# **Supporting Information**

# Rh(III)-catalyzed Cyclization Reaction of Azoles with Alkynes: Efficient Synthesis of Azole-fused-Pyridines

Xuebing Chen<sup>a</sup>, Youzhi Wu<sup>a</sup>, Jinyi Xu<sup>a</sup>, Hequan Yao<sup>a</sup>, Aijun Lin<sup>a</sup> and Yue Huang<sup>a,b\*</sup>

<sup>a</sup> State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 24 Tong Jia Xiang, 210009, P. R. China.

<sup>b</sup> Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 24 Tong Jia

Xiang, 210009, P. R. China.

E-mail: yhuang@cpu.edu.cn

| 1. General Information                                            | 1                |
|-------------------------------------------------------------------|------------------|
| 2. General procedure for the preparation of substrates            | 1                |
| 2.1 Preparation of thiazole/oxazole substrates                    | 1                |
| 2.2 Preparation of symmetrical alkynes                            | 2                |
| 3. Rh(III)-catalyzed Cyclization Reaction of Azoles with Alkynes  | 2                |
| 3.1 General Procedure                                             | 2                |
| 3.1.1 Typical Experimental Procedure for Synthesis of 3a-3v       | 2                |
| 3.1.2 Typical Experimental Procedure for Synthesis of 5a-5j       | 2                |
| 3.2 Characterization of the Cyclization Products                  | 3                |
| 3.2.1 C <sub>5</sub> -Cyclization Products                        | 3                |
| 3.2.2 C <sub>4</sub> -Cyclization Products                        | 8                |
| References                                                        | 1 <mark>1</mark> |
| <sup>13</sup> C and <sup>1</sup> H-NMR Spectra of Title Compounds | 1 <mark>2</mark> |

# 1. General Information

**Reagents and Solvents**:  $[RhCp*Cl_2]_2$  and NaOAc were commercially available. PE refers to petroleum ether b.p. 60-90 °C and EA refers to ethyl acetate. All other starting materials and solvents were commercially available and were used without further purification unless otherwise stated. Room temperature reactions were carried out between 20-25 °C.

**Chromatography**: Flash column chromatography was carried out using commercially available 300-400 mesh under pressure unless otherwise indicated. Gradient flash chromatography was conducted eluting with PE/EA.

**Data collection**: <sup>1</sup>H and <sup>13</sup>C NMR spectra were collected on BRUKER AV-300 (300 MHz) spectrometer using CDCl<sub>3</sub> as solvent. Chemical shifts of <sup>1</sup>H NMR were recorded in parts per million (ppm,  $\delta$ ) relative to tetramethylsilane ( $\delta = 0.00$  ppm) with the solvent resonance as an internal standard (CDCl<sub>3</sub>:  $\delta = 7.26$  ppm). Data are reported as follows: chemical shift in ppm ( $\delta$ ), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, brs = broad singlet, m = multiplet), coupling constant (Hz), and integration. Chemical shifts of <sup>13</sup>C NMR were reported in ppm with the solvent as the internal standard (CDCl<sub>3</sub>:  $\delta = 77.0$  ppm). Infrared spectra (IR) were recorded on a Thermo Scientific iS10 FT/IR spectrometer; absorptions are reported in reciprocal centimeters. High Resolution Mass measurement was performed on Agilent QTOF 6520 mass spectrometer with electron spray ionization (ESI) as the ion source. Melting point (mp) was measured on a microscopic melting point apparatus.

# 2. General procedure for the preparation of substrates

# 2.1 Preparation of thiazole/oxazole substrates

As shown in **Scheme S1**, starting materials thiazole/oxazole carboxylic acid were synthesized according to the literature.<sup>1</sup> Weinreb amidation followed by the reaction with methylmagnesium bromide to get the corresponding ketones.<sup>2</sup> The thiazole/oxazole substrates were formed by the condensition between the ketones and hydroxylamine hydrochloride.<sup>3</sup>



Scheme S1. Preparation of thiazole/oxazole substrates

#### 2.2 Preparation of symmetrical alkynes

As shown in **Scheme S2**, the symmetrical alkynes were prepared from the corresponding phenyl iodide and ethynyltrimethylsilane as starting materials via sonogashira reaction, remove of trimethylsilane followed by another sonogashira reaction. For details see the reported literatures.<sup>4</sup>



Scheme S2. Preparation of symmetrical alkynes

# 3. Rh(III)-catalyzed Cyclization Reaction of Azoles with Alkynes

#### 3.1 General Procedure

3.1.1 Typical Experimental Procedure for Synthesis of 3a-3v



A reaction tube was charged with catalyst  $[RhCp*Cl_2]_2$  (3.1 mg, 2.5 mol %), NaOAc (34 mg, 2.0 equiv.), **1** (0.2 mmol, 1.0 equiv.), **2** (0.24 mmol, 1.2 equiv.) in 2 mL methanol under air atmosphere. The reaction tube was sealed, and the mixture was vigorously stirred at 60 °C (oil temperature) for 24 h. After competition, the mixture was cooled to room temperature, diluted with dichloromethane and concentrated under reduced pressure then purified by flash chromatography on silica gel (PE/EA) to afford the corresponding products **3a-3v**.

