Substrate-Controlled Product-Selectivity in the Reaction of Bestmann-Ohira Reagent with *N*-Unprotected Isatin-

Derived Olefins

Ashis Kumar Gupta, Shakir Ahamad, Ekta Gupta, Ruchir Kant and Kishor Mohanan*

Medicinal and Process Chemistry Division,

CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur road, Lucknow, India-

226031

kishor.mohanan@cdri.res.in

SUPPORTING INFORMATION

Content:

- 1. General experimental information (p. S2)
- 2. General Procedure (p. S3)
- 3. Characterization data for compounds **3a-3r**, **5a-5ad**, **7** & **8** (p. S4)
- 4. Copies of ¹H, ¹³C and ³¹P NMR spectra for all compounds (p. S32)

General experimental information:

Unless otherwise specified, all reactions were carried out under air atmosphere in ovendried round-bottom flasks. Dimethyl 2-oxopropylphosphonate was purchased from Acros and was used without further purification. The reactions were monitored by TLC visualized by UV (254 nm) and/or with iodine. Flash chromatography was performed on 100-200 mesh silica gel using the gradient system acetone-dicholoromethane (0-40%). NMR data were recorded at Bruker AV 400 MHz in DMSO-d₆/CDCl₃/CF₃CO₂D using as internal standards the residual DMSO signal for ¹H NMR (δ = 2.50 ppm), CHCl₃ (δ = 7.26 ppm) and CF₃CO₂H (δ = 11.50 ppm) respectively. The coresponding deuterated solvent signal for ¹³C NMR were assigned as DMSO (δ = 39.51 ppm), CDCl₃ (77.16) and CF₃CO₂D (116.0). Coupling constants are given in Hertz (Hz) and the classical abbreviations are used to describe the signal multiplicities. Melting points were measured with a Büchi B-540 apparatus and are uncorrected. High resolution mass spectra were obtained using Q-TOF mass spectrometer. All commercially available reagents were used as received.

The Bestmann-Ohira reagent was synthesized from the corresponding Dimethyl 2oxopropylphosphonate using a known procedure.¹

⁽¹⁾ P. Callant, L. Dhaenens and M. Vandewalle, synth. Commun,. 1984, 14, 155

Procedures

Synthesis of spiro-phosphonylpyrazoline-oxindoles 3a-3r

General procedure for the synthesis of spirophosphonylpyrazoline-oxindoles 3

To an oven-dried round bottom flask was added 3-benzylideneoxindole **1a** (50 mg, 0.22 mmol) and dissolved in 3 mL of MeOH. Subsequently, a solution of Bestmann-Ohira reagent (65 mg, 0.33 mmol) in 2 mL of MeOH was added to the reaction mixture and kept stirring. After addition of potassium hydroxide (25 mg, 0.44 mmol), the reaction mixture was further stirred at 25 °C for 1.5 h. After the completion of reaction, as indicated by TLC, solvent was evaporated off and extracted using ethyl acetate. The organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The residue was purified using column chromatography (100-200 mesh silica gel) using acetone/dichloromethane as the eluent to afford the corresponding spiropyrazoline-oxindole **3a** as a white solid (78 mg) in 95% yield.

Synthesis of spiro-phosphonylpyrazoline-oxindoles 5a-5ad

General procedure for the synthesis of phosphonylpyrazolo-quinazolinones 5

To an oven-dried round bottom flask was added 3-phenacylideneoxindole **4a** (50 mg, 0.20 mmol) and dissolved in 3 mL of MeOH. Subsequently, a solution of Bestmann-Ohira reagent

(58 mg, 0.30 mmol) in 2 mL of MeOH was added to the reaction mixture and kept stirring. After addition of potassium hydroxide (23 mg, 0.40 mmol), the reaction mixture was further stirred at 25 °C for 1 h. After the completion of reaction, as indicated by TLC, solvent was evaporated off and extracted using ethyl acetate. The organic layer was dried over Na₂SO₄ and evaporated under reduced pressure. The residue was purified using column chromatography (100-200 mesh silica gel) using acetone/dichloromethane as the eluent to afford phosphonylpyrazoloquinazolinone **5a** as a white solid (63 mg) in 80 yield.

