Supplementary information

Hybrids of acylated homoserine lactone and nitric oxide donors as inhibitors of quorum sensing and virulence factors in *Pseudomonas aeruginosa*

Samuel K. Kutty^a, Nicolas Barraud^b, Kitty K. K. Ho^a, George M. Iskander^a, Renate Griffith^c, Scott A. Rice^{d,e}, Mark Willcox^f, David StC Black^a and Naresh Kumar^a*

Supporting Information

- 1) ¹H and ¹³C NMR spectra of synthesised compounds tested for activity
- 2) X-ray crystal structure information for **7a** and **22a**

1) ¹H and ¹³C NMR spectra of synthesised compounds

¹H NMR spectrum of Compound **7a** in CDCl₃

¹³C NMR spectrum of Compound **7a** in CDCl₃

¹H NMR spectrum of Compound **7b** in CDCl₃

¹³C NMR spectrum of Compound **7b** in CDCl₃

¹H NMR spectrum of Compound **7c** in CDCl₃

¹³C NMR spectrum of Compound 7c in CDCl₃

¹H NMR spectrum of Compound **7d** in CDCl₃

¹³C NMR spectrum of Compound **7d** in CDCl₃

¹H NMR spectrum of Compound **7e** in CDCl₃

¹³C NMR spectrum of Compound **7e** in CDCl₃

¹H NMR spectrum of Compound **10a** in CDCl₃

¹H NMR spectrum of Compound **10b** in CDCl₃

¹H NMR spectrum of Compound **13** in DMSO-*d6*

¹H NMR spectrum of Compound **21a** in CDCl₃

¹H NMR spectrum of Compound **21b** in CDCl₃

¹³C NMR spectrum of Compound **21b** in CDCl₃

¹H NMR spectrum of Compound **22a** in CDCl₃

2) X-ray crystal structure information

Structure determination

Reflexion data were measured with an Enraf-Nonius CAD-4 diffractometer in $\theta/2\theta$ scan mode using nickel filtered copper radiation (γ 1.5418Å). Reflexions with I>3 σ (I) were considered observed. The structures were determined by direct phasing and Fourier methods. Hydrogen atoms were included in calculated position s and were assigned thermal parameters equal to those of the atom to which they were bonded. Positional and anisitropic thermal parameters for the noNHydrogen atoms were refined using full matrix least squares. Reflexion weights used were $1/\sigma 2(Fo)$, with $\sigma(Fo)$ being derived from $\sigma(Io) = [\sigma 2(Io) + (0.04Io)2]1/2$. The weighted residual is defined as Rw = $(\Sigma w \Delta 2 / \Sigma w Fo 2)1/2$. Atomic scattering factors and anomalous dispersion parameters were from International Tables for X-ray crystallography1. Structure solutions were performed by SIR922 and refinements used RAELS3. ORTEP-II4 running on a Macintosh was used for the structural diagrams.

Compound: 2-Oxo-2-(2-oxotetrahydrofuran-3-ylamino)ethyl nitrate (7a)

Figure 1: ORTEP diagram for 7a

CCDC number: 1408469

Table 1. Experimental details

	inp21byn
Crystal data	
Chemical formula	$C_6H_8N_2O_6$
M _r	204.14
Crystal system, space group	Monoclinic, P2 ₁ /n
Temperature (K)	152
a, b, c (Å)	10.0324 (6), 5.2469 (2), 16.1420 (9)
b (°)	101.826 (3)
V (ų)	831.66 (8)
Ζ	4
Radiation type	Mo Ka
m (mm⁻¹)	0.15
Crystal size (mm)	0.47 × 0.27 × 0.08
Data collection	
Diffractometer	Bruker kappa APEXII CCD Diffractometer
Absorption correction	Multi-scan <i>SADABS</i> (Bruker, 2001)
T _{min} , T _{max}	0.934, 0.988
No. of measured, independent and observed [<i>I</i> > 2s(<i>I</i>)] reflections	6746, 1812, 1552
R _{int}	0.032
Refinement	
$R[F^2 > 2s(F^2)], wR(F^2), S$	0.032, 0.089, 1.04
No. of reflections	1812

