(1)-O(1)			167.8(3)
$\begin{array}{ccccc} C(2) - C(1) - S(1) - C(7) & & -80.4(4) \\ F(1) - C(7) - S(1) - O(2) & & -177.7(4) \\ F(2) - C(7) - S(1) - O(2) & & 63.5(4) \\ F(3) - C(7) - S(1) - O(2) & & -54.9(4) \\ F(1) - C(7) - S(1) - O(1) & & 54.4(4) \\ F(2) - C(7) - S(1) - O(1) & & -64.3(4) \\ F(3) - C(7) - S(1) - O(1) & & 177.2(3) \\ F(1) - C(7) - S(1) - C(1) & & -59.4(4) \\ F(2) - C(7) - S(1) - C(1) & & -178.2(3) \\ F(3) - C(7) - S(1) - C(1) & & 63.4(4) \\ \end{array}$	C(6)-C(1)-S(1)-C(7)			100.3(4)
F(1) - C(7) - S(1) - O(2) $-177.7(4)$ $F(2) - C(7) - S(1) - O(2)$ $63.5(4)$ $F(3) - C(7) - S(1) - O(2)$ $-54.9(4)$ $F(1) - C(7) - S(1) - O(1)$ $54.4(4)$ $F(2) - C(7) - S(1) - O(1)$ $-64.3(4)$ $F(3) - C(7) - S(1) - O(1)$ $177.2(3)$ $F(1) - C(7) - S(1) - C(1)$ $-59.4(4)$ $F(2) - C(7) - S(1) - C(1)$ $-178.2(3)$ $F(3) - C(7) - S(1) - C(1)$ $63.4(4)$	C(2)-C(1)-S(1)-C(7)			-80.4(4)
F(2) - C(7) - S(1) - O(2) $63.5(4)$ $F(3) - C(7) - S(1) - O(2)$ $-54.9(4)$ $F(1) - C(7) - S(1) - O(1)$ $54.4(4)$ $F(2) - C(7) - S(1) - O(1)$ $-64.3(4)$ $F(3) - C(7) - S(1) - O(1)$ $177.2(3)$ $F(1) - C(7) - S(1) - C(1)$ $-59.4(4)$ $F(2) - C(7) - S(1) - C(1)$ $-178.2(3)$ $F(3) - C(7) - S(1) - C(1)$ $63.4(4)$	F(1)-C(7)-S(1)-O(2)			-177.7(4)
F(3) - C(7) - S(1) - O(2) $-54.9(4)$ $F(1) - C(7) - S(1) - O(1)$ $54.4(4)$ $F(2) - C(7) - S(1) - O(1)$ $-64.3(4)$ $F(3) - C(7) - S(1) - O(1)$ $177.2(3)$ $F(1) - C(7) - S(1) - C(1)$ $-59.4(4)$ $F(2) - C(7) - S(1) - C(1)$ $-178.2(3)$ $F(3) - C(7) - S(1) - C(1)$ $63.4(4)$	F(2) - C(7))-S(1)-O(2)			63.5(4)
F(1) - C(7) - S(1) - O(1) $54.4(4)$ $F(2) - C(7) - S(1) - O(1)$ $-64.3(4)$ $F(3) - C(7) - S(1) - O(1)$ $177.2(3)$ $F(1) - C(7) - S(1) - C(1)$ $-59.4(4)$ $F(2) - C(7) - S(1) - C(1)$ $-178.2(3)$ $F(3) - C(7) - S(1) - C(1)$ $63.4(4)$	F(3) - C(7))-S(1)-O(2)			-54.9(4)
F(2) - C(7) - S(1) - O(1) $-64.3(4)$ $F(3) - C(7) - S(1) - O(1)$ $177.2(3)$ $F(1) - C(7) - S(1) - C(1)$ $-59.4(4)$ $F(2) - C(7) - S(1) - C(1)$ $-178.2(3)$ $F(3) - C(7) - S(1) - C(1)$ $63.4(4)$	F(1)-C(7	J = S(I) = O(I)			54.4(4)
F(3) - C(7) - S(1) - C(1) $177.2(3)$ $F(1) - C(7) - S(1) - C(1)$ $-59.4(4)$ $F(2) - C(7) - S(1) - C(1)$ $-178.2(3)$ $F(3) - C(7) - S(1) - C(1)$ $63.4(4)$	F(Z)-C(/	J = S(I) = O(I)			-04.3(4) 177 0(2)
F(2) - C(7) - S(1) - C(1) $-39.4(4)$ $F(3) - C(7) - S(1) - C(1)$ $-178.2(3)$ $63.4(4)$	F(3) = C(7)	(1) - S(1) - C(1)			1//.2(3) -59 1(1)
F(3) - C(7) - S(1) - C(1) $63.4(4)$	F(2) - C(7)) - S(1) - C(1)			-178 2(3)
	F(3) - C(7))-S(1)-C(1)			63.4(4)

displacement parameters (A^2 x 10^3) for s3767na.

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for s3767na [A and deg.].

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)

O(3)-H(3)O(5)	0.84	1.85	2.569(4)	142.0
O(3)-H(3)O(1)#1	0.84	2.27	2.889(4)	130.9
O(3)-H(3)N(1)	0.84	2.46	2.900(4)	113.6

Symmetry transformations used to generate equivalent atoms: $\#1\ -x+1/2, y+1/2, -z+1/2$