Dimethyl (2-oxo-4'-phenyl-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5'-yl)phosphonate (3a)

Following the general procedure, treatment of (benzylidine)indolin-2one (50 mg, 0.22 mmol) with BOR (65 mg, 0.33 mmol) in the presence of KOH (25 mg, 0.44 mmol) in MeOH (3 mL) at 25 °C for 1.5 h followed by column chromatography afforded the product **3a** as a white solid (78 mg, 95%, 5:1 dr). **R**_f (Acetone/Dichloromethane : 3/7) = 0.45. **Mp** 178-180 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 178.0 (C), 142.3

(C), 141.6 (d, $J_{C-P} = 227.2$ Hz, C), 134.1 (C), 129.1 (C), 128.9 (CH), 128.9 (CH), 128.1 (CH), 128.1 (CH), 128.1 (CH), 127.7 (CH), 125.6 (CH), 125.1 (CH), 120.9 (CH), 109.5 (CH), 73.8 (d, $J_{C-P} = 4.7$ Hz, C), 60.4 (d, $J_{C-P} = 21.7$ Hz, CH), 52.8 (d, $J_{C-P} = 5.8$ Hz, CH₃), 52.6 (d, $J_{C-P} = 5.6$ Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO- d_6): 10.38 (s, 1H), 9.00 (s, 1H), 7.24 (d, J = 6.4 Hz, 3H), 7.06-6.98 (m, 3H), 6.71 (d, J = 7.6 Hz, 1H), 6.54 (t, J = 7.4 Hz, 1H), 6.23 (d, J = 7.2 Hz, 1H), 4.54 (s, 1H), 3.66 (d, J = 11.2 Hz, 3H), 3.58 (d, J = 11.2 Hz, 3H). ³¹P NMR (161.9 MHz, DMSO- d_6): 10.83. HRMS for C₁₈H₁₉N₃O₄P⁺: calcd. [M+H]⁺: 372.1108, found: 372.1111.

Dimethyl (4'-(4-methoxyphenyl)-2-oxo-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5'yl)phosphonate (3b)

Following the general procedure, treatment of (4methoxybenzylidine)indolin-2-one (50 mg, 0.20 mmol) with BOR (57 mg, 0.30 mmol) in the presence of KOH (22 mg, 0.40 mmol) in MeOH (3 mL) at 25 °C for 1.5 h followed by column chromatography afforded the product **3b** as a white solid (74 mg, 92%, 4:1 dr). **R**_f (Acetone/Dichloromethane : 3/7) = 0.39. **Mp** 192-194 °C. ¹³C NMR (100 MHz, δ ppm/DMSO-*d*₆): 178.1 (C), 158.6 (C), 142.3 (C), 141.6 (d, *J*_{*C-P*} = 227.0 Hz, C), 130.2 (CH), 130.2 (CH), 129.1 (CH), 125.9 (CH), 125.7 (CH), 125.3 (C), 120.9 (CH), 113.4 (CH), 113.4 (CH), 109.4 (CH), 73.8 (d, *J*_{*C-P*} = 4.8 Hz, C), 59.8 (d, *J*_{*C-P*} = 21.8 Hz, CH), 54.9 (CH₃), 52.8 (d, *J*_{*C-P*} = 5.8 Hz, CH₃), 52.6 (d, *J*_{*C-P*} = 5.6 Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 10.39 (s, 1H), 9.0 (s, 1H), 7.05 (t, *J* = 7.8 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 2H), 6.80 (d, *J* = 8.4 Hz, 2H), 6.71 (d, *J* = 8.0 Hz, 1H), 6.59 (t, *J* = 7.4 Hz, 1H), 6.29 (d, *J* = 7.6 Hz, 1H), 4.49 (s, 1H), 3.69 (s, 3H), 3.62 (d, *J* = 11.2 Hz, 3H), 3.55 (d, *J* = 11.2 Hz, 3H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 10.85. HRMS for C₁₉H₂₁N₃O₅P⁺: calcd. [M+H]⁺: 402.1213, found: 402.1214.

