Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Synthesis of a new class of iminosugars based on constrained azaspirocyclic scaffolds by way of catalytic C-H amination

Pierre-Antoine Nocquet, Raphaël Hensienne, Joanna Wencel-Delord, Eric Wimmer, Damien Hazelard and Philippe Compain*

Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg/CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, 67087 Strasbourg, France.

E-Mail : philippe.compain@unistra.fr

Table of Contents:

General methods	S2
Experimental procedures	S2-S10
References	S11
¹ H and ¹³ C NMR of all compounds, 2D NOESY of 11	S12-S27

General methods

Tetrahydrofuran (THF) was dried by passage through an activated alumina column under Ar or distilled over Na/benzophenone under Ar. Dichloromethane (CH₂Cl₂) were distilled over CaH₂ under Ar. Pyridine was distilled over KOH under Ar and stored over KOH. Dried DMF was purchased from Sigma-Aldrich. All reactions were performed in standard glassware under Ar unless otherwise specified. Flash chromatographies were performed on silica gel 60 (230-400 mesh, 0.040-0.063 mm) purchased from E. Merck or using an automatic flash chromatography device. Thin Layer Chromatography (TLC) was performed on aluminum sheets coated with silica gel 60 F₂₅₄ purchased from E. Merck. IR spectra (cm⁻¹) were recorded on a Perkin-Elmer Spectrum One spectrophotometer. NMR spectra were recorded on a 300 MHz and 400 MHz spectrometers with solvent peaks as reference.¹ Carbon multiplicities were assigned by distortionless enhancement by polarization transfer (DEPT) experiments. The ¹H signals were assigned by 2D experiments (COSY). ESI-HRMS mass spectra were carried out on a TOF-spectrometer. Specific rotations were determined at room temperature (20 °C) in a Perkin–Elmer 241 polarimeter for sodium ($\lambda = 589$ nm).

 $Rh_2(esp)_2$ (CAS : 819050-89-0), $Rh_2(OAc)_4$ (CAS :15956-28-2), $Rh_2(O_2CCF_3)_2$ (CAS : 31126-95-1) and $Rh_2(tpa)_4$ (CAS : 142214-04-8) were purchased from Sigma-Aldrich. Dowex® 1X8 (Cl⁻ form), 50-100 mesh, ion-exchange resin (CAS 12627-85-9) was purchased from Acros Organics.

(1R,2R,3S,4S)-2,3-Bis(benzyloxy)-4-vinylcyclobutyl carbamate (3a).

Trichloroacetyl isocyanate (0.20 mL, 1.72 mmol, 1.3 equiv) was added to a solution of 2^2 (403 mg, 1.3 mmol, 1 equiv) in CH₂Cl₂ (3.7 mL) at 0 °C. The solution was stirred at rt for 16 h and concentrated under reduced pressure. The residue was dissolved in MeOH (3.2 mL) and K₂CO₃ (18 mg, 0.13 mmol, 0.1 equiv) was added. The solution was stirred at rt for 8 h. Saturated aqueous NH₄Cl (5 mL) was added and the product was extracted with CH₂Cl₂ (3×). The combined organic layer was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/petroleum ether, 1:3 to 1:1) to afford carbamate **3a** (431 mg, 94%) as a white solid.

TLC $R_f 0.46$ (silica gel, EtOAc/petroleum ether, 1:2). $[\alpha]_D^{20} + 3$ (c 1.0, CHCl₃). **m.p.** 90°C. **IR** (film) 3354, 1718, 1326, 1087 cm⁻¹. ¹**H NMR** (300 MHz, CDCl₃) δ 7.41 –7.20 (m, 10H, Ph), 5.95 (ddd, J = 17.3, 10.2, 7.2 Hz, 1H, H-1'), 5.19 (d, J = 17.3 Hz, 1H, H-2'a), 5.09 (d, J = 10.2 Hz, 1H, H-2'b), 4.72 –4.42 (m, 7H, 2 CH₂Ph, NH₂, H-2), 3.95 (t, J = 5.9 Hz, 1H, H-1 or H-3), 3.60 (m, 1H, H-1 or H-3), 2.48 (q, J = 7.5 Hz, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃) δ 156.0 (NCO), 137.84 (Cq-Ar), 137.82 (Cq-Ar), 136.3 (C-1'), 128.52 (2 CH-Ar), 128.50 (2 CH-Ar), 128.0 (2 CH-Ar), 127.9 (4 CH-Ar), 116.4 (C-2'), 82.6 (C-2), 77.1 (C-1 or C-3), 72.4 (C-1 or C-3), 71.62 (CH₂Ph), 71.57 (CH₂Ph), 46.3 (C-4). **HRMS** (ESI) *m/z* 376.148 ([M+Na]⁺, calcd. for C₂₁H₂₃NO₄Na: 376.152).

(1R,2R,3S,4S)-2,3-Dihydroxy-4-vinylcyclobutyl carbamate (4).