# 3.1.2 Typical Experimental Procedure for Synthesis of 5a-5j



A reaction tube was charged with catalyst  $[RhCp*Cl_2]_2$  (3.1 mg, 2.5 mol %), NaOAc (34 mg, 2.0 equiv.), **4** (0.3 mmol, 1.5 equiv.), **2** (0.2 mmol, 1.0 equiv.) in 2 mL methanol under air atmosphere. The reaction tube was sealed, and the mixture was vigorously stirred at 70 °C (oil temperature) for 24 h. After competition, the mixture

was cooled to room temperature, diluted with dichloromethane and concentrated under reduced pressure then purified by flash chromatography on silica gel (petroleum ether/ethyl acetate) to afford the corresponding products **5a-5j**.

# 3.2 Characterization of the Cyclization Products

# 3.2.1 C<sub>5</sub>-Cyclization Products 4-methyl-2,6,7-triphenylthiazolo[4,5-c]pyridine (3a)



72 mg, 95% yield; white solid, mp: 210-212 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (dd, J = 6.5, 3.1 Hz, 2H), 7.47 (ddd, J = 6.0, 5.0, 2.2 Hz, 5H), 7.37 (s, 5H), 7.31-7.22 (m, 3H), 3.16 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  168.3, 152.8, 150.7, 148.6, 145.9, 139.9, 139.2, 133.3, 131.3, 130.4, 129.5, 129.1, 128.8, 128.0,

127.9, 127.6, 127.5, 127.2, 21.6; IR (KBr) 3050, 2920, 1599, 1549, 1477, 1419, 1307, 1252, 1172, 1027, 974, 762, 703 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for  $C_{25}H_{19}N_2S$  [M+H]<sup>+</sup> 379.1263, found 379.1265.

# 2-(4-fluorophenyl)-4-methyl-6,7-diphenylthiazolo[4,5-c]pyridine (3b)



74 mg, 93% yield; white solid, mp: 214-216 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (dd, J = 8.5, 5.3 Hz, 2H), 7.46-7.26 (m, 7H), 7.22 (dd, J = 6.5, 3.3 Hz, 3H), 7.13 (t, J = 8.5 Hz, 2H), 3.08 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  167.0, 166.3, 162.9, 152.7, 150.8, 148.5, 145.9, 139.8, 139.1, 130.3, 129.7,

129.6, 129.4, 128.8, 128.0, 127.9, 127.6, 127.2, 116.4, 116.1, 21.6; IR (KBr) 3050, 2908, 1598, 1546, 1510, 1478, 1420, 1372, 1248, 1230, 1156, 974, 841, 764, 702 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>25</sub>H<sub>18</sub>FN<sub>2</sub>S [M+H]<sup>+</sup> 397.1169, found 397.1168.

# 2-(4-chlorophenyl)-4-methyl-6,7-diphenylthiazolo[4,5-c]pyridine (3c)



72 mg, 87% yield; white solid, mp: 193-195 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4Hz, 2H), 7.35 (dt, J = 12.8, 5.5 Hz, 7H), 7.25-7.17 (m, 3H), 3.08 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  166.9, 152.9, 150.9, 148.5, 145.9, 139.7, 139.0, 132.3, 132.2, 130.3, 129.4,

128.9, 128.8, 128.0, 127.9, 127.6, 127.2, 125.8, 21.6; IR (KBr) 3050, 2920, 1584, 1546, 1469, 1413, 1375, 1248, 1174, 1074, 1007, 974, 810, 765, 703 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>25</sub>H<sub>18</sub>ClN<sub>2</sub>S [M+H]<sup>+</sup> 413.0874, found 413.0872.

# 2-(4-bromophenyl)-4-methyl-6,7-diphenylthiazolo[4,5-c]pyridine (3d)



85 mg, 93% yield; pale yellow solid, mp: 215-217 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 7.98 (d, *J* = 8.4 Hz, 2H), 7.47-7.27 (m, 9H), 7.26-7.18 (m, 3H), 3.08 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 166.9, 152.9, 150.9, 148.5, 145.9, 139.7, 139.0, 137.4, 131.7, 130.3, 129.4, 129.3, 128.8, 128.8, 128.0,

127.9, 127.6, 127.2, 21.6; IR (KBr) 3055, 2914, 1594, 1546, 1471, 1419, 1399, 1376,

1249, 1087, 1014, 974, 877, 837, 765, 704 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>25</sub>H<sub>18</sub>BrN<sub>2</sub>S [M+H]<sup>+</sup> 457.0369, found 457.0371.

