Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Organic bases-promoted enantioselective electrophilic cyanation of β -keto esters by chiral phase-transfer catalysts **

Min Chen, Zhi-Tang Huang and Qi-Yu Zheng*

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Chinese Academy of Sciences, Beijing 100190, China

Fax: +86 10 62554449; Tel: +86 10 62652811; E-mail: zhengqy@iccas.ac.cn

Content

1.	General information	1					
2.	Optimization Enantioselective electrophilic cyanation of β -keto esters with inorganic						
	bases and different cyanating reagents	2					
3.	Synthesis of chiral phase-transfer catalysts	3					
4.	The procedures for the synthesis of cyanation-transfer reagents	13					
5.	Preparation of β -keto esters	19					
6.	Enantioselective electrophilic cyanation of β -keto esters	31					
7.	References	39					
8.	X-Ray Structure of 4p	41					
9.	HPLC spectra	58					
10.	Copies of ¹ H, ¹³ C NMR spectra	69					

1. General information

Unless specified noted, all reagents were purchased from commercial suppliers without further purification. All the solvents were treated according to general methods. Column chromatography was performed using 200-300 mesh silica gel (YanTai, China). ¹H NMR spectra were recorded on BRUKER 400 or 300 (400/300 MHz) spectrophotometer. ¹³C NMR spectra were recorded on BRUKER 400 (100 MHz) with complete proton decoupling spectrophotometer. ¹H NMR and ¹³C NMR spectra were internally referenced to tetramethylsilane signal or residual proton solvent signals. Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, bs = broad singlet, m = multiplet), coupling constants (Hz) and integration. Mass spectra were measured on a Bruker Apex IV FTMS (ESI). IR spectrums were recorded on Perkin-Elmer-983 spectrometer. Optical rotations were measured with PerkinElmer 341 polarimeter. The enantiomeric excesses (*ee*) were determined by HPLC. HPLC analyses were performed on equipped with an indicated chiral column, using mixtures of *n*-hexane/isopropyl alcohol as mobile phase, at 25 °C.

2. Optimization Enantioselective electrophilic cyanation of β-keto esters with inorganic bases and different cyanating reagents

Table S1. The preliminary screening of asymmetric cyanation of $\beta\text{-keto}$ esters with inorganic base

Entry ^[a]	1	Inorg. base	solvent	T [°C]	Conv. ^[b] [%]	ee ^[c] [%]
1	1a	Cs ₂ CO ₃	THF	-40	100	21
2	1a	Cs_2CO_3	THF	-78	100	15
3	1b	Cs_2CO_3	THF	-78	91	35
4	1b	K_2HPO_4	THF	-78	83	34
5	1b	КОН	THF	-78	100	0
6	1b	Cs_2CO_3	Tol	-78	87	52
7	1b	Cs_2CO_3	CI-Tol	-78	89	45

8 ^[d]	1b	Cs_2CO_3	THF/Tol	-78	90	57(63) ^[g]
9 ^[d]	1c	Cs ₂ CO ₃	THF/Tol	-78	75	20
10 ^[d]	1d	Cs_2CO_3	THF/Tol	-78	87	9
11 ^[d]	1e	Cs_2CO_3	THF/Tol	-78	95	33
12 ^[d]	1f	Cs_2CO_3	THF/Tol	-78	93	33
13 ^[d]	1g	Cs_2CO_3	THF/Tol	-78	_[e]	_[f]
14 ^[d]	1h	Cs_2CO_3	THF/Tol	-78	90	30

[a] Unless otherwise noted, the reaction was performed with 0.05 mmol of **3a**, 1.3 equiv. of **1** and 5equiv. of inorganic base in the presence of 5 mol% of catalyst in solvent (0.8 mL) for 6 h. [b] The conv. was determined by crude NMR. [c] The enantiomeric excess was determined by HPLC analysis of the product **3a** using a chiral column (DAICEL Chiralcel AS-H) with hexane/2-propanol (85:15) as the eluent. [d] THF/Tol=0.7 mL : 0.1 mL. [e] no product was obtained. [f] not determined. [g] isolated yield in parenthesis

R=H, **1a** R=4-^tBu, **1b** R=4-OCH₃, **1c** R=4,5- dimethyoxyl, **1d** R=3-CH₃, **1e** R=4-CF₃, **1f** R=5-NO₂, **1g** R=benzo, **1h**

3. Synthesis of chiral phase-transfer catalysts

3.1 general procedures for preparing O(9)-acyl-cinchoninium bromide

According to the known procedures^[1,2] modified, to a flask equipped with a stirring bar and a reflux condenser was added cinchonine (3.4 mmol), benzyl bromide derivative (3.5 mmol). Then the system was evacuated 3 times and backfilled with Ar before solvent 50 ml THF were added by syringe. The mixture was heated to reflux within given time (mostly 5 hours) under Ar atmosphere and then cooled to room temperature, poured into Et₂O (150 mL) with vigorous stirring. The resulting suspension was aged for 15 minutes and the precipitation was isolated by suction filtration. And the pure cinchoninium bromide was obtained by recrystallized from MeOH/Et₂O at about 4 °C.

To the suspension of the cinchoninium bromide above (2 mmol) in DCM (20ml) was added 50% KOH solution (2g H₂O/2g KOH) and acyl chloride (4 mmol). The mixture was reacted for 1 hour with it becoming transparent, then water and additional DCM was added.

The aqueous phase was extracted with DCM twice (5 ml \times 2). The organic phase was combined and washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel with DCM and methanol as elute, which was concentrated to ~1 mL and poured onto Et₂O (20 mL). Then the precipitation was suction filtered and washed by Et₂O, providing the desired product as solid other than foam.

N-Anthracenylmethyl cinchoninium bromide 5b^[1]

Prepared according to the general procedure, cinchonine (1.00 g, 3.4 mmol) and 9-bromomethyl anthracene (0.95 g, 3.5 mmol) gave the product as light yellow crystal 1. 67 g. Isolated yield 83%. $[\alpha]_D^{25}$ +290.6 (c 0.5, MeOH); mp 174-175 °C; ¹H-NMR (400 MHz, CDCl₃): δ 9.01(d, J = 8.6Hz, 1H), 8.78 (d, J = 8.0Hz, 2H), 8.54(d, J = 9.0Hz, 1H), 7.99(d, J = 4.4Hz, 1H), 7.85(s, 1H), 7.54(d, J = 8.0Hz, 1H), 7.47(t, J = 8.4Hz, 2H), 7.38(t, J = 7.6Hz, 1H), 7.24(d, J = 3.2Hz, 1H), 7.13(t, J = 7.4Hz, 1H), 7.00-7.04(m, 3H), 6.89-6.93(m, 2H), 6.42-6.48(m, 2H), 5.49-5.57(m, 1H), 4.98(d, J = 10.5Hz, 1H), 4.66-4.88(m, 2H), 4.30-4.41(m, 2H), 2.44(t, J = 11.6Hz, 1H), 2.30(dd, J = 10, 20Hz, 1H), 1.90(t, J = 12.5Hz, 1H), 1.61-1.71(m, 2H), 1.40-1.55(m, 1H), 1.31(bs, 1H), 1.14(t, J = 7Hz, 1H), 0.54-0.72(m, 1H). ¹³C-NMR (100 MHz, CDCl₃): δ 149.5, 147.2, 145.1, 135.5, 133.2, 132.4, 131.2, 130.2, 130.1, 129.2, 128.9, 128.5, 128.1, 127.8, 127.4, 127.1, 126.4, 125.4, 124.81, 124.76, 124.1, 120.1, 117.7, 117.6, 67.6, 66.5, 57.6, 54.4, 54.2, 38.0, 26.3, 24.1, 22.7. HRMS (ESI+) calced for [C₃₄H₃₃N₂OBr-Br]⁺: 485.2587, found: 485.2585.

O-9-Adamantoyl-N-Anthracenylmethyl cinchoninium bromide 5a^[3]

Prepared according to the general procedure, **5b** (2.0 mmol) and adamantonyl chloride (4.0 mmol) gave the product as light yellow powder 1.35 g. Isolated yield 92%. $[\alpha]_D^{25}$ +224.6 (c 0.5, CHCl₃); mp 114-115°C; v_{max} (film)/cm⁻¹ 2908, 2853, 1740, 1509, 1452; ¹H-NMR (400 MHz, CDCl₃): δ 9.78 (d, J = 9.2Hz, 1H), 8.96 (d, J = 4.8Hz, 2H), 8.50(s, 1H), 8.09(d, J = 8.2Hz, 2H), 8.03(t, J = 7.5Hz, 1H), 7.92(d, J = 8.0Hz, 2H), 7.78-7.84(m, 2H), 7.67-7.71(m, 2H), 7.50-7.58(m, 3H), 6.42(d, J = 13.3Hz, 1H), 5.81-5.90(m, 2H), 5.66(t, J = 10.8Hz, 1H), 5.40(d, J =

13.4Hz, 1H), 5.22-5.29(m, 1H), 5.00(d, J = 17.2Hz, 1H), 3.74(t, J = 10.3Hz, 1H), 3.06(t, J = 11.2Hz, 1H), 2.57(t, J = 12.0Hz, 1H), 2.47(dd, J = 9.8, 19.7Hz, 1H), 2.11-2.27(m, 11H), 1.82-1.97(m, 7H), 1.60-1.75(m, 1H), 1.41-1.61(m, 1H). ¹³C-NMR (100 MHz, CDCl₃): δ 173.9, 147.4, 146.8, 138.9, 133.5, 132.1, 130.98, 130.95, 129.6, 129.1, 128.9, 128.7, 128.1, 127.5, 127.2, 127.0, 125.9, 125.2, 124.5, 123.5, 123.2, 123.0, 120.6, 117.1, 116.8, 115.2, 67.3, 63.9, 55.2, 53.1, 39.7, 37.5, 36.3, 34.5, 29.2, 26.0, 24.1, 22.1, 21.6. HRMS (ESI+) calced for [C₄₅H₄₇N₂O₂Br-Br]⁺: 647.3632, found: 647.3623.

O-9- Adamantoyl-N- benzylcinchoninium bromide 5c^[4]

Prepared according to the general procedure, cinchonine (1.00 g, 3.4 mmol) and 9-bromomethyl benzene (0.598 g, 3.5 mmol) gave the product as white powder, isolated yield is 87% over two steps. $[\alpha]_D^{25}$ +91.2 (c 0.5, CHCl₃); mp 160-162 °C; v_{max} (film)/cm⁻¹ 2915, 2853, 1742, 1600, 1455; ¹H-NMR (400 MHz, CDCl₃): δ 9.15(s, 2H), 8.42(d, *J* = 8.0Hz, 1H), 8.10-8.11(m, 1H), 7.93-7.95(m, 1H), 7.75-7.81(m, 3H), 7.48-7.52(m, 4H), 6.42(d, *J* = 11.2Hz, 1H), 6.02-6.06 (m, 1H), 5.55(s, 1H), 5.39(d, *J* = 10.0Hz, 1H), 5.29(d, *J* = 17.2Hz, 1H), 5.02(bs, 1H), 4.16(d, *J* = 11.2Hz, 1H), 3.73-3.82(m, 2H), 2.93-2.95(m, 1H), 2.60-2.62(m, 1H), 2.41-2.47(m, 1H), 2.20(s, 3H), 2.10(s, 8H), 1.78-1.91(m, 7H), 1.48(bs, 1H). ¹³C-NMR (100 MHz, CDCl₃): δ 175.1, 146.3, 146.2, 143.0, 135.2, 134.1, 133.2, 131.1, 130.9, 129.6, 126.6, 125.9, 125.0, 119.2, 118.6, 68.7, 65.1, 62.7, 56.5, 54.9, 41.3, 39.1, 37.9, 36.3, 27.8, 26.9, 23.5, 23.3; HRMS (ESI+) calced for [C₃₇H₄₃N₂O₂Br-Br]⁺: 547.3319, found: 547.3312.

O-9- Adamantoyl-N- benzylquininium bromide 5d^[4]

Prepared according to the general procedure, quinine (1.10 g, 3.4 mmol) and 9-bromomethyl anthracene (0.95 g, 3.5 mmol) gave the product as yellow powder. Isolated yield is 93% over two steps. $[\alpha]_D^{25}$ -112.6 (c 0.5, CHCl₃); mp 123-124°C; v_{max} (film)/cm⁻¹ 2909, 2853, 1724, 1621, 1508, 1452; ¹H-NMR (400 MHz, CDCl₃): δ 9.54(d, J = 8.8Hz, 1H), 8.77 (d, J = 4Hz, 1H), 8.59(s, 1H), 8.04(d, J = 7.6Hz, 1H), 7.89-7.98(m, 3H), 7.69-7.77(m, 3H), 7.63(s, 1H),

7.41-7.56(m, 3H), 7.29(d, J = 9.2Hz, 1H), 6.63(d, J = 13.4Hz, 1H), 6.32-6.44(m, 1H), 5.94-6.03(m, 1H), 5.78(d, J = 13.4Hz, 1H), 5.38-5.50(m, 1H), 5.22(d, J = 9.1Hz, 1H), 5.04(d, J = 10.4Hz, 1H), 4.12(bs, 3H), 3.79(t, J = 11.2Hz, 1H), 3.18(t, J = 11.6Hz, 1H), 2.48-2.55(m, 1H), 2.32-2.42(m, 2H), 2.19-2.31(m, 1H), 2.04-2.18(m, 4H), 1.84-2.03(m, 7H), 1.69-1.78(m, 7H). ¹³C-NMR (100 MHz, CDCl₃): $\delta 176.6$, 158.8, 147.0, 145.0, 139.4, 136.3, 134.3, 133.0, 132.7, 131.9, 131.6, 131.1, 130.4, 129.3, 129.0, 128.3, 128.0, 126.7, 126.3, 126.2, 125.2, 123.0, 122.9, 120.2, 118.8, 117.5, 102.0, 67.6, 66.4, 60.4, 56.3, 55.8, 50.9, 41.5, 39.0, 38.7, 36.3, 27.7, 26.9, 25.6, 23.0; HRMS (ESI+) calced for $[C_{46}H_{49}N_2O_3Br-Br]^+$: 677.3737, found: 677.3730.

N-(3,5-Ditrifluoromethyl)benzyl-6'-hydroxyquininium bromide (5g)^[5]

The staring material 6'-hydroxyquinine was prepared from the known procedures.^[6] Then **5g** was obtained as white powder according to the general ways above, with 6'-hydroxyquinine (1.05 g, 3.4 mmol) and 3,5-ditrifluoromethylbenzyl bromide (1.075 g, 3.5 mmol) used, isolated yield is 48%. $[\alpha]_D^{25}$ -207.2 (c 0.5, CH₃OH); mp 241-243°C; v_{max} (film)/cm⁻¹, 1622, 1466; ¹H-NMR (400 MHz, MeOD): $\delta 8.75$ (d, J = 8.4Hz, 1H), 8.48(s, 2H), 8.28(s, 1H), 8.01(d, J = 8.8Hz, 1H), 7.87(d, J = 8.4Hz, 1H), 7.57(t, J = 2.0Hz, 1H), 7.45(dd, J = 8.8, 2.0Hz, 1H), 6.51(s, 1H), 5.71-5.80(m, 1H), 5.43(d, J = 12.8Hz, 1H), 5.22-5.28(m, 2H), 5.08(d, J = 10.4Hz, 1H), 4.54-4.57(m, 1H), 4.05(t, J = 8.8Hz, 1H), 3.78-3.81(m, 1H), 3.48-3.54(m, 1H), 3.38-3.44(m, 1H), 2.76(bs, 1H), 2.27-2.38(m, 2H), 2.13(s, 1H), 1.90-1.96(m, 1H), 1.48-1.54(m, 1H). ¹³C-NMR (100 MHz, MeOD): $\delta 156.9,147.6, 143.8, 143.7, 138.8, 135.5, 132.4, 132.2, 131.8, 131.5, 126.3, 125.4, 125.0, 122.7, 120.7, 117.4, 105.1, 69.0, 64.8, 61.6, 59.7, 51.4, 37.9, 26.8, 25.1, 21.5. HRMS (ESI+) calced for [C₂₈H₂₇N₂O₂F₆Br-Br]⁺: 537.1968, found: 537.1971.$

O-9- benzoyl-N-(3,5-Ditrifluoromethyl)benzyl-6'-benzoylquininium bromide (5h)

Prepared according to the general procedure, **5g** (1.0 mmol) and benzoyl chloride (4.0 mmol) gave the product as white powder with isolated yield 82%. $[\alpha]_D^{25}$ -28.2 (c 0.5, CDCl₃); mp

124-125 °C; v_{max} (film)/cm⁻¹ 2926, 1732; ¹H-NMR (400 MHz, MeOD): δ 8.93(d, *J* =8.4Hz, 1H), 8.43(s, 2H), 8.39(d, *J* = 2.0Hz, 1H), 8.14-8.20(m, 4H), 7.90(d, *J* =7.6Hz, 2H), 7.60-7.69(m, 5H), 7.52(t, *J* =7.6Hz, 2H), 7.38(t, *J* =7.6Hz, 2H), 5.70-5.78(m, 2H), 5.11(d, *J* =12.8Hz, 1H), 4.99-5.05(m, 2H), 4.28-4.34(m, 1H), 4.17-4.24(m, 1H), 3.42-3.54(m, 3H), 2.68-2.75(m, 2H), 2.42-2.44(m, 1H), 2.21(s, 1H), 2.01-2.06(m, 1H), 1.83-1.98(m, 1H). ¹³C-NMR (100 MHz, CDCl₃): δ 166.1, 165.1, 149.3, 148.1, 146.1, 140.8, 135.8, 134.5, 134.3, 133.1, 132.7, 132.3, 132.1, 130.9, 130.3, 129.1, 128.9, 128.7, 128.3, 124.5, 124.2, 124.1, 123.7, 121.5, 118.7, 114.6, 70.1, 69.7, 63.3, 61.2, 50.7, 37.5, 26.6, 24.8, 22.2. HRMS (ESI+) calced for [C₄₂H₃₅N₂O₄F₆Br-Br]⁺: 745.2496, found: 745.2489.