Dimethyl(2-oxo-4'-(p-tolyl)-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5'-yl)phosphonate (3c)

Following the general procedure, treatment of (4methylbenzylidine)indolin-2-one (50 mg, 0.21 mmol) with BOR (60 mg, 0.32 mmol) in the presence of KOH (23 mg, 0.42 mmol) in MeOH (3 mL) at 25 °C for 1.5 h followed by column chromatography afforded the product **3c** as a white solid (74 mg, 90%, 9:1 dr). **R**_f (Acetone/Dichloromethane : 3/7) = 0.41. **Mp** 182-

184 °C. ¹³C NMR (100 MHz, δ ppm/ DMSO-*d*₆): 178.1 (C), 142.3 (C), 141.8 (d, *J*_{*C-P*} = 227.1 Hz, C), 136.7 (C), 131.0 (C), 129.1 (C), 128.9 (CH), 128.9 (CH), 128.6 (CH), 128.6 (CH), 125.7 (CH), 125.3 (CH), 120.9 (CH), 109.4 (CH), 73.9 (d, *J*_{*C-P*} = 4.8 Hz, C), 60.2 (d, *J*_{*C-P*} = 21.7 Hz, CH), 52.8 (d, *J*_{*C-P*} = 5.8 Hz, CH₃), 52.6 (d, *J*_{*C-P*} = 5.6 Hz, CH₃), 20.6 (CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 10.36 (s, 1H), 8.97 (s, 1H), 7.06-7.03 (m, 3H), 6.87 (d, *J* = 8.0 Hz, 2H), 6.70 (d, *J* = 8.0 Hz, 1H), 6.57 (t, *J* = 7.6 Hz, 1H), 6.29 (d, *J* = 7.6 Hz, 1H), 4.49 (s, 1H), 3.63 (d, *J* = 11.2 Hz, 3H), 3.54 (d, *J* = 11.2 Hz, 3H), 2.23 (s, 3H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 10.83. HRMS for C₁₉H₂₁N₃O₄P⁺: calcd. [M+H]⁺: 386.1264, found: 386.1263.

Dimethyl (4'-(4-ethylphenyl)-2-oxo-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5'-yl)phosphonate (3d)

Following the general procedure, treatment of (4ethylbenzylidine)indolin-2-one (50 mg, 0.20 mmol) with BOR (57 mg, 0.30 mmol) in the presence of KOH (22 mg, 0.40 mmol) in MeOH (3 mL) at 25 °C for 1.5 h followed by column chromatography afforded the product **3d** as a white solid (65 mg, 81%, 7:1 dr). **R**_{*f*} (Acetone/Dichloromethane : 3/7) = 0.42. **Mp** 166-168 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 178.1 (C), 143.1 (C), 142.3(C), 141.7 (d, J_{C-P} = 227.6 Hz, C), 131.3 (C), 129.1 (CH), 129.1 (CH), 128.9 (CH), 128.9 (CH), 127.4 (CH), 125.7 (C), 125.2 (CH), 120.9 (CH), 109.4 (CH), 73.9 (C), 60.3 (d, J_{C-P} = 21.7 Hz, CH), 52.9 (d, J_{C-P} = 5.6 Hz, CH₃), 52.6 (d, J_{C-P} = 5.3 Hz, CH₃), 27.7 (CH₂), 15.5 (CH₃). ¹H **NMR** (400 MHz, δ ppm/DMSO-*d*₆): 10.35 (s, 1H), 8.97 (s, 1H), 7.08-7.02 (m, 3H), 6.88 (d, *J* = 7.2 Hz, 2H), 6.70 (d, *J* = 7.6 Hz, 1H), 6.54 (t, *J* = 7.4 Hz, 1H), 6.23 (d, *J* = 7.2 Hz, 1H), 4.49 (s, 1H), 3.63 (d, *J* = 11.2 Hz, 3H), 3.54 (d, *J* = 11.2 Hz, 3H), 2.53 (q, *J* = 6.8 Hz, 2H), 1.21 (t, *J* = 7.4 Hz, 3H). ³¹P **NMR** (161.9 MHz, DMSO-*d*₆): 10.83. **HRMS** for C₂₀H₂₃N₃O₄P⁺: calcd. [M+H]⁺: 400.1421. found: 400.1432.