# 2-(4-methoxyphenyl)-4-methyl-6,7-diphenylthiazolo[4,5-c]pyridine (3e)



65 mg, 80% yield; White solid, mp: 198-200 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.00 (d, J = 8.6 Hz, 2H), 7.47-7.15 (m, 10H), 6.95 (d, J = 8.6 Hz, 2H), 3.84 (s, 3H), 3.08 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 168.1, 162.2, 152.2, 150.4, 148.7, 145.7, 140.0, 139.3, 130.3, 129.5, 129.2, 128.7, 127.8,

127.5, 127.1, 126.1, 114.4, 55.5, 21.6; IR (KBr) 3032, 2938, 1606, 1548, 1479, 1420, 1360, 1307, 1255, 1172, 1030, 877, 837, 762, 699 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for  $C_{26}H_{21}N_2OS$  [M+H]<sup>+</sup> 409.1369, found 409.1371.

#### 4-methyl-6,7-diphenyl-2-(p-tolyl)thiazolo[4,5-c]pyridine (3f)



67 mg, 86% yield; white solid, mp: 196-198 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (d, *J* = 7.9 Hz, 2H), 7.44-7.26 (m, 7H), 7.22 (d, *J* = 7.6 Hz, 5H), 3.09 (s, 3H), 2.37 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  168.5, 160.4, 152.5, 150.5, 148.7, 145.7, 141.8, 139.9, 139.2, 130.6, 130.4, 129.8, 129.5, 128.8,

127.9, 127.5, 127.2, 115.0, 21.6, 21.6; IR (KBr) 3056, 2920, 1599, 1547, 1480, 1420, 1375, 1254, 1177, 974, 877, 811, 768, 702 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for  $C_{26}H_{21}N_2S$  [M+H]<sup>+</sup> 393.1420, found 393.1417.

#### 4-methyl-6,7-diphenyl-2-(4-(trifluoromethyl)phenyl)thiazolo[4,5-c]pyridine (3g)



80 mg, 90% yield; white solid, mp: 205-207 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.22 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 8.2 Hz, 2H), 7.50-7.31 (m, 7H), 7.30-7.22 (m, 3H), 3.15 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  166.3, 153.3, 151.2, 148.5, 146.1, 139.6, 138.9, 136.4, 132.8 (q,  $J_{C-F}$  = 32.5 Hz ),

130.3, 129.4, 128.9, 128.1, 127.9, 127.9, 127.7, 127.3, 126.7 (q,  $J_{C-F} = 3.7 \text{ Hz}$ ), 123.8 (q,  $J_{C-F} = 270.7 \text{ Hz}$ ), 21.5; IR (KBr) 3061, 2932, 1616, 1546, 1419, 1338, 1322, 1251, 1170, 1118, 1066, 977, 844, 765, 698 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>26</sub>H<sub>18</sub>F<sub>3</sub>N<sub>2</sub>S [M+H]<sup>+</sup> 447.1137, found 447.1136.

#### 4-methyl-6,7-diphenyl-2-(m-tolyl)thiazolo[4,5-c]pyridine (3h)



71 mg, 90% yield; white solid, mp: 184-186 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (s, 1H), 7.86 (d, *J* = 7.5 Hz, 1H), 7.41 (dd, *J* = 6.6, 3.0 Hz, 2H), 7.36-7.26 (m, 6H), 7.23 (dd, *J* = 6.6, 2.9 Hz, 3H), 3.11 (s, 3H), 2.43 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  168.6, 152.7, 150.6, 148.6, 145.8, 139.9, 139.2, 138.9, 133.2,

132.1, 130.3, 130.0, 129.5, 129.0, 128.8, 128.1, 127.9, 127.5, 127.2, 124.9, 21.6, 21.4; IR (KBr) 3044, 2919, 1735, 1654, 1548, 1481, 1421, 1374, 1265, 1178, 1018, 921, 826, 790, 763, 699 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for  $C_{26}H_{21}N_2S$  [M+H]<sup>+</sup> 393.1420, found 393.1419.

#### 6,7-bis(4-methoxyphenyl)-4-methyl-2-phenylthiazolo[4,5-c]pyridine (3i)



74 mg, 85% yield; pale yellow solid, mp: 154-156 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (d, J = 3.5 Hz, 2H), 7.48 (d, J = 1.6 Hz, 3H), 7.36 (d, J = 8.5 Hz, 2H), 7.25 (d, J = 8.3 Hz, 2H), 6.89 (d, J = 8.4 Hz, 2H), 6.78 (d, J = 8.5 Hz, 2H), 3.80 (d, J = 17.6 Hz, 6H), 3.08 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  168.0, 159.1, 152.3, 150.3, 148.3, 146.2, 133.4,

132.4, 131.6, 131.2, 130.6, 129.1, 128.8, 127.6, 126.4, 124.8, 114.2, 113.4, 55.3, 55.2, 21.5; IR (KBr) 2997, 2837, 1725, 1607, 1548, 1513, 1434, 1405, 1288, 1249, 1175, 1031, 927, 838, 817, 729, 685 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>27</sub>H<sub>23</sub>N<sub>2</sub>O<sub>2</sub>S [M+H]<sup>+</sup> 439.1475, found 439.1474.

