Supporting Information

Palladium-catalyzed arylation of 2*H*-chromene: a new entry to pyrano[2,3-c]carbazoles

K.Ranjith Reddy,^{a,b} A. Siva Reddy,^{a,b} Devendra K Dhaked^c ,Sk.Rasheed ^{a,b}, Anup Singh Pathania,^d Ravi Shankar,^{a,b} Fayaz Malik,^d and Parthasarathi Das^{a,b,*}

[a] Academy of Scientific and Innovative Research (AcSIR), New Delhi.
[b] Medicinal Chemistry Division, Indian Institute of Integrative Medicine(CSIR), Canal Road, Jammu-180001, India; E-mail: <u>partha@iiim.ac.in</u>
[c] Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Mohali, 160062, Punjab, India;
[d] Division of Cancar Pharmacology Institute of Integrativa Medicina(CSIR) Canal Road Jammu

[d] Division of Cancer Pharmacology, Institute of Integrative Medicine(CSIR), Canal Road, Jammu-180001 India,

Table of contents:

Optimization of Suzuki-cross coupling	page 2.
2,2-Dimethyl-6-nitro-2 <i>H</i> -chromen-5-ol (2)(¹ H NMR, ¹³ CNMR)	page 3.
2,2-Dimethyl-6-nitro-2 <i>H</i> -chromen-5-yl trifluoromethanesulfonate(3)(¹ H NMR, ¹³ CNMR)	page 4.
Derivatives of Nitro-2 <i>H</i> -chromene(¹ H NMR, ¹³ CNMR)(4a-4x)	page 5-28.
Pyrano[2,3-c]carbazoles(¹ H NMR, ¹³ CNMR) (5a-5n)	page 29-43.
The molecular docking scores of the designed molecules and podophyllotoxin	page 44.
MTT assay	page 45.

Solvent/T°C O_2N O_2N 4a 3 catalyst base solvent T°C yield(%)^b entry Na₂CO₃ 1 Pd(PPh₃)₄ 1.4 Dioxane 100 45 2 $Pd(PPh_3)_4$ K₂CO₃ 1,4 Dioxane 100 68 3 $Pd(PPh_3)_4$ K₃PO₄ 1,4 Dioxane 100 77 4 $Pd(PPh_3)_4$ NaOAc 1,4 Dioxane 100 53 5 $Pd(PPh_3)_4$ t-BuOK 1,4 Dioxane 100 65 6 $Pd(PPh_3)_4$ LiOH 1,4 Dioxane 100 60 7 $Pd(PPh_3)_4$ KOH 1.4 Dioxane 100 66 8 $Pd(PPh_3)_4$ K₃PO₄ Toluene 100 50 9 $Pd(PPh_3)_4$ K₃PO₄ DMSO 100 66 10 THF $Pd(PPh_3)_4$ K₃PO₄ 100 65 Pd(PPh₃)₄ 11 K₃PO₄ 80 80 1,4 Dioxane 12° $Pd(PPh_3)_4$ K₃PO₄ 1.4 Dioxane 80 55 13 Pd(PPh₃)₄ K₃PO₄ 1.4 Dioxane 40 rt 14 55 $Pd(OAc)_2$ K₃PO₄ 1,4 Dioxane 80 15 1,4 Dioxane 80 50 $Pd_2(dba_3)$ K₃PO₄

Table 1 Optimization of Suzuki-Miyaura cross-coupling^a

Catalyst / Base

(HO)₂B

TfO

^aReaction conditions: **3** (1.0 equiv.), Pd-catalyst (10 mol%); base (1.6 equiv.), phenylboronic acid (1.2 equiv.); solvent, 80 °C, 3h, N₂; ^b isolated yields; ^c catalyst (5 mol%) was used.