N-(3,5-Ditrifluoromethyl)benzyl-cinchoninium bromide^[7]

Prepared according to the general procedure, cinchonine (1.00 g, 3.4 mmol) and 3,5-ditrifluoromethylbenzyl bromide (1.075 g, 3.5 mmol) gave the product as colourless crystal 1.655 g with isolated yield 81%. $[\alpha]_D^{25}$ +101.2. (c 0.5, CH₃OH); mp 207-208°C; ¹H-NMR (400 MHz, MeOD): $\delta 8.92$ (d, J = 4.4Hz, 1H), 8.80(s, 2H), 8.40-8.47(m, 2H), 8.20(s, 1H), 8.06-8.08(m, 1H), 8.92(d, J = 4.4Hz, 1H), 7.80(d, J = 4.0 Hz, 2H), 6.01-6.09(m, 1H), 5.45(d, J = 12.4Hz, 1H), 5.29-5.31(m, 3H), 4.53(t, J = 10.6Hz, 1H), 4.08-4.13 (m, 2H), 3.56(d, J = 11.2Hz, 1H), 3.07-3.15(m, 1H), 2.63-2.69 (m, 1H), 2.48(t, J = 11.6Hz, 1H), 1.95(bs, 1H), 1.80-1.88(m, 2H), 1.04-1.10(m, 1H). ¹³C-NMR (100 MHz, MeOD): $\delta 151.0$, 148.7, 147.1, 137.5, 135.6, 134.1, 133.8, 133.4, 133.1, 132.1, 131.1, 130.2, 129.3, 126.1, 125.9, 125.5, 124.7, 123.2, 121.2, 118.1, 69.7, 66.9, 62.7, 58.0, 56.4, 38.8, 28.4, 24.7, 22.3; HRMS (ESI+) calced for [C₂₈H₂₇N₂OF₆Br-Br]⁺: 521.2022, found: 521.2015.

O-9- Adamantoyl-N- (3,5-Ditrifluoromethyl)benzylcinchoninium bromide (5i)

Prepared according to the general procedure, *N*-(3,5-Ditrifluoromethyl)benzyl-cinchoninium bromide (1.0 mmol) and adamantonyl chloride (2.0 mmol) gave the product as white powder 0.536g with isolated yield 76%. $[\alpha]_D^{25}$ +16.4 (c 0.5, CHCl₃); mp 150-151°C; v_{max} (film)/cm⁻¹

2925, 1732, 1511, 1452; ¹H-NMR (400 MHz, CDCl₃): δ 8.92(d, J = 3.4Hz, 1H), 8.85(d, J = 8.4Hz, 1H), 8.42(s, 2H), 8.10(d, J =8.4Hz, 1H), 8.03(s, 1H), 7.88(t, J = 7.6Hz, 1H), 7.76(t, J = 7.6Hz, 1H), 7.43-7.55(m, 2H), 6.74(t, J = 12.0Hz, 1H), 5.97-6.05(m, 1H), 5.56(d, J = 10.0Hz, 1H), 5.40(d, J = 10.0Hz, 1H), 5.31(d, J = 17.2Hz, 1H), 4.94(t, J = 4.6Hz, 1H), 4.37(d, J = 12.0Hz, 1H), 3.85 (t, J = 9.6Hz, 1H), 3.62(t, J = 11.2Hz, 1H), 2.96-3.03 (m, 1H), 2.70-2.77 (s, 1H), 2.03-2.12(m, 7H), 1.77-1.88(m, 10H), 1.41-1.48(m, 1H).¹³C-NMR (100 MHz, CDCl₃): 175.0, 149.1, 148.1, 140.3, 134.7, 134.0, 133.0, 132.6, 132.3, 130.6, 129.7, 129.0, 126.8, 124.9, 124.6, 124.3, 124.1, 121.3, 119.2, 117.9, 68.4, 65.9, 60.8, 56.6, 55.3, 41.2, 39.1, 37.6, 36.1, 27.6, 26.6, 23.2, 23.0. HRMS (ESI+) calced for $[C_{39}H_{41}N_2O_2F_6Br-Br]^+$: 683.3067, found: 683.3057.

O-9- benzoyl-N- (3,5-Ditrifluoromethyl)benzylcinchoninium bromide (5j)

Prepared according to the general procedure, *N*-(3,5-Ditrifluoromethyl)benzyl-cinchoninium bromide (1.0 mmol) and benzoyl chloride (2.0 mmol) gave the product as white powder 0.585g with isolated yield 83%. $[\alpha]_D^{25}$ +77.8 (c 0.5, CHCl₃); mp 146-147 °C; v_{max} (film)/cm⁻¹ 2917, 2854, 1744, 1593; ¹H-NMR (400 MHz, CDCl₃): δ 9.08(d, *J* = 8.4Hz, 1H), 8.89(d, *J* = 4.4Hz, 1H), 8.90(bs, 2H), 8.24(d, *J* = 7.6Hz, 2H), 8.18(d, *J* = 8.4Hz, 1H), 8.03-8.06(m, 2H), 7.79-7.89(m, 3H), 7.65(t, *J* = 7.6Hz, 2H), 7.55(d, *J* = 4.4Hz, 1H), 7.05(t, *J* = 12.0Hz, 1H), 6.02-6.13(m, 2H), 5.47(d, *J* =10.4Hz, 1H), 5.24-5.32(m, 2H), 4.45(d, *J* = 12.0Hz, 1H), 3.83(t, *J* = 10.0 Hz, 1H), 3.45-3.55(m, 2H), 2.76-2.84(m, 1H), 2.63-2.69(m, 2H), 2.23(bs, 1H), 2.10-2.18(m, 1H), 1.57-1.63(m, 1H), ¹³C-NMR (100 MHz, CDCl₃): 164.2, 149.4, 148.5, 139.8, 135.3, 135.0, 134.3, 133.1, 132.7, 130.9, 130.1, 130.0, 129.9, 129.8, 129.6, 129.4, 128.0, 125.2, 124.3, 124.1. 121.4, 119.3, 118.1, 69.1, 66.1, 60.8, 56.5, 55.5, 37.6, 26.8, 23.5, 23.1; HRMS (ESI+) calced for [C₃₅H₃₁N₂O₂F₆Br-Br]⁺: 625.2284, found: 625.2279.

O-9-(2,4-difluorobenzoyl)-N- (3,5-Ditrifluoromethyl)benzylcinchoninium bromide (5k)

Prepared according to the general procedure, N-(3,5-Ditrifluoromethyl)benzyl-cinchoninium

bromide (1.0 mmol) and 2,4-difluorobenzoyl chloride (2.0 mmol) gave the product as white powder 0.55g with isolated yield 74%. $[\alpha]_D^{25}$ +25.2 (c 0.5, CHCl₃); mp 143-145°C; v_{max} (film)/cm⁻¹ 2925, 1730, 1615, 1500; ¹H-NMR (400 MHz, CDCl₃): δ 9.09(d, J = 12.0Hz, 1H), 8.88(d, J = 4.5Hz, 1H), 8.52(s, 2H), 7.97-8.14(m, 4H), 7.83(t, J = 7.6Hz, 1H), 7.75(bs, 1H), 7.52(d, J = 4.6Hz, 1H), 7.10-7.16(m, 3H), 5.98-6.07(m, 2H), 5.34(d, J = 10.2Hz, 1H), 5.19-5.26(m, 2H), 4.35(d, J = 12.0Hz, 1H), 2.04-2.11(m, 2H), 1.46-1.53(m, 1H), 2.76(dd, J = 21.0, 9.7Hz, 1H), 2.61(d, J=12.5Hz, 1H), 2.04-2.11(m, 2H), 1.46-1.53(m, 1H). ¹³C-NMR (100 MHz, CDCl₃): δ 168.4, 165.9, 165.8, 164.1, 164.0, 162.03, 162.04, 149.4, 148.4, 139.7, 135.7, 135.6, 134.38, 134.35, 133.3, 133.0, 132.6, 132.3, 130.7, 129.3, 126.9, 124.2 121.4, 119.5, 118.4, 113.3, 113.2, 113.1, 106.2, 106.0, 105.7, 70.4, 66.1, 60.8, 56.8, 55.3, 38.4, 27.2, 23.5, 23.1; HRMS (ESI+) calced for $[C_{35}H_{29}N_2O_2F_8Br-Br]^+$: 661.2096, found: 661.2090.

O-9-(2,4,6-trimethylbenzoyl)-N- (3,5-Ditrifluoromethyl)benzylcinchoninium bromide (51)

Prepared according to the general procedure, *N*-(3,5-Ditrifluoromethyl)benzyl-cinchoninium bromide (1.0 mmol) and 2,4,6-trimethylbenzoyl chloride (2.0 mmol) gave the product as white powder 0.55g with isolated yield 74%. $[\alpha]_D^{25}$ +53.8 (c 0.5, CHCl₃); mp 144-146°C; v_{max} (film)/cm⁻¹ 2925, 1735, 1611, 1461; ¹H-NMR (400 MHz, CDCl₃): δ 9.21(d, *J* = 8.0Hz, 1H), 9.06(bs, 1H), 8.33-8.35(m, 3H), 8.04-8.09(m, 2H), 7.93(t, *J* = 8.0Hz, 1H), 7.80(bs, 1H), 7.68(s, 1H), 7.23(d, *J* = 12.0Hz, 1H), 7.02(s, 2H), 5.96-6.00(m, 1H), 5.74-5.82(m, 1H), 5.24-5.27(m, 2H), 5.01(d, *J* =17.2Hz, 1H), 4.37(d, *J* =12.0Hz, 1H), 3.78-3.82(m, 1H), 3.44-3.50(m, 1H), 3.33(t, *J* = 10.8Hz, 1H), 2.79(bs, 1H), 2.51-2.58(m, 1H), 2.43(m, 6H), 2.37(s, 3H), 2.13(bs, 2H), 1.89(bs, 1H), 1.59(bs, 1H), .¹³C-NMR (100 MHz, CDCl₃): δ 168.0, 149.0, 148.6, 141.6, 139.6, 135.3, 135.2, 134.7, 134.1, 133.6, 133.3, 132.9, 132.6, 130.9, 130.1, 129.8, 129.7, 129.4, 128.4, 126.8, 125.0, 124.4, 124.1, 121.4, 119.2, 118.7, 118.6, 70.3 66.0, 60.4, 56.4, 54.5, 37.4, 27.0, 23.4, 23.2, 21.3, 21.2; HRMS (ESI+) calced for [C₃₈H₃₇N₂O₂F₆Br-Br]⁺: 667.2754, found: 667.2749.

O-9-cinamonyl-N- (3,5-Ditrifluoromethyl)benzylcinchoninium bromide (5m)

Prepared according to the general procedure, *N*-(3,5-Ditrifluoromethyl)benzyl-cinchoninium bromide (1.0 mmol) and cinamonyl chloride (2.0 mmol) gave the product as white powder 0.506g with isolated yield 69%. $[\alpha]_D^{25}$ -11.4 (c 0.5, CHCl₃); mp 151-152°C; v_{max} (film)/cm⁻¹ 2925, 1725, 1632; ¹H-NMR (400 MHz, CDCl₃): δ 8.90(d, *J* = 8.4Hz, 1H), 8.85(d, *J* = 4.5Hz, 1H), 8.53(s, 2H), 8.07(d, *J* = 8.4Hz, 1H), 7.91-7.95(m, 2H), 7.86(d, *J* = 16.0Hz, 1H), 7.76(t, *J* = 7.6Hz, 1H), 7.58(m, 3H), 7.43-7.45(m, 4H), 6.79(d, *J* = 12.0Hz, 1H), 6.67(d, *J* = 16.0Hz, 1H), 6.00-6.08(m, 1H), 5.77(d, *J* = 10.8Hz, 1H), 5.44(d, *J* = 9.6Hz, 1H), 5.32(d, *J* = 8.6Hz, 1H), 5.06(t, *J* = 9.6Hz, 1H), 4.40(t, *J* = 12.0Hz, 1H), 3.87(t, *J* = 9.8Hz, 1H), 3.52(t, *J* = 10.2Hz, 1H), 2.77(dd, *J* = 20.0, 10.0Hz, 1H), 2.64-2.68(m, 1H), 2.50(t, *J* = 12.0Hz, 1H), 2.09-2.12(m, 1H), 1.97-2.05(m, 1H), 1.82-1.88(m, 1H), 1.37-1.47(m, 1H). ¹³C-NMR (100 MHz, CDCl₃): δ 164.5, 149.5, 149.4, 148.5, 139.8, 135.4, 134.4, 133.4, 133.0, 132.7, 132.0, 130.8, 130.1, 129.9, 129.5, 129.4, 128.8, 125.0, 124.3, 124.2, 121.5, 119.0, 118.8, 118.2, 115.2, 68.9, 66.1, 60.9, 56.6, 55.5, 37.8, 27.0, 23.5, 22.9; HRMS (ESI+) calced for [C₃₇H₃₃N₂O₂F₆Br-Br]⁺: 651.2441, found: 651.2434.

3.2 general procedures for preparing O(9)-alkyl-quininium bromide

To a flask equipped with a stirring bar and a reflux condenser was added quinine (3.4 mmol), 9-bromomethyl anthracene (0.95 g, 3.5 mmol). Then the system was evacuated 3 times and backfilled with Ar before solvent 50 ml THF were added by syringe. The mixture was heated to reflux within given time (mostly 5 hours) under Ar atmosphere and then cooled to room temperature, poured into Et₂O (150 mL) with vigorous stirring. The resulting suspension was aged for 15 minutes and the precipitation was isolated by suction filtration. And the pure quininium bromide was obtained by recrystallized from MeOH/Et₂O at about 4°C. To the suspension of the quininium bromide above (1 mmol) in DCM (20ml) was added 50% KOH solution (2g H₂O/2g KOH) and alkyl bromide (4 mmol). The mixture was reacted for 48 hour, then water and additional DCM was added. The aqueous phase was extracted with DCM twice (5ml*2). The organic phase was combined and washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column

chromatography on silica gel with DCM and methanol as elute carefully, which was concentrated to ~ 1 mL and poured onto Et₂O (20 mL). then the precipitation was suction filtered and washed by Et₂O, providing the desired product as solid other than foam.

O-9- Anthracenylmethyl -N- Anthracenylmethyl quininium bromide (5e)

Isolated yield is 39% over two steps. $[\alpha]_D^{25}$ +19.0 (c 0.5, CHCl₃); mp 89-90°C; v_{max} (film)/cm⁻¹ 2925, 2852,1619; ¹H-NMR (400 MHz, CDCl₃): δ 8.78(d, J = 4.4Hz, 1H), 8.41-8.43(m, 3H), 8.23(s, 1H), 8.01-8.07(m, 3H), 7.92(d, J = 8.4Hz, 2H), 7.82(d, J = 8.4Hz, 2H), 7.47-7.52(m, 4H), 7.41(d, J = 2.8Hz, 1H), 7.34-7.38(m, 4H), 7.21-7.37(m, 2H), 5.72-5.82(m, 1H), 5.49(dd, J = 12.0, 18.6Hz, 2H), 5.08-5.11(m, 1H), 4.82-4.84(m, 1H), 4.80(m, 1H), 4.22-4.29(m, 2H), 3.50(s, 3H), 2.80(d, J = 10.6Hz, 1H), 2.53(d, J = 10.6Hz, 1H), 2.32(dd, J = 6.8, 2.4Hz, 1H), 2.00-2.05(m, 2H), 1.89-1.94(m, 2H), 1.27(t, J = 7.2Hz, 1H), 1.11(bs, 1H), 0.95-0.99(m, 1H), 0.70-0.73(m, 1H). ¹³C-NMR (100 MHz, CDCl₃): δ 158.1, 151.8, 147.8, 145.1, 141.9, 138.7, 131.65, 131.63, 131.61, 131.5, 131.5, 131.46, 131.1, 130.7, 129.13, 129.12, 129.0, 128.1, 127.7, 127.4, 126.2, 125.6, 125.5, 125.1, 125.1, 125.0, 124.4, 122.7, 122.0, 118.7, 115.6, 103.7, 64.0, 59.6(bs), 55.4, 55.4, 54.6, 54.1, 53.2(bs), 44.1, 39.5, 29.5, 27.9; HRMS (ESI+) calced for [C₅₀H₄₅N₂O₂Br-Br]⁺: 705.3476, found: 705.3470.

O-9-(3,5-Ditrifluoromethyl)-N- Anthracenylmethyl quininium bromide (5f)

Isolated yield is 42% over two steps. $[\alpha]_D^{25}$ +15.8 (c 0.5, CHCl₃); mp 62-64°C; v_{max} (film)/cm⁻¹ 2925, 2853,1620; ¹H-NMR (400 MHz, CDCl₃): δ 8.74(d, J = 4.4Hz, 1H), 8.49(d, J = 8.4Hz, 2H), 8.40(s, 1H), 7.99-8.07(m, 3H), 7.81(s, 1H), 7.66-7.68(m, 2H), 7.44-7.52(m, 5H), 7.37-7.40(m, 1H), 7.23-7.26(m, 1H), 6.08-6.17(m, 1H), 5.17-5.21(m, 1H), 5.01-5.04(m, 1H), 4.99(s, 1H), 4.56-4.59(m, 2H), 4.34-4.40(m, 2H), 3.79(s, 3H), 2.96(d, J =10.6Hz, 1H), 2.86(d, J =10.6Hz, 1H), 2.54(dd, J = 11.0, 2.4Hz, 1H), 2.32-2.39(m, 1H), 2.18-2.31(m, 3H),

1.50-2.10(m, 2H), 1.38-1.49(m, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ 158.5, 151.4, 147.8, 144.9, 140.6, 140.2, 138.6, 132.1, 131.8, 131.7, 131.6, 130.4, 129.1, 127.8, 127.5, 125.55, 125.46, 125.0, 124.7, 122.7, 122.0, 121.9, 118.0, 116.0, 103.0, 69.8, 59.6(bs), 55.6, 54.8, 53.6, 45.4, 44.1, 39.7, 29.5, 28.5; HRMS (ESI+) calced for $[C_{44}H_{39}N_2O_2F_6Br-Br]^+$: 741.2910, found: 741.2907.