#### 4-methyl-2-phenyl-6,7-di-p-tolylthiazolo[4,5-c]pyridine (3j)



65 mg, 80% yield; white solid, mp: 201-203 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.11-7.99 (m, 2H), 7.51-7.39 (m, 3H), 7.31 (d, *J* = 8.1 Hz, 2H), 7.25-7.10 (m, 4H), 7.03 (d, *J* = 8.0 Hz, 2H), 3.08 (s, 3H), 2.36 (s, 3H), 2.29 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  168.1, 152.5, 150.7, 148.4, 146.0, 137.6, 137.2, 137.1, 136.4, 133.4, 131.2, 130.2, 129.5, 129.3, 129.1,

128.6, 127.6, 126.9, 21.6, 21.4, 21.3; IR (KBr) 3025, 2916, 1611, 1547, 1477, 1431, 1376, 1253, 1182, 1030, 972, 829, 779, 765, 685 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for  $C_{27}H_{23}N_2S$  [M+H]<sup>+</sup> 407.1576, found 407.1575.

#### 6,7-bis(4-chlorophenyl)-4-methyl-2-phenylthiazolo[4,5-c]pyridine (3k)



76 mg, 85% yield; pale yellow solid, mp: 206-208 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.10–7.99 (m, 2H), 7.51–7.39 (m, 3H), 7.38–7.26 (m, 4H), 7.21 (dt, *J* = 4.1, 3.4 Hz, 4H), 3.06 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 168.5, 153.2, 149.3, 148.7, 145.6, 138.0, 137.2, 134.2, 133.9, 133.0, 131.6, 131.5, 130.8, 129.3, 129.1, 128.3, 127.6, 125.9, 21.6; IR (KBr) 3050, 2920,

1566, 1549, 1490, 1476, 1432, 1375, 1248, 1192, 1106, 1014, 839, 801, 765, 686 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>25</sub>H<sub>17</sub>Cl<sub>2</sub>N<sub>2</sub>S [M+H]<sup>+</sup> 447.0484, found 447.0486.

#### 6,7-bis(4-bromophenyl)-4-methyl-2-phenylthiazolo[4,5-c]pyridine (31)



97 mg, 91% yield; pale yellow solid, mp: 238-240 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.12-7.99 (m, 2H), 7.47 (qd, J =8.7, 3.0 Hz, 5H), 7.38 (d, J = 8.5 Hz, 2H), 7.30-7.22 (m, 2H), 7.17 (d, J = 8.4 Hz, 2H), 3.07 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  168.6, 153.3, 149.3, 148.8, 145.6, 138.5, 137.7, 133.0, 132.3, 131.9, 131.5, 131.2, 131.0, 129.2, 127.6, 125.9,

122.4, 122.3, 21.6; IR (KBr) 3056, 2926, 1547, 1486, 1431, 1377, 1242, 1104, 1070, 1009, 971, 839, 801, 764, 686 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for  $C_{25}H_{17}Br_2N_2S$  [M+H]<sup>+</sup> 534.9474, found 534.9472.

#### 4-methyl-2-phenyl-6,7-bis(4-(trifluoromethyl)phenyl)thiazolo[4,5-c]pyridine (3m)



68 mg, 67% yield; white solid, mp: 227-230 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (d, J = 6.7 Hz, 2H), 7.66 (d, J =7.8 Hz, 2H), 7.45-7.52 (m, 9H), 3.12 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 169.0, 153.8, 149.1, 149.0, 145.6, 143.0, 142.2, 132.9, 131.7, 130.6, 130.2, 130.1, 129.9, 129.6, 129.5, 129.2, 127.7, 126.1 (q,  $J_{C-F}$  = 3.6 Hz), 125.9, 125.7, 125.0 (q,

 $J_{C-F} = 3.6 \text{ Hz}$ , 122.3, 122.1, 118.7, 118.5, 21.6; IR (KBr) 3050, 2930, 1620, 1481, 1327, 1157, 1118, 1060, 1016, 845, 627 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for  $C_{27}H_{16}F_6N_2S$  [M+H]<sup>+</sup> 515.1011, found 515.1009.

#### 4-methyl-2-phenyl-6,7-di-m-tolylthiazolo[4,5-c]pyridine (3n)



68 mg, 84% yield; pale yellow solid, mp: 139-141 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.10-7.96 (m, 2H), 7.47-7.33 (m, 4H), 7.23-6.98 (m, 7H), 3.10 (s, 3H), 2.28 (d, *J* = 6.6 Hz, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 168.2, 152.5, 150.8, 148.5, 145.9, 139.8, 139.2, 138.4, 137.5, 133.3, 131.2, 131.0, 129.9,

129.5, 129.1, 128.6, 128.3, 127.9, 127.6, 127.5, 127.3, 126.6, 21.6, 21.5, 21.5; IR (KBr) 3020, 2914, 1596, 1584, 1550, 1476, 1445, 1373, 1252, 1089, 968, 906, 791, 761, 704, 685 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>27</sub>H<sub>23</sub>N<sub>2</sub>S [M+H]<sup>+</sup> 407.1576, found 407.1574.