Dimethyl(4'-(4-bromophenyl)-2-oxo-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5'yl)phosphonate (3e)

Following the general procedure, treatment of (4-Bromobenzylidine)indolin-2-one (50 mg, 0.17 mmol) with BOR (48 mg, 0.25 mmol) in the presence of KOH (19 mg, 0.34 mmol) in MeOH (3 mL) at 25 °C for 1.5 h followed by column chromatography afforded the product **3e** as a white solid (69 mg, 90%, 7:1 dr). **R**_f (Acetone/Dichloromethane : 3/7) = 0.42. **Mp** 174-

178 °C. ¹³**C** NMR (100 MHz, δ ppm/ DMSO-*d*₆): 177.7 (C), 142.4 (C), 141.1 (d, *J*_{C-P} = 227.5 Hz, C), 133.7 (C), 131.1 (CH), 131.1 (CH), 131.0 (CH), 131.0 (CH), 129.3 (C), 125.5 (CH), 124.4 (C), 121.0 (CH), 120.8 (CH), 109.6 (CH), 73.6 (d, *J*_{C-P} = 4.7 Hz, C), 59.5 (d, *J*_{C-P} = 21.8 Hz, CH), 52.9 (d, *J*_{C-P} = 5.8 Hz, CH₃), 52.7 (d, *J*_{C-P} = 5.5 Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 10.39 (s, 1H), 9.05 (s, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.07 (t, *J* = 7.8 Hz, 1H), 6.95 (d, *J* = 8.4 Hz, 2H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.61 (t, *J* = 7.6 Hz, 1H), 6.28 (d, *J* = 7.2 Hz, 1H), 4.57 (s, 1H), 3.65 (d, *J* = 11.2 Hz, 3H), 3.57 (d, *J* = 11.2 Hz, 3H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 10.54. HRMS for C₁₈H₁₈N₃O₄PBr⁺: calcd. [M+H]⁺: 450.1213, found: 450.1214.

Dimethyl (4'-(4-chlorophenyl)-2-oxo-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5'yl)phosphonate (3f)

Following the general procedure, treatment of (4-Chlorobenzylidine)indolin-2-one (50 mg, 0.20 mmol) with BOR (57 mg, 0.30 mmol) in the presence of KOH (22 mg, 0.40 mmol) in MeOH (3 mL) at 25 °C for 1.5 h followed by column chromatography afforded the product **3f**

as a white solid (75 mg, 94%, 5:1 dr). **R**_f (Acetone/Dichloromethane : 3/7) = 0.42. **Mp** 178-180 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO- d_6): 177.8 (C), 142.4 (C), 142.2 (d, J_{C-P} = 227.6 Hz, C), 133.3 (C), 132.2 (C), 130.8 (CH), 130.8 (CH), 129.3 (C), 128.1 (CH), 128.1 (CH), 125.5 (CH), 124.9 (CH), 121.0 (CH), 109.6 (CH), 73.7 (d, J_{C-P} = 4.6 Hz, C), 59.4 (d, J_{C-P} = 21.7 Hz, CH), 52.9 (d, J_{C-P} = 5.7 Hz, CH₃), 52.7 (d, J_{C-P} = 5.5 Hz,

CH₃). ¹**H NMR** (400 MHz, δ ppm/DMSO-*d*₆): 10.40 (s, 1H), 9.06 (s, 1H), 7.31 (d, *J* = 7.6 Hz, 2H), 7.08 (t, *J* = 7.8 Hz, 1H), 7.02 (d, *J* = 8.0 Hz, 2H), 6.73 (d, *J* = 8.0 Hz, 1H), 6.61 (t, *J* = 7.6 Hz, 1H), 6.27 (d, *J* = 7.2 Hz, 1H), 4.59 (s, 1H), 3.65 (d, *J* = 11.2 Hz, 3H), 3.57 (d, *J* = 11.2 Hz, 3H). ³¹**P NMR** (161.9 MHz, DMSO-*d*₆): 10.58. **HRMS** for C₁₈H₁₈N₃O₄PCl⁺: calcd. [M+H]⁺: 406.0718, found: 406.0725.

Dimethyl (4'-(4-fluorophenyl)-2-oxo-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5' yl)phosphonate (3g)

Following the general procedure, treatment of (4fluorobenzylidine)indolin-2-one (50 mg, 0.21 mmol) with BOR (60 mg, 0.32 mmol) in the presence of KOH (23 mg, 0.42 mmol) in MeOH (3 mL) at 25 °C for 1.5 h followed by column chromatography afforded the product **3g** as a pale yellow solid (77 mg, 94%, 10:1 dr). **R**_f (Acetone/Dichloromethane : 3/7) = 0.39. **Mp** 168-170 °C. ¹³**C**

