Supplementary Information

Legonaridin, a new member of linaridin RiPP from a Ghanaian Streptomyces Isolate

Mostafa E. Rateb,^{a,g} Yin Zhai,^b Emmanuelle Ehrner,^a Christopher M Rath,^c Xiaoling Wang,^a Jioji Tabudravu,^a Rainer Ebel,^a Mervin Bibb,^e Kwaku Kyeremeh,^f Pieter C. Dorrestein,^{c,d} Kui Hong,^{*b} Marcel Jaspars,^{*1} Hai Deng^{*a}

^aMarine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE Scotland, United Kingdom. Email: <u>h.deng@abdn.ac.uk</u>; <u>m.jaspars@abdn.ac.uk</u>.

^bKey Laboratory of Combinatory Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, China. Email: <u>kuihong31@whu.edu.cn</u>.

^cSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA.

^dDepartment of Pharmacology and Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, USA.

^eDepartment of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom.

^fDepartment of Chemistry, FGO Torto Building, University of Ghana, Legon, Ghana.

^gPharmacognosy Department, School of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.

Figure S1: Neighbour-joining phylogenetic tree based on nearly complete 16S rRNA gene sequences. The relationships between strain *Streptomyces* sp. CT34 and the type strains of phylogenetically close species of the genus *Streptomyces* were analyzed. Numbers at nodes are percentage bootstrap values based on 1000 replicates; only values >50 % are shown. Bar, 0.002 substitutions per nucleotide position.

Figure S2. ¹H NMR spectrum of legonaridin **1** in CD₃OH.

Figure S3 A and B. MS^n analysis in an LTQ-FT MS on legonaridin **1** to generate 7 reverse-sequence tags. (**A**) MS^1 full scan data; (**B**) MS1 zoom. All data are presented as m/z versus intensity in arbitrary units. Assigned peaks and mass shifts are noted. The direction of tags cannot be determined from this data. Any residue assigned as I may also be L. MS^1 data are annotated in red, MS^2 in green, and MS^3 in purple.

Figure S3C. MSⁿ analysis in an LTQ-FT MS on legonaridin **1** to generate 7 reverse-sequence tags. (C). MS² data. All data are presented as *m/z* versus intensity in arbitrary units. Assigned peaks and mass shifts are noted. The direction of tags cannot be determined from this data. Any residue assigned as I may also be L. MS¹ data are annotated in red, MS² in green, and MS³ in purple.

Figure S3D. MS^n analysis in an LTQ-FT MS on legonaridin **1** to generate 7 reverse-sequence tags. (D) MS^2 data. All data are presented as m/z versus intensity in arbitrary units. Assigned peaks and mass shifts are noted. The direction of tags cannot be determined from this data. Any residue assigned as I may also be L. MS^1 data are annotated in red, MS^2 in green, and MS^3 in purple.

Figure S3E. MS^n analysis in an LTQ-FT MS on legonaridin **1** to generate 7 reverse-sequence tags. (E) MS^3 is illustrated with annotations. All data are presented as m/z versus intensity in arbitrary units. Assigned peaks and mass shifts are noted. The direction of tags cannot be determined from this data. Any residue assigned as I may also be L. MS^1 data are annotated in red, MS^2 in green, and MS^3 in purple.

Figure S3F. MS^n analysis in an LTQ-FT MS on legonaridin **1** to generate 7 reverse-sequence tags. (F) is illustrated with annotations. All data are presented as m/z versus intensity in arbitrary units. Assigned peaks and mass shifts are noted. The direction of tags cannot be determined from this data. Any residue assigned as I may also be L. MS^1 data are annotated in red, MS^2 in green, and MS^3 in purple.

Figure S3G. MS^n analysis in an LTQ-FT MS on legonaridin **1** to generate 7 reverse-sequence tags. (G) MS^3 is illustrated with annotations. All data are presented as m/z versus intensity in arbitrary units. Assigned peaks and mass shifts are noted. The direction of tags cannot be determined from this data. Any residue assigned as I may also be L. MS^1 data are annotated in red, MS^2 in green, and MS^3 in purple.

110717 CT34 100x m IT 901 869 MS3 256 #1-256 RT: 0.00-1.42 AV: 256 NL: 2.72E2 T: ITMS + p NSI Full ms3 901.00@cid30.00 869.00@cid25.00 [235.00-2000.00]

Figure S3H. MS^n analysis in an LTQ-FT MS on legonaridin **1** to generate 7 reverse-sequence tags. (H) MS^3 is illustrated with annotations. All data are presented as m/z versus intensity in arbitrary units. Assigned peaks and mass shifts are noted. The direction of tags cannot be determined from this data. Any residue assigned as I may also be L. MS^1 data are annotated in red, MS^2 in green, and MS^3 in purple.

Figure S3I. MS^n analysis in an LTQ-FT MS on legonaridin **1** to generate 7 reverse-sequence tags. (I). MS^3 is illustrated with annotations. All data are presented as m/z versus intensity in arbitrary units. Assigned peaks and mass shifts are noted. The direction of tags cannot be determined from this data. Any residue assigned as I may also be L. MS^1 data are annotated in red, MS^2 in green, and MS^3 in purple.

Overlapping MS Fragments

	z-ions
	x-ion
	y-ions
Seq Tags Me ₂ N-I-X-P-L-A-X-L-A-X-P-E-A-X-P-V-G-F	
b-ions	
a-ions	
c-ion	

Figure S4 overlapping MS analysis fragments according to the predicted sequence of the mature peptide legonaridin.