#### 4-methyl-2-phenyl-6,7-dipropylthiazolo[4,5-c]pyridine (30)



52 mg, 84% yield; white solid, mp: 66-68 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.07 (ddd, J = 5.5, 3.0, 1.5 Hz, 2H), 7.53-7.37 (m, 3H), 2.96 (s, 3H), 2.90-2.74 (m, 4H), 1.86-1.62 (m, 4H), 1.04 (t, J = 7.3Hz, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 166.5, 153.6, 151.0, 148.1, 144.4, 133.5, 131.0, 129.0, 127.5, 125.9, 36.8, 35.0, 23.9, 22.6,

21.2, 14.4, 14.3; IR (KBr) 2958, 2928, 2868, 1560, 1477, 1438, 1310, 1251, 1234, 1086, 1071, 974, 912, 839, 766, 689, 651 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>19</sub>H<sub>23</sub>N<sub>2</sub>S [M+H]<sup>+</sup> 311.1576, found 311.1578.

#### 4,7-dimethyl-2,6-diphenylthiazolo[4,5-c]pyridine (3p)



49 mg, 77% yield; white solid, mp: 136-138 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) & 8.17-8.03 (m, 2H), 7.63-7.52 (m, 2H), 7.53-7.34 (m, 6H), 3.02 (s, 3H), 2.50 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 167.5, 152.0, 151.2, 148.4, 145.3, 140.3, 133.4, 131.2, 129.6, 129.1, 128.2, 127.9, 127.6, 121.5, 21.4, 19.5; IR (KBr) 3056, 2908, 1560, 1478, 1451,

1421, 1250, 1121, 1021, 953, 886, 764, 685, 675 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>20</sub>H<sub>17</sub>N<sub>2</sub>S [M+H]<sup>+</sup> 317.1107, found 317.1109.

### 7-(2-bromoethyl)-4-methyl-2,6-diphenylthiazolo[4,5-c]pyridine (3q)



34 mg, 41% yield; white solid, mp: 128-130 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.13 (dd, J = 6.6, 2.9 Hz, 2H), 7.64-7.36 (m, 8H), 3.58-3.35 (m, 4H), 3.04 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 167.7, 153.0, 152.5, 149.0, 144.8, 139.8, 133.1, 131.5, 129.2, 129.0, 128.6, 128.3, 127.8, 123.0, 36.7, 29.4, 21.5; IR (KBr)

3056, 2922, 1554, 1477, 1444, 1425, 1247, 1224, 1073, 1023, 980, 883, 800, 759, 705, 683 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>21</sub>H<sub>18</sub>BrN<sub>2</sub>S [M+H]<sup>+</sup> 409.0369, found 409.0366.

# methyl 4-methyl-2,6-diphenylthiazolo[4,5-c]pyridine-7-carboxylate (3r)



14 mg, 19% yield; white solid, mp: 158-160 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 8.19-8.15 (m, 2H), 7.58-7.51 (m, 5H), 7.49-7.41 (m, 3H), 3.73 (s, 3H), 3.11 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 170.6, 167.6, 156.3, 155.1, 148.8, 144.9, 140.8, 133.1, 131.6, 129.2, 129.0, 128.4, 128.0, 127.7, 52.3, 21.9; IR (KBr) 3518, 3420, 3051, 2825, 1733,

1637, 1629, 1350, 1122, 1045, 720, 690 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>21</sub>H<sub>16</sub>N<sub>2</sub>O<sub>2</sub>S [M+H]<sup>+</sup> 361.1005, found 361.1009.

#### 4-methyl-2,6,7-triphenyloxazolo[4,5-c]pyridine (3s)



55 mg, 76% yield; white solid, mp: 196-198 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.22 (dd, J = 7.8, 1.6 Hz, 2H), 7.50 (dt, J = 12.2, 4.5 Hz, 3H), 7.45-7.30 (m, 7H), 7.25 (t, *J* = 3.2 Hz, 3H), 2.97 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 163.2, 154.8, 152.6, 150.2, 139.9, 137.4, 133.6, 132.0, 130.5, 130.4, 128.9, 128.5, 128.0,

127.9, 127.8, 127.7, 126.5, 117.9, 20.2; IR (KBr) 3059, 2908, 1627, 1593, 1550, 1492, 1425, 1380, 1207, 1121, 1018, 914, 769, 708, 690 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>25</sub>H<sub>19</sub>N<sub>2</sub>O [M+H]<sup>+</sup> 363.1492, found 363.1491.