BCl₃ (1 M in CH₂Cl₂, 14 mL, 14 mmol, 12 equiv) was added to a solution of carbamate **3a** (411 mg, 1.16 mmol, 1 equiv) in CH₂Cl₂ (12 mL) at -60 °C. The solution was allowed to warm up slowly to rt overnight. MeOH/H₂O (20:1, 50 mL) was added and the solution was concentrated under reduced pressure. The process was repeated 1 time. The crude product was purified by flash chromatography (MeOH/CH₂Cl₂, 10:90 to 15:85) to afford diol **4** (169 mg, 84%) as a white solid.

TLC $R_f 0.23$ (silica gel, MeOH/CH₂Cl₂, 15:85). **[a]** $_{D}^{20}$ -25 (c 1.0, MeOH). **m.p.** 146°C. **IR** (film) 3340, 1698, 1325, 1075 cm⁻¹. ¹**H NMR** (400 MHz, CD₃OD) δ 5.96 (ddd, J = 17.3, 10.4, 6.9 Hz, 1H, H-1'), 5.17 (d, J = 17.2 Hz, 1H, H-2'a), 5.06 (d, J = 10.4 Hz, 1H, H-2'b), 4.30 (m, 1H, H-1 or H-3), 3.79 (t, J = 6.3 Hz, 1H, H-2), 3.44 (m, 1H, H-1 or H-3), 2.22 (q, J = 7.5 Hz, 1H, H-4). ¹³**C NMR** (100 MHz, CD₃OD) δ 159.2 (NCO), 137.7 (C-1'), 115.9 (C-2'), 79.2 (C-2), 74.4 (C-1 or C-3), 73.3 (C-1 or C-3), 48.8 (C-4). **HRMS** (ESI) *m/z* 196.056 ([M+Na]⁺, calcd. for C₇H₁₁NO₄Na: 196.058).

(1S,2R,3R,4S)-3-(Carbamoyloxy)-4-vinylcyclobutane-1,2-diyl dibenzoate (3b).

BzCl (0.19 mL, 1.64 mmol, 4.6 equiv) was added to a solution of diol 4 (62 mg, 0.36 mmol, 1 equiv) in pyridine (3.6 mL) at 0 °C. The solution was stirred at 0 °C for 1 h. MeOH was added and the solution was diluted in EtOAc. The organic layer was washed with water and 1N HCl, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/petroleum ether, 1:2 to 1:1) to afford cyclobutane **3b** (118 mg, 87%) as a white solid.

TLC $R_f 0.25$ (silica gel, EtOAc/petroleum ether, 1:2). **[\alpha]**_D²⁰ +48 (c 1.0, CHCl₃). **m.p.** 193°C. **IR** (film) 3374, 1721, 1275 cm⁻¹. ¹**H NMR** (300 MHz, CDCl₃) δ 8.07 (d, J = 8.1 Hz, 4H, Ph), 7.62 – 7.53 (m, 2H, Ph), 7.49 – 7.40 (m, 4H, Ph), 6.12 (ddd, J = 17.2, 10.5, 6.5 Hz, 1H, H-1'), 5.53 (t, J = 6.3 Hz, 1H, H-2), 5.34 (dt, J = 17.2, 1.7 Hz, 1H, H-2'a), 5.23 (dt, J = 10.4, 1.2 Hz, 1H, H-2'b), 5.16 (dd, J = 7.9, 6.3 Hz, 1H, H-1 or H-3), 4.96 (dd, J = 8.1, 6.3 Hz, 1H, H-1 or H-3), 4.76 (br s, 2H, NH₂), 2.90 (q, J = 7.6 Hz, 1H, H-4). ¹³C NMR (75 MHz, CDCl₃) δ 165.72 (CO), 165.67 (CO), 155.4 (NCO), 134.3 (C-1'), 133.5 (2 CH-Ar), 130.1 (3 CH-Ar), 130.0 (3 CH-Ar), 129.5 (Cq-Ar), 129.4 (Cq-Ar), 128.55 (CH-Ar), 128.54 (CH-Ar), 117.5 (C-2'), 75.6 (C-2), 71.0 (C-1 or C-3), 70.6 (C-1 or C-3), 45.8 (C-4).

HRMS (ESI) m/z 404.109 ([M+Na]⁺, calcd. for C₂₁H₁₉NO₆Na: 404.110).

(1S,2R,3R,4S)-3-(Carbamoyloxy)-4-vinylcyclobutane-1,2-diyl diacetate (3c).

Ac₂O (0.31 mL, 3.30 mmol, 6 equiv) and DMAP (136 mg, 1.11 mmol, 2 equiv) were added to a solution of diol 4 (96 mg, 0.55 mmol, 1 equiv) in pyridine (5.5 mL). The solution was stirred at rt for 17 h. Et₂O (38 mL) was added and the organic layer was washed successively with 1% aqueous HCl (22 mL), saturated aqueous NaHCO₃ (38 mL) and brine (38 mL). The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/petroleum ether, 1:2 to 1:1) to afford **3c** (115 mg, 81%) as a colorless oil.