By using simple catalytic system of $Pd(PPh_3)_4/Na_2CO_3$ in 1,4-dioxane at 100 °C then we able to isolate the cross-coupled product in moderate yield (45%) (entry 1, Table 1). Systematic screening of different base like K_2CO_3 , K_3PO_4 , NaOAc, *t*-BuOK, LiOH, KOH in dioxane (entries 2-7, Table 1) revealed that K_3PO_4 became a base of choice. The use of other common solvents like Toluene (entry 8, table 1), DMSO (entry 9, Table 1) and THF (entry 10, Table 1) proved inferior to 1,4 dioxane (entry 3, Table 1). There is marginal improve in the yield (80%) was observed when the reaction temperature was decreased to 80 °C (entry 11, Table 1). When the loading of catalyst decrease to (5 mol%) , the yield was decreased to 55% (entry 12, Table 1). Whereas, poor yield was observed when reaction was performed at room temperature (entry 13, Table 1). Other palladium complexes such as Pd(OAc)₂ (55%) (entry 14, Table 1) and Pd₂dba₃ (50%) (entry 15, Table 1) were moderately effective. In view of efficiency and simplicity we have identified Pd(PPh₃)₄/ K_3PO_4 / dioxane/ 80°C as our optimized conditions for the cross-coupling reaction (entry 11, Table 1).

2,2-Dimethyl-6-nitro-2*H*-chromen-5-ol (2):

2,2-Dimethyl-6-nitro-2*H*-chromen-5-yl trifluoromethanesulfonate(**3**):

2,2-Dimethyl-6-nitro-5-(*p*-tolyl)-2*H*-chromene(**4b**):

5-(4-Methoxyphenyl)-2,2-dimethyl-6-nitro-2*H*-chromene(**4c**):

2,2-Dimethyl-6-nitro-5-(4-propylphenyl)-2*H*-chromene (**4d**):

2,2-Dimethyl-6-nitro-5-(*m*-tolyl)-2*H*-chromene (**4g**):

1-(4-(2,2-Dimethyl-6-nitro-2*H*-chromen-5-yl)phenyl)ethanone(**4k**):

3-(2,2-Dimethyl-6-nitro-2*H*-chromen-5-yl)benzaldehyde(**4n**):

Methyl 3-(2,2-dimethyl-6-nitro-2*H*-chromen-5-yl)benzoate (40) :

5-(3,4-Dimethoxyphenyl)-2,2-dimethyl-6-nitro-2*H*-chromene(**4p**):

20

5-(4-Methoxy-3-methylphenyl)-2,2-dimethyl-6-nitro-2*H*-chromene(**4q**):

2,2-Dimethyl-5-(naphthalen-2-yl)-6-nitro-2*H*-chromene(**4r**):

4-(2,2-Dimethyl-6-nitro-2*H*-chromen-5-yl)pyridine (**4v**):

6-(2,2-Dimethyl-6-nitro-2*H*-chromen-5-yl)-1*H*-indole(**4w**):

3,3,9-Trimethyl-3,7-dihydropyrano[2,3-*c*]carbazole(**5***b*):

9-Isopropyl-3,3-dimethyl-3,7-dihydropyrano[2,3-*c*]carbazole(**5**e):

9-Butyl-3,3-dimethyl-3,7-dihydropyrano[2,3-*c*]carbazole(**5f**):

3,3-Dimethyl-9-propyl-3,7-dihydropyrano[2,3-*c*]carbazole(**5**g):

9,10-Dimethoxy-3,3-dimethyl-3,7-dihydropyrano[2,3-*c*]carbazole(**5**h):

9-Methoxy-3,3,10-trimethyl-3,7-dihydropyrano[2,3-*c*]carbazole(**5ia**):

9-Methoxy-3,3,8-trimethyl-3,7-dihydropyrano[2,3-*c*]carbazole(**5ib**):

1-(3,3-Dimethyl-3,7-dihydropyrano[2,3-*c*]carbazol-9-yl)ethanone(**5j**):

3,3-Dimethyl-3,7-dihydropyrano[2,3-*c*]carbazole-9-carbonitrile(**5**k):

3,3-Dimethyl-3,7-dihydrobenzo[*a*]pyrano[3,2-*g*]carbazole (**5n**):