2.3 doubly-quaternized phase transfer catalysts

N'-(3,5-Ditrifluoromethyl)-N- (3,5-Ditrifluoromethyl) quininium dibromide (5n)

According to the procedures^[8] by N. Yasuda, to a flask equipped with a stirring bar and a reflux condenser was added cinchonine (3.4 mmol), benzyl bromide derivative (3.5 mmol). Then the system was evacuated 3 times and backfilled with Ar before solvent 50 ml THF were added by syringe. The mixture was heated to reflux within given time (mostly 5 hours) under Ar atmosphere and then cooled to room temperature, poured into Et₂O (150 mL) with vigorous stirring. The resulting suspension was aged for 15 minutes and the precipitation was isolated by suction filtration. And the pure cinchoninium bromide was obtained by recrystallized from MeOH/Et₂O at about 4°C. To a flask equipped with a stirring bar and a reflux condenser was added N-(3,5-Ditrifluoromethyl)benzyl-cinchoninium bromide (1.0 mmol), 3,5-ditrifluoromethylbenzyl bromide (0.322 g, 1.05 mmol). Then the system was evacuated 3 times and backfilled with Ar before solvent 10 ml isoproponal and 1ml DMF were added by syringe. The mixture was heated to reflux within 5 hours under Ar atmosphere and then cooled to room temperature, poured into EA with vigorous stirring. The resulting suspension was aged for 15 minutes and the precipitation was isolated by suction filtration. washed by Et₂O, providing the desired product 0.73g as a light yellow solid. $[\alpha]_D^{25}$ +113.6 (c 0.5, CH₃OH); mp 241-242°C; v_{max} (film)/cm⁻¹ 3437,1618; ¹H-NMR (400 MHz, DMSO): δ 9.96(d, J =6.0Hz, 1H), 8.98(d, J = 8.4Hz, 1H), 8.67-8.71(m, 3H), 8.55(d, J = 6.0Hz, 1H), 8.29-8.34(m, 4H), 8.13-8.17(m, 2H), 7.33(d, J = 4.0Hz, 1H), 6.84(s, 1H), 6.65(s, 2H),6.00-6.09(m, 1H), 5.71(d, J =12.4Hz, 1H), 5.35(d, J =12.4Hz, 1H), 5.26(d, J =12.8Hz, 2H), 4.32-4.41(m, 2H), 4.02-4.11(m, 1H), 3.50-3.56(m, 2H), 3.07-3.14(m, 1H), 2.64-2.71(m, 1H), 2.29(t, J = 11.6.Hz, 1H), 1.90(s, 1H), 1.77-1.79(m, 2H), 1.16-1.23(m, 1H).¹³C-NMR (100) MHz, DMSO): δ159.0, 151.1, 138.1, 137.9, 137.6, 136.4, 135.6, 132.1, 131.8, 131.8, 131.7, 131.5, 131.4, 131.2, 130.1, 128.1, 128.0, 127.2, 125.4, 125.3, 125.0, 123.8, 122.7, 122.60, 122.56, 120.4, 120.0, 118.1, 68.2, 66.2, 60.9, 59.5, 56.6, 55.0, 37.7, 27.2, 23.9, 21.5. HRMS (ESI+) calced for $[C_{37}H_{32}N_2OF_{12}]/2^+$: 374.1156, found: 374.1152.

4. The procedures for the synthesis of cyanation-transfer reagents

Typical procedures

Following a reported procedure,^[8] NaIO4 (4.04 mmol,) and 2-iodo benzoic acid derivatives (4mmol) were suspended in AcOH/H₂O (2.5ml:5.0ml) under air with vigorous stirring. The mixture was refluxed for 4 h, then diluted with cold water (50 mL). After vigorous stirring for 15 minutes, the precipitation was suction filtered and washed with ice water and cold acetone, respectively. The pure *1-Hydroxy-1,2-benziodoxol-3-(1H)-one derivatives* was obtained by vacuum desiccation at 50°C as a white solid.

The *1-Hydroxy-1,2-benziodoxol-3-(1H)-one derivatives* (2 mmol) was put into 2 ml Ac₂O, then the suspension was heated at 140 °C, turning clear after several minutes when the reaction was over. The mixture was cooled and crystallized at -18°C for 5 hours. The crystal was further dried by vacuum desiccation to provide the *1-Acetoxy-1,2-benziodoxol-3-(1H)-one derivatives*.

To the 5ml DCM solution of *1-Acetoxy-1,2-benziodoxol-3-(1H)-one derivatives* (1mmol) under Ar, added was 2 mmol TMSCN. Then TMSOTf (1 mol %) was added by syringe, with solid appearing. After 15-30 minutes stirring, the mixture was diluted with 15ml PE and filtered. And the collection was further washed by PE to give the desired product *1-Cyanyo-1,2-benziodoxol-3-(1H)-one derivative*.

1-Hydroxy-1,2-benziodoxol-3-(1H)-one^[9]

¹H-NMR (400 MHz, DMSO): δ 7.95-8.04(m, 3H), 7.86(d, J = 8.0Hz, 1H), 7.70-7.73(m, 1H). ¹³C-NMR (100 MHz, DMSO): δ 168.2, 135.0, 132.0, 131.6, 130.9, 126.8, 120.9.

1-Acetoxy-1,2-benziodoxol-3-(1H)-one^[9]

¹H-NMR (400 MHz, CDCl₃): δ 8.16-8.18 (m, 1H), 7.95(d, J = 8.2Hz, 1H), 7.86-7.90(m, 1H), 7.66(t, J = 7.3Hz, 1H), 2.21(s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 176.4, 168.2, 136.2, 133.1, 131.3, 129.3, 129.0, 118.4, 20.3.

1-Cyano-1,2-benziodoxol-3-(1H)-one^[10](1a)

Isolated yield from 1-Acetoxy-1,2-benziodoxol-3-(1H)-one is 95% as white solid. ¹H-NMR (400 MHz, DMSO): δ 8.32 (d, J = 8.0Hz, 1H), 8.16(d, J = 8.0Hz, 1H), 8.02-8.07(m, 1H), 7.90-7.94(m, 1H). ¹³C-NMR (100 MHz, DMSO): δ 167.2, 137.0, 132.5, 132.3, 130.7, 128.3, 117.9, 88.4, NMR data correspond to the reported ones ^[10].

4-Metheoxyl-1-acetoxy-1,2-benziodoxol-3-(1H)-one

White solid. Isolated yield from 2-iodo-4-methoxybenzoic acid is 82%. M.p.171-172°C, ¹H-NMR (400 MHz, CDCl₃): δ 8.10(d, J = 8.4Hz, 1H), 7.46(s, 1H), 7.17(d, J = 8.4Hz, 1H), 3.96(s, 3H), 2.24(s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 176.6, 168.3, 166.4, 134.2, 121.4, 120.6, 117.3, 114.8, 56.5, 20.6.

4-Metheoxyl-1-cyano-1,2-benziodoxol-3-(1H)-one (1c)

White solid. Yield 90%. M.p. 165-166°C, v_{max} (KBr)/cm⁻¹ 2163, ¹H-NMR (400 MHz, DMSO): δ 8.01(d, J = 8.4Hz, 1H), 7.72(s, 1H), 7.44(d, J = 8.4Hz, 1H), 3.94(s, 3H). ¹³C-NMR (100 MHz, DMSO): δ 167.3, 166.2, 133.5, 123.3, 119.9, 118.4, 113.6, 89.6, 57.1; HRMS (ESI+) calced for [C₉H₇O₃NI]⁺: 303.9465, found: 303.9465.

4,5-Dimetheoxyl-1-hydroxy-1,2-benziodoxol-3-(1H)-one^[11]

¹H-NMR (400 MHz, DMSO): δ 7.92(s, 1H), 7.44(s, 1H), 7.22(s, 1H), 3.88(bs, 6H). ¹³C-NMR (100 MHz, DMSO): δ 168.8, 155.1, 151.6, 124.9, 113.4, 111.7, 108.4, 57.1, 56.9.

4,5-Dimetheoxyl-1-acetoxy-1,2-benziodoxol-3-(1H)-one

White solid. Yield 94%. M.p. 213-214°C, ¹H-NMR (400 MHz, CDCl₃): δ 7.63(s, 1H), 7.35(s, 1H), 4.02(s, 3H), 4.00(s, 3H), 2.24(s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 176.6, 168.6, 156.2, 152.3, 122.1, 113.9, 110.3, 109.2, 56.9, 56.8, 20.6

4,5-Dimetheoxyl-1-cyano-1,2-benziodoxol-3-(1H)-one (1d)

White solid. Yield 96%. M.p. 213-214°C, v_{max} (KBr)/cm⁻¹ 2164, ¹H-NMR (400 MHz, DMSO): δ 7.61(s, 1H), 7.51(s, 1H), 3.92(s, 3H), 3.90(s, 3H). ¹³C-NMR (100 MHz, DMSO): δ 167.3, 155.9, 152.6, 123.8, 113.4, 109.9, 107.7, 89.4, 56.9, 55.6. HRMS (ESI+) calced for [C₁₀H₉O₄NI]⁺: 333.9571, found: 333.9569.

3-Methyl-1-acetoxy-1,2-benziodoxol-3-(1H)-one

White solid. Yield 91%. M.p. 183-184°C, ¹H-NMR (400 MHz, CDCl₃): δ 8.08(d, J = 7.6Hz, 1H), 7.67(d, J = 6.4Hz,1H), 7.57(t, J = 7.2Hz,1H), 2.65(s, 3H), 2.18(s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 176.7, 168.8, 140.7, 140.5, 132.3, 131.3, 129.8, 119.5, 23.0, 21.0.

3-Methyl-1-acetoxy-1,2-benziodoxol-3-(1H)-one (1e)

The reaction was conducted at 0 °C for 10mins to provide white solid. Yield 53%.(liable to decompose) M.p. 119-121°C, v_{max} (KBr)/cm⁻¹ 2164, ¹H-NMR (400 MHz, DMSO): δ 7.91(d, J = 7.6Hz, 1H), 7.85(d, J = 7.2Hz, 1H), 7.65(t, J = 7.4Hz, 1H), 2.76(s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 167.8, 140.7, 139.5, 132.3, 131.62, 131.58, 121.6, 89.3, 25.2. HRMS (ESI+) calced for [C₉H₇O₂NI]⁺: 287.9516, found: 287.9517.

4-Trifluoromethyl-1-acetoxy-1,2-benziodoxol-3-(1H)-one

White solid. Yield 78% over two steps. M.p. 149-151°C, ¹H-NMR (400 MHz, CDCl₃): δ 8.37(d, J = 8.0Hz, 1H), 8.25(s, 1H), 7.97(d, J = 8.0 Hz, 1H), 2.29(s, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ 176.8, 166.9, 138.3, 137.9, 133.8, 132.6, 128.91, 128.87, 127.23, 127.19, 124.4, 121.7, 118.9, 20.5.

4-Trifluoromethyl-1-cyano-1,2-benziodoxol-3-(1H)-one (1f)

white solid. Yield 91%. M.p. 156-157°C, v_{max} (KBr)/cm⁻¹ 2163, ¹H-NMR (400 MHz, DMSO): δ 8.46(s, 1H), 8.27-8.31(m, 2H). ¹³C-NMR (100 MHz, DMSO): δ 166.6, 136.4, 136.0, 135.2, 133.6, 130.2, 125.91, 125.87, 125.4, 122.7, 119.9, 88.8. HRMS (ESI+) calced for $[C_9H_4O_2NIF_3]^+$: 341.9233, found: 341.9230.

5-Nitro-1-hydroxy-1,2-benziodoxol-3-(1H)-one^[11]

H-NMR (400 MHz, DMSO): δ 8.70(d, J = 2.4, 1H), 8.55(d, J = 2.4Hz, 1H), 8.51(s, 1H), 8.09(d, J = 8.8Hz, 1H). ¹³C-NMR (100 MHz, DMSO): δ 166.7, 150.5, 134.2, 129.0, 128.9, 128.5, 125.6.

5-Nitro-1-acetoxy-1,2-benziodoxol-3-(1H)-one^[12]

¹H-NMR (400 MHz, CDCl₃): δ 9.03(d, J = 2.4Hz, 1H), 8.71(dd, J = 2.4, 8.8Hz, 1H), 8.27(d, J = 8.8Hz, 1H), 2.30(s, 3H). ¹³C-NMR (100 MHz, DMSO): δ 175.2, 166.7, 150.6, 132.5, 131.0, 130.3, 127.7, 126.2, 20.5.

5-Nitro-1-cyano-1,2-benziodoxol-3-(1H)-one (1g)

white solid. Yield 80%. M.p. 186-187°C, v_{max} (KBr)/cm⁻¹ 2164, ¹H-NMR (400 MHz, DMSO): δ 8.77(d, J = 8.8Hz, 1H), 8.63(s, 1H), 8.54(d, J = 8.8Hz, 1H). ¹³C-NMR (100 MHz, DMSO): δ 165.7, 151.3, 133.0, 130.9, 130.8, 126.1, 125.2, 88.2; HRMS (ESI+) calced for [C₈H₄O₂NI]⁺: 318.9210, found: 318.9209.

1-Hydroxy-1,2-napthiodoxol-3-(1H)-one^[13]

¹H-NMR (400 MHz, DMSO): $\delta 8.67(s, 1H)$, 8.38(s, 1H), 8.28(d, J = 8.0Hz, 1H), 8.18-8.20(m, 2H), 7.71-7.78(m, 2H). ¹³C-NMR (100 MHz, CDCl₃): $\delta 168.5$, 136.6, 133.5, 132.5, 130.0, 129.6, 128.8, 128.7, 128.6, 127.1, 116.6.

1-Acetoxy-1,2-napthiodoxol-3-(1H)-one

white solid. Yield 96%. M.p. 195-197°C, ¹H-NMR (400 MHz, CDCl₃): $\delta 8.72(s, 1H)$, 8.35 (s, 1H), 8.05(d, J = 8.0Hz, 1H), 7.96(d, J = 8.0Hz, 1H), 7.68-7.77(m, 2H), 2.31(s, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta 176.7$, 168.6, 137.7, 134.5, 133.6, 130.0, 129.9, 129.8, 129.2, 128.4, 124.6, 112.7, 20.7.

1-Cyano-1,2-napthiodoxol-3-(1H)-one (1h)

white solid. Yield 94%. M.p. 157-158°C, v_{max} (KBr)/cm⁻¹ 2164, ¹H-NMR (400 MHz, DMSO): δ 8.73(d, J = 12.0Hz, 2H), 8.27(d, J = 7.6Hz, 1H), 8.19(d, J = 7.6Hz, 1H), 7.75-7.82(m, 2H). ¹³C-NMR (100 MHz, DMSO): δ 167.4, 137.5, 134.3, 133.4, 130.3, 130.2, 129.6, 128.8, 128.3, 126.7, 113.8, 88.8; HRMS (ESI+) calced for $[C_{12}H_7O_2NI]^+$: 323.9516, found: 323.9515.

4-tert-butyl-2-iodo-1-methylbenzene^{[14}]

H-NMR (400 MHz, CDCl₃): δ 7.85(s, 1H), 7.30(d, J = 8.0Hz, 1H), 7.19(d, J = 8.0Hz, 1H), 2.43(s, 3H), 1.32(s, 9H). ¹³C-NMR (100 MHz, CDCl₃): δ 150.9, 138.5, 136.1, 129.5, 125.5, 101.6, 34.4, 31.5, 27.7.

4-tert-butyl-2-iodobenzoic acid

procedures^[15], From а modification of known to the solution of 4-tert-butyl-2-iodo-1-methylbenzene (30mmol, 8.22g) in H₂O/pyridine(96ml:120 ml), was added KMnO4 (19g, 120mmol) and "BuN₄I (110mg, 1 mol%). The mixture was heated to reflux for 3 days when the solution turned clear. The hot solution was collected, while the black solid was extracted by EA. Then the former and latter was combined to get layered, the aqueous phase was further extracted by EA. The combined organic phase washed by 10 N HCl to adjust Ph 4. Then it was basified by 50% KOH solution to adjust Ph 10. The organic phase was collected, washed by brine and dried over anhydrous Na₂SO₄, and concentrated under reduced pressure, to provide the unreacted staring material 3.6g. While the aqueous phase was acidified by 2 N HCl to adjust Ph 10, it was extracted by EA, which was washed by brine and dried over anhydrous Na₂SO₄, and concentrated under reduced pressure, to provide the 4-tert-butyl-2-iodobenzoic acid 4.5g as a colorless solid. 49% yield. M.p. 162-163 ^oC. ¹H-NMR (400 MHz, CDCl₃): δ8.04 (d, J = 1.8Hz, 1H), 7.97(d, J = 8.2Hz, 1H), 7.45(dd, J = 8.2, 1.8Hz, 1H), 1.31(s, 9H). ¹³C-NMR (100 MHz, CDCl₃): δ 171.6, 158.0, 139.6, 132.3, 130.2, 125.5, 95.5, 35.1, 31.1.

4-^tBu-1-hydroxy-1,2-benziodoxol-3-(1H)-one

White solid. Yield 93% .M.p 190-193°C. ¹H-NMR (400 MHz, DMSO): δ 8.00(s, 1H), 7.92(d, *J* = 7.8Hz, 1H), 7.81(s, 1H), 7.74(d, *J* = 7.8Hz, 1H), 1.35(s, 9H). ¹³C-NMR (100 MHz, DMSO): δ 168.6, 158.8, 131.8, 130.0, 128.8, 123.3, 121.5, 36.5, 31.8.

4-^tBu-1-Acetoxy-1,2-benziodoxol-3-(1H)-one

White solid. Yield 95% .M.p 150-153°C. ¹H-NMR (400 MHz, CDCl₃): δ 8.14 (d, J = 8Hz, 1H), 7.94(d, J = 1.6Hz, 1H), 7.71(dd, J = 1.6, 8Hz, 1H), 2.26(s, 3H), 1.41(s, 9H). ¹³C-NMR (100 MHz, CDCl₃): δ 176.4, 168.5, 161.2, 133.0, 129.1, 126.4, 125.8, 119.2, 36.4, 31.3, 20.5.

4-^tBu-1-Acetoxy-1,2-benziodoxol-3-(1H)-one (1b)

white solid. Yield 93%. M.p. 176-177°C, v_{max} (KBr)/cm⁻¹ 2162, ¹H-NMR (400 MHz, CDCl₃): δ 8.46(s, 1H), 8.25(d, J = 7.6Hz, 1H), 7.84(d, J = 8.0Hz, 1H), 1.44(s, 9H). ¹³C-NMR (100 MHz, CDCl₃): δ 168.7, 162.1, 132.9, 130.0, 127.5, 124.9, 117.4, 85.6, 36.7, 31.3; HRMS (ESI+) calced for [C₁₂H₁₃O₂NI]⁺: 329.9986, found: 329.9982.