No. of parameters	127
No. of restraints	0
H-atom treatment	H-atom parameters constrained
Dρ _{max} , Dρ _{min} (e Å ⁻³)	0.27, -0.24

Computer programs: APEX2 (Bruker, 2007), SHELXS-97 (Sheldrick, 2008), SHELXL-97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Table 2. Selected geometric parameters (Å, º)

01—C2	1.3362 (15)	C2—C3	1.5171 (17)
01—C5	1.4634 (17)	C3—C4	1.5223 (17)
02—C2	1.2065 (16)	С3—Н3	1.0000
O3—C6	1.2210 (15)	C4—C5	1.5226 (19)
04—N2	1.4037 (15)	С4—Н4В	0.9900
O4—C7	1.4400 (15)	C4—H4A	0.9900
05—N2	1.2017 (16)	С5—Н5В	0.9900
06—N2	1.2005 (15)	С5—Н5А	0.9900
N1—C6	1.3363 (16)	C6—C7	1.5244 (17)
N1—C3	1.4388 (15)	С7—Н7В	0.9900
N1—H1	0.8800	С7—Н7А	0.9900
C2-01-C5	109.89 (10)	С5—С4—Н4В	111.5
N2-04-C7	112.50 (9)	C3—C4—H4A	111.5
C6-N1-C3	121.31 (10)	C5—C4—H4A	111.5
C6—N1—H1	119.3	H4B—C4—H4A	109.3
C3—N1—H1	119.3	01—C5—C4	105.00 (10)
06—N2—O5	129.31 (13)	01—C5—H5B	110.7
06—N2—O4	112.44 (11)	С4—С5—Н5В	110.7
05—N2—O4	118.25 (11)	01—C5—H5A	110.7
02—C2—O1	122.41 (12)	C4—C5—H5A	110.7
O2—C2—C3	127.51 (11)	Н5В—С5—Н5А	108.8
O1-C2-C3	110.08 (10)	O3-C6-N1	124.92 (11)
N1-C3-C2	112.01 (10)	O3—C6—C7	121.16 (11)
N1-C3-C4	116.74 (10)	N1—C6—C7	113.91 (10)
C2-C3-C4	102.41 (10)	O4—C7—C6	109.72 (10)
N1-C3-H3	108.4	O4—C7—H7B	109.7

С2—С3—Н3	108.4	С6—С7—Н7В	109.7
С4—С3—Н3	108.4	04—C7—H7A	109.7
C3—C4—C5	101.36 (10)	С6—С7—Н7А	109.7
С3—С4—Н4В	111.5	Н7В—С7—Н7А	108.2
C7-04-N2-06	170.32 (11)	N1-C3-C4-C5	-153.99 (11)
C7—O4—N2—O5	-10.48 (16)	C2-C3-C4-C5	-31.27 (12)
C5-01-C2-02	179.63 (11)	C2-01-C5-C4	-19.87 (14)
C5-01-C2-C3	-1.07 (13)	C3-C4-C5-01	31.65 (13)
C6-N1-C3-C2	98.81 (13)	C3-N1-C6-O3	2.77 (19)
C6-N1-C3-C4	-143.60 (12)	C3-N1-C6-C7	-177.92 (10)
02-C2-C3-N1	-33.54 (17)	N2-04-C7-C6	-65.25 (13)
01-C2-C3-N1	147.21 (10)	O3—C6—C7—O4	-11.01 (16)
02—C2—C3—C4	-159.40 (12)	N1-C6-C7-O4	169.65 (10)
01-C2-C3-C4	21.34 (13)		

Compound: *O*²-(2,4-Dinitrophenyl)-1-(4-(4-oxo-4-(2-oxotetrahydrofuran-3-ylamino)butanoyl)piperazin-1-yl)diazen-1-ium-1,2-diolate (22a).

Figure 2: ORTEP diagram for 22a.

