Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Electronic Supporting Information

An Efficient Method for the Synthesis of Selenium Modified Nucleosides: Its application to the synthesis of *Se*-adenosyl-L-selenomethionine (SeAM)

Masakazu Kogami, Mamoru Koketsu*

Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

Table of Contents

1. Single Crystal X-Ray Diffraction Data for Compound 6	S2
2. Copies of ¹ H, ¹³ C and ⁷⁷ Se Spectra for All New Compounds	S4

1. Single Crystal X-Ray Diffraction Data for Compound 6

Figure S1: ORTEP diagram of the compound 6 crystallized from ethylacetate.

Single crystal X-ray diffraction data for compound **6** was collected on a Rigaku AFC-7R Mercury CCD diffractometer with graphite-monochromated Mo-K α radiation ($\lambda = 0.71075$ Å). This data (CCDC 1058755) can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Crystal data and structure refinement for compound 6.

Identification code	compound 6
Empirical formula	$C_{17}H_{28}N_2O_5SeSi$
Formula weight	447.46
Temperature	293(2) K
Wavelength	0.71075 Å
Crystal system	orthorhombic
Space group	<i>P</i> 2 ₁ 2 ₁ 2 ₁
Unit cell dimensions	a = 7.621(2) Å

	b = 13.163(4) Å
	c = 23.299(7) Å
Volume	2337.2(12) Å ³
Ζ	4
Density (calculated)	1.272 Mg/m ³
Absorption coefficient	1.683 mm ⁻¹
<i>F</i> (000)	928
Crystal size	0.20 x 0.20 x 0.20 mm ³
Theta range for data collection	3.05 to 27.50°.
Index ranges	-6<= <i>h</i> <=9, -16<= <i>k</i> <=17, -19<= <i>l</i> <=30
Reflections collected	14655
Independent reflections	5298 [<i>R</i> (int) = 0.0611]
Completeness to theta = 27.50°	98.4 %
Max. and min. transmission	0.7295 and 0.7295
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	5298 / 0 / 240
Goodness-of-fit on F^2	1.058
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.1050, wR2 = 0.2720
<i>R</i> indices (all data)	R1 = 0.1652, wR2 = 0.3186
Absolute structure parameter	-0.01(3)
Largest diff. peak and hole	0.746 and -0.857 e.Å ⁻³

2. Copies of ¹H, ¹³C and ⁷⁷Se Spectra for All New Compounds

 $\mathbf{S8}$

X + parts per Million + 77Se

V + parts par Million + 77So

S73

 $\mathbf{S82}$

 $\mathbf{S83}$

X : parts per Million : 77Se

S89