TLC $R_f 0.33$ (silica gel, EtOAc/petroleum ether, 1:1). **[a]**_D²⁰ -9 (c 1.0, CHCl₃). **IR** (film) 3374, 1728, 1220 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) δ 5.95 (ddd, J = 17.2, 10.4, 6.7 Hz, 1H, H-1'), 5.22 (d, J = 17.2 Hz, 1H, H-2'a), 5.15 (d, J = 10.4 Hz, 1H, H-2'b), 5.09 (t, J = 6.3 Hz, 1H, H-2), 4.99 - 4.86 (br s, 2H, NH₂), 4.73 (m, 1H, H-1 or H-3), 4.68 (m, 1H, H-1 or H-3), 2.65 (q, J = 7.5 Hz, 1H, H-4), 2.06 (s, 6H, CH₃). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.13 (CO), 170.10 (CO), 155.6 (NCO), 134.2 (C-1'), 117.3

(C-2'), 75.2 (C-2), 70.7 (C-1 or C-3), 69.9 (C-1 or C-3), 45.1 (C-4), 20.84 (CH_3) , 20.80 (CH_3) .

HRMS (ESI) m/z 280.078 ([M+Na]⁺, calcd. for C₁₁H₁₅NO₆Na: 280.079).

General procedure A for C-H amination using Rh catalysts (Table 1, entry 1-6, 8-10). MgO (2.3 equiv), PhI(OAc)₂ (1.4 equiv) and catalyst (5mol%-30mol%) were added to a solution of carbamate 3 (1 equiv) in degassed CH_2Cl_2 or benzene. The solution was refluxed (CH_2Cl_2) or heated at 60°C (benzene). After cooling, the solution was filtered through a pad of Celite and concentrated under reduced pressure. The crude product was purified by flash chromatography.

(1R,5R,6S,7R)-6,7-bis(benzyloxy)-5-vinyl-2-oxa-4-azabicyclo[3.2.0]heptan-3-one (5a) and (1R,5R,6S,7S)-5,6-Bis(benzyloxy)-7-vinyl-2-oxa-4-azabicyclo[3.2.0]heptan-3-one (6a) (Table 1, entry 2)

According to general procedure A, MgO (24 mg, 0.60 mmol, 2.3 equiv), $PhI(OAc)_2$ (115 mg, 0.36 mmol, 1.4 equiv) and $Rh_2(esp)_2$ (19 mg, 0.025 mmol, 0.1 equiv) were added to a solution of carbamate **3a** (90 mg, 0.20 mmol, 1 equiv) in degassed CH_2Cl_2 (1.8 mL). The solution was

refluxed for 8.5 h. Then a second portion of $Rh_2(esp)_2$ (19 mg, 0.025 mmol, 0.1 equiv) was added and the solution was refluxed for 15.5 h. After cooling, the solution was filtered through a pad of Celite and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/petroleum ether, 1:5 to 1:2) to afford compounds **6a** (50 mg, 56%) and **5a** (15 mg, 17%) as pale yellow oils.

Compound **6a**:

TLC R_f 0.48 (silica gel, EtOAc/toluene, 1:3).

 $[\alpha]_{D}^{20} = -7 (c \ 0.6, CHCl_3).$

IR (film) 3272, 1760 cm⁻¹

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.26 (m, 10H, Ph), 5.86 (m, 1H, H-1'), 5.57 (br s, 1H, NH), 5.17 (d, J = 1.0 Hz, 1H, H-2'a), 5.14 (d, J = 6.6 Hz, 1H, H-2'b), 4.63 (d, J = 11.9 Hz, 1H, CH₂Ph), 4.57 (d, J = 11.5 Hz, 1H, CH₂Ph), 4.50 (d, J = 11.9 Hz, 1H, CH₂Ph), 4.44 (d, J = 11.5 Hz, 1H, CH₂Ph), 4.30 (d, J = 4.7 Hz, 1H, H-1 or H-6), 4.02 (dd, J = 7.2, 1.0 Hz, 1H, H-1 or H-6), 2.68 (m, 1H, H-7).

¹³C NMR (100 MHz, CDCl₃) δ 158.2 (NCO), 137.2 (Cq-Ar), 136.8 (Cq-Ar), 134.3 (C-1'), 128.76 (2 CH-Ar), 128.72 (2 CH-Ar), 128.4 (CH-Ar), 128.3 (CH-Ar), 128.2 (2 CH-Ar), 127.9 (2 CH-Ar), 117.4 (C-2'), 91.1 (C-5), 81.0 (C-1 or C-6), 76.4 (C-1 or C-6), 72.5 (CH₂Ph), 65.9 (CH₂Ph), 49.0 (C-7).

HRMS (ESI) \dot{m}/z 374.136 ([M+Na]⁺, calcd. for C₂₁H₂₁NO₄Na: 374.136).

Compound **5a**:

TLC $R_f 0.45$ (silica gel, EtOAc/petroleum ether, 1:2).

 $[\alpha]_{D}^{20} + 54$ (c 1.0, CHCl₃).