Figure S5. HSQC spectrum of legonaridin 1 in CD₃OH.

Figure S6. TOCSY spectrum of legonaridin 1 in CD₃OH.

Figure S7. COSY spectrum of legonaridin $\mathbf{1}$ in CD₃OH.

Figure S8. HMBC spectrum of legonaridin **1** in CD₃OH.

Figure S9. NOESY spectrum of legonaridin $\mathbf{1}$ in CD₃OH.

Figure S10. (A) Schematic representation of five putative biosynthetic gene clusters of linaridin RiPPs with the one for **1**. (B) The sequence alignment of legonaridin **1** precursor peptide sequence and five putative precursor peptide sequences. The red arrow indicated the possible first amino acid the mature legonaridin RiPPs.

Figure S11. Phylogenetic analysis of prepeptide sequences from linaridin RiPP family, suggesting that legonaridin is a subgroup of the linaridin RiPP family. CT34 is the prepeptide of legonaridin; SvirD4_22614 is a hypothetical protein from *Streptomyces viridochromogenes* (WP_003991980.1); SMON is a hypothetical protein from *Streptomyces monomycini* (WP_030019228.1); NRRLwc3773 is from *Streptomyces sp.* NRRL WC-3773 (WP_031005572.1), NRRLS1448 is from *Streptomyces sp.* NNRL S-1448 (WP_030414969.1); NRRLS337 is from *Streptomyces sp.* S-337 (WP_030801611.1); CypA is the prepeptide of cypemycin; SGR_N is the prepeptide of SGR-1832 RiPP.

ORF	proposed function	AA	Sequence identity	homologues	NCBI accession no
G	hypothetical protein	63	31%	LegA, no homolog found in NCBI database	WP_043265479.1
В	ABC transporter	617	77%	ABC transporter ATPase [<i>S. viridochromogene</i> s] (WP_003991974.1)	WP_043270371.1
С	FAD dependent oxidoreductase	495	89%	dehydrogenase [Streptomyces sp. TAA486]	WP_043270372.1
D	methyltransferase	252	30%	СурМ	WP_043270380.1
Е	Ab hydrolase fragment	278	31%	Alpha/beta(Ab) hydrolase fold domain of CypH	WP_043270373.1
F	hypothetical protein	195	37%	СурL	WP_043270374.1
А	Precursor peptide	65	46%	СурА	WP_043265481.1
н	HTT membrane protein fragment	259	40%	HTT membrane domain of CypH	WP_043265482.1

Table S1. Proposed functions of the encoded proteins of the identified *leg* gene cluster directing the biosynthesis of legonaridin **1** *in Streptomyces* sp. CT34.

Plasmid/strains/primers	Description	Ref. or source
рҮН7	shuttle vector used for gene knockout of <i>Streptomyces</i> and <i>E.coli</i>	Ref. 1,2
pUC-T simple	vector used for general cloning	
Gene-deletion constructs		
pWHU2261	pUC-T based construct with 1880 bp of upstream of the <i>leg</i> cluster	This work
pWHU2262	pUC-T based construct with 1990 bp of downstream of the <i>leg</i> cluster	This work
pWHU2263	pYH7 based construct	This work
Escherichia coli		
DH5α	strain used for general cloning and plasmid maintenance	Stratagene
ET12567	dam, dcm, hsdM, hsdS, hsdR, cat, tet	
Streptomyces sp. CT34		Ref. 3
WT	Wild type strain; used to construct the strain CT34 mutants	This work
M-ZY	CT34 mutants	This work
Primer Primers for pWHU2263	Sequence	Site
constructs		
upstream homologous arm 1 (U1)	<u>CATATG</u> GCCGCCCAGGTAGTTGACGC	Ndel
upstream homologous arm 2 (U2)	<u>CTCGAG</u> CGCCGCCTTCCTCGGTTTCG	Xhol
downstream homologous arm 1 (D1)	<u>CTCGAG</u> AACTGGCCTCGGTCGACAGT	Xhol

Table S2. Plasmids, strains, and primers used in this study

downstream homologous arm 2 (D2)	AAGCCTCGTCATCGAGCCGAGGTACG	HindIII
Primers for verify pYH7		
P 1	AGAGGTTCCACTCCAGCGAG	
P 2	CCACGTAGACGTTGCGTGAG	
Primers for confirming		
L 1	CCGAAGTGGTGGACGGAGTG	
L 2	GCCCGATCTCGTCGTAGTGG	
R 1	TGCAGCAATGCGATTCACGG	
R 2	CGAACTCAGCCAGCACAGAC	

References:

- (1). Sun, Y.; Hong, H.; Samborskyy, M.; Mironenko, T.; Leadlay, P.F.; Haydock, S.F. Microbiology, 2006, 152 3507-3515.
- (2). Sun, Y.; Zhou, X.; Liu, J.; Bao, K.; Zhang, G.; Tu, G.; Kieser, T.; Deng, Z. Microbiology, 2002, 148: 361-371.
- (3). Zhai, Y.; Cheng, B.; Hu, J.; Kyeremeh, K.; Wang, X.; Jaspars, M.; Deng, H.; Deng, Z-X.; Hong, K. *GenomeA*. **2015**, *3*, e01508-14.