#### 4-methyl-6,7-diphenyl-2-(p-tolyl)oxazolo[4,5-c]pyridine (3t)



49 mg, 65% yield; white solid, mp: 206-208 °C; <sup>1</sup>H NMR  $(300 \text{ MHz}, \text{CDCl}_3) \delta 8.07 \text{ (d, } J = 8.2 \text{ Hz}, 2\text{H}), 7.46-7.38 \text{ (m,}$ 2H), 7.38-7.29 (m, 5H), 7.24 (dd, J = 8.5, 5.3 Hz, 5H), 2.95 (s, 3H), 2.39 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) δ 163.5, 154.7, 152.4, 149.9, 142.6, 140.0, 137.5, 133.6, 130.5, 130.4,

129.7, 128.4, 128.0, 127.9, 127.7, 127.6, 123.7, 117.8, 21.8, 20.2; IR (KBr) 3032, 2914, 1626, 1612, 1500, 1422, 1379, 1313, 1206, 1121, 1041, 1015, 915, 833, 766, 731, 698 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>26</sub>H<sub>21</sub>N<sub>2</sub>O [M+H]<sup>+</sup> 377.1648, found 377.1645.

#### 2-(4-chlorophenyl)-4-methyl-6,7-diphenyloxazolo[4,5-c]pyridine (3u)



66 mg, 83% yield; white solid, mp: 183-185 °C; <sup>1</sup>H NMR  $(300 \text{ MHz}, \text{CDCl}_3) \delta 8.08 \text{ (d, } J = 8.6 \text{ Hz}, 2\text{H}), 7.51-7.28 \text{ (m,}$ 9H), 7.28-7.16 (m, 3H), 2.94 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>) & 162.2, 154.8, 152.8, 150.3, 139.8, 138.2, 137.3,

133.4, 130.5, 130.4, 129.3, 129.1, 128.5, 128.0, 127.8, 127.7, 125.0, 117.9, 20.2; IR (KBr) 3050, 2920, 1625, 1606, 1483, 1419, 1404, 1378, 1257, 1090, 1042, 1012, 909, 832, 732, 696 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>25</sub>H<sub>18</sub>ClN<sub>2</sub>O [M+H]<sup>+</sup> 397.1102, found 397.1100.

#### 6,7-bis(4-methoxyphenyl)-4-methyl-2-phenyloxazolo[4,5-c]pyridine (3v)



79 mg, 94% yield; pale yellow solid, mp: 177-179 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.19 (dd, J = 7.6, 1.6 Hz, 2H), 7.47 (q, J = 5.5 Hz, 3H), 7.37 (d, J = 8.7 Hz, 2H), 7.29 (d, J= 8.7 Hz, 2H), 6.90 (d, J = 8.7 Hz, 2H), 6.79 (d, J = 8.7 Hz, 2H), 3.80 (d, J = 15.9 Hz, 6H), 2.93 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  163.0, 159.2, 159.0, 154.9, 152.1, 149.6,

137.1, 132.6, 132.3, 131.8, 131.6, 128.9, 127.8, 126.6, 125.9, 117.1, 114.0, 113.5, 55.2, 55.2, 20.1; IR (KBr) 3055, 2926, 1605, 1513, 1437, 1372, 1289, 1248, 1173, 1118, 1031, 912, 821, 780, 706 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>27</sub>H<sub>23</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> 423.1703, found 423.1707.

# 3.2.2 C<sub>4</sub>-Cyclization Product 4-methyl-2,6,7-triphenylthiazolo[5,4-c]pyridine (5a)



64 mg, 85% yield; white solid, mp: 174-176 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (dd, J = 7.8, 1.5 Hz, 2H), 7.50-7.35 (m, 7H), 7.35-7.25 (m, 3H), 7.26-7.17 (m, 3H), 2.88 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  171.7, 158.9, 153.9, 151.0, 140.5, 136.5, 133.1, 131.8, 131.6, 130.4, 130.2, 129.0, 128.4, 128.1, 127.9,

127.8, 127.4, 127.2, 25.0; IR (KBr) 3044, 2908, 1549, 1537, 1502, 1474, 1446, 1413, 1328, 1310, 1177, 1065, 962, 765, 698, 683 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for  $C_{25}H_{19}N_2S [M+H]^+$  379.1263, found 379.1267.

#### 4-methyl-6,7-diphenyl-2-(p-tolyl)thiazolo[5,4-c]pyridine (5b)



73 mg, 93% yield; white solid, mp: 223-225 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (d, J = 8.0 Hz, 2H), 7.38 (d, J = 4.3 Hz, 4H), 7.29 (d, J = 5.3 Hz, 3H), 7.19 (d, J = 7.7 Hz, 5H), 2.87 (s, 3H), 2.35 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  171.9, 159.0, 153.8, 150.8, 142.5, 140.4, 136.5, 131.6, 130.4,

130.2, 129.7, 128.0, 127.9, 127.8, 127.4, 127.3, 127.2, 24.9, 21.7; IR (KBr) 3056, 2920, 1608, 1542, 1518, 1480, 1419, 1264, 1177, 1069, 961, 818, 767, 746, 702 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>26</sub>H<sub>21</sub>N<sub>2</sub>S [M+H]<sup>+</sup> 393.1420, found 393.1422.