5. Preparation of β-keto esters

Methyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate^[16] (3b)

Following the known procedure,^[16] the product was obtained as light yellow solid in 86% yield. ¹H-NMR (400 MHz, CDCl₃): δ 7.78(d, *J* =7.6Hz, 1H), 7.61-7.65(m, 1H), 7.51(d, *J* =7.6Hz, 1H), 7.38-7.42(m, 1H), 3.80(s, 3H), 3.74(dd, *J* =8.4, 4.0Hz, 1H), 3.55-3.60(m, 1H), 3.38(dd, *J* =8.4, 17.2Hz, 1H), Minor peaks due to enol observed at 3.86(s, 3H), 3.52(s, 2H);

¹³C-NMR (100 MHz, CDCl₃): δ 199.6, 169.7, 153.8, 135.6, 135.4, 128.0, 126.7, 124.9, 53.3, 53.0, 30.4, Minor peaks due to enol observed at 129.6, 127.0, 124.9, 120.9, 51.4, 32.7; HRMS (ESI+) calced for $[C_{11}H_{10}O_2Na]^+$: 213.0522, found: 213.0525.

Tert-butyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate^[3] (3a)

Following the known procedure,^[3] the product was obtained as pink oil in 82% yield. ¹H-NMR (400 MHz, CDCl₃): δ 7.74(d, *J* =7.6Hz, 1H), 7.57-7.61(m, 1H), 7.47(d, *J* =7.6Hz, 1H), 7.34-7.38(m, 1H), 3.60(dd, *J* =8.0, 2.0Hz, 1H), 3.55-3.60(m, 1H), 3.31(dd, *J* =8.0, 17.2Hz, 1H), 1.48(s, 9H), Minor peaks due to enol observed at 3.50-3.51(s, 2H), 1.56(s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 200.2, 168.5, 153.8, 135.6, 135.4, 127.8, 126.7, 124.7, 82.2, 54.5, 30.5, 28.2, Minor peaks due to enol observed at 129.2, 126.8, 124.8, 120.6, 81.1, 33.0, 28.6. HRMS (ESI+) calced for [C₁₄H₁₆O₃Na]⁺: 255.0992, found: 255.0994.

Tert-butyl 3-methyl-2-oxocyclopent-3-enecarboxylate^[17] (3q)

Following the known procedure,^[17] the product was obtained as colorless oil in 93% yield. ¹H-NMR (400 MHz, CDCl₃): δ 7.37(d, J =1.0Hz, 1H), 3.30(dd, J =2.1, 4.8Hz, 1H), 2.84-2.90(m, 1H), 2.71-2.78(m, 1H), 1.78(d, J =1.0Hz, 3H), 1.48(s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 203.3, 168.5, 157.7, 140.4, 81.8, 52.2, 30.9, 28.1, 10.4. HRMS (ESI+) calced for [C₁₁H₁₆O₃Na]⁺: 219.0992, found: 212.0994.

Tert-butyl 3-hydroxybenzofuran-2-carboxylate (3t)

Following the known procedure,^[18] the product was obtained as colorless solid in 90% yield. ¹H-NMR (400 MHz, CDCl₃): δ enol form: 8.27(bs, 1H), 7.71 (d, *J* =8.0Hz, 1H), 7.44-7.45(m, 2H), 7.25-7.28(m, 1H), 1.66(s, 9H), Minor peaks of ketone form observed at 1.52(s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 153.5, 129.1, 127.1, 125.0, 123.1, 120.6, 120.4, 113.8, 112.8, 83.6, 28.6. HRMS (ESI+) calced for [C₁₁H₁₆O₃Na]⁺: 257.0784, found: 257.0785.

Tert-butyl 1-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalene-2-carboxylate (3r)

Following the known procedure,^[3] the product was obtained as colorless solid in 76% yield from 2,3-dihydro-1H-cyclopenta[b]naphthalen-1-one. m.p. 99-100°C. v_{max} (KBr)/cm⁻¹ 2973, 2926, 1712, 1642, ¹H-NMR (400 MHz, CDCl₃): δ *keto form:* 8.32(s, 1H), 7.96(d, J = 8.4Hz, 1H), 7.89(s, 1H), 7.83-7.85(m, 2H), 7.56-7.60(m, 1H), 3.71(dd, J = 8.8, 4.8Hz, 1H), 3.63-3.68(m, 1H), 3.50(dd, J = 8.8, 17.2Hz, 1H), 1.48(s, 9H), *enol form:* 8.06(s, 1H), 7.91-7.93(m,1H), 7.83-7.85(m, 1H), 7.46-7.50(m, 3H), 3.58(m, 2H), 1.58(s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 200.4, 168.6, 146.1, 139.1, 137.5, 135.9, 134.3, 133.3, 132.5, 130.5, 129.0, 128.9, 128.0, 127.9, 126.5, 126.4, 125.8, 125.6, 124.8, 123.2, 120.1, 119.7, 112.0, 105.6, 82.2, 81.4, 55.2, 32.2, 30.0, 28.6, 28.2. HRMS (ESI+) calced for [C₁₈H₁₈O₃Na]⁺: 305.1148, found: 305.1150.

General procedures by transesterification

Following a literature procedure,^[1] to a flask equipped with a Dean-Stark trap and reflux condenser was added β -keto methyl ester (3 mmol), corresponding alcohol, the transesterification catalyst DMAP or ZnO and toluene or cyclohexane. The mixture was refluxed under Ar until complete conversion was observed by TLC, then concentrated under reduced pressure and the crude residue was purified by column chromatography.

2-Phenylpropan-2-yl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate^[1](3c)

Following the general procedure, **3b** (3 mmol) was allowed to react with 2-phenylpropan-2-ol (653 mg, 4.8 mmol) in the presence of ZnO (48 mg, 0.6 mmol) and 25 mL of toluene overnight. the desired product was obtained as pink solid after column chromatography (silica gel, petroleum ether/ethyl acetate = 10/1) and recrystallization from PE and ether at -18°C (45% yield). ¹H-NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* =7.6Hz, 1H), 7.56-7.60(m, 1H), 7.41-7.47(m, 3H), 7.31-7.39(m, 3H), 7.20-7.24(m, 1H), 3.72 (dd, *J* =4.0, 8.2Hz, 1H), 3.45-3.52(m, 1H), 3.31 (dd, *J* =17.2, 8.0Hz, 1H), 1.83(s, 3H), 1.80(s, 3H), Minor peaks due to enol observed at 3.61 (d, 2H), 1.89 (s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 199. 8, 167.5, 153.8, 145.5, 135.5, 135.4, 128.4, 127.8, 127.2, 126.7, 124.7, 124.5, 83.4, 54.3, 30.2, 29.0, 28.4.HRMS (ESI+) calced for [C₁₉H₁₈O₃Na]⁺: 317.1148, found: 317.1148.

1,1-diphenylethyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate^[1] (3d)

Following the general procedure, **3b** (3 mmol) was allowed to react with 1,1-diphenylethanol (951 mg, 4.8 mmol) in the presence of ZnO (48 mg, 0.6 mmol) and 25 mL of toluene overnight. The desired product was obtained as pink solid after column chromatography (silica gel, petroleum ether/ethyl acetate = 10/1) and recrystallization from ethanol and ether at -18°C (39% yield). ¹H-NMR (400 MHz, CDCl₃): δ 7.80 (d, *J* =7.6Hz, 1H), 7.60-7.63(m, 1H), 7.49 (d, *J* =7.6Hz, 1H), 7.20-7.44(m, 11H), 3.72 (dd, *J* =3.8, 8.0Hz, 1H), 3.50-3.55(m, 1H), 3.34 (dd, *J* =17.2, 8.0Hz, 1H), 1.83(s, 3H), 1.80(s, 3H), Minor peaks due to enol observed at 3.74 (s, 2H), 2.32 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.6, 167.0, 153.8, 145.6, 145.3, 135.5, 128.4, 128.3, 128.0, 127.5, 127.4, 126.8, 126.2, 126.2, 126.0, 124.8, 86.3, 54.5, 30.1, 26.9. HRMS (ESI+) calced for [C₂₄H₂₀O₃Na]⁺: 379.1305, found: 379.1304.

Anthracen-9-ylmethyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate^[1] (3e)

Following the general procedure, **3b** (3 mmol) was allowed to react with anthracen-9-ylmethanol (1374 mg, 3.75 mmol) in the presence of DMAP (48 mg, 0.6 mmol) and 25 mL of hexane overnight. The desired product was obtained as yellow solid after column chromatography (silica gel, PE/DCM = 1/1) and recrystallization from hot hexane (85% yield). ¹H-NMR (400 MHz, CDCl₃): δ *keto form*:8.51(s, 1H), 8.38(d, *J* =8.8Hz, 2H), 8.05(s, *J* =8.8Hz, 2H), 7.76(d, *J* =7.6Hz, 1H), 7.56-7.61(m, 3H), 7.49-7.51(m, 2H), 7.43(d, *J* =7.6Hz, 1H), 7.35(bs, 1H), 6.33-6.35(m, 2H), 3.72(dd, *J* =8.0, 4.0Hz, 1H), 3.47-3.53(m, 1H), 3.30(dd, *J* =8.4, 17.2Hz, 1H), *enol form*: 8.53(s, 1H), 8.42(d, *J* =8.8Hz, 2H), 8.01-8.06(m, 2H), 7.56-7.61(m, 3H), 7.49-7.51(m, 2H), 7.37-7.39(m, 3H), 6.14-6.17(m, 2H), 3.39(s, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.5, 169.8, 153.7, 135.5, 131.6, 131.4, 129.6, 129.4, 129.3, 128.0, 127.0, 126.9, 126.7, 125.4, 124.9, 124.2, 60.5, 53.6, 30.6, Minor peaks due to enol observed at 143.6, 137.0, 135.5, 131.6, 129.5, 126.5, 125.9, 124.9, 121.0, 102.5, 58.7, 32.8. HRMS (ESI+) calced for [C₂₅H₁₈O₃Na]⁺: 389.1148, found: 389.1149.

1-Adamantyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate^[1] (3f)

Following the general procedure, 3b (3 mmol) was allowed to react with 1-adamantanol (729

mg, 4.8 mmol) in the presence of ZnO (48 mg, 0.6 mmol) and 25 mL of toluene overnight. The desired product was obtained as pink solid after column chromatography (silica gel, PE/EA = 10/1) (42% yield). ¹H-NMR (400 MHz, CDCl₃): δ 7.76(d, *J* =7.6Hz, 1H), 7.59-7.63(m, 1H), 7.49(d, *J* =7.6Hz, 1H), 7.36-7.40(m, 1H), 3.61(dd, *J* =8.0, 4.0Hz, 1H), 3.47-3.52(m, 1H), 3.33(dd, *J* =8.0, 17.2Hz, 1H), 2.15(s, 9H), 1.66(s, 6H), Minor peaks due to enol observed at 3.47 (s, 2H), 2.23(s, 9H), 1.71(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 200.2, 168.1, 153.9, 135.7, 135.3, 127.8, 126.7, 124.7, 82.3, 54.7, 41.4, 36.3, 31.0, 30.5, Minor peaks due to enol observed at 129.2, 126.8, 120.7, 45.5, 42.0, 36.4, 33.1, 30.9. HRMS (ESI+) calced for [C₂₀H₂₂O₃Na]⁺: 333.1461, found: 333.1457.

1-Adamantyl 4-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3g)

Following the general procedure, Methyl 4-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3 mmol) was allowed to react with 1-adamantanol (912 mg, 6 mmol) in the presence of ZnO (48 mg, 0.6 mmol) and 25 mL of toluene overnight. The desired product was obtained as pink solid after column chromatography (silica gel, PE/EA = 10/1) (76% yield). m.p. 93-94°C, v_{max} (film)/cm⁻¹ 2914, 2852, 1712, 1646. ¹H-NMR (400 MHz, CDCl₃): δ 7.60(d, J = 7.6Hz, 1H), 7.41(d, J = 7.2Hz, 1H), 7.26-7.32(m, 1H), 3.62(dd, J = 8.4, 4.0Hz, 1H), 3.33-3.39(m, 1H), 3.21 (dd, J = 17.2, 8.0Hz, 1H), 2.37(s, 3H), 2.15(s, 9H), 1.66(s, 6H), Minor peaks due to enol observed at 3.33-3.49(m, 2H), 2.24(s, 9H), 1.71(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 200.5, 168.3, 152.9, 136.0, 135.8, 135.5, 128.1, 122.1, 82.3, 54.7, 41.4, 36.3, 31.1, 29.5, 17.9, Minor peaks due to enol observed at 130.3, 127.2, 118.4, 42.0, HRMS (ESI+) calced for $[C_{21}H_{24}O_3Na]^+$: 347.1618, found: 347.1616.

1-Adamantyl 6-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3h)

Following the general procedure, Methyl 6-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3 mmol) was allowed to react with 1-adamantanol (912 mg, 6 mmol) in the presence of ZnO (48 mg, 0.6 mmol) and 25 mL of toluene overnight. The desired product was obtained as pink solid after column chromatography (silica gel, PE/EA = 10/1) (48% yield). m.p. 102-104°C, v_{max} (film)/cm⁻¹ 2911, 2852, 1732, 1711, 1643. ¹H-NMR (400 MHz, CDCl₃): δ 7.55(s, 1H), 7.36-7.43(m, 1H), 7.26-7.32(m, 1H), 3.60(dd, *J* =8.0, 4.0Hz, 1H), 3.40-3.45(m, 1H), 3.27 (dd, *J* =17.2, 8.0Hz, 1H), 2.40(s, 3H), 2.14(s, 9H), 1.65(s, 6H), Minor peaks due to enol observed at 3.40-3.45(m, 2H), 2.41(s, 3H), 2.23(s, 9H), 1.71(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 200.3, 168.3,

151.3, 137.8, 136.6, 135.8, 126.3, 124.6, 82.2, 55.1, 41.4, 36.3, 31.0, 30.2, 21.2, Minor peaks due to enol observed at 130.2, 124.5, 121.1, 45.5, 42.0, 36.4, 31.1 .HRMS (ESI+) calced for $[C_{21}H_{24}O_3Na]^+$: 347.1618, found: 347.1616.

1-Adamantyl 6-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate^[1] (3i)

Following the general procedure, methyl 6-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3 mmol) was allowed to react with 1-adamantanol (912 mg, 6 mmol) in the presence of ZnO (48 mg, 0.6 mmol) and 25 mL of toluene overnight. The desired product was obtained as white solid after column chromatography (silica gel, PE/EA = 5/1) (53% yield). m.p. 122-124°C, v_{max} (film)/cm⁻¹ 2912, 2853, 1731, 1710, 1640. ¹H-NMR (400 MHz, CDCl₃): δ 7.37(d, J =8.4Hz, 1H), 7.18-7.21(m, 2H), 3.83(s, 3H), 3.82(dd, J =8.0, 3.6Hz, 1H), 3.37-3.42(m, 1H), 3.25 (dd, J =16.8, 8.0Hz, 1H), 2.14(s, 9H), 1.66(s, 6H), Minor peaks due to enol observed at 3.85(s, 3H), 3.37-3.42(m, 2H), 2.23(s, 9H), 1.69(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 200.2, 168.2, 159.8, 146.8, 136.8, 127.3, 124.8, 105.7, 82.2, 55.8, 55.4, 41.4, 36.3, 31.0, 29.9. HRMS (ESI+) calced for [C₂₁H₂₄O₄Na]⁺: 363.1567, found: 363.1567.

1-Adamantyl 5-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate^[19] (3j)

Following the general procedure, methyl 5-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3 mmol) was allowed to react with 1-adamantanol (912 mg, 6 mmol) in the presence of ZnO (48 mg, 0.6 mmol) and 25 mL of toluene overnight. The desired product was obtained as white solid after column chromatography (silica gel, PE/EA = 5/1) (98% yield), ¹H-NMR (400 MHz, CDCl₃): δ 7.67(d, J =6.8Hz, 1H), 6.90(bs, 1H), 3.88(s, 3H), 3.59(s, 1H), 3.41-3.49(m, 1H), 3.24-3.28(m, 1H), 2.14(s, 9H), 1.65(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 198.2, 168.4, 165.8, 156.9, 128.8, 126.3, 115.9, 109.6, 82.0, 55.8, 54.8, 45.4, 41.3, 36.2, 31.0. HRMS (ESI+) calced for [C₂₁H₂₄O₄Na]⁺: 363.1567, found: 363.1566.

1-Adamantyl 4,5-Dimethoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate^[1] (3k)

Following the general procedure, methyl 4,5-dimethoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3 mmol) was allowed to react with 1-adamantanol (912 mg, 6 mmol) in the presence of ZnO (48 mg, 0.6 mmol) and 25 mL of toluene overnight. The desired product was obtained as white solid after column chromatography (silica gel, PE/EA = 3/1) (84% yield), ¹H-NMR (400 MHz, CDCl₃): δ 7.17(s, 1H), 6.90(s, 1H), 3.98(s, 3H), 3.90(s, 3H), 3.59(dd, *J* =7.6, 3.2Hz, 1H), 3.36-3.41(m, 1H), 3.59(dd, *J* =7.6, 16.8Hz, 1H), 2.15(s, 9H), 1.66(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 198.8, 168.6, 156.1, 149.9, 149.4, 128.4, 107.5, 105.0, 82.2, 56.5, 56.3, 55.0, 41.4, 36.3, 31.1, 30.4. HRMS (ESI+) calced for [C₂₂H₂₆O₅Na]⁺: 393.1673, found: 393.1673.

1-Adamantyl 7-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3l)

Following the general procedure, methyl 7-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3 mmol) was allowed to react with 1-adamantanol (912 mg, 6 mmol) in the presence of ZnO (48 mg, 0.6 mmol) and 25 mL of toluene overnight. The desired product was obtained as white solid after column chromatography (silica gel, PE/EA = 5/1) (95% yield), m.p. 102-103°C, v_{max} (film)/cm⁻¹ 2913, 2852, 1731, 1711, 1643. ¹H-NMR (400 MHz, CDCl₃): δ 7.50-7.54(m, 1H), 7.01(d, J =7.6Hz, 1H), 6.78(d, J =8.0Hz, 1H), 3.93(s, 3H), 3.57(dd, J =8.0, 3.6Hz, 1H), 3.39-3.44(m, 1H), 3.23(dd, J =8.0, 17.2Hz, 1H), 2.15(s, 9H), 1.64(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 197.5, 168.3, 158.8, 156.3, 137.0, 123.7, 118.3, 109.2, 82.0, 55.9, 55.0, 41.3, 36.2, 30.9, 30.0. HRMS (ESI+) calced for [C₂₁H₂₄O₄Na]⁺: 363.1565, found: 363.1566.

