Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

> Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2015

A Fluorescent Turn-on H₂S-responsive Probe: Design, Synthesis and Application

Yufeng Zhang, †^a Haiyan Chen, †^{b*} Dan Chen,
b Di Wu, ^a Sheng Hua Liu
*^a and Jun Yin
*^a

^a Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.

^b Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University,

24 Tongjia Lane, Gulou District, Nanjing 210009, China.

^c State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China.

* E-mail: cpu.edu.cn; yinj@mail.ccnu.edu.cn; <a href="mailto:yinj@wailto:yinj@wailto:yinj@wailto:yinj@wailto:yinj@wailto:yinj@wailto:yinj@wailto:yinj@wailto:yinj@wailto:yinj@wailto:yinj@wailto:yinj@wailto:yinj@wailto:yinj@wailto:yinj@wailto:yinj@wail

Contents

- 1. Solubility in HEPES buffer containing 5% DMSO
- 2. Spectra upon addition of H_2S depending on time
- 3. Fluorescent titration of DP-NBD upon addition of H_2S
- 4. Fluorescence response of **DP-NBD** upon addition of H₂S depending on *p*H
- 5. Cell viability assay
- 6. The MOLDI-TOF mass spectra
- 7. Fluorescent spectra of **NBD-P** and **DP**
- 8. TDDFT calculations of **DP-NBD**, **DP** and **NBD-P**
- 9. Appendix: NMR and Mass spectra

1 Solubility in HEPES buffer containing 5% DMSO

Figure S1 Plot of fluorescence intensity (A) and absorbance (B) against the total amount of **DP-NBD** in HEPES (pH=7.4, 0.02 M) containing 5% DMSO.

2 Spectra upon addition of H₂S depending on time

Figure S2 (A) Fluorescent spectra and (B) Absorption spectra of **DP-NBD** (10 uM) upon addition of H₂S (10 equiv) depending on time in a mixed solution of DMSO-HEPES(v/v=10:90, pH=7.4, 0.02M). (C) Time-dependent fluorescence changes of DP-NBD (10 μ M) upon addition of H₂S , Cys, Hcy and GSH (10 equiv) within 120 min in a mixed solution of DMSO-HEPES(v/v=10:90, pH=7.4, 0.02 M). (λ ex = 365 nm, λ em = 595 nm, slit: 10/10 nm.). (D) The k_{obs} = 2.75 × 10⁻⁴ s⁻¹ calculated from the slope of the plot of ln [(Fmax–Ft)/Fmax] (measured at 595 nm vs time using excitation wavelength 365 nm).

3 Fluorescent titration of DP-NBD upon addition of H₂S

Figure S3 Fluorescence spectra of **DP-NBD** (10 μ M) upon addition of H₂S (0 μ M-300 μ M for A and 0 μ M-40 μ M for C) in a mixed solution of DMSO-HEPES(v/v=10:90, pH=7.4, 0.02 M) and the corresponding relationship between the fluorescent intensity and H₂S concentration(0 μ M-300 μ M for B and 0 μ M-40 μ M for D). (λ ex = 365 nm, λ em = 595 nm, slit: 10/10 nm.)

4 Fluorescence response of DP-NBD upon addition of H₂S depending on pH

Figure S4 Fluorescence response of **DP-NBD** (10 μ M) upon addition of H₂S (10 equiv) depending on *p*H(2-12) in a mixed solution of DMSO-HEPES(v/v=5:95, pH=7.4, 0.02M). Black line:only **DP-NBD**. Red bar: **DP-NBD**+ H₂S. (λ ex = 365 nm, λ em = 595 nm, slit: 10/10 nm.)

5 Cell viability assay

Figure S5 Cell viability of HeLa cells treated with probe DP-NBD at various concentrations

6 The MOLDI-TOF mass spectra

Figure S6 The MOLDI-TOF mass spectra after treating $\mbox{DP-NBD}$ and $\mbox{H}_2\mbox{S}$

7 Fluorescent spectra of NBD-P and DP

Figure S7 (A) The fluorescent spectra of NBD-P and (B) DP (10 uM) to H_2S (10 equiv) in a mixed solution of DMSO-HEPES(v/v=10:90, pH=7.4, 0.02M) (λ ex = 365 nm, λ em = 595 nm, slit: 10/10 nm.)

8 TDDFT calculations of DP-NBD, DP and NBD-P

Figure S8 Frontier molecular orbital profiles of molecules based on TDDFT (B3LYP/6 - 31G*) calculations. **Table S1**. Major electronic excitations for **DP-NBD**, **DP and NBD-P**.

Compound	Excited state	$\lambda/nm [eV]$	Osc. str (f)	Major contributions
DP-NBD ·	$S_0 \rightarrow S_2$	457.25 [2.71]	0.3238	HOMO-1→LUMO (69%)
	$S_0 \rightarrow S_{11}$	325.01 [3.81]	0.1680	HOMO-1→LUMO+2 (53%)
DP	$S_0 \rightarrow S_1$	344.04 [3.60]	0.0985	HOMO→LUMO (69%)
	$S_0 \rightarrow S_6$	248.38 [4.99]	0.0914	HOMO-2→LUMO+1 (45%)
	$S_0 \rightarrow S_8$	229.96 [5.39]	0.1008	HOMO→LUMO+2 (54%)
NBD-P	$S_0 \rightarrow S_1$	497.92 [2.49]	0.1675	HOMO→LUMO (69%)
	$S_0 \rightarrow S_4$	342.60 [3.62]	0.1737	HOMO→LUMO+1 (66%)
	$S_0 \rightarrow S_8$	295.12 [4.20]	0.0991	HOMO-1→LUMO+1 (69%)

Figure S9. TD-DFT calculations of DP-NBD, DP and NBD-P at B3LYP/6-31G* level by using Gaussian 09 program.

9 Appendix: NMR and Mass spectra