CCDC number 1408468

 Table 3. Experimental details

	sam12_p21byc
Crystal data	

Chemical formula	C ₁₈ H ₁₇ N ₇ O ₁₀ ·CHCl ₃
M _r	610.75
Crystal system, space	Monoclinic, P2 ₁ /c
group	
Temperature (K)	156
a, b, c (Å)	12.6131 (5), 26.049 (1), 8.1912 (4)
β(°)	108.884 (2)
V (ų)	2546.43 (19)
Ζ	4
Radiation type	Μο Κα
μ (mm ⁻¹)	0.43
Crystal size (mm)	0.30 × 0.10 × 0.05
Data collection	
Diffractometer	CCD area detector
	diffractometer
Absorption correction	Multi-scan
	SADABS2007/4 (Bruker,2007/4) was used for
	absorption correction. wR2(int) was 0.0516
	before and 0.0439 after correction. The Ratio of
	minimum to maximum transmission is 0.8938.
	The $\lambda/2$ correction factor is 0.0015.
T _{min} , T _{max}	0.667, 0.746
No. of measured,	17884, 4460, 3699
independent and	
observed $[l > 2\sigma(l)]$	
reflections	

R _{int}	0.038
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.595
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.270, 0.675, 3.51
No. of reflections	4460
No. of parameters	380
No. of restraints	12
H-atom treatment	H-atom parameters constrained
$\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} (e {\rm \AA}^{-3})$	1.44, -1.25

Computer programs: SAINT v7.46A (Bruker, 2008), SHELXL (Sheldrick, 2008), Olex2 (Dolomanov et al., 2009).

C1—C2	1.431 (19)	C15—C19'	1.50 (3)
C1—H1	0.9500	C15'—C16'	1.58 (4)
C1CL—H1CL	1.0000	C16'—C17'	1.46 (5)
C2—N1	1.464 (19)	C16'—H2XA	0.9900
C3—C2	1.34 (2)	С16'—Н2ХВ	0.9900
C3—C4	1.44 (2)	C17—C16	1.60 (5)
С3—Н3	0.9500	C17—H3XA	0.9900
C4—C5	1.33 (2)	C17—H3XB	0.9900
C4—N2	1.506 (17)	C17'—H1AA	0.9900
C5—O5	1.414 (17)	C17'—H1AB	0.9900
C6-C1	1.404 (19)	C19—C15'	1.56 (3)
C6—C5	1.40 (2)	C19—O9	1.211 (17)
С6—Н6	0.9500	C19—O10'	1.35 (3)
С7—С8	1.50 (2)	Cl1—C1CL	1.725 (18)
С7—Н7А	0.9900	Cl2—C1CL	1.741 (19)
С7—Н7В	0.9900	Cl3—C1CL	1.78 (2)
С8—Н9А	0.9900	N1-01	1.252 (18)
С8—Н9В	0.9900	N1-02	1.242 (19)
C8—N6	1.496 (19)	N2-03	1.183 (17)
C9—C10	1.53 (2)	N2—O4	1.205 (16)
C9—H2	0.9900	N3—N4	1.276 (17)
С9—Н4	0.9900	N4—N5	1.466 (17)
C9—N6	1.431 (18)	N4-06	1.225 (16)
C10—H10A	0.9900	N5—C7	1.44 (2)

Table 4: Geometric parameters (Å, ^o)