NMR (100 MHz, δ ppm/ DMSO-*d*₆): 177.8 (C), 161.3 (d, *J*_{C-F} = 242.3 Hz, C), 142.4 (C), 141.5 (d, *J*_{C-P} = 227.5 Hz, C), 131.0 (d, *J*_{C-F} = 8.3 Hz, CH), 130.4 (d, *J*_{C-F} = 2.8 Hz, CH), 129.2 (C), 125.6 (CH), 125.0 (CH), 121.0 (CH), 115.0 (CH), 114.8 (CH), 109.5 (CH), 73.7 (d, *J*_{C-P} = 5.0 Hz, C), 59.3 (d, *J*_{C-P} = 21.7 Hz, CH), 52.9 (d, *J*_{C-P} = 5.9 Hz, CH₃), 52.7 (d, *J*_{C-P} = 5.6 Hz, CH₃). ¹H **NMR** (400 MHz, δ ppm/DMSO-*d*₆): 10.38 (s, 1H), 9.02 (s, 1H), 7.10-7.00 (m, 5H), 6.72 (d, *J* = 7.6 Hz, 1H), 6.60 (dt, *J* = 7.2 Hz, 1H), 6.22 (d, *J* = 7.2 Hz, 1H), 4.58 (s, 1H), 3.64 (d, *J* = 11.2 Hz, 3H), 3.57 (d, *J* = 11.2 Hz, 3H). ³¹P **NMR** (161.9 MHz, DMSO-*d*₆): 10.66. **HRMS** forC₁₈H₁₈N₃O₄PF⁺: calcd. [M+H]⁺: 390.1013, found: 390.1014.

Dimethyl (4'-(4-cyanophenyl)-2-oxo-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5'yl)phosphonate (3h)

Following the general procedure, treatment of (4cyanobenzylidine)indolin-2-one (50 mg, 0.20 mmol) with BOR (57 mg, 0.30 mmol) in the presence of KOH (22 mg, 0.40 mmol) in MeOH (3 mL) at 25 °C for 1.5 h followed by column chromatography afforded the product **3h** as a white solid (75 mg, 94%, 9:1 dr). **R**_f (Acetone/Dichloromethane : 3/7) = 0.39. **Mp** 172-

174 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 177.5 (C), 142.5 (C), 140.6 (*J*_{C-P} =228.1 Hz,C), 140.1(C), 132.0 (CH), 132.0 (CH), 130.0 (CH), 130.0 (CH), 129.4 (C), 125.4 (CH), 124.5 (CH) 121.0 (CH), 118.6 (CH), 110.4 (C), 109.7 (C), 73.7 (d, *J*_{C-P} = 4.5 Hz, C), 59.5 (d, *J*_{C-P} = 21.7 Hz, CH), 53.0 (d, *J*_{C-P} = 5.7 Hz, CH₃), 52.7 (d, *J*_{C-P} = 5.6 Hz, CH₃). ¹H **NMR** (400 MHz, δ ppm/DMSO-*d*₆): 10.44 (s, 1H), 9.13 (s, 1H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.07 (t, *J* = 7.6 Hz, 1H), 6.73 (d, *J* = 8.0 Hz, 1H), 6.59 (t, *J* = 7.6 Hz, 1H), 6.20 (d, *J* = 7.6 Hz, 1H), 4.71 (s, 1H), 3.67 (d, *J* = 11.2 Hz, 3H), 3.58 (d, *J* = 11.2 Hz, 3H). ³¹P **NMR** (161.9 MHz, DMSO-*d*₆): 10.37. **HRMS** for C₁₉H₁₈N₄O₄P⁺: calcd. [M+H]⁺: 397.1055, found: 397.1062.

(4-(5'-(Dimethoxyphosphoryl)-2-oxo-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-4'yl)phenyl)boronic acid (3i)

Following the general procedure, treatment of (4-((2oxoindolin-3-ylidene)methyl)phenyl)boronic acid (50 mg, 0.19 mmol) with BOR (56 mg, 0.29 mmol) in the presence of KOH (21 mg, 0.38 mmol) in MeOH (3 mL) at 25 °C for 1.5 h followed by column chromatography afforded the product **3i** as a pale yellow solid (53 mg, 67%, 7:1 dr). **R**_f (Acetone/Dichloromethane : 5/5) = 0.33. **Mp** 184-186 °C. ¹³**C**