# 2-(4-(tert-butyl)phenyl)-4-methyl-6,7-diphenylthiazolo[5,4-c]pyridine (5c)



74 mg, 85% yield; white solid, mp: 144-146 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 (d, J = 8.4 Hz, 2H), 7.45 (d, J = 8.4 Hz, 2H), 7.42-7.34 (m, 4H), 7.34-7.25 (m, 3H), 7.21 (dd, J = 5.0, 1.7 Hz, 3H), 2.88 (s, 3H), 1.32 (s, 9H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  171.7, 159.0, 155.5, 153.9, 150.9, 140.6, 136.6, 131.7, 130.5, 130.4, 130.2, 128.0, 127.9, 127.7, 127.4, 127.3, 127.1, 126.0, 35.1, 31.2, 25.0; IR (KBr) 3038, 2955, 1631, 1619, 1540, 1479, 1416, 1263, 1065, 962, 838, 765, 751, 704 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>29</sub>H<sub>27</sub>N<sub>2</sub>S [M+H]<sup>+</sup> 435.1889, found 435.1893.

#### 2-(4-chlorophenyl)-4-methyl-6,7-diphenylthiazolo[5,4-c]pyridine (5d)

77mg, 94% yield; white solid, mp: 176-178 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.99 (d, J = 8.6 Hz, 2H), 7.43 (s, 1H), 7.42-7.29 (m, 8H), 7.24 (dd, J = 6.1, 1.8 Hz, 3H), 2.91 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  170.1, 158.8, 154.1, 151.0, 140.4, 137.9, 136.4, 131.6, 130.4, 130.2, 129.3, 129.2, 127.9,

127.8, 127.6, 127.5, 127.4, 127.3, 25.0; IR (KBr) 3061, 2896, 1590, 1538, 1474, 1419, 1399, 1350, 1089, 1068, 1013, 960, 831, 761, 704, 693 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for  $C_{25}H_{18}CIN_{2}S$  [M+H]<sup>+</sup> 413.0874, found 413.0873.

### 4-methyl-6,7-diphenyl-2-(4-(trifluoromethyl)phenyl)thiazolo[5,4-c]pyridine (5e)



79 mg, 88% yield; white solid, mp: 171-173 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.10 (d, J = 8.1 Hz, 2H), 7.66 (d, J = 8.2 Hz, 2H), 7.48-7.35 (m, 4H), 7.31 (dd, J = 4.9, 1.7 Hz, 3H), 7.26-7.16 (m, 3H), 2.89 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  169.6, 158.7, 154.2, 151.2, 140.2, 136.3, 136.2,

133.2 (q,  $J_{C-F} = 32.6$  Hz), 131.5, 130.4, 130.3, 128.3, 127.9, 127.8, 127.6, 127.5, 127.3, 126.0 (d,  $J_{C-F} = 3.7$  Hz), 123.7 (q,  $J_{C-F} = 270.8$  Hz), 24.9; IR (KBr) 3061, 3032, 1611, 1534, 1520, 1482, 1419, 1319, 1190, 1175, 1128, 1064, 1017, 965, 846, 761, 746, 706, 698 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>26</sub>H<sub>18</sub>F<sub>3</sub>N<sub>2</sub>S [M+H]<sup>+</sup> 447.1137, found 447.1134.

#### 4-methyl-6,7-diphenyl-2-(m-tolyl)thiazolo[5,4-c]pyridine (5f)



73 mg, 93% yield; white solid, mp: 180-182 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (dd, J = 3.4, 2.7 Hz, 2H), 7.46-7.35 (m, 4H), 7.35-7.26 (m, 5H), 7.25-7.19 (m, 3H), 2.89 (s, 3H), 2.38 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  171.9, 158.9, 153.9, 150.9, 140.5, 138.9, 136.5, 133.1, 132.6, 131.6, 130.4, 130.2,

128.9, 128.6, 127.9, 127.8, 127.4, 127.3, 127.2, 125.4, 25.0, 21.4; IR (KBr) 3050, 2914, 1731, 1541, 1492, 1461, 1420, 1267, 1166, 1071, 906, 776, 765, 749, 698 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for  $C_{26}H_{21}N_2S$  [M+H]<sup>+</sup> 393.1420, found 393.1423.