Molecule	Glide gScore	Hydrogen Bonding/ NH…π	Residues within 5Å
D. J. J	(012	Interaction	Ole 11 Ore 170 The 170 A1 100 M 1 101 C 0041
Podophy- llotoxin	-6.913	Asn a 101, Leu β 248	Gina11, Sera178, Inra179, Alaa180, Vala181, Cys β 241, Gln β 247, Asn β 249, Ala β 250, Lys β 254, Leu β 255, Asn β 258, Met β 259, Ala β 316, Lys β 352, Thr β 353, Ala β 354
5b	-7.858	Asnβ258	Asna101, Sera178, Thra179, Alaa180, Glua183, Cys β 241, Lys β 254, Leu β 255, Met β 259, Ala β 316, Thr β 317, Ile β 318, Lys β 352, Thr β 353, Ala β 354
5a	-7.229	Asnβ258	Asnα101, Serα178, Thrα179, Alaα180, Gluα183, Cysβ241, Lysβ254, Leuβ255, Metβ259, Alaβ316, Thrβ317, Ileβ318, Lysβ352, Thrβ353, Alaβ354
9i	-7.032	Glnα11, Thrβ353, Lysβ254	Asna101, Sera178, Thra179, Alaa180,Tyra224,Cys β 241, Gln β 247, Leu β 248, Asn β 249, Ala β 250, Leu β 255, Asn β 258, Met β 259, Val β 315,Ala β 316, Lys β 352, Ala β 354
5d	-6.415	Asna101	Glyα143, Serα178, Gluα183, Cysβ241, Lysβ254, Leuβ255, Asnβ258, Metβ259, Alaβ316, Thrβ317, Ileβ318, Lysβ352, Thrβ353, Alaβ354
5n	-6.362		Glna11, Asna101, Sera178, Thra179, Alaa180, Vala181, Glua183, Tyra224, Cys β 241, Gln β 247, Ala β 250, Lys β 254, Leu β 255, Ala β 316, Thr β 317, Ile β 318, Lys β 352, Thr β 353, Ala β 354
51	-6.359	Serα178, Asnβ258	Gln α 11, Asn α 101, Thr α 179, Ala α 180, Val α 181, Glu α 183, Tyr α 224, Cys β 241, Gln β 247, Ala β 250, Lys β 254, Leu β 255, Met β 259, Ala β 316, Thr β 317, Ile β 318, Lys β 352, Thr β 353, Ala β 354, Ile β 378
5g	-6.033	Asnβ258	Glnα11, Asnα101, Thrα179, Alaα180, Valα181, Gluα183, Tyrα224, Cysβ241, Glnβ247, Alaβ250, Lysβ254, Leuβ255, Metβ259, Alaβ316, Thrβ317, Ileβ318, Lysβ352, Thrβ353, Alaβ354, Ileβ378
5m	-5.958	Asnβ258	Glnα11, Asnα101, Alaα180, Tyrα224, Cysβ241, Lysβ254, Leuβ255, Metβ259, Alaβ316, Thrβ317, Ileβ318, Lysβ352, Thrβ353, Alaβ354
5c	-5.919	Asnβ258	Glnα11, Asnα101, Alaα180, Gluα183, Tyrα224, Cysβ241, Lysβ254, Leuβ255, Metβ259, Alaβ316, Thrβ317, Ileβ318, Lysβ352, Thrβ353, Alaβ354
5f	-5.512		Glnα11, Asnα101, Alaα180, Tyrα224, Cysβ241, Lysβ254, Leuβ255, Metβ259, Alaβ316, Thrβ317, Ileβ318, Lysβ352, Thrβ353, Alaβ354
5e	-5.219		Gln α 11, Asn α 101, Thr α 179, Ala α 180, Tyr α 224, Cys β 241,Gln β 247, Leu β 248, Asn β 249, Ala β 250, Lys β 254, Leu β 255, Met β 259, Ala β 316, Thr β 317, Ile β 318, Lys β 352, Thr β 353, Ala β 354

Table 1. The molecular docking scores of the designed molecules and Podophyllotoxin

MTT assay

% Growth Inhibition (30 $\mu M)$

Time: 48 h

Compound's Name	MOLT-4 (Lymphoid leukemia)	Colo 205 (Colorectal carcinoma)
5a	40.5	28.4
5f	46.3	25.8
51 (clauraila C)	33.8	25.1