Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information for

Copper-Mediated Cyanations of Indoles and Electron-Rich Arenes Using DMF as a Single Surrogate

Lianpeng Zhang, Ping Lu*, and Yanguang Wang* Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China E-mail: <u>pinglu@zju.edu.cn</u>; <u>orgwyg@zju.edu.cn</u>.

Table of Contents

- 1. Table S1 Screening of the reaction conditions for cyanation of 3a
- 2. Experiment using DMF with Carbon-13 Labeled on Its Carbonyl
- Experiment using 1H-Indole-3-Carbaldehyde with Carbon-13 Labeled on Its Carbonyl
- 4. HPLC Tracking of the Reaction Process of 1H-Indole
- 5. Figure S1 CuI-mediated cyanation of 1a using DMF
- 6. Copies of ¹H NMR and ¹³C NMR for All Products
- 7. Copies of HRMS for 2l, 2q, 2t, 5c and 5d

	СНО	[Cu]				
		DMF, HOAc, TBHP, air				
Н Н 3а 2а						
entry	[Cu] (equiv)	HOAc	ТВНР	Temp	Yield (%) ^b	
		(equiv)	(equiv)	(°C)		
1	Cul (1.2)	8	2	130	31	
2	CuBr (1.2)	8	2	130	36	
3	CuCl (1.2)	8	2	130	25	
4	Cu ₂ O (1.2)	8	2	130	50	
5	CuBr ₂ (1.2)	8	2	130	10	
6	Cu(OAc) ₂ (1.2)	8	2	130	51	
7	CuSO ₄ (1.2)	8	2	130	35	
8	Cu(NO ₃) ₂ ·3H ₂ O (1.2)	8	2	130	70	
9	CuCl ₂ •2H ₂ O (1.2)	8	2	130	28	
10	CuO (1.2)	8	2	130	17	
11	Cu(OTf) ₂ (1.2)	8	2	130	31	
12	Cu (1.2)	8	2	130	25	
13	Cu(NO ₃) ₂ ·3H ₂ O (0.5)	8	2	130	45	
14	Cu(NO ₃) ₂ ·3H ₂ O (1.0)	8	2	130	74	
15	Cu(NO ₃) ₂ ·3H ₂ O (1.5)	8	2	130	69	
16	Cu(NO ₃) ₂ ·3H ₂ O (1.0)	12	2	130	70	
17	Cu(NO ₃) ₂ ·3H ₂ O (1.0)	4	2	130	51	
18	Cu(NO ₃) ₂ ·3H ₂ O (1.0)	_	2	130	40	
19	Cu(NO ₃) ₂ ·3H ₂ O (1.0)	8	3	130	73	
20	Cu(NO ₃) ₂ ·3H ₂ O (1.0)	8	1	130	46	
21	Cu(NO ₃) ₂ ·3H ₂ O (1.0)	8	_	130	45	
22	Cu(NO ₃) ₂ ·3H ₂ O (1.0)	8	2	120	61	
23	Cu(NO ₃) ₂ ·3H ₂ O (1.0)	8	2	140	70	
24	Cu(NO ₃) ₂ ·3H ₂ O (1.0)	8	2	130	21 ^c	

1. Table S1 Screening of the reaction conditions for cyanation of $3a^{a}$

^a Reaction conditions: **3a** (0.5 mmol), [Cu] source, HOAc, TBHP, DMF (3 mL), air. ^b Yield of isolated product after column chromatography on silica gel. ^c Dry N₂ atmosphere.

2. Experiment using DMF with Carbon-13 Labeled on Its Carbonyl

An oven-dried 25 mL eggplant-shaped bottle equipped with a magnetic stir bar was charged with CuI (0.24 mmol, 1.2 equiv), 1H-indole (23.4 mg, 0.2 mmol), HOAc (4.0 equiv), t-BuOOH (2.0 equiv, 70% aq.) and DMF with carbon-13 labeled on its carbonyl (0.25 mL). The bottle was left at 120 $^{\circ}$ C (oil bath temperature) for 48 h afforded 7.4 mg (26%) of 1H-indole-3-carbonitrile.