NMR (100 MHz, δ ppm/ DMSO-*d*₆): 177.9 (C), 142.2 (C), 141.5 (d, *J*_{C-P} = 227.4 Hz, C), 135.8 (C), 133.9 (CH), 133.9 (CH), 133.3 (C), 129.1 (C), 129.1 (CH), 128.0 (C), 125.6 (CH), 125.1 (CH), 120.9 (CH), 109.4 (CH), 73.8 (d, *J*_{C-P} = 4.7 Hz, C), 60.5 (d, *J*_{C-P} = 21.8 Hz, CH), 52.8 (d, *J*_{C-P} = 5.8 Hz, CH₃), 52.6 (d, *J*_{C-P} = 5.5 Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 10.37 (s, 1H), 9.00 (s, 1H), 7.98 (s, 2H), 7.64 (d, *J* = 7.2 Hz, 2H), 7.03(t, *J* = 7.6 Hz, 1H), 6.95 (d, *J* = 7.6 Hz, 2H),

6.70 (d, J = 8.0 Hz, 1H), 6.53 (t, J = 7.4 Hz, 1H), 6.26 (d, J = 7.6 Hz, 1H), 4.52 (s, 1H), 3.63 (d, J = 11.2 Hz, 3H), 3.53 (d, J = 11.2 Hz, 3H). ³¹P NMR (161.9 MHz, DMSO- d_6): 10.74. HRMS for $C_{18}H_{20}N_3O_6PB^+$: calcd. [M+H]⁺: 416.1177, found: 416.1187.

Dimethyl (4'-(2,4-difluorophenyl)-2-oxo-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5'yl)phosphonate (3j)

Following the general procedure, treatment of (2,4difluorobenzylidine)indolin-2-one (50 mg, 0.19 mmol) with BOR (56 mg, 0.29 mmol) in the presence of KOH (21 mg, 0.38 mmol) in MeOH (3 mL) at 25 °C for 1.5 h followed by column chromatography afforded the product **3j** as a pale yellow solid (47 mg, 61%, 10:1 dr). **R**_f (Acetone/Dichloromethane : 3/7) = 0.36. **Mp** 175-177 °C. ¹³**C**

NMR (100 MHz, δ ppm/ DMSO-*d*₆): 177.6 (C), 158.1 (d, *J*_{C-F} = 239.8 Hz, C), 155.7 (d, *J*_{C-F} = 240.6 Hz, C), 142.4 (C), 137.7 (d, *J*_{C-F} = 230.3 Hz, C), 129.7 (C), 125.2 (CH), 124.8 (C), 123.7 (d, *J*_{C-F} = 7.5 Hz, CH), 123.6 (d, *J*_{C-F} = 7.4 Hz, C) 121.3 (CH), 116.8 (d, *J*_{C-F} = 24.7 Hz, CH), 116.6 (d, *J*_{C-F} = 5.0 Hz, CH), 116.4 (CH), 109.7 (CH), 73.1 (d, *J*_{C-P} = 4.5 Hz, C), 53.2 (d, *J*_{C-P} = 6.0 Hz, CH₃), 52.8 (d, *J*_{C-P} = 5.9 Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 10.49 (s, 1H), 9.23 (s, 1H), 7.13-7.02 (m, 3H), 6.96-6.93 (m, 1H), 6.76 (d, *J* = 7.6 Hz, 1H), 6.64 (t, *J* = 7.4 Hz, 1H), 6.36 (d, *J* = 6.8 Hz, 1H), 4.71 (s, 1H), 3.71 (d, *J* = 11.2 Hz, 3H), 3.63 (d, *J* = 11.2 Hz, 3H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 10.25. HRMS for C₁₈H₁₇N₃O₄PF₂⁺: calcd. [M+H]⁺: 408.0919, found: 408.0928.

(4'-(2,6-dichlorophenyl)-2-oxo-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5'-

yl)phosphonate (3k)

Dimethyl

Following the general procedure, treatment of (2,6dichlorobenzylidine)indolin-2-one (50 mg, 0.17 mmol) with BOR (50 mg, 0.26 mmol) in the presence of KOH (19 mg, 0.34 mmol) in MeOH (3 mL) at 25 °C for 1.5 h followed by column chromatography afforded the product **3k** as a white solid (52 mg, 69%, 4:1 dr). **R**_f (Acetone/Dichloromethane : 3/7) = 0.36.