IR (film) 3279, 1755 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 7.40 – 7.24 (m, 10H, Ph), 5.81 (dd, J = 17.3, 10.6 Hz, 1H, H-1'), 5.71 (br s, 1H, NH), 5.24 (d, J = 17.6 Hz, 1H, H-2'a), 5.22 (d, J = 10.6 Hz, 1H, H-2'b), 4.57 (d, J = 11.5 Hz, 1H, CH₂Ph), 4.56 (d, J = 11.9 Hz, 1H, CH₂Ph), 4.51 (d, J = 11.8 Hz, 1H, CH₂Ph), 4.47 (d, J = 12.0 Hz, 1H, CH₂Ph), 4.32 (d, J = 2.1 Hz, 1H, H-1 or H-6), 4.11 (dd, J = 5.3, 3.5 Hz, 1H, H-7), 3.96 (d, J = 5.5 Hz, 1H, H-1 or H-6). ¹³C NMR (100 MHz, CDCl₃) δ 159.2 (NCO), 137.1 (Cq-Ar), 136.9 (Cq-Ar), 136.2 (C-1'),

¹³C NMR (100 MHz, CDCl₃) δ 159.2 (NCO), 137.1 (Cq-Ar), 136.9 (Cq-Ar), 136.2 (C-1'), 128.74 (2 CH-Ar), 128.73 (2 CH-Ar), 128.4 (CH-Ar), 128.3 (CH-Ar), 128.24 (2 CH-Ar), 128.21 (2 CH-Ar), 116.7 (C-2'), 84.2 (C-7), 81.3 (C-1 or C-6), 78.9 (C-1 or C-6), 72.22 (CH₂Ph), 72.21 (CH₂Ph), 62.1 (C-5).

HRMS (ESI) m/z 374.148 ([M+Na]⁺, calcd. for C₂₁H₂₁NO₄Na: 374.136).

C-H amination of compound 3a using AgOTf (Table 1, entry 7). A mixture of bathophenanthroline (36 mg, 0.11 mmol, 0.5 equiv), AgOTf (28 mg, 0.11 mmol, 0.5 equiv) in acetonitrile (6 mL) were stirred at room temperature for 20 min. The resulting suspension was added *via* cannula to a flask containing carbamate **3a** (77 mg, 0.22 mmol, 1 equiv) and PhI(OAc)₂ (140 mg, 0.44 mmol, 2 equiv). The flask was sealed and the solution was heated at reflux for 8h. After cooling, the solution was filtered through a pad of Celite and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/petroleum ether, 1:5 to 1:2) to afford compounds **6a** (11 mg, 14%) and **5a** (1.9 mg, 2%). Starting material **3a** (22.7 mg, 29%) was also recovered.

(1R,5R,6S,7R)-3-Oxo-5-vinyl-2-oxa-4-azabicyclo[3.2.0]heptane-6,7-diyl dibenzoate (5b). (Table 1, entry 10)

According to general procedure A, MgO (26 mg, 0.65 mmol, 2.3 equiv), $PhI(OAc)_2$ (127 mg, 0.39 mmol, 1.4 equiv) and $Rh_2(esp)_2$ (32 mg, 0.04 mmol, 0.15 equiv) were added to a solution of carbamate **3b** (108 mg, 0.28 mmol, 1 equiv) in degassed CH_2Cl_2 (2 mL). The solution was refluxed for 16 h. A second portion of $Rh_2(esp)_2$ (11 mg, 0.014 mmol, 0.05 equiv) was added and the solution was refluxed for 8 h. After cooling, the solution was filtered through a pad of Celite and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/toluene, 1:7 to 1:6) to afford compound **5b** (42 mg, 40%) as a colorless oil.

TLC $R_f 0.48$ (silica gel, EtOAc/toluene, 1:3).

 $[\alpha]_{D}^{20} + 97$ (c 1.0, CHCl₃).

ÎR (film) 3321, 1762, 1722, 1248 cm⁻¹.

¹**H** NMR (300 MHz, CDCl₃) δ 8.12 – 8.04 (m, 4H, Ph), 7.65 – 7.56 (m, 2H, Ph), 7.51 – 7.43 (m, 4H, Ph), 6.20 (dd, J = 17.3, 10.7 Hz, 1H, H-1'), 5.96 – 5.90 (br s, 1H, NH), 5.54 (d, J = 17.3 Hz, 1H, H-2'a), 5.50 – 5.43 (m, 3H, H-6, H-7, H-2'b), 4.85 (dd, J = 2.8, 2.0 Hz, 1H, H-1).

¹³C NMR (75 MHz, CDCl₃) δ 165.6 (CO), 165.2 (CO), 158.8 (NCO), 135.0 (C-1'), 134.0 (CH-Ar), 133.9 (CH-Ar), 130.2 (2 CH-Ar), 130.1 (2 CH-Ar), 128.82 (Cq-Ar), 128.78 (2 CH-Ar), 128.7 (2 CH-Ar), 128.6 (Cq-Ar), 118.2 (C-2'), 78.7 (C-1), 77.6 (C-6 or C-7), 75.1 (C-6 or C-7), 63.0 (C-5).

HRMŚ (ESI) m/z 402.094 ([M+Na]⁺, calcd. for C₂₁H₁₇NO₇Na: 402.095).