#### 4-methyl-2-phenyl-6,7-di-p-tolylthiazolo[5,4-c]pyridine (5g)



67 mg, 82% yield; white solid, mp: 175-177 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.03 (dd, J = 7.6, 1.4 Hz, 2H), 7.41 (q, J= 6.2 Hz, 3H), 7.37-7.23 (m, 4H), 7.12 (d, J = 7.9 Hz, 2H), 7.04 (d, J = 7.9 Hz, 2H), 2.86 (s, 3H), 2.36 (s, 3H), 2.30 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  171.3, 159.0, 153.9, 150.6, 137.8, 137.0, 136.7, 133.6, 133.2, 131.7, 131.4, 130.3, 129.9, 129.0, 128.6, 128.6, 128.1, 127.2, 25.0, 21.5, 21.3; IR (KBr) 3032, 2920, 1652, 1550, 1507, 1476, 1430, 1310, 1260, 1107, 1071, 961, 832, 786, 686 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>27</sub>H<sub>23</sub>N<sub>2</sub>S [M+H]<sup>+</sup> 407.1576, found 407.1575.

### 6,7-bis(4-chlorophenyl)-4-methyl-2-phenylthiazolo[5,4-c]pyridine (5h)



76 mg, 85% yield; white solid, mp: 185-187 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, J = 6.5 Hz, 2H), 7.54-7.39 (m, 3H), 7.32 (d, J = 7.6 Hz, 6H), 7.23 (d, J = 8.4 Hz, 2H), 2.88 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  172.2, 158.7, 152.4, 151.5, 138.6, 134.7, 133.7, 133.4, 132.9, 132.8, 132.0, 131.7, 130.5, 129.1, 128.3, 128.2, 128.0, 126.1, 24.9; IR (KBr) 3061, 2908,

1740, 1549, 1491, 1476, 1432, 1237, 1091, 1014, 964, 831, 795, 767, 687 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for  $C_{25}H_{17}Cl_2N_2S$  [M+H]<sup>+</sup> 447.0484, found 447.0483.

# 4-methyl-2-phenyl-6,7-dipropylthiazolo[5,4-c]pyridine (5i)



48 mg, 77% yield; white solid, mp: 50-52 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.20-8.05 (m, 2H), 7.58-7.38 (m, 3H), 3.13 (dd, *J* = 8.7, 6.9 Hz, 2H), 2.98-2.82 (m, 2H), 2.73 (s, 3H), 1.77 (dp, *J* = 15.1, 7.5 Hz, 4H), 1.06 (td, *J* = 7.3, 3.0 Hz, 6H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  170.5, 159.3, 156.1, 148.8, 133.5, 131.4, 129.0, 128.5,

127.8, 126.9, 36.8, 30.3, 24.6, 24.2, 24.0, 14.5, 14.4; IR (KBr) 2959, 2928, 2868, 1559, 1508, 1477, 1439, 1261, 1123, 1065, 1033, 980, 801, 764, 685 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>19</sub>H<sub>23</sub>N<sub>2</sub>S [M+H]<sup>+</sup> 311.1576, found 311.1577.

# 4,7-dimethyl-2,6-diphenylthiazolo[5,4-c]pyridine (5j)



51 mg, 81% yield; white solid, mp: 155-157 °C; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$  8.15 (dd, J = 7.3, 2.1 Hz, 2H), 7.58 (d, J = 7.0 Hz, 2H), 7.45 (ddd, J = 23.7, 10.1, 4.3 Hz, 6H), 2.81 (s, 3H), 2.73 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  171.3, 159.8, 154.8,

149.1, 140.6, 133.3, 131.7, 129.5, 129.1, 128.5, 128.2, 127.9, 127.7, 122.6, 24.7, 15.5; IR (KBr) 3044, 2914, 1554, 1475, 1450, 1422, 1321, 1252, 1177, 1067, 988, 909, 803, 760, 706, 686 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>20</sub>H<sub>17</sub>N<sub>2</sub>S [M+H]<sup>+</sup> 317.1107, found 317.1108.

# References

- (a) Huang, Y.; Gan, H.; Li, S.; Xu, J.; Wu, X.; Yao, H. *Tetrahedron Lett.* 2010, *51*, 1751.
  (b) Wang, Y.; Li, Z.; Huang, Y.; Tang, C.; Wu, X.; Xu, J.; Yao, H. *Tetrahedron* 2011, *67*, 7406.
  (c) Huang, Y.; Ni, L.; Gan, H.; He, Y.; Xu, J.; Wu, X.; Yao, H. *Tetrahedron* 2011, *67*, 2066.
- Labeeuw, O.; Phansavath, P.; Genêt, J.-P. *Tetrahedron Lett.* 2004, 45, 7107. Žinić, J. Kuftinec, H. Hofman, F. Kajfež, Z. Meić, J. Org. Chem. 1985, 50, 697-700.
- 3. Parthasarathy, K.; Cheng, C. H. J. Org. Chem. 2009, 74, 9359.
- (a) Mio, M. J.; Kopel, L. C.; Braun, J. B.; Gadzikwa, T. L.; Hull, K. L.; Brisbois, R. G.; Markworth, C. J.; Grieco, P. A. Org. Lett. 2002, 4, 3199. (b) Xu, Y. P.; Hu, R. H.; Cai, M. Z. Chin. Chem. Lett. 2008, 19, 783.































