1-Adamantyl 5-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate^[19](3m)

Following the general procedure, methyl 5-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3 mmol) was allowed to react with 1-adamantanol (912 mg, 6 mmol) in the presence of ZnO (48 mg, 0.6 mmol) and 25 mL of toluene overnight. The desired product was obtained as pink solid after column chromatography (silica gel, PE/EA = 10/1) (93% yield), ¹H-NMR (400 MHz, CDCl₃): δ 7.76(s, 1H), 7.08-7.16(m, 2H), 3.63-3.64(m, 1H), 3.46-3.51(m, 1H), 3.31 (dd, *J* =17.2, 8.0Hz,

1H), 2.13(s, 9H), 1.65(s, 6H), Minor peaks due to enol observed at 3.46-3.51(m, 2H), 2.22(s, 9H), 1.70(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 198.2, 168.9, 167.8, 166.3, 156.9, 156.8, 132.0, 127.1, 127.0, 116.3, 116.1, 113.5, 113.2, 82.5, 54.9, 41.9, 41.3, 36.3, 36.2, 31.0, 30.4. HRMS (ESI+) calced for [C₂₀H₂₁O₃FNa]⁺: 351.1367, found: 351.1367.

1-Adamantyl 5-chloro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate^[1](3n)

Following methyl the general procedure, 5-chloro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3 mmol) was allowed to react with 1-adamantanol (912 mg, 6 mmol) in the presence of ZnO (48 mg, 0.6 mmol) and 25 mL of toluene overnight. The desired product was obtained as pink solid after column chromatography (silica gel, PE/EA = 10/1) (39% yield), ¹H-NMR (400 MHz, CDCl₃): δ 7.68 (d, J =8.0Hz, 1H), 7.49 (s, 1H), 7.36(d, J =8.0Hz, 1H), 3.62 (dd, J =4.0, 8.0Hz, 1H), 3.46-3.50(m, 1H), 3.30 (dd, J =17.2, 8.0Hz, 1H), 2.17(s, 3H), 2.14(s, 6H), 1.66(s, 6H), Minor peaks due to enol observed at 7.53 (d, J =8.0Hz, 1H), 7.42 (s, 1H), 7.36(d, J =8.0Hz, 1H), 3.45(s, 2H), 2.22(s, 9H), 1.70(s, 6H); 13 C-NMR (75 MHz, CDCl₃): δ 198.6, 167.7, 155.3, 141.9, 134.1, 128.6, 126.9, 125.8, 82.5, 54.7, 41.3, 36.3, 36.2, 31.0, Minor peaks due to enol observed at 127.3, 125.2, 121.5, 41.9, 30.2. HRMS (ESI+) calced for $[C_{20}H_{21}O_3CINa]^+$: 367.1071, found: 367.1073.

1-Adamantyl 5-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate^[19](30)

Following the general procedure, methyl 5-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3 mmol) was allowed to react with 1-adamantanol (912 mg, 6 mmol) in the presence of ZnO (48 mg, 0.6 mmol) and 25 mL of toluene overnight. The desired product was obtained as pink solid after column chromatography (silica gel, PE/EA = 10/1) (52% yield), ¹H-NMR (400 MHz, CDCl₃): δ 7.68(s, 1H), 7.58-7.62(m, 1H), 7.50-7.53(m, 1H), 3.61(dd, *J* =8.0, 4.0Hz, 1H), 3.45-3.51(m, 1H), 3.30(dd, *J* =8.0, 17.2Hz, 1H), 2.17(s, 3H), 2.13(s, 6H), 1.65(s, 6H), Minor peaks due to enol observed at 3.44(s, 2H), 2.22(s, 9H), 1.70(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 198.9, 167.7, 155.4, 134.5, 131.6, 130.8, 130.2, 130.0, 128.1, 125.9, 121.9, 82.6, 54.7, 42.0, 41.4, 36.4, 36.3, 33.0, 31.1, 30.2. HRMS (ESI+) calced for [C₂₀H₂₁O₃BrNa]⁺: 411.0567, found: 411.0566.

1-Adamantyl 6-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate^[1](3p)

Following the general procedure, methyl 6-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3 mmol) was allowed to react with 1-adamantanol (912 mg, 6 mmol) in the presence of ZnO (48 mg, 0.6 mmol) and 25 mL of toluene overnight. The desired product was obtained as pink solid after column chromatography (silica gel, PE/EA = 10/1) (94% yield), ¹H-NMR (400 MHz, CDCl₃): δ 7.87(s, 1H), 7.70-7.77(m, 1H), 7.38(d, J =8.0Hz, 1H), 3.63(dd, J =8.8, 4.0Hz, 1H), 3.41-3.46(m, 1H), 3.27(dd, J = 8.8, 17.2Hz, 1H), 2.17(s, 3H), 2.13(s, 6H), 1.66(s, 6H), Minor peaks due to enol observed at 7.70-7.77(m, 1H), 7.47-7.50(m, 1H), 7.30(d, J = 8.0Hz, 1H), 3.42(s, 2H), 2.22(s, 9H), 1.71(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 198.7, 167.6, 152.4, 141.7, 139.5, 138.1, 137.5, 131.9, 128.2, 127.6, 126.2, 123.8, 122.0, 120.9, 105.6, 82.6, 81.7, 55.0, 42.0, 41.4, 36.4, 36.3, 32.9, 31.13, 31.08, 30.2. HRMS (ESI+) calced for $[C_{20}H_{21}O_3BrNa]^+$: 411.0567, found: 411.0563.

1-Adamantyl 1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate^[1] (3s)

Following the general procedure, methyl 6-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3 mmol) was allowed to react with 1-adamantanol (912 mg, 6 mmol) in the presence of ZnO (48 mg, 0.6 mmol) and 25 mL of toluene overnight. The desired product was obtained as white solid after column chromatography (silica gel, PE/EA = 50/1) (92% yield), ¹H-NMR (400 MHz, CDCl₃): δ enol form: 12.61 (bs, 1H), 7.76-7.79 (m, 1H), 7.22-7.32(m, 2H), 7.15(d, *J* =6.8Hz, 1H), 2.76-2.80(m, 2H), 2.49-2.53(m, 2H), 2.21(s, 9H), 1.70(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 172.6, 164.7, 139.5, 130.6, 130.4, 127.5, 126.7, 124.3, 98.6, 81.6, 41.8, 36.4, 31.1, 28.1, 21.2. HRMS (ESI+) calced for [C₂₁H₂₄O₃Na]⁺: 347.1618, found: 347.1618.

1-Adamantyl 5-(2-methoxyphenyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3u)

To a flask equipped with a stirring bar and a reflux condenser was added 5-bromoindan-1-one (1.055g, 5 mmol), the 2-methoxyphenylboronic acid (1.21g, 8 mmol), K₂CO₃(6.9g, 50mmol), Pd(PPh₃)₄ (288 mg, 5mol %). Then the system was evacuated 3 times and backfilled with Ar before solvent 75 ml THF and 25 ml H₂O were added by syringe. The mixture was heated to reflux overlight under Ar atmosphere. When it was cooled to room temperature, water and EA was added. The aqueous phase was extracted with EA twice (50ml*2). The organic phase was combined and washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (PE/EA=20:1-5:1), providing 5-(2-methoxyphenyl)-2,3-dihydro-1H-inden-1-one as white solid of 1.04g. ¹H-NMR (400 MHz, CDCl₃): δ 7.78(d, *J* =8.0Hz, 1H), 7.61(s, 1H), 7.53(d, *J* =8.0Hz, 1H), 7.31-7.39(m, 2H), 7.00-7.07(m, 2H), 3.82(s, 3H), 3.17(d, *J* =5.6Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 207.0, 156.6, 155.3, 145.5, 135.8, 131.0, 129.8, 129.7, 129.3, 127.8, 123.3, 121.1, 111.4, 55.7, 36.6, 26.01. The data was in accordance with reported ones.^[20]

To a flask equipped with a stirring bar and a reflux condenser was added NaH(240mg, 6mmol, 60% in mineral oil), then the system was evacuated 3 times and backfilled with Ar before solvent 25 ml THF was added. A solution of 5-(2-methoxyphenyl)-2,3-dihydro-1H-inden-1-one (714mg, 3.0 mmol) in 10 ml THF was added by syringe. After 10min when the evolution of H2 ceased, dimethyl carbonate (500 mg, 5.6 mmol) was added. Then the mixture was heated to reflux for 2 hours when the system solified. After it was cooled to room temperature, HCl (1M) and water was added to adjust pH

2. The aqueous phase was extracted with EA twice $(25ml^*2)$. The organic phase was combined and washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to furnish methyl 5-(2-methoxyphenyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate without further purification.

Following the general procedure of transesterification above, methyl 7-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (all residue above) was allowed to react with 1-adamantanol (912 mg, 6 mmol) in the presence of ZnO (48 mg, 0.6 mmol) and 25 mL of toluene overnight. The desired product was obtained as white solid after column chromatography (silica gel, PE/EA = 10/1) (72% yield), m.p. 66-67°C, v_{max} (film)/cm⁻¹ 2917, 2852, 1733, 1712, 1604. ¹H-NMR (400 MHz, CDCl₃): δ 7.78(d, *J* =8.0Hz, 1H), 7.62(s, 1H), 7.54(d, *J* =8.0Hz, 1H), 7.31-7.40(m, 2H), 7.00-7.07(m, 2H), 3.83(s, 3H), 3.64(dd, *J* =8.0, 4.0Hz, 1H), 3.47-3.51(m, 1H), 3.36(dd, *J* =8.4, 17.2Hz, 1H), 2.16(s, 9H), 1.62(s, 6H), Minor

peaks due to enol observed at 3.82(s, 3H), 3.55(m, 2H), 2.23(s, 9H), 1.70(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.9, 168.3, 156.6, 153.8, 146.2, 134.2, 131.2, 131.0, 129.9, 129.7, 127.6, 124.2, 121.2, 111.5, 82.3, 55.8, 55.0, 41.5, 36.4, 31.1, 30.6. HRMS (ESI+) calced for [C₂₇H₂₈O₄Na]⁺: 439.1880, found: 439.1878.

1-Adamantyl 1-oxo-5-(phenylethynyl)-2,3-dihydro-1H-indene-2-carboxylate (3w)

To a flask equipped with a stirring bar and a reflux condenser was added 5-bromoindan-1-one (844mg, 4 mmol), the ethynlbenzene (489mg, 4.8 mmol), Pd(PPh₃)₂Cl₂ (56mg, 8 mmol), CuI(30 mg, 0.16mmol). Then the system was evacuated 3 times and backfilled with Ar before solvent 75 ml THF and 1.20g ml TEA were added by syringe. The mixture was heated to reflux for 4 hours under Ar atmosphere. When it was cooled to room temperature, water and EA was added. The aqueous phase was extracted with EA twice (50ml*2). The organic phase was combined and washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (PE/EA=100:0-5:1), providing 5-(phenylethynyl)-2,3-dihydro-1H-inden-1-one as white solid of 560mg. H-NMR (400 MHz, CDCl₃): δ 7.74(d, *J* =8.0Hz, 1H), 7.64(s, 1H), 7.50-7.57(m, 3H), 7.37-7.39(m, 3H), 3.16(d, *J* =6.0Hz, 2H), 2.73(d, *J* =6.0Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 206.2, 155.1, 136.6, 131.9, 130.9, 129.8, 129.1, 128.6, 125.1, 123.8, 122.8, 92.9, 89.1, 36.5, 25.8 . The data was in accordance with reported ones.^[21]

To a flask equipped with a stirring bar and a reflux condenser was added NaH(160mg, 4mmol, 60% in mineral oil), then the system was evacuated 3 times and backfilled with Ar before solvent 15 ml THF was added. A solution of 5-(phenylethynyl)-2,3-dihydro-1H-inden-1-one (404mg, 2.0 mmol) in 10 ml THF was addded by syringe. After 10min when the evolution of H₂ ceased, dimethyl carbonate (244 mg, 2.72 mmol) was added. Then the mixture was heated to reflux for 2 hours when the system solified. After it was cooled to room temperature, HCl (1M) and water was added to adjust pH 2. The aqueous phase was extracted with EA twice (25ml*2). The organic phase was combined and washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to furnish methyl 1-oxo-5-(phenylethynyl)-2,3-dihydro-1H-indene-2-carboxylate without further purification.

Following the general procedure of transesterification above, methyl 7-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (all residue above) was allowed to react with 1-adamantanol (608 mg, 4 mmol) in the presence of ZnO (32 mg, 0.4 mmol) and 15mL of toluene overnight. The desired product was obtained as white solid after column chromatography (silica gel, PE/EA = 10/1) (70% yield), m.p. 139-140°C, v_{max} (film)/cm⁻¹ 2912, 2853, 1732, 1711, ¹H-NMR (400 MHz, CDCl₃): δ 7.73(d, *J* =8.0Hz, 1H), 7.64(s, 1H),

7.53-7.57(m, 3H), 7.34-7.38(m, 2H), 3.63(dd, J = 8.0, 4.0Hz, 1H), 3.51-3.52(m, 1H), 3.32(dd, J = 8.0, 17.2Hz, 1H), 2.17(s, 3H), 2.15(s, 6H), 1.66(s, 6H), Minor peaks due to enol observed at 3.47-3.48(s, 2H), 2.23(s, 9H), 1.71(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.3, 168.0, 153.7, 135.0, 132.0, 131.8, 131.3, 129.6, 129.2, 128.7, 128.6, 124.6, 93.4, 89.0, 82.4, 54.8, 41.4, 36.3, 31.1, 30.3. HRMS (ESI+) calced for [C₂₈H₂₆O₄Na]⁺: 433.1774, found: 433.1775.

1-Adamantyl 1-oxo-5-(thiophen-2-yl)-2,3-dihydro-1H-indene-2-carboxylate (3v)

To a flask equipped with a stirring bar and a reflux condenser was added 5-bromoindan-1-one (1.055g, 5 mmol), the 2-methoxyphenylboronic acid (1.00g, 8 mmol), K₂CO₃(6.9g, 50mmol), Pd(PPh₃)₄ (288 mg, 5mol %). Then the system was evacuated 3 times and backfilled with Ar before solvent 75 ml THF and 25 ml H₂O were added by syringe. The mixture was heated to reflux overlight under Ar atmosphere. When it was cooled to room temperature, water and EA was added. The aqueous phase was extracted with EA twice (50ml*2). The organic phase was combined and washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (PE/EA=5:1), providing 5-(thiophen-2-yl)-2,3-dihydro-1H-inden-1-one as white solid of 960mg. m.p. 149-150°C, v_{max} (film)/cm⁻¹ 2920, 1698. ¹H-NMR (400 MHz, CDCl₃): δ 7.73(d, *J* =8.0Hz, 1H), 7.67(s, 1H), 7.60(d, *J* =8.0Hz, 1H), 7.43(d, *J* =3.6Hz, 1H), 7.37(d, *J* =4.8Hz, 1H), 7.10-7.12(m, 1H), 3.15(d, *J* =6.0Hz, 2H), 2.70(d, *J* =6.0Hz, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 206.3, 156.2, 143.3, 140.5, 136.1, 128.6, 126.8, 125.3, 125.1, 124.4, 123.4, 36.6, 25.9. HRMS (ESI+) calced for [C₁₃H₁₀NOSNa]⁺: 237.0344, found: 237.0344.

To a flask equipped with a stirring bar and a reflux condenser was added NaH(240mg, 6mmol, 60% in mineral oil), then the system was evacuated 3 times and backfilled with Ar before solvent 25 ml THF was added. A solution of 5-(thiophen-2-yl)-2,3-dihydro-1H-inden-1-one (642mg, 3.0 mmol) in 10 ml THF was addded by syringe. After 10min when the evolution of H2 ceased, dimethyl carbonate (500 mg, 5.6 mmol) was added. Then the mixture was heated to reflux for 2 hours when the system solified. After it was cooled to room temperature, HCl (1M) and water was added to adjust Ph 2. The aqueous phase was extracted with EA twice (25ml*2). The organic phase was combined and washed with brine, dried over anhydrous and concentrated under reduced pressure to furnish methyl Na_2SO_4 5-(2-methoxyphenyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate without further purification.

Following the general procedure of transesterification above, methyl 7-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (all residue above) was allowed to react with 1-adamantanol (912 mg, 6 mmol) in the presence of ZnO (48 mg, 0.6 mmol) and 25 mL of toluene overnight. The desired product was obtained as yellow solid after column chromatography (silica gel, PE/EA = 15/1) and then recrystallization from Et₂O and DCM (89%

yield), m.p. 147-148°C, v_{max} (film)/cm⁻¹ 2914, 2849, 1733, 1707, 1604. ¹H-NMR (400 MHz, CDCl₃): δ 7.74(d, J =8.0Hz, 1H), 7.68(s, 1H), 7.64(d, J =8.0Hz, 1H), 7.45(bs, 1H), 7.39(d, J =8.0Hz, 1H), 7.10-7.13(m, 1H), 3.63-3.65(m, 1H), 3.49-3.53(m, 1H), 3.33(dd, J =8.0, 17.2Hz, 1H), 2.16(s, 9H), 1.67(s, 6H), Minor peaks due to enol observed at 3.75(s, 2H), 2.24(s, 9H), 1.71(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 199.2, 168.1, 154.7, 143.1, 141.1, 134.5, 128.6, 127.1, 125.7, 125.3, 125.3, 123.2, 82.3, 54.9, 41.4, 36.3, 31.0, 30.5, Minor peaks due to enol observed at 68.1, 41.9, 36.4, 31.1, 25.8. HRMS (ESI+) calced for [C₂₄H₂₄O₃SNa]⁺: 415.1338, found: 415.1338.

6. Enantioselective Electrophilic Cyanation of β-keto Esters

General procedure for the cyanation of cyclic-keto esters.

The cyclic-keto ester **3** (0.2 mmol, 1 equiv.), DMAP (1.1 equiv.) and chiral phase transfer catalyst **5j** (0.1equiv.) was dissolved in a tube in toluene/tetrahydrofuran (0.3ml/0.6ml). After the mixture was stirred for 10mins when it was cooled to -78° C, **1a** (1.1 equiv) was added in one portion. The reaction was monitored by TLC until complete consumption of the starting material within given time. when the mixture was warmed to r.t., the solvent was removed under vacuum. The residue was purified by flash chromatography with EA/PE as elute to give compound **4**.