(1R,5R,6S,7R)-3-Oxo-5-vinyl-2-oxa-4-azabicyclo[3.2.0]heptane-6,7-diyl diacetate (5c) (Table 1, entry 9)

According to general procedure A, MgO (24 mg, 0.59 mmol, 2.3 equiv), PhI(OAc)₂ (113 mg, 0.35 mmol, 1.4 equiv) and Rh₂(esp)₂ (9.5 mg, 0.013 mmol, 0.05 equiv) were added to a solution of carbamate **3c** (65 mg, 0.25 mmol, 1 equiv) in degassed CH₂Cl₂ (1.8 mL). The solution was refluxed for 8 h. A second portion of Rh₂(esp)₂ (19 mg, 0.025 mmol, 0.1 equiv) was added and the solution was refluxed for 16 h. After cooling, the solution was filtered through a pad of Celite and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/petroleum ether, 1:5 to 2:1) to afford compound **5c** (20 mg, 31%) as a colorless oil.

TLC $R_f 0.46$ (silica gel, Et₂O/CH₂Cl₂, 1:1). **[a]** $_{\mathbf{D}}^{20}$ +57 (c 1.0, CHCl₃). **IR** (film) 3293, 1747, 1220 cm⁻¹. ¹**H NMR** (300 MHz, CDCl₃) δ 6.03 (dd, J = 17.3, 10.6 Hz, 1H, H-1'), 5.99 (s, 1H, NH), 5.43 (d, J = 14.4 Hz, 1H, H-2'a), 5.38 (d, J = 7.6 Hz, 1H, H-2'b), 5.15 (dd, J = 5.8, 3.5 Hz, 1H, H-7), 5.08 (dd, J = 5.8, 1.7 Hz, 1H, H-6), 4.62 (dd, J = 3.5, 1.7 Hz, 1H, H-1), 2.14 (s, 3H, CH₃), 2.12 (s, 3H, CH₃). ¹³**C NMR** (75 MHz, CDCl₃) δ 170.0 (CO), 169.4 (CO), 158.8 (NCO), 134.9 (C-1'), 118.1 (C-2'), 78.4 (C-1), 76.9 (C-7), 74.4 (C-6), 62.6 (C-5), 20.7 (CH₃), 20.6 (CH₃).

HRMS (ÈSI) m/z 278.063 ([M+Na]⁺, calcd. for $C_{11}H_{13}NO_6Na$: 278.064).

(1R,5R,6S,7R)-4-allyl-3-oxo-5-vinyl-2-oxa-4-azabicyclo[3.2.0]heptane-6,7-diyl dibenzoate (7).

NaH (60%, 17 mg, 0.43 mmol, 1.05 equiv) was added to a solution of oxazolidinone **5b** (156 mg, 0.41 mmol 1 equiv) in DMF (1.6 mL) at 0 °C. The solution was stirred 30 min at 0 °C then 1 h at rt. Allyl bromide (72 μ L, 0.82 mmol, 2 equiv) was added and the solution was stirred at rt for 2 h. Saturated aqueous NH₄Cl was added and the product was extracted with Et₂O (7×). The combined organic layer was washed with brine, dried over MgSO₄, filtered and concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/petroleum ether, 1:4) to afford diene 7 (96 mg, 55%) as a colorless oil.

TLC $R_f 0.30$ (silica gel, EtOAc/petroleum ether, 35:65).

 $[\alpha]_{D}^{20} + 26$ (c 1.0, CHCl₃).

IR (film) 1764, 1724, 1253, 1108 cm⁻¹.

¹**H** NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 7.2 Hz, 2H, Ph), 8.05 (d, J = 8.9 Hz, 2H, Ph), 7.66 - 7.56 (m, 2H, Ph), 7.52 - 7.42 (m, 4H, Ph), 6.10 (dd, J = 17.4, 10.8 Hz, 1H, H-1"), 5.85 - 5.69 (m, 3H, CH-O, H-2', H-2"a), 5.57 (d, J = 10.8 Hz, 1H, H-2"b), 5.54 (dd, J = 5.9, 3.5 Hz, 1H, CH-O), 5.07 (dd, J = 17.1, 1.2 Hz, 1H, H-3'a), 4.93 (dd, J = 10.1, 1.1 Hz, 1H, H-3'b), 4.74 (dd, J = 3.4, 1.5 Hz, 1H, CH-O), 3.84 (d, J = 6.1 Hz, 2H, H-1').

¹³C NMR (100 MHz, CDCl₃) δ 165.5 (CO), 165.1 (CO), 157.9 (NCO), 134.0 (CH-Ar or CHvinylic), 133.8 (CH-Ar or CH-vinylic), 133.7 (CH-Ar CH-vinylic), 132.7 (CH-Ar CHvinylic), 130.2 (2 CH-Ar), 130.1 (2 CH-Ar), 128.8 (2 CH-Ar), 128.7 (2 CH-Ar), 120.8 (C-3' or C-2"), 118.4 (C-3' or C-2"), 77.5 (CH-O), 75.9 (CH-O), 73.8 (CH-O), 67.0 (C-5), 45.9 (C-1').

HRMS (ESI) m/z 442.123 ([M+Na]⁺, calcd. for C₂₄H₂₁NO₆Na: 442.126).

Compound 8.

A solution of Grubbs II catalyst (5 mg, 57 μ mol, 0.05 equiv) in degased CH₂Cl₂ (1 mL) was added to a solution of diene 7 (48 mg, 0.11 mmol, 1 equiv) in degased CH₂Cl₂ (3.6 mL). The solution was refluxed for 5 h. After cooling, the solution was concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/petroleum ether, 3:7 to 2:3) to afford compound **8** (40 mg, 89%) as a cream solid.