3. Experiment using 1H-Indole-3-Carbaldehyde with Carbon-13 Labeled on Its Carbonyl

An oven-dried 25 mL eggplant-shaped bottle equipped with a magnetic stir bar was charged with $Cu(NO_3)_2 \cdot 3H_2O$ (0.24 mmol, 1.2 equiv), 1H-indole-3-carbaldehyde with carbon-13 labeled on its carbonyl (29.2 mg, 0.2 mmol), HOAc (8.0 equiv), t-BuOOH (2.0 equiv, 70% aq.) and DMF (1.2 mL). The bottle was left at 130 °C (oil bath temperature) for 48 h afforded 9.0 mg (32%) of 1H-indole-3-carbonitrile with carbon-13 labeled on its carbonyl. HRMS m/z (ESI) calcd. for $C_9H_6N_2$. [M]⁺, 143.0531; found,143.0603.

4. HPLC Tracking of the Reaction Process of 1H-Indole

A flame-dried 25 mL eggplant-shaped bottle equipped with a magnetic stir bar was charged with CuI (0.6 mmol,1.2 equiv) and **1a** (0.5 mmol), CH₃COOH (4.0 equiv), t-BuOOH (2.0 equiv, 70% aq.) and DMF (3.0 mL). The bottle was left at 120 $^{\circ}$ C (oil bath temperature). Every once in a while, we took 10µl sample from the reaction mixture and the samples were analyzed by HPLC.

5. Figure S1 CuI-mediated cyanation of 1a using DMF

HPLC conditions: MeOH: $H_2O = 50:50$; UV (254 nm) detector; 0.8 mL/min.

6. Copies of ¹H NMR and ¹³C NMR for All Products

¹H-NMR spectrum of **2a**

¹H-NMR spectrum of **2c**

¹H-NMR spectrum of **2e**

¹H-NMR spectrum of **2f**

¹H-NMR spectrum of **2h**

¹H-NMR spectrum of **2k**

¹H-NMR spectrum of **2p**

¹H-NMR spectrum of 2q

¹H-NMR spectrum of 2r

¹H-NMR spectrum of **2t**

¹H-NMR spectrum of **2u**

¹H-NMR spectrum of 2v

ò

¹H-NMR spectrum of **2G**

¹H-NMR spectrum of **5a**

7. Copies of HRMS for 2l, 2q, 2t, 5c and 5d

HRMS for 2l

Elemental Composition Report

Page 1

HRMS for 2q

Elemental Composition Report

Page 1

Monoisotopic Mass, Odd and Even Electron lons 87 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-100 N: 0-5 O: 0-5 GCT Premier ZJU TOF MS EI+ 23-Apr-2015 zip9964 402 (2.427) 9.23e+002 171.0794 100-%-0m/z 171.250 **- - -**171.050 171.150 . . . 171.200 170.950 171.000 **T** 171.100 Minimum: Maximum: -1.5 50.0 1.0 10.0 Mass Calc. Mass mDa PPM DBE i-FIT Formula 171.0794 171.0796 -0.2 -1.2 8.0 5546448.5 C10 H9 N3

HRMS for 2t

Elemental Composition Report

Page 1

3.17e+003

Tolerance = 0.5 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 51 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-3 O: 0-3 ZIp457-2 94 (1.724) TOF MS EI+ 100-207.0896

HRMS for **5c**

Elemental Composition Report

Page 1

Tolerance = 1.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron Ions 105 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-100 N: 0-5 O: 0-5 GCT Premier ZJU TOF MS EI+ 23-Apr-2015 zlp9955-2 251 (1.873) 9.02e+002 219.0893 100-%-0-219.200 219.250 219.300 218.950 • • • • 219.050 219.100 219.150 _ 218.900 219.000 -1.5 50.0 Minimum: Maximum: 1.0 10.0 Mass Calc. Mass mDa PPM DBE i-FIT Formula 219.0893 219.0895 -0.2 -0.9 7.0 5546445.0 C12 H13 N 03

HRMS for 5d

267.0897 267.0895

Elemental Composition Report

Page 1

0.2

0.7

11.0

Monoisotopic Mass, Odd and Even Electron Ions 128 formula(e) evaluated with 1 results within limits (up to 70 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-100 N: 0-5 O: 0-5 GCT Premier ZJU TOF MS EI+ 23-Apr-2015 zlp9938-3 597 (3.142) Cm (591:629) 3.57e+003 267.0897 100-%-267.300 m/z 0-266.900 **—** 267.000 267.100 т 267.200 • • Minimum: Maximum: -1.5 50.0 1.0 10.0 Mass Calc. Mass mDa PPM DBE i-FIT Formula

5547788.0 C16 H13 N 03