(S)-Tert-butyl 2-cyano-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4a)

Reaction time 1h, white solid, 96% yield, m.p. 49-50°C, v_{max} (film)/cm⁻¹ 2982, 2934, 2248, 1731, 1606, $[\alpha]_D^{25}$ +27.2 (c 0.5, CDCl₃, 82% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.74(d, J =7.6Hz, 1H), 7.62-7.66(m, 1H), 7.47(d, J =7.6Hz, 1H), 7.38-7.42(m, 1H), 3.80(d, J =17.2Hz, 1H), 3.57(d, J =17.2Hz, 1H), 1.40(s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 191.4, 162.9, 151.8, 136.9, 132.3, 128.9, 126.6, 126.1, 116.2, 85.8, 55.3, 37.6, 27.7; HRMS (ESI+) calced for [C₁₅H₁₅O₃NNa]⁺: 280.0944, found: 280.0942; HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 85/15, 1 mL/min, 254nm, t_R(minor) = 9.0 min, t_R(major) = 10.7 min.

(S)-methyl 2-cyano-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4b)

Reaction time 1h, colorless oil, 94% yield, , v_{max} (film)/cm⁻¹ 2956, 2249, 1752, 1732, $[\alpha]_D^{25}$ +47.8 (c 0.5, CDCl₃, 75% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.86(d, J =7.6Hz, 1H), 7.73-7.77(m, 1H), 7.56(d, J =7.6Hz, 1H), 7.49-7.52(m, 1H), 3.96(d, J =17.2Hz, 1H), 3.88(s, 3H), 3.71(d, J =17.2Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 190.8, 164.8, 151.7, 137.2, 132.2, 129.2, 126.7, 126.5, 115.9, 54.8, 54.4, 37.7; HRMS (ESI+) calced for [C₁₂H₉O₃NNa]⁺: 238.0475, found: 238.0474; HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 85/15, 1 mL/min, 254nm, t_R(minor) = 18.9 min, t_R(major) = 29.3 min.

(S)-2-phenylpropan-2-yl 2-cyano-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4c)

Reaction time 1h, white solid, 88% yield, m.p. 88-89°C, v_{max} (film)/cm⁻¹ 2983, 2928, 2248, 1731, 1604, $[\alpha]_D^{25}$ +7.2 (c 0.5, CDCl₃, 63% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.82 (d, J =7.6Hz, 1H), 7.66-7.60(m, 1H), 7.43-7.49(m, 2H), 7.24-7.37(m, 5H), 3.85 (d, J =17.2Hz, 1H), 3.62 (d, J =17.2Hz, 1H), 1.84(s, 3H), 1.81(s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 191.1, 162.2, 151.8, 144.3, 137.0, 132.5, 129.1, 128.7, 127.9, 126.6, 126.4, 124.4, 116.3, 86.9, 55.3, 37.5, 28.5, 28.1; HRMS (ESI+) calced for $[C_{20}H_{17}O_3NNa]^+$: 342.1100, found: 342.1098; HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 85/15, 1 mL/min, 254nm, t_R(minor) = 12.4 min, t_R(major) = 15.1 min.

(S)-anthracen-9-ylmethyl 2-cyano-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4e)

Reaction time 1h, yellow solid, 93% yield, m.p. 126-128°C, v_{max} (film)/cm⁻¹ 2925, 2250, 1748, 1730, $[\alpha]_D^{25}$ +26.4 (c 0.5, CDCl₃, 65% ee), ¹H-NMR (400 MHz, CDCl₃): δ 8.38(s, 1H), 8.22(d, J =8.8Hz, 2H), 7.92(s, J =8.4Hz, 2H), 7.73(d, J =7.6Hz, 1H), 7.32-7.57(m, 5H), 7.2-7.36(m, 2H), 6.21(s, 2H), 3.70(d, J = 17.2 Hz, 1H), 3.50(d, J =17.2Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 190.7, 164.5, 151.5, 136.9, 132.1, 131.2, 131.1, 130.0, 129.2, 128.9, 127.1, 126.5, 126.2, 125.2, 124.3, 123.6, 115.7, 62.6, 54.6, 37.6; HRMS (ESI+) calced for [C₂₆H₁₇O₃NNa]⁺: 414.1101, found: 414.1096; HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 60/40, 1 mL/min, 254nm, t_R(minor) = 24.7 min, t_R(major) = 35.4min.

(S)-1-Adamantyl 2-cyano-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4f)

Reaction time 1h, white solid, 97% yield, m.p. 117-118°C, v_{max} (film)/cm⁻¹ 2915, 2855, 2247, 1729, $[\alpha]_D^{25}$ +32.8 (c 0.5, CDCl₃, 87% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.84(d, J =7.6Hz, 1H), 7.70-7.74(m, 1H), 7.54(d, J =7.6Hz, 1H), 7.46-7.40(m, 1H), 3.88(d, J =17.2Hz, 1H), 3.65(d, J =17.2Hz, 1H), 2.18(s, 3H), 2.12(s, 6H), 1.64(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 191.5, 162.5, 151.8, 136.9, 132.5, 129.0, 126.6, 126.3, 116.3, 86.0, 55.5, 41.0, 37.7, 36.0, 31.1; HRMS (ESI+) calced for $[C_{21}H_{21}O_3NNa]^+$: 358.1414, found: 358.1410; HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 85/15, 1 mL/min, 254nm, t_R(minor) = 11.0 min, t_R(major) = 15.3min.

(S)-1-Adamantyl 2-cyano-4-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4g)

Reaction time 1h, white solid, 87% yield, m.p. 97-99°C, v_{max} (film)/cm⁻¹ 2911, 2247, 1730, $[\alpha]_D^{25}$ +44.0 (c 0.5, CDCl₃, 82% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.67(d, J =7.6Hz, 1H), 7.52(d, J =7.2Hz, 1H), 7.26-7.32(m, 1H), 3.77(d, J =17.2Hz, 1H), 3.52 (d, J =17.2, Hz, 1H), 2.39(s, 3H), 2.18(s, 3H), 2.13(s, 6H), 1.65(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 191.7, 162.6, 150.8, 137.4, 136.1, 132.3, 129.1, 123.6, 116.4, 85.9, 55.4, 40.9, 36.7, 36.0, 31.1, 17.8; HRMS (ESI+) calced for $[C_{22}H_{23}O_3NNa]^+$: 327.1570, found: 372.1565; HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 85/15, 1 mL/min, 254nm, t_R(minor) = 10.0 min, t_R(major) = 20.6min.

(S)-1-Adamantyl 2-cyano-6-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4h)

Reaction time 1h, colorless oil, 98% yield, v_{max} (film)/cm⁻¹ 2915, 2864, 2247, 1744, 1728, $[\alpha]_D^{25}$ +23.4 (c 0.5, CDCl₃, 86% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.62(s, 1H), 7.53(d, *J* =8.0Hz, 1H), 7.42(d, *J* =8.0Hz, 1H), 3.82(d, *J* =17.2Hz, 1H), 3.59 (d, *J* =17.2Hz, 1H), 2.42(s, 3H), 2.18(s, 3H), 2.12(s, 6H), 1.64(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 191.5, 162.6, 149.3, 139.2, 138.2, 132.7, 126.2, 126.0, 116.4, 85.8, 55.8, 40.9, 37.4, 36.0, 31.1, 21.2; HRMS (ESI+) calced for $[C_{22}H_{23}O_3NNa]^+$: 372.1570, found: 372.1566; HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 85/15, 1 mL/min, 254nm, t_R(minor) = 11.4 min, t_R(major) = 12.1min.

(S)-1-Adamantyl 2-cyano-6-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4i)

Reaction time 12h, colorless oil, 90% yield, v_{max} (film)/cm⁻¹ 2911, 2248, 1728, $[\alpha]_D^{25}$ +9.6 (c 0.25, CDCl₃, 88% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.42(d, J =4.4Hz, 1H), 7.27-7.30(m, 1H), 7.22 (s, 1H), 3.84(s, 3H), 3.78(dd, J =17.2Hz, 1H), 3.57(dd, J =17.2Hz, 1H), 2.18(s, 3H), 2.11(s, 6H), 1.64(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 191.4, 162.5, 160.4, 144.7, 133.7, 127.2, 126.3, 116.2, 106.8, 85.7, 56.1, 55.8, 40.9, 37.1, 35.9, 31.0; HRMS (ESI+) calced for [C₂₂H₂₃O₄NNa]⁺: 388.1519, found: 388.1513; HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, 1 mL/min, 254nm, t_R(minor) = 10.3 min, t_R(major) = 13.7min.

(S)-1-Adamantyl 2-cyano-5-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4j)

Reaction time 12h, white solid, m.p. 103-104°C, 90% yield, v_{max} (film)/cm⁻¹ 2914, 2853, 2246, 1742, 1724, $[\alpha]_D^{25}$ +73.2 (c 0.5, CDCl₃, 93% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.75(d, J =8.8Hz, 1H), 6.98(d, J =8.8Hz, 1H), 6.94(s, 1H), 3.92(s, 3H), 3.82(d, J =17.2Hz, 1H), 3.57(d, J =17.2Hz, 1H), 2.18(s, 3H), 2.13(s, 6H), 1.65(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 189.3, 167.0, 162.8, 155.1, 127.9, 125.3, 117.2, 116.6, 109.6, 85.7, 56.1, 55.7, 40.9, 37.5, 36.0, 31.0; HRMS (ESI+) calced for [C₂₂H₂₃O₄NNa]⁺: 388.1519, found: 388.1514; HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, 1 mL/min, 254nm, t_R(minor) = 13.5 min, t_R(major) = 15.6min.

(S)-1-Adamantyl 2-cyano-5,6-dimethoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4k)

Reaction time 12h, white solid, m.p. 162-163°C, 94% yield, v_{max} (film)/cm⁻¹ 2915, 2854, 2246, 1739, 1719, $[\alpha]_D^{25}$ +52.8 (c 0.5, CDCl₃, 93% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.19(s, 1H), 6.94(s, 1H), 4.01(s, 3H), 3.92(s, 3H), 3.77(d, J =17.2Hz, 1H), 3.55(d, J =17.2Hz, 1H), 2.18(s,

3H), 2.13(s, 6H), 1.65(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 189.7, 162.8, 157.2, 150.5, 147.9, 125.0, 116.6, 107.2, 105.7, 85.6, 56.6, 56.3, 55.7, 40.9, 37.3, 35.9, 31.0; HRMS (ESI+) calced for $[C_{23}H_{25}O_5NNa]^+$: 418.1625, found: 418.1620; HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, 1 mL/min, 254nm, t_R(minor) = 12.7 min, t_R(major) = 16.1min.

(S)-1-Adamantyl 2-cyano-7-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (41)

Reaction time 12h, white solid, m.p. 102-103°C, 92% yield, v_{max} (film)/cm⁻¹ 2914, 2247, 1724, $[\alpha]_D^{25}$ +56.8 (c 0.5, CDCl₃, 66% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.62-7.66(m, 1H), 7.05(d, *J* =7.6Hz, 1H), 6.88(d, *J* =8.0Hz, 1H), 3.97(s, 3H), 3.80(d, *J* =17.2Hz, 1H), 3.55(dd, *J* =8.0, 17.2Hz, 1H), 2.17(s, 3H), 2.13(s, 6H),1.64(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 188.3, 162.7,159.8, 153.8, 138.8, 120.5, 118.0, 116.5, 110.3, 85.6, 56.1, 55.8, 40.9, 37.0, 35.9, 31.0; HRMS (ESI+) calced for $[C_{22}H_{23}O_4NNa]^+$: 388.1519, found: 388.1519; HPLC conditions: Chiralcel AD-H column, hexane/*i*-PrOH = 80/20, 1 mL/min, 254nm, t_R(minor) = 14.1 min, t_R(major) = 19.6min.

(S)-1-Adamantyl 2-cyano-5-fluoro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4m)

Reaction time 1h, white solid, m.p. 146-147°C, 93% yield, v_{max} (film)/cm⁻¹ 2916, 2855, 2249, 1732, $[\alpha]_D^{25}$ +46.6 (c 0.5, CDCl₃, 80% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.86(dd, J =4.2, 8.4Hz, 1H), 7.17-7.22(m, 2H), 3.88 (d, J =17.2Hz, 1H), 3.63 (d, J =17.2Hz, 1H), 2.19(s, 3H), 2.12(s, 6H), 1.65(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 189.5, 169.6, 167.0, 162.2, 154.9, 154.8, 128.9, 128.8, 128.7, 117.7, 117.4, 116.0, 113.7, 113.4, 86.2, 55.7, 41.0, 37.4, 36.0, 31.1; HRMS (ESI+) calced for [C₂₁H₂₀O₄NFNa]⁺: 376.1319, found: 376.1316; HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 85/15, 1 mL/min, 254nm, t_R(minor) = 12.3 min, t_R(major) = 15.4min.

(S)-1-Adamantyl 2-cyano-5-chloro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4n)

Reaction time 1h, white solid, m.p. 138-139°C, 99% yield, v_{max} (film)/cm⁻¹ 2916, 2855, 2249, 1743, 1735, 1599, $[\alpha]_D^{25}$ +29.6 (c 0.25, CDCl₃, 80% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.77 (d, *J* =8.0Hz, 1H), 7.54 (s, 1H), 7.46(d, *J* =8.0Hz, 1H), 3.86 (d, *J* =17.2Hz, 1H), 3.62 (d, *J* =17.2Hz, 1H), 2.19(s, 3H), 2.11(s, 6H), 1.64(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 190.0, 162.1, 153.2, 143.7, 131.0, 129.8, 127.2, 126.8, 115.9, 86.2, 55.6, 40.9, 37.2, 35.9, 31.1; HRMS (ESI+) calced for [C₂₁H₂₀O₄NClNa]⁺: 392.1024, found: 392.1018, HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 85/15, 1 mL/min, 254nm, t_R(minor) = 11.5 min, t_R(major) = 15.1min.

(S)-1-Adamantyl 2-cyano-5-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (40)

Reaction time 1h, white solid, m.p. 124-125°C, 93% yield, v_{max} (film)/cm⁻¹ 2914, 2854, 2249, 1731, 1595, $[\alpha]_D^{25}$ +40.4 (c 0.5, CDCl₃, 81% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.69-7.73(m, 2H), 7.62(d, *J* =8.4Hz, 1H), 3.86(d, *J* =17.2Hz, 1H), 3.62(d, 17.2Hz, 1H), 2.19(s, 3H), 2.12(s, 6H), 1.65(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 190.3, 162.1, 153.2, 132.8, 132.7, 131.4, 130.0, 127.3, 115.9, 86.4, 55.5, 41.0, 37.2, 36.0, 31.1; HRMS (ESI+) calced for $[C_{21}H_{20}O_4NBrNa]^+$: 436.0519, found: 436.0514, HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 85/15, 1 mL/min, 254nm, t_R(minor) = 13.1 min, t_R(major) = 17.9 min.

(S)-1-Adamantyl 2-cyano-6-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4p)

Reaction time 1h, white solid, m.p. 88-90°C, 99% yield, v_{max} (film)/cm⁻¹ 2915, 2855, 2249, 1734, $[\alpha]_D^{25}$ +17.0 (c 0.5, CDCl₃, 78% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.95(s, 1H), 7.81(d, *J* = 8.0Hz, 1H), 7.44(d, *J* = 8.0Hz, 1H), 3.83(d, *J* = 17.2Hz, 1H), 3.59(d, *J* = 17.2Hz, 1H), 2.19(s, 3H), 2.11(s, 6H), 1.64(s, 6H),; ¹³C-NMR (100 MHz, CDCl₃): δ 190.1, 162.0, 150.4, 139.7, 134.3, 128.9, 128.1, 123.0, 115.8, 86.3, 55.8, 40.9, 37.3, 35.9, 31.1; HRMS (ESI+) calced for $[C_{21}H_{20}O_4NBrNa]^+$: 436.0519, found: 436.0515, HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 85/15, 1 mL/min, 254nm, t_R(minor) = 12.4 min, t_R(major) = 13.7 min.

(S)-tert-butyl 1-cyano-3-methyl-2-oxocyclopent-3-enecarboxylate (4q)

Reaction time 1h, white solid, m.p. 76-78°C, 76% yield, v_{max} (film)/cm⁻¹ 2926, 2855, 2248, 1728; [α]_D²⁵ +3.2 (c 0.5, CDCl₃, 57% ee), H-NMR (400 MHz, CDCl₃): δ 7.47(d, J =1.0Hz, 1H), 3.30(dd, J =2.1, 4.8Hz, 1H), 2.84-2.90(m, 1H), 2.71-2.78(m, 1H), 1.78(d, J =1.0Hz, 3H), 1.48(s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 203.3, 168.5, 157.7, 140.4, 81.8, 52.2, 30.9, 28.1, 10.4; HRMS (ESI+) calced for [C₁₂H₁₅O₃NNa]⁺: 244.0944, found: 244.0940, HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 85/15, 1 mL/min, 254nm, t_R(minor) = 11.1 min, t_R(major) = 15.3 min.

(S)-tert-butyl 2-cyano-1-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalene-2-carboxylate (4r)

Reaction time 1h, white solid, m.p. 151-152°C, 93% yield, v_{max} (film)/cm⁻¹ 2245, 1745, 1732; [α]_D²⁵+32.2 (c 0.5, CDCl₃, 80% ee), ¹H-NMR (400 MHz, CDCl₃): δ 8.40(s, 1H), 7.86-7.98(m, 3H), 7.63-7.67(m, 1H), 7.52-7.56(m, 1H), 4.05(d, *J* =17.2Hz, 1H), 3.80(d, *J* =17.2Hz, 1H), 1.50(s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 191.6, 163.2, 143.2, 138.0, 132.8, 130.6, 130.2, 129.8, 128.1, 128.0, 127.2, 125.0, 116.4, 85.9, 56.1, 37.3, 27.8; HRMS (ESI+) calced for [C₁₉H₁₇O₃NNa]⁺: 333.1101, found: 333.1097, HPLC conditions: Chiralcel IC-H column, hexane/*i*-PrOH = 80/20, 1 mL/min, 254nm, t_R(minor) = 20.2 min, t_R(major) = 16.9 min.