C10—H10B	0.9900	N5-C10	1.479 (18)
C11-C12	1.47 (3)	N6-C11	1.37 (2)
C11-07	1.17 (2)	N7—C15	1.57 (4)
C12—H12	0.9500	N7—C15'	1.39 (3)
C13-C12	1.44 (3)	05—N3	1.409 (16)
C13—H13	0.9500	06—H6A	0.8400
C14-C13	1.46 (2)	O9—C19'	1.211 (17)
C14—N7	1.36 (3)	O10-C17	1.64 (5)
C14-08	1.21 (2)	O10-C19'	1.55 (2)
C15-C16	1.27 (3)	O10'-C17'	1.59 (4)
CI1-C1CL-CI2	116.5 (12)	N6-C9-H2	109.6
CI1-C1CL-CI3	108.5 (11)	N6-C9-H4	109.6
CI1-C1CL-H1CL	108.1	N6-C9-C10	110.4 (12)
CI2-C1CL-CI3	107.2 (11)	Н2—С9—Н4	108.1
CI2-C1CL-H1CL	108.1	C10-C9-H2	109.6
CI3—C1CL—H1CL	108.1	C10-C9-H4	109.6
N3-05-C5	109.8 (10)	N5-C10-C9	107.6 (11)
N4-06-H6A	109.5	N5-C10-H10A	110.2
C19'-010-C17	108.5 (19)	N5-C10-H10B	110.2
01-N1-C2	121.1 (13)	C9-C10-H10A	110.2
02-N1-01	123.9 (14)	C9-C10-H10B	110.2
02-N1-C2	114.7 (14)	H10A—C10—H10B	108.5
03-N2-04	122.5 (12)	07-C11-N6	118.7 (17)
03-N2-C4	119.6 (13)	07-C11-C12	128.0 (18)
04-N2-C4	117.8 (12)	N6-C11-C12	112.8 (16)
N4-N3-05	103.0 (11)	C11-C12-H12	122.5
06-N4-N3	130.6 (13)	C13-C12-C11	115.0 (16)
06-N4-N5	115.6 (12)	C13-C12-H12	122.5
N3-N4-N5	113.8 (12)	С12—С13—Н13	122.2
N4-N5-C10	111.5 (12)	C12-C13-C14	115.5 (17)
C7—N5—N4	111.7 (11)	C14-C13-H13	122.2
C7-N5-C10	112.6 (12)	08—C14—N7	120.7 (16)
C9—N6—C8	114.7 (13)	08-C14-C13	127 (2)
C11-N6-C8	124.9 (13)	N7-C14-C13	112.3 (16)
C11-N6-C9	120.3 (13)	N7-C15'-C19	114 (2)
C14—N7—C15'	136 (2)	N7-C15'-C16'	113 (2)
C14—N7—C15	108 (2)	C19—C15'—C16'	100 (2)
C2-C1-H1	120.9	O9—C19—C15'	125.7 (18)
C6-C1-H1	120.9	O9-C19-O10'	116.8 (15)
C6-C1-C2	118.2 (12)	O10'-C19-C15'	117.4 (19)
C1-C2-N1	117.6 (13)	09—C19'—O10	122.8 (13)
C3-C2-N1	118.9 (13)	O9—C19'—C15	136.4 (15)
C3-C2-C1	123.6 (12)	C15-C19'-O10	100.8 (15)
С2—С3—Н3	122.0	C19—O10'—C17'	97 (2)
C2-C3-C4	115.9 (12)	C19'-C15-N7	108.0 (19)
С4—С3—Н3	122.0	C16-C15-N7	122 (3)
C3-C4-N2	112.5 (12)	C16—C15—C19'	120 (2)
C5-C4-N2	124.8 (13)	O10'-C17'-H1AA	109.8
C5-C4-C3	122.6 (12)	O10'-C17'-H1AB	109.8
C4-C5-O5	118.5 (13)	H1AA—C17'—H1AB	108.3