TLC $R_f 0.17$ (silica gel, EtOAc/petroleum ether, 1:4). $[\alpha]_D^{20} + 127$ (c 1.0, CHCl₃). **m.p.** 108°C. **IR** (film) 1765, 1721, 1247, 1066 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, J = 7.2 Hz, 2H, Ph), 8.04 (d, J = 7.2 Hz, 2H, Ph), 7.64 – 7.56 (m, 2H, Ph), 7.51 – 7.42 (m, 4H, Ph), 6.17 – 6.09 (m, 2H, H-8, H-9), 5.61(dd, J = 6.2, 1.4 Hz, 1H, CH-O), 5.47 (dd, J = 6.1, 3.4 Hz, 1H, CH-O), 5.15 (dd, J = 3.2, 1.5 Hz, 1H, CH-O), 4.47 (d, J = 15.9 Hz, 1H, H-10a), 3.85 (d, J = 16.2 Hz, 1H, H-10b). ¹³C NMR (100 MHz, CDCl₃) δ 165.5 (CO), 165.3 (CO), 163.4 (NCO), 133.9 (2 CH-Ar), 132.8 (C-8 or C-9), 130.11 (2 CH-Ar), 130.10 (2 CH-Ar), 128.9 (2 Cq-Ar), 128.74 (2 CH-Ar), 128.71 (2 CH-Ar), 126.8 (C-8 or C-9), 78.5 (CH-O), 77.9 (CH-O), 77.1 (C-7), 74.4 (CH-O), 55.7 (C-10).

HRMS (ESI) m/z 414.093 ([M+Na]⁺, calcd. for C₂₂H₁₇NO₆Na: 414.095).

Compound 9.

Pd/C 10% (10 mg) was added to a solution of **8** (78 mg, 0.199 mmol, 1 equiv) in EtOH (3 mL) and EtOAc (2 mL). The solution was placed under H_2 atmosphere and stirred at rt for 14 h. The solution was filtered through a pad of Celite and concentrated under reduced pressure to afford compound **9** (78 mg, quant.) as a white solid.

TLC $R_f 0.36$ (silica gel, EtOAc/cyclohexane, 3:7). **[\alpha]** $_{D^{20}}$ +75 (c 1.0, CHCl₃). **m.p.** 137°C. **IR** (film) 1761, 1719, 1247 cm⁻¹. **'H NMR** (300 MHz, CDCl₃) δ 8.11 – 8.02 (m, 4H, Ph), 7.65 – 7.55 (m, 2H, Ph), 7.51 –7.41 (m, 4H, Ph), 5.44 (dd, J = 5.9, 3.2 Hz, 1H, CH-O), 5.39 (dd, J = 5.9, 1.6 Hz, 1H, CH-O), 4.88 (dd, J = 3.1, 1.7 Hz, 1H, CH-O), 3.74 (ddd, J = 11.2, 7.8, 5.4 Hz, 1H, H-10a), 3.07 (m, 1H, H-10b), 2.47 (m, 1H, H-8a), 2.22 – 1.86 (m, 3H, H-8b, H-9). **''C NMR** (75 MHz, CDCl₃) δ 165.9 (CO), 165.2 (CO), 161.6 (NCO), 133.9 (CH-Ar), 133.8 (CH-Ar), 130.09 (2 CH-Ar), 130.06 (2 CH-Ar), 129.0 (Cq-Ar), 128.9 (Cq-Ar), 128.8 (2 CH-Ar), 128.7 (2 CH-Ar), 77.3 (CH-O), 76.9 (CH-O), 76.4 (CH-O), 71.1 (C-7), 47.4 (C-10), 32.6 (C-8), 25.6 (C-9). **HRMS** (ESI) m/z 416.114 ([M+Na]⁺, calcd. for C₂₂H₁₉NO₆Na: 416.110).

(1R,2r,3S,4r)-5-azaspiro[3.4]octane-1,2,3-triol 10

Dowex 1X8 (OH⁻form) was freshly prepared from commercialy available Dowex 1X8 (Cl⁻ form): 4 g of Dowex 1X8 (Cl⁻ form) resin were washed with aqueous solution of NaOH (3N, 90 mL) then with water (45 mL) and dried under a flow of argon. The resin was washed with MeOH (55 mL) and dried for 30 min under a flow of argon.³

A suspension of substrate 9 (78 mg, 0.198 mmol) and Dowex 1X8 (OH-form) (3 g) in a mixture of MeOH/H₂O (1:1, 8 mL) was stirred using a rotary evaporator for 23 h at 70 $^{\circ}$ C

under atmospheric pressure. The resin was filtrated off, washed successively with H_2O , MeOH, $H_2O/MeOH$ (1:1), MeOH/CHCl₃ (1:1) and CHCl₃. The combined solutions were concentrated under reduced pressure to afford compound **10** (3 mg, 10 %).