(S)-1-Adamantly-2-cyano-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (4s)

Reaction time 6 days, white solid, m.p. 123-124°C, 83% yield, v_{max} (film)/cm⁻¹ 2912, 2846, 2242, 1739, 1686, 1600; $[\alpha]_D^{25}$ +17.4 (c 0.5, CDCl₃, 66% ee), ¹H-NMR (400 MHz, CDCl₃): δ 8.04(d, J =8.0Hz, 1H), 7.76-7.56 (m, 1H), 7.33-7.37(m, 1H), 7.24-7.27(m, 1H), 3.16-3.24(m, 1H), 3.04-3.11(m, 1H), 2.76-2.83(m, 1H), 2.56-2.62(m, 1H), 2.16(s, 3H), 2.11(s, 6H), 1.63(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 185.8, 163.3, 142.6, 135.0, 130.0, 129.1, 129.0, 127.7, 115.5, 85.8, 56.5, 41.1, 36.1, 31.7, 31.1, 25.6; HRMS (ESI+) calced for [C₂₂H₂₃O₃NNa]⁺: 372.1570, found: 372.1507, HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 85/15, 1 mL/min, 254nm, t_R(minor) = 10.2 min, t_R(major) = 10.8 min.

(R)-tert-butyl 2-cyano-3-oxo-2,3-dihydrobenzofuran-2-carboxylate (4t)

Reaction time 1 hour, colorless oil, 96% yield, v_{max} (film)/cm⁻¹ 2925, 2855, 2255, 1763, 1748, 1612; $[\alpha]_D^{25}$ +9.0 (c 0.5, CDCl₃, 28% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.73-7.80(m, 2H), 7.25-7.31(m, 2H), 1.54(s, 9H); ¹³C-NMR (100 MHz, CDCl₃): δ 186.5, 172.3, 158.4, 140.2, 126.2, 124.6, 116.8, 114.1, 111.8, 87.8, 79.8, 27.7; HRMS (ESI+) calced for $[C_{14}H_{13}O_4NNa]^+$: 282.0737, found: 282.0737, HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 85/15, 1 mL/min, 254nm, t_R(minor) = 7.4 min, t_R(major) = 6.7 min.

(S)-1-Adamantyl-2-cyano-5-(2-methoxyphenyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxyl ate (4u)

Reaction time 1 hour, white solid, m.p. 146-147°C, 90% yield, v_{max} (film)/cm⁻¹ 2915, 2854, 2247, 1729, 1604; $[\alpha]_D^{25}$ +44.6 (c 0.5, CDCl₃, 78% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.83(d, J =8.0Hz, 1H), 7.62-7.66(m, 2H), 7.38-7.41(m, 1H), 7.32(d, J =6.8Hz, 1H), 7.00-7.08(m, 2H), 3.91(d, J =12.0Hz, 1H), 3.83(s, 3H), 3.66(d, J =17.2Hz, 1H), 2.18(s, 3H), 2.14(s, 6H), 1.64(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 191.0, 162.7, 156.5, 151.7, 147.9, 130.9, 130.8, 130.7, 130.3, 128.8, 127.3, 125.5, 121.2, 116.4, 111.5, 85.8, 55.7, 55.6, 40.9, 37.6, 36.0, 31.0; HRMS (ESI+) calced for [C₂₈H₂₇O₄NNa]⁺: 464.1832, found: 464.1829, HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 85/15, 1 mL/min, 254nm, t_R(minor) = 13.4 min, t_R(major) = 17.1 min.

(S)-1-Adamantyl -2-cyano-1-oxo-5-(thiophen-2-yl)-2,3-dihydro-1H-indene-2-carboxylate (4v)

reaction time 1 hour, white solid, m.p. 152-153°C, 67% yield, v_{max} (film)/cm⁻¹ 2911, 2852, 2245, 1736, 1727, 1603; $[\alpha]_D^{25}$ +58.0 (c 0.1, CDCl₃, 86% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.82(d, J =8.4Hz, 1H), 7.70-7.72(m, 2H), 7.50(d, J =3.2Hz, 1H), 7.45(d, J =4.8Hz, 1H), 7.15-7.17(m, 1H), 3.90(d, J =17.2Hz, 1H), 3.64(d, J =17.2Hz, 1H), 2.19(s, 3H), 2.14(s, 6H), 1.65(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 190.4, 162.6, 152.8, 142.7, 142.4, 131.1, 128.9, 128.1, 126.9, 126.7, 126.2, 122.9, 116.4, 86.1, 55.8, 41.0, 37.6, 36.1, 31.2; HRMS

(ESI+) calced for $[C_{25}H_{27}O_3NSNa]^+$: 440.1291, found: 440.1286, HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 85/15, 1 mL/min, 254nm, t_R(minor) = 21.8 min, t_R(major) = 36.8 min.

(S)-1-Adamantyl-2-cyano-1-oxo-5-(phenylethynyl)-2,3-dihydro-1H-indene-2-carboxylate (4w)

reaction time 1 hour, white solid, m.p. 108-109°C, 80% yield, v_{max} (film)/cm⁻¹ 2912, 2853, 2247, 2207, 1728, 1603; $[\alpha]_D^{25}$ +84.6 (c 0.5, CDCl₃, 85% ee), ¹H-NMR (400 MHz, CDCl₃): δ 7.78(d, J =8.0Hz, 1H), 7.64(s, 1H), 7.54-7.59(m, 3H), 7.38-7.39(m, 3H), 3.85(d, J =17.2Hz, 1H), 3.61(d, J =17.2Hz, 1H), 2.17(s, 3H), 2.11(s, 6H), 1.63(s, 6H); ¹³C-NMR (100 MHz, CDCl₃): δ 190.4, 162.3, 151.6, 132.1, 132.0, 131.5, 129.4, 129.2, 128.6, 125.9, 122.2, 116.1, 95.0, 88.4, 85.9, 55.5, 40.9, 37.3, 35.9, 31.0; HRMS (ESI+) calced for [C₂₉H₂₅O₃NNa]⁺: 458.1727, found: 58.1720, HPLC conditions: Chiralcel AS-H column, hexane/*i*-PrOH = 90/10, 1 mL/min, 254nm, t_R(minor) = 18.0 min, t_R(major) = 21.1 min.

7. The reference

- [1] M. Lian, Z. Li, J. Du, Q. Meng, Z. Gao, Eur. J. Org. Chem. 2010, 2010, 6525-6530.
- [2] Bernardi, L.; Lopez-Cantarero, J.; Neiss, B.; Jørgensen, K. A. J. Am. Chem. Soc. 2007, 129, 5772.
- [3] T. A. Moss, D. R. Fenwick, D. J. Dixon, J. Am. Chem. Soc. 2008, 130, 10076-10077
- [4] H. Yao, M. Lian, Z. Li, Y. Wang, Q. Meng, J. Org. Chem. 2012, 77, 9601-9608.
- [5] S. Wu, W. Zeng, Q. Wang, F.-X. Chen, Org. Biomol. Chem. 2012, 10, 9334-9337.
- [6] T. Furuya, A. E. Strom, T. Ritter, J. Am. Chem. Soc. 2009, 131, 1662-1663.
- [7] H. Kawai, A. Kusuda, S. Nakamura, M. Shiro, N. Shibata, Angew. Chem. Int. Ed.

2009, *48*, 6324-6327.

[8] B. Xiang, K. M. Belyk, R. A. Reamer, N. Yasuda, Angew. Chem. Int. Ed. 2014, 53, 8375-8378.

[9] M. V. Vita, J. Waser, Org. Lett. 2013, 15, 3246-3249

[10] V. V. Zhdankin, C. J. Kuehl, A. P. Krasutsky, J. T. Bolz, B. Mismash, J. K. Woodward, A. J. Simonsen, *Tetrahedron Lett.* **1995**, *36*, 7975-7978.

[11] J. P. Brand, C. Chevalley, R. Scopelliti, J. Waser, Chem. Eur. J. 2012, 18, 5655-5666.

[12] M. Iinuma, K. Moriyama, H. Togo, Eur. J. Org. Chem. 2014, 2014, 772-780.

[13] C. Bosset, R. Coffinier, P. A. Peixoto, M. El Assal, K. Miqueu, J.-M. Sotiropoulos, L. Pouységu, S. Quideau, *Angew. Chem. Int. Ed.* **2014**, *53*, 9860-9864.

[14] S. Stavber, P. Kralj, M. Zupan, Synthesis 2002, 2002, 1513-1518.

[15] B. W. Larner, A. T. Peters, Journal of the Chemical Society (Resumed) 1952, 680-686.

[16] K. V. Emelen, T. D. Wit, G. J. Hoornaert, F. Compernolle, Org. Lett. 2000, 2, 3083-3086.

[17] M. Capuzzi, D. Perdicchia, K. A. Jørgensen, Chem. Eur. J. 2008, 14, 128-135.

[18] M. Nakajima, S. Yamamoto, Y. Yamaguchi, S. Nakamura, S. Hashimoto, *Tetrahedron* **2003**, *59*, 7307-7313.

[19] X. Wang, T. Yang, X. Cheng, Q. Shen, Angew. Chem. Int. Ed. 2013, 52, 12860-12864.

[20] M. D. Chordia, M. Zigler, L. J. Murphree, H. Figler, T. L. Macdonald, R. A. Olsson, J. Linden, *J. Med. Chem.* **2005**, *48*, 5131-5139.

[21] P. V. Reddy, P. Srinivas, M. Annapurna, S. Bhargava, J. Wagler, N. Mirzadeh, M. L. Kantam, *Adv. Synth. Catal.* **2013**, *355*, 705-710.

8. X-Ray Structure of 4p

Table 1. Crystal data and structure refinement for **4p**.

Identification code	sa3912	
Empirical formula	C21 H20 Br N O3	
Formula weight	414.29	
Temperature	173.1500 K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 6.4981(19) Å	α= 90°.
	b = 11.985(4) Å	β= 90°.
	c = 23.813(7) Å	$\gamma = 90^{\circ}.$
Volume	1854.6(9) Å ³	
Z	4	
Density (calculated)	1.484 Mg/m ³	
Absorption coefficient	2.237 mm ⁻¹	
F(000)	848	
Crystal size	0.23 x 0.13 x 0.06 mm ³	
Theta range for data collection	3.078 to 27.482°.	
Index ranges	-8<=h<=8, -15<=k<=15, -30<=	l<=30
Reflections collected	14635	
Independent reflections	4250 [R(int) = 0.0474]	
Completeness to theta = 26.000°	99.8 %	
Absorption correction	Semi-empirical from equivalent	S
Max. and min. transmission	1.0000 and 0.7499	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4250 / 0 / 235	
Goodness-of-fit on F ²	1.131	
Final R indices [I>2sigma(I)]	R1 = 0.0407, wR2 = 0.0733	
R indices (all data)	R1 = 0.0445, wR2 = 0.0747	

Absolute structure parameter	0.006(6)
Extinction coefficient	n/a
Largest diff. peak and hole	0.289 and -0.266 e.Å $^{\text{-3}}$

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å 2 x 10³)

	X	У	Z	U(eq)
Br1	7778(1)	9057(1)	5966(1)	35(1)
01	1982(4)	5377(2)	6061(1)	33(1)
O2	6048(4)	3295(3)	6301(1)	33(1)
03	2797(4)	2667(2)	6151(1)	22(1)
N1	1078(6)	3411(3)	4886(2)	31(1)
C1	4105(6)	4030(3)	5532(2)	22(1)
C2	3532(6)	5192(3)	5807(2)	22(1)
C3	5271(5)	5939(3)	5688(1)	20(1)
C4	5525(6)	7031(3)	5881(2)	23(1)
C5	7312(7)	7569(3)	5728(1)	23(1)
C6	8782(6)	7063(3)	5394(2)	27(1)
C7	8491(6)	5985(4)	5197(2)	26(1)
C8	6711(6)	5421(3)	5352(2)	21(1)
C9	6115(6)	4242(3)	5203(2)	25(1)
C10	2397(6)	3660(3)	5177(2)	23(1)
C11	4463(6)	3258(3)	6042(2)	24(1)
C12	2677(6)	1969(3)	6666(1)	22(1)
C13	2903(7)	2679(3)	7192(2)	30(1)
C14	2565(8)	1930(4)	7703(2)	38(1)
C15	4186(7)	994(5)	7702(2)	39(1)
C16	3959(7)	300(4)	7171(2)	32(1)
C17	1799(7)	-206(4)	7156(2)	37(1)
C18	207(6)	721(4)	7151(2)	34(1)

For 4p. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C19	408(8)	1421(5)	7686(2)	44(1)
C20	535(6)	1477(4)	6637(2)	27(1)
C21	4277(6)	1047(4)	6654(2)	26(1)

Br1-C5	1.896(3)
01-C2	1.196(4)
O2-C11	1.202(5)
O3-C11	1.320(4)
O3-C12	1.485(4)
N1-C10	1.141(5)
C1-C2	1.583(5)
C1-C9	1.545(5)
C1-C10	1.465(5)
C1-C11	1.543(5)
C2-C3	1.469(5)
C3-C4	1.396(5)
C3-C8	1.379(5)
C4-H4	0.9300
C4-C5	1.378(5)
C5-C6	1.383(6)
С6-Н6	0.9300
C6-C7	1.387(6)
С7-Н7	0.9300
C7-C8	1.390(5)
C8-C9	1.508(5)
С9-Н9А	0.9700
С9-Н9В	0.9700
C12-C13	1.522(5)
C12-C20	1.514(5)
C12-C21	1.518(5)
C13-H13A	0.9700

Table 3. Bond lengths [Å] and angles $[\circ]$ for **4p**.

C13-H13B	0.9700
C13-C14	1.529(5)
C14-H14	0.9800
C14-C15	1.539(7)
C14-C19	1.529(7)
C15-H15A	0.9700
C15-H15B	0.9700
C15-C16	1.521(6)
C16-H16	0.9800
C16-C17	1.530(6)
C16-C21	1.536(5)
C17-H17A	0.9700
C17-H17B	0.9700
C17-C18	1.518(6)
C18-H18	0.9800
C18-C19	1.530(7)
C18-C20	1.538(6)
C19-H19A	0.9700
C19-H19B	0.9700
C20-H20A	0.9700
C20-H20B	0.9700
C21-H21A	0.9700
C21-H21B	0.9700
C11-O3-C12	120.6(3)
C9-C1-C2	105.3(3)
C10-C1-C2	109.1(3)
C10-C1-C9	113.4(3)
C10-C1-C11	112.7(3)

C11-C1-C2	103.8(3)
C11-C1-C9	111.7(3)
O1-C2-C1	124.7(3)
O1-C2-C3	129.2(4)
C3-C2-C1	106.0(3)
C4-C3-C2	126.8(3)
C8-C3-C2	111.1(3)
C8-C3-C4	122.2(4)
С3-С4-Н4	121.6
C5-C4-C3	116.8(3)
С5-С4-Н4	121.6
C4-C5-Br1	119.7(3)
C4-C5-C6	122.0(3)
C6-C5-Br1	118.3(3)
С5-С6-Н6	119.7
C5-C6-C7	120.6(4)
С7-С6-Н6	119.7
С6-С7-Н7	120.8
C6-C7-C8	118.4(4)
С8-С7-Н7	120.8
C3-C8-C7	120.0(4)
C3-C8-C9	112.6(3)
C7-C8-C9	127.4(4)
С1-С9-Н9А	110.8
С1-С9-Н9В	110.8
C8-C9-C1	104.6(3)
С8-С9-Н9А	110.8
С8-С9-Н9В	110.8
Н9А-С9-Н9В	108.9

N1-C10-C1	177.1(4)
02-C11-O3	128.4(4)
O2-C11-C1	120.8(3)
O3-C11-C1	110.7(3)
O3-C12-C13	111.1(3)
O3-C12-C20	103.4(3)
O3-C12-C21	111.0(3)
C20-C12-C13	110.1(3)
C20-C12-C21	110.2(3)
C21-C12-C13	110.9(3)
C12-C13-H13A	110.0
C12-C13-H13B	110.0
C12-C13-C14	108.3(3)
H13A-C13-H13B	108.4
C14-C13-H13A	110.0
C14-C13-H13B	110.0
C13-C14-H14	109.3
C13-C14-C15	109.2(4)
C13-C14-C19	110.1(4)
C15-C14-H14	109.3
C19-C14-H14	109.3
C19-C14-C15	109.7(4)
C14-C15-H15A	109.8
C14-C15-H15B	109.8
H15A-C15-H15B	108.2
C16-C15-C14	109.5(4)
C16-C15-H15A	109.8
C16-C15-H15B	109.8
C15-C16-H16	109.5

C15-C16-C17	108.9(4)
C15-C16-C21	109.6(4)
C17-C16-H16	109.5
C17-C16-C21	109.7(4)
C21-C16-H16	109.5
C16-C17-H17A	109.8
C16-C17-H17B	109.8
H17A-C17-H17B	108.2
C18-C17-C16	109.6(3)
C18-C17-H17A	109.8
C18-C17-H17B	109.8
C17-C18-H18	109.3
C17-C18-C19	109.7(4)
C17-C18-C20	110.1(4)
C19-C18-H18	109.3
C19-C18-C20	109.1(4)
C20-C18-H18	109.3
C14-C19-C18	108.7(4)
C14-C19-H19A	110.0
C14-C19-H19B	110.0
C18-C19-H19A	110.0
C18-C19-H19B	110.0
H19A-C19-H19B	108.3
C12-C20-C18	108.8(3)
C12-C20-H20A	109.9
C12-C20-H20B	109.9
C18-C20-H20A	109.9
C18-C20-H20B	109.9
H20A-C20-H20B	108.3

C12-C21-C16	108.5(3)
C12-C21-H21A	110.0
C12-C21-H21B	110.0
C16-C21-H21A	110.0
C16-C21-H21B	110.0
H21A-C21-H21B	108.4

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br1	45(1)	21(1)	38(1)	-5(1)	-4(1)	-7(1)
01	27(2)	32(2)	41(2)	-5(1)	12(2)	0(1)
O2	24(2)	36(2)	39(2)	11(1)	-8(1)	-7(1)
03	22(1)	22(1)	23(1)	5(1)	0(1)	-4(1)
N1	37(2)	23(2)	33(2)	-2(2)	-4(2)	1(2)
C1	25(2)	17(2)	25(2)	1(2)	0(2)	-1(2)
C2	27(2)	20(2)	21(2)	0(2)	-1(2)	-1(2)
C3	25(2)	18(2)	18(2)	2(2)	-1(1)	2(2)
C4	29(2)	21(2)	19(2)	0(2)	0(2)	5(2)
C5	31(2)	18(2)	21(2)	1(1)	-6(2)	-1(2)
C6	26(2)	26(2)	28(2)	5(2)	1(2)	-6(2)
C7	28(2)	23(2)	27(2)	1(2)	6(2)	4(2)
C8	24(2)	18(2)	20(2)	3(2)	2(2)	0(2)
C9	30(2)	21(2)	25(2)	-1(2)	7(2)	-1(2)
C10	28(2)	15(2)	25(2)	2(1)	-1(2)	0(2)
C11	24(2)	21(2)	28(2)	3(2)	1(2)	-1(2)
C12	24(2)	22(2)	19(2)	2(1)	-1(2)	-1(2)
C13	35(2)	28(2)	27(2)	-7(2)	2(2)	-2(2)
C14	49(3)	47(3)	19(2)	-2(2)	4(2)	-3(2)
C15	39(2)	51(3)	27(2)	11(2)	-5(2)	-10(3)
C16	34(2)	32(2)	31(2)	12(2)	-1(2)	3(2)
C17	43(3)	33(2)	35(2)	15(2)	-2(2)	-10(2)
C18	24(2)	39(3)	38(2)	13(2)	1(2)	-9(2)
C19	44(3)	57(3)	32(3)	13(2)	13(2)	5(3)

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for **4p**. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [$h^2 \ a^{*2}U^{11} + \dots + 2hk \ a^*b^*U^{12}$]

C20	23(2)	31(2)	27(2)	5(2)	-3(2)	-5(2)
C21	25(2)	27(2)	26(2)	4(2)	2(2)	3(2)

	х	у	Z	U(eq)
H4	4535	7378	6103	27
H6	9976	7448	5301	32
H7	9465	5648	4966	32
H9A	7179	3721	5316	30
H9B	5887	4169	4802	30
H13A	1897	3277	7189	36
H13B	4266	3008	7206	36
H14	2715	2374	8046	46
H15A	5555	1315	7718	47
H15B	4003	523	8029	47
H16	4986	-299	7171	39
H17A	1645	-665	6823	45
H17B	1595	-676	7483	45
H18	-1174	393	7135	41
H19A	-618	2009	7686	53
H19B	189	956	8014	53
H20A	379	1046	6295	33
H20B	-481	2069	6635	33
H21A	5649	1366	6660	31
H21B	4131	609	6313	31

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å 2 x 10^3) for **4p**.