	121 1 (12)	C16' C17' O10'	100 (2)
C4 - C5 - C6	121.1(12) 120.2(13)	C10 - C17 - 010	109 (5)
	120.2 (13)		109.8
	110 2 (12)		109.9
	110.5 (12)		111.0
	120.8		111.9
N5-C7-H7A	110.1		100 (2)
N5-C7-H7B	110.1	C17-C16-H2XA	111.8
N5-C7-C8	108.1 (14)	C17'-C16'-H2XB	111.9
Н7А—С7—Н7В	108.4	H2XA—C16'—H2XB	109.6
С8—С7—Н7А	110.1	010—C17—H3XA	112.0
С8—С7—Н7В	110.1	010—C17—H3XB	112.0
N6-C8-C7	107.4 (11)	Н3ХА—С17—Н3ХВ	109.6
N6-C8-H9A	110.2	C16-C17-O10	99 (3)
N6-C8-H9B	110.2	C16—C17—H3XA	112.0
С7—С8—Н9А	110.2	С16—С17—НЗХВ	112.0
С7—С8—Н9В	110.2	C15-C16-C17	111 (2)
Н9А—С8—Н9В	108.5		
05-N3-N4-06	-4.0 (19)	C4-C3-C2-C1	3.5 (19)
O5-N3-N4-N5	175.4 (10)	C4-C5-O5-N3	-179.5 (11)
O6-N4-N5-C7	-41.6 (16)	C5-05-N3-N4	-179.7 (10)
O6-N4-N5-C10	-168.6 (12)	C5-C4-N2-O3	-164.6 (15)
07-C11-C12-C13	-13 (3)	C5-C4-N2-O4	19 (2)
08-C14-N7-C15'	10 (4)	C5-C6-C1-C2	-2.4 (17)
08-C14-N7-C15	-7 (2)	C6-C1-C2-N1	179.1 (11)
08-C14-C13-C12	-26 (3)	C6-C1-C2-C3	-1.9 (18)
09-C19-C15'-N7	46 (3)	C6-C5-O5-N3	4.9 (17)
09-C19-C15'-C16'	167.7 (17)	C7-N5-C10-C9	60.4 (15)
09-C19-010'-C17'	169 (3)	C7—C8—N6—C9	-57.2 (19)
010-C17-C16-C15	-7 (4)	C7-C8-N6-C11	127.2 (17)
N2-C4-C5-05	3.7 (19)	C8-N6-C11-07	177.4 (15)
$N_2 - C_4 - C_5 - C_6$	179.3 (11)	C8 - N6 - C11 - C12	5 (2)
N3-N4-N5-C7	138 9 (13)	C9 - N6 - C11 - O7	2 (2)
N3-N4-N5-C10	11.9 (16)	C9 - N6 - C11 - C12	-170.6 (16)
N4-N5-C7-C8	168 7 (13)	C10 - N5 - C7 - C8	-64 9 (17)
N4-N5-C10-C9	-173 1 (10)	C10 - C9 - N6 - C8	54 7 (16)
N5-C7-C8-N6	59 1 (19)	C10 - C9 - N6 - C11	-129 5 (15)
N6-C9-C10-N5	-53.0 (15)	C13 - C14 - N7 - C15'	-174 (3)
N6-C11-C12-C13	158 / (19)	C13 - C14 - N7 - C15	168 2 (18)
N7-C14-C13-C12	159 (2)	C13 C14 N7 C15' - C19	33 (1)
N7 - C14 - C13 - C12 N7 - C15' - C16' - C17'	155 (2)	C14 = N7 = C15' = C16'	_90 (2)
N7 - C15 - C10 - C17	_28 (4)	C14 = N7 = C15 = C10	-80 (3) -90 (2)
N7 - C13 - C19 - 09	-20 (4) 151 (2)	C14 = N7 = C15 = C16	30 (2) 125 (2)
N7 - C15 - C19 - O10	131 (2)	C14 = N7 = C13 = C10	-125 (5)
107 - 013 - 010 - 01	C 0 (10)	C14 - C13 - C12 - C11	15 (4)
C1 - C2 - N1 - O1	ט.ש (גט) גע (גט)		-15 (4) 42 (F)
C1-C2-N1-02	-1/8.5 (13)		-42 (5)
	-1/9.6 (11)		29 (3)
	4.9 (19)		36 (5)
C2-C3-C4-N2	1/6.8 (11)	C19 ⁻	10 (3)
C2-C3-C4-C5	-1.0 (19)	C19'-C15-C16-C17	1 (5)
C3-C2-N1-O1	–172.3 (13)	O10'—C19—C15'—N7	–129 (3)

C3-C2-N1-O2	2.4 (19)	010'-C19-C15'-C16'	-8 (3)
C3-C4-N2-O3	17.7 (18)	C17—O10—C19'—O9	170 (2)
C3-C4-N2-O4	-158.4 (12)	C17—O10—C19'—C15	-10 (3)
C3-C4-C5-05	-178.8 (12)	C16-C15-C19'-O9	-173 (3)
C3-C4-C5-C6	-3 (2)	C16-C15-C19'-O10	6 (4)
C4-C3-C2-N1	-177.4 (11)		