Additional quantity of compound **10** was obtained as follow: 0.1 M HCl (4 x 5 mL) was added on the resulting resin and stirred 15 min. The resin was filtered and the solution was concentrated under reduced pressure. The crude product was purified by flash chromatography (CH₃CN/H₂O/NH₄OH, 10:1:1) to afford compound **10** (8 mg, 25%) as a white solid.

TLC $R_f 0.43$ (silica gel, CH₃CN/H₂O/NH₄OH, 5:1:1).

IR (film) 3294 cm⁻¹.

¹**H** NMŔ (400 MHz, D₂O) δ 3.86 (d, *J* = 5.6 Hz, 2H, CH-OH), 3.78 (dd, *J* = 7.6, 6.1 Hz, 1H, CH-OH), 3.28 (t, *J* = 7.2 Hz, 2H, H6), 2.09 (m, 2H, H8), 1.91 (m, 2H, H7). ¹³**C** NMR (75 MHz, D₂O) δ 76.6 (CH-OH), 71.0 (CH-OH), 67.2 (C4), 46.7 (C6), 32.7 (C-7)

or C-8), 22.7 (C-7 or C-8).

HRMŚ (ESI) m/z 160.098 ([M+H]⁺, calcd. for C₇H₁₄NO₃: 160.097).

Compound 11.

OsO₄ (2.5 wt.% solution in t-butanol, 110 μ L, 8.58 μ mol, 0.05 equiv) was added at 0 °C to a solution of **8** (65 mg, 0.166 mmol, 1 equiv) and NMO (21.6 mg, 0.184 mmol, 1.1 equiv) in acetone (300 μ L) and H₂O (300 μ L). The solution was allowed to warm up to rt and stirred for 4 h. The solution was concentrated under reduced pressure, taken up in 10% MeOH/CH₂Cl₂ and filtered through a pad of Celite. The Celite was further washed with 10% MeOH/CH₂Cl₂ and the combined filtrates were concentrated under reduced pressure. The crude product was purified by flash chromatography (EtOAc/petroleum ether, 2:1) to afford **11** (61 mg, 86%) as a brown solid.

TLC $R_f 0.31$ (silica gel, EtOAc/petroleum ether, 2:1). [α]_D²⁰+81 (c 0.5, CHCl₃). **m.p.** 101°C. **IR** (film) 3406, 1718, 1250 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃) δ 8.08 – 8.01 (m, 4H, Ph), 7.62 – 7.53 (m, 2H, Ph), 7.48 – 7.39 (m, 4H, Ph), 5.40 (dd, J = 5.6, 3.0 Hz, 1H, H-2), 5.37 (dd, J = 5.6, 1.6 Hz, 1H, H-1), 5.08 (m, 1H, H-3), 4.84 (m, 1H, H-8), 4.38 (m, 1H, H-9), 3.87 (br s, 1H, OH), 3.73 (dd, J = 12.7, 1.9 Hz, 1H, H-10b), 3.61 (br s, 1H, OH), 3.13 (dd, J = 12.6, 3.8 Hz, 1H, H-10a). ¹³**C NMR** (100 MHz, CDCl₃) δ 166.4 (CO), 165.5 (CO), 164.2 (NCO), 134.1 (CH-Ar), 133.9 (CH-Ar), 130.1 (4 CH-Ar), 128.8 (2 CH-Ar), 128.7 (2 CH-Ar), 128.5 (2 Cq-Ar), 77.0 (C-2), 75.5 (C-8), 75.2 (C-1), 74.2 (C-3), 72.4 (C-9), 72.0 (C-7), 54.5 (C-10).

HRMS (ÉSI) m/z 448.100 ([M+Na]⁺, calcd. for C₂₂H₁₉NO₈Na: 448.100).

50% aqueous KOH (3.3 mL) was added to a solution of **11** (18.8 mg, 44.2 µmol, 1 equiv) in MeOH (0.7 mL) and the solution was stirred at rt for 16 h. The solution was cooled to 0 °C and Amberlite IR120 (H⁺ form) was added until reaching pH ~ 9 – 10. Amberlite IR120 was removed by filtration and washed with MeOH and H₂O. Amberlite IR120 was put into 10% aqueous NH₃ (20 mL), the mixture was stirred and Amberlite IR120 was removed by filtration. The process was repeated 2 times. The combined filtrates were concentrated under reduced pressure and purified by flash chromatography (CH₃CN/H₂O/NH₄OH, 10:1:1 to 5:1:1) to afford **12** (9 mg, quant.) as a yellow oil.

TLC $R_f 0.19$ (silica gel, CH₃CN/H₂O/NH₄OH, 5:1:1). **[a]**_D²⁰ -8.8 (c 0.25, H₂O). **IR** (film) 3285, 1598, 1106 cm⁻¹. ¹**H NMR** (300 MHz, D₂O) δ 4.27 (ddd, J = 5.3, 4.4, 4.1 Hz, 1H, H-7), 4.10 (d, J = 4.4 Hz, 1H, H-8), 4.01 (dd, J = 6.8, 1.5 Hz, 1H, H-1), 3.85 (t, J = 6.8 Hz, 1H, H-2), 3.80 (dd, J = 6.8, 1.5 Hz, 1H, H-3), 3.29 (dd, J = 12.2, 5.3 Hz, 1H, H-6a), 3.12 (dd, J = 12.2, 4.1 Hz, 1H, H-6b). ¹³C **NMR** (75 MHz, D₂O) δ 77.2 (C-2), 74.6 (C-8), 70.1 (C-7), 69.7 (C-3), 66.8 (C-1), 66.6 (C-4), 49.8 (C-6).