Table 6.Torsion angles [°] for 4p.

Br1-C5-C6-C7	-178.4(3)
01-C2-C3-C4	4.0(7)
01-C2-C3-C8	-176.5(4)
O3-C12-C13-C14	174.8(3)
O3-C12-C20-C18	179.7(3)
O3-C12-C21-C16	-175.4(3)
C1-C2-C3-C4	-175.2(3)
C1-C2-C3-C8	4.3(4)
C2-C1-C9-C8	6.2(4)
C2-C1-C11-O2	-78.6(4)
C2-C1-C11-O3	97.2(4)
C2-C3-C4-C5	178.4(3)
C2-C3-C8-C7	-179.2(3)
C2-C3-C8-C9	-0.3(4)
C3-C4-C5-Br1	179.6(3)
C3-C4-C5-C6	0.6(5)
C3-C8-C9-C1	-4.0(4)
C4-C3-C8-C7	0.3(5)
C4-C3-C8-C9	179.3(3)
C4-C5-C6-C7	0.5(6)
C5-C6-C7-C8	-1.3(6)
C6-C7-C8-C3	0.9(5)
C6-C7-C8-C9	-178.0(4)
C7-C8-C9-C1	174.9(4)
C8-C3-C4-C5	-1.1(5)
C9-C1-C2-O1	174.3(4)
C9-C1-C2-C3	-6.5(4)

C9-C1-C11-O2	34.4(5)
C9-C1-C11-O3	-149.8(3)
C10-C1-C2-O1	52.2(5)
C10-C1-C2-C3	-128.6(3)
C10-C1-C9-C8	125.5(3)
C10-C1-C11-O2	163.5(4)
C10-C1-C11-O3	-20.8(5)
C11-O3-C12-C13	60.2(4)
C11-O3-C12-C20	178.3(3)
C11-O3-C12-C21	-63.6(4)
C11-C1-C2-O1	-68.2(5)
C11-C1-C2-C3	111.0(3)
C11-C1-C9-C8	-105.8(4)
C12-O3-C11-O2	3.1(6)
C12-O3-C11-C1	-172.2(3)
C12-C13-C14-C15	60.1(5)
C12-C13-C14-C19	-60.3(5)
C13-C12-C20-C18	-61.6(4)
C13-C12-C21-C16	60.6(4)
C13-C14-C15-C16	-60.6(5)
C13-C14-C19-C18	60.6(5)
C14-C15-C16-C17	-59.9(5)
C14-C15-C16-C21	60.1(5)
C15-C14-C19-C18	-59.6(5)
C15-C16-C17-C18	60.7(5)
C15-C16-C21-C12	-59.5(4)
C16-C17-C18-C19	-61.2(5)
C16-C17-C18-C20	58.8(5)
C17-C16-C21-C12	60.1(5)

C17-C18-C19-C14	60.3(5)
C17-C18-C20-C12	-59.4(5)
C19-C14-C15-C16	60.1(5)
C19-C18-C20-C12	60.9(4)
C20-C12-C13-C14	61.0(4)
C20-C12-C21-C16	-61.5(4)
C20-C18-C19-C14	-60.2(5)
C21-C12-C13-C14	-61.3(4)
C21-C12-C20-C18	61.0(4)
C21-C16-C17-C18	-59.2(5)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 4p [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)

9. HPLC spectra

Signal 1: VWD1 A, Wavelength=254 nm |Peak| RT |Area % |Area |

Геак	KI	Area %	Area
#	[min]		
1	8.033	50.235	7.091e3
2	9.578	49.765	7.024e3

Signal 1: VWD1 A, Wavelength=254 nm Peak RT Area % Area

#	[min]		
1	8.9	54 8.7	57 1.619e3
2	10.6	63 91. 2·	43 1.687e4

Signal 1: VWD1 A, Wavelength=254 nm Peak RT Area % | Area # [min] -----

1	17.284	50.139 3.163e	3
2	26.659	49.861 3.145e	3

Signal	1:	VWD1 A,	Waveleng	th=254	nm
Peak	RT	Area %	Area		
# [min]		·		
1	18.932	11.958	2.039e3		
2	29.282	88.042	1.501e4		

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RT	Area % Area
#	[min]	
1	12.911	49. 217 8. 519e3
2	15.855	50. 783 8. 790e3

Peak #	RT [min]	Area %	Area
$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	12. 424 15. 071	18.301 81.699	2.068e4 9.230e4

 Signal
 1 : VWD1 A, Wavelength=254 nm

 |Peak|
 RT
 Area %
 Area

 |#
 [min]
 ----- -----

 1
 13.090
 50.096
 1.004e4

 2
 16.638
 49.904
 9.999e3

Sig	nal 1:	VWD1 A, Wavelength=254	nm
Peak	RT	Area % Area	
#	[min]		
1	13.088	7.278 1.764e3	
2	16.108	92.722 2.248e4	

Peak	RT A	Area %	Area
# [[min] ·	·	
1	25.416	50.507	5.691e4
2	37.031	49.493	5.577e4

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RT [min]	Area % Area
-		
$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$	24. 732 35. 410	17. 543 4. 465e4 82. 457 2. 099e5

 Signal
 1 : VWD1 A, Wavelength=254 nm

 Peak
 RT
 Area %

 #
 [min]

 --- ---- ----

 1
 12.206
 49.630
 1.610e4

 2
 16.278
 50.370
 1.634e4

Sig	nal 1:	VWD1 A,	Waveleng	th=254	nm
Peak	RT	Area %	Area		
#	[min]		-		
		-			
1	11.08	2 6.477	2. 603e3		
2	15.27	6 93.523	3 3. 758e4		

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RT	Area % Area
#	[min]	
1	11.928	50.121 2.323e4
2	23. 397	49.879 2.312e4

Signal 1: VWD1 A, Wavelength=254 nm

Peak #	RT [min]	Area % Area	
1	10.303	8. 547 1. 292e3	
2	20.569	91.453 1.383e4	

O ↓ CN

Peak RT Area % Area # [min] 1 11. 740 51. 196 5. 704e3 2 12.697 48.804 5.437e3

Signal 1: VWD1 A, Wavelength=254 nm Signal 1: VWD1 A, Wavelength=254 nm Peak RT Area % Area # [min] 1 11.456 6.194 5.891e3 2 12.160 93.806 8.922e4

Peak	RT	Area % Area
#	[min]	
1	10.603	49.264 2.173e4
2	14.100	50.736 2.238e4

Sig	nal	1:	VWD1	А,	Waveleng	gth=254	nm
eak	R	7	Area	ι %	Area		
#	[mi	in]					
			-				
1	10). 302	2 5.	847	1.039e3		
2	13	3.714	4 94.	153	1.673e4		

O CN

Signal 1: VWD1 A, Wavelength=254 nm Peak RT Area % | Area [min] # |-----14. 554 49. 239 6. 707e3 1 2 | 15.914 | 50.761 | 6.914e3 |

Signal 1: VWD1 A, Wavelength=254 nm

#	[min]	
- 1 2	13. 530 14. 648	2. 641 604. 050 97. 359 2. 227e4

Signal 1: VWD1 A, Wavelength=254 nm Signal 1: VWD1 A, Wavelength=254 nm

Peak	RT	Area % Area
#	[min]	
1	13. 194	50. 776 1. 008e4
2	16. 785	49. 224 9. 770e3

Peak	RT	Area %	Area
#	[min]		
-			
1	12.679	3. 495	424.856
2	16.084	96. 505	1.173e4

 Signal
 1:
 VWD1 A, Wavelength=254 nm

 Peak
 RT
 Area %
 Area

 #
 [min]
 ----- -----

 ---- ----- ----- -----

 1
 14.507
 50.429
 1.232e4

 2
 20.220
 49.571
 1.212e4

Signal 1:	VWD1 A, Wavelength=254	nr
Peak RT	Area % Area	
# [min]		
	-	
1 14.129	9 15.945 3.158e3	
2 19.604	4 84.055 1.665e4	

19.604

20

25min

Peak	RT [min]	Area % Area	
-	[min]		
1	12.915	49.852 1.441e4	
2	16.318	50.148 1.449e4	

	Signal	1:	VWD1	A,	Wavelength=254	nm
--	--------	----	------	----	----------------	----

Peak	RT	Area %	Area
#	[min]		
1	12.302	10.813	7.576e3
2	15.378	89.187	6.249e4

 Signal
 1:
 VWD1 A, Wavelength=254 nm

 Peak
 RT
 Area %
 Area

 #
 [min]
 ----- -----

 --- ---- ---- ----

 1
 14.670
 50.743
 2.390e4

 2
 19.358
 49.257
 2.320e4

Signal 1: VWD1 A, Wavelength=254 nm Peak RT |Area % | Area | # [min] |------|

1	11.471	8.861	5.099e3
2	15.082	91.139	5.245e4

Signal 1: VWD1 A, Wavelength=254 nm S |Peak| RT |Area % | Area | Pe

	#	[min]	
ŀ			
	1	13.539	49.283 7.099e3
	2	17.748	50.717 7.306e3

Signal	1 :	VWD1 A,	Wavelength=254	nm
eak	RT	Area %	Area	

#	[min]		
1	13. 144	10. 061	1. 478e3
2	17. 912	89. 939	1. 321e4

0 Br∖

 Signal
 1:
 VWD1 A, Wavelength=254 nm

 |Peak|
 RT
 |Area %
 |Area

 | #
 [min]
 ------|
 |

 1
 14.220
 49.644
 6.507e3

 2
 15.800
 50.356
 6.600e3

Si	gnal 1	: VWD1 A, Wavelength=254 nm
Peak	RT RT	Area % Area
#	[min]	
	-	
1	12.38	31 11. 110 844. 183
2	13.66	61 88.890 6.754e3

Peak	RT	Area % Area
#	[min]	
1	12.206	49.630 1.610e4
2	16.278	50.370 1.634e4

Peak	RT	Area % Area
#	[min]	
1	11.082	6. 477 2. 603e3
2	15.276	93. 523 3. 758e4

O O CN

 Signal
 1 : VWD1 A, Wavelength=254 nm

 Peak
 RT
 Area %
 Area

 #
 [min]
 ---- ----

 ---- ---- ---- ----

 1
 16.981
 48.366
 4.904e4

 2
 20.190
 51.634
 5.235e4

Sig	nal 1:	VWD1 A,	Wavelength=254	nm
Peak	RT	Area %	Area	
#	[min]			
1	16.891	89.951	7.296e4	
2	20.232	10.049	8.151e3	

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RT	Area % Area
#	[min]	
1	11.462	49.801 4.193e4
2	12.165	50. 199 4. 227e4

Peak	RT	Area %	Area
#	[min]		
1	10.159	17.886	6.487e3
2	10.846	82.114	2.978e4

 Signal 1: VWD1 A, Wavelength=254 nm
 Signal 1: VWD1 A, Wavelength=254 nm

 Peak
 RT
 Area %
 Area

 #
 [min]
 ---- ----

 --- ---- ---- ----

 1
 6.807
 49.032
 1.707e3
 1
 6.738
 64.001
 1.178e4

 2
 7.462
 50.968
 1.774e3
 ---- ---- ----

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RT	Area % Area
#	[min]	
1	13.627	48. 146 2. 235e4
2	17.416	51.854 2.408e4

Sig	nal 1:	VWD1 A,	Waveleng	th=254
Peak	RT	Area %	Area	
#	[min]			
1	13.362	10.332	9.978e3	
2	17.126	89.668	8.659e4	

nm

Peak	RT	Area % Area
#	[min]	
1	20.180	6.952 504.164
2	34, 547	93, 048 6, 748e3

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RT	Area %	Area
#	[min]		
1	21.756	51.350	3.788e3
2	36.795	48.650	3.589e3

Signal 1: VWD1 A, Wavelength=254 nm

Peak	RT	Area % Area
#	[min]	
1	18.122	46.937 1.511e3
2	21.240	53.063 1.708e3

Signal 1: VWD1 A, Wavelength=254 nm

		,	0	
Peak	RT	Area %	Area	
#	[min]			
-				
1	13.647	0.261	6.669	
2	18.054	5.809	148.265	
3	21.163	93. 929	2.397e3	

10. Copies of ¹H, ¹³C NMR spectra

N-Anthracenylmethyl cinchoninium bromide (5b)

O-9-Adamantoyl-N-Anthracenylmethyl cinchoninium bromide (5a)

O-9- Adamantoyl-*N*- benzylcinchoninium bromide (5c)

O-9- Adamantoyl-N- benzylquininium bromide (5d)

N-(3,5-Ditrifluoromethyl)benzyl-6'-hydroxyquininium bromide (5g)

O-9- benzoyl-*N*-(3,5-Ditrifluoromethyl)benzyl-6'-benzoylquininium bromide (5h)

0-9- Anthracenylmethyl -N- Anthracenylmethyl quininium bromide 5e

100 90 8

1-Hydroxy-1,2-benziodoxol-3-(1H)-one

1-Acetoxy-1,2-benziodoxol-3-(1H)-one

1-Cyano-1,2-benziodoxol-3-(1H)-one

4-Metheoxyl-1-acetoxy-1,2-benziodoxol-3-(1H)-one

4-Metheoxyl-1-cyano-1,2-benziodoxol-3-(1H)-one

4,5-Dimetheoxyl-1-hydroxy-1,2-benziodoxol-3-(1H)-one

3-Methyl-1-acetoxy-1,2-benziodoxol-3-(1H)-one

3-Methyl-1-acetoxy-1,2-benziodoxol-3-(1H)-one (1e)

4-Trifluoromethyl-1-acetoxy-1,2-benziodoxol-3-(1H)-one

1-Hydroxy-1,2-napthiodoxol-3-(1H)-one

4-tert-butyl-2-iodo-1-methylbenzene

4-tert-butyl-2-iodobenzoic acid

4-^tBu-1-hydroxy-1,2-benziodoxol-3-(1H)-one

4-^tBu-1-aetoxy-1,2-benziodoxol-3-(1H)-one (1b)

Methyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3b)

Tert-butyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3a)

Tert-butyl 3-methyl-2-oxocyclopent-3-enecarboxylate (3q)

Tert-butyl 3-hydroxybenzofuran-2-carboxylate (3t)

1,1-diphenylethyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3d)

1-Adamantyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate^[1] (3f)

1-Adamantyl 6-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3i)

1-Adamantyl 5-methoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate(3j)

1-Adamantyl 4,5-Dimethoxyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3k)

1-Adamantyl 5-chloro-1-oxo-2,3-dihydro-1H-indene-2-carboxylate(3n)

1-Adamantyl 1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (3s)

1-Adamantyl 5-(2-methoxyphenyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (3u)

1-Adamantyl 1-oxo-5-(phenylethynyl)-2,3-dihydro-1H-indene-2-carboxylate (3w)

1-Adamantyl 1-oxo-5-(thiophen-2-yl)-2,3-dihydro-1H-indene-2-carboxylate (3v)

(S)-methyl 2-cyano-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4b)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 pp

(S)-anthracen-9-ylmethyl 2-cyano-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4e)

(S)-1-Adamantyl 2-cyano-4-methyl-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4g)

(S)-1-Adamantyl 2-cyano-6-methoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4i)

(S)-1-Adamantyl 2-cyano-5,6-dimethoxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (4k)

(S)-1-Adamantyl 2-cyano-5-bromo-1-oxo-2,3-dihydro-1H-indene-2-carboxylate (40)

(S)-tert-butyl 1-cyano-3-methyl-2-oxocyclopent-3-enecarboxylate (4q)

(S)-tert-butyl 2-cyano-1-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalene-2-carboxylate (4r)

(S)-1-Adamantly-2-cyano-1-oxo-1,2,3,4-tetrahydronaphthalene-2-carboxylate (4s)

(S)-1-Adamantyl-2-cyano-5-(2-methoxyphenyl)-1-oxo-2,3-dihydro-1H-indene-2-carboxyl ate (4u)

(S)-1-Adamantyl -2-cyano-1-oxo-5-(thiophen-2-yl)-2,3-dihydro-1H-indene-2-carboxylate (4v)

(S)-1-Adamantyl-2-cyano-1-oxo-5-(phenylethynyl)-2,3-dihydro-1H-indene-2-carboxylate (4w)