HRMS (ESI) m/z 192.085 ([M+H]⁺, calcd. for C₇H₁₄NO₅: 192.087).

(1R,2S,3S,4r,7R,8S)-5-butyl-5-azaspiro[3.4]octane-1,2,3,7,8-pentaol 13

Sodium cyanoborohydride (6.5 mg, 98.3 μ mol, 2.1 equiv) was added to a solution of **12** (9 mg, 47.1 μ mol, 1 equiv) and butanal (12.5 μ L, 141 μ mol, 3 equiv) in MeOH (1 mL) at 0 °C. The solution was stirred at rt for 25 h and concentrated under reduced pressure. The crude product was purified by flash chromatography (CH₃CN/H₂O/NH₄OH, 15:1:1) to afford **13** (6.7 mg, 58%) as a brown oil.

TLC *R*_f 0.38 (silica gel, CH₃CN/H₂O/NH₄OH, 10:1:1). [*α*]_D²⁰ -27.2 (c 0.25, MeOH). **IR** (film) 3306, 1080 cm⁻¹. ¹**H NMR** (300 MHz, CD₃OD) δ 4.29 (m, 1H, H-7), 4.15 – 4.11 (m, 2H, H-1 or H-3, H-2), 4.00 (d, *J* = 4.2 Hz, 1H, H-8), 3.81 (dd, *J* = 5.0, 3.0 Hz, 1H, H-1 or H-3), 3.58 (dd, *J* = 10.9, 6.7 Hz, 1H, H-6a), 3.48 (t, *J* = 8.0 Hz, 2H, H-1'), 3.19 (dd, *J* = 11.2, 3.0 Hz, 1H, H-6b), 1.73 – 1.56 (m, 2H, H-2'), 1.47 – 1.33 (m, 2H, H-3'), 0.98 (t, *J* = 7.3 Hz, 3H, H-4'). ¹³**C NMR** (100 MHz, CD₃OD) δ 80.9 (C-1 or C-2 or C-3), 75.5 (C-8), 72.6 (C-1 or C2 or C-3), 69.9 (C-1 or C-2 or C-3), 69.2 (C-7), 59.3 (C-6), 53.9 (C-1'), 48.1 (C-4), 29.8 (C-2'), 21.2 (C-3'), 14.1 (C-4'). **HRMS** (ESI) *m/z* 248.150 ([M+H]⁺, calcd. for C₁₁H₂₂NO₅: 248.149).

Références

- 1) Gottlieb, H.E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512-7515.
- 2) Nocquet, P.-A.; Hazelard, D.; Gruntz, G; Compain, P. J. Org. Chem. 2013, 78, 6751–6757.
- 3) B. M. Trost, A. Aponick, B. N. Stanzl, Chem. Eur. J. 2007, 13, 9547 9560.

Fig 1. ¹H NMR (300 MHz, CDCl₃) and ¹³C (75 MHz, CDCl₃) spectra of compound **3a**.

Fig 2. ¹H NMR (400 MHz, CD₃OD) and 13 C (100 MHz, CD₃OD) spectra of compound 4.

S-14

Fig 4 ¹H NMR (400 MHz, CDCl₃) and ¹³C (100 MHz, CDCl₃) spectra of compound 3c.

Fig 5 ¹H NMR (400 MHz, CDCl₃) and ¹³C (100 MHz, CDCl₃) spectra of compound 5a.

Fig 6 ¹H NMR (400 MHz, CDCl₃) and ¹³C (100 MHz, CDCl₃) spectra of compound **6a**.

Fig 7 ¹H NMR (300 MHz, CDCl₃) and ¹³C (75 MHz, CDCl₃) spectra of compound **5b**.

Fig 8 ¹H NMR (300 MHz, CDCl₃) and ${}^{13}C$ (75 MHz, CDCl₃) spectra of compound **5**c.

Fig 9 ¹H NMR (400 MHz, CDCl₃) and 13 C (100 MHz, CDCl₃) spectra of compound **5b**.

Fig 10 1 H NMR (400 MHz, CDCl₃) and 13 C (100 MHz, CDCl₃) spectra of compound 8.

Fig 11 ¹H NMR (300 MHz, CDCl₃) and ¹³C (75MHz, CDCl₃) spectra of compound 9.

Fig 12 1 H NMR (400 MHz, D₂O) and 13 C (100 MHz, D₂O) spectra of compound 10.

Fig 13 1 H NMR (400 MHz, CDCl₃) and 13 C (100 MHz, CDCl₃) spectra of compound 11.

Fig 14 2D NOESY NMR spectrum of compound 11.

Fig 15 1 H NMR (100 MHz, D₂O) and 13 C (75 MHz, D₂O) spectra of compound 12.

Fig 16 1 H NMR (100 MHz, CD₃OD) and 13 C (75 MHz, CD₃OD) spectra of compound 13.