Mp 204-206 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 178.0 (C), 142.8 (C), 137.2 (d, *J*_{*C-P*} = 233.0 Hz, C), 135.7 (C), 131.8 (C), 130.0 (C), 130.0 (C), 129.9 (CH), 129.6 (CH), 128.1 (CH),

125.4 (CH), 125.4 (CH), 121.4 (CH), 109.7 (CH), 72.6 (d, $J_{C-P} = 4.6$ Hz, C), 57.0 (d, $J_{C-P} = 23.2$ Hz, CH), 53.0 (d, $J_{C-P} = 5.5$ Hz, CH₃), 52.8 (d, $J_{C-P} = 5.5$ Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO- d_6): 10.50 (s, 1H), 9.33 (s, 1H), 7.42 (d, J = 1.6 Hz, 1H), 7.24-7.20 (m, 2H), 7.08 (t, J = 7.6 Hz, 1H), 6.96 (d, J = 7.2 Hz, 1H), 6.75 (d, J = 7.2 Hz, 1H), 6.67 (t, J = 7.6 Hz, 1H), 5.26 (s, 1H), 3.70 (d, J = 11.2 Hz, 3H), 3.62 (d, J = 11.2 Hz, 3H). ³¹P NMR (161.9 MHz, DMSO- d_6): 10.03. HRMS for C₁₈H₁₇N₃O₄PCl₂⁺: calcd. [M+H]⁺: 440.0328, found: 440.0325.

Dimethyl (4'-(2,4-dimethylphenyl)-2-oxo-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5'yl)phosphonate (3l)

Following the general procedure, treatment of (2,4dimethylbenzylidine)indolin-2-one (50 mg, 0.21 mmol) with BOR (60 mg, 0.32 mmol) in the presence of KOH (23 mg, 0.42 mmol) in MeOH (3 mL) at 25 °C for 1.5 h followed by column chromatography afforded the product **3I** as a white solid (72 mg, 89%, 16:1 dr). **R**_f (Acetone/Dichloromethane : 3/7) = 0.38. **Mp** 203-

205 °C. ¹³C NMR (100 MHz, δ ppm/ DMSO-*d*₆): 178.1 (C), 142.3 (C), 141.7 (d, *J*_{*C-P*} = 227.1 Hz, C), 136.6 (C), 135.9 (C), 130.8 (C), 129.3 (CH), 129.2 (CH), 128.4 (CH), 126.2 (CH), 125.6 (CH), 125.1 (CH), 120.9 (CH), 109.3 (CH), 72.8 (d, *J*_{*C-P*} = 4.8 Hz, C), 56.4 (d, *J*_{*C-P*} = 21.7 Hz, CH), 52.9 (d, *J*_{*C-P*} = 5.9 Hz, CH₃), 52.6 (d, *J*_{*C-P*} = 5.5 Hz, CH₃), 20.5 (CH₃) 18.5 (CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 10.42 (s, 1H), 8.99 (s, 1H), 7.09-7.04 (m, 2H), 6.94 (d, *J* = 8.0 Hz, 2H), 6.80 (s, 1H), 6.74 (d, *J* = 7.6 Hz, 1H), 6.52 (t, *J* = 7.6 Hz, 1H), 6.04 (d, *J* = 7.6 Hz, 1H), 4.60 (s, 1H), 3.66 (d, *J* = 11.2 Hz, 3H), 3.58 (d, *J* = 11.2 Hz, 3H), 2.21 (s, 3H), 1.66 (s, 3H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 10.71. HRMS for C₂₀H₂₃N₃O₄P⁺: calcd. [M+H]⁺: 400.1421, found: 400.1429.

Dimethyl (4'-(2-chlorophenyl)-2-oxo-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5'yl)phosphonate (3m)

Following the general procedure, treatment of (2-Chlorobenzylidine)indolin-2-one (50 mg, 0.20 mmol) with BOR (57 mg, 0.30 mmol) in the presence of KOH (22 mg, 0.40 mmol) in MeOH (3 mL) at 25 °C for 1.5 h followed by column chromatography afforded the product **3m** as a white solid (72 mg, 89%, >20:1 dr). \mathbf{R}_{f}

(Acetone/Dichloromethane : 3/7) = 0.44. **Mp** 187-189 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSOd₆): 177.7 (C), 143.0 (C), 139.5 (d, J_{C-P} = 227.6 Hz, C), 133.5 (C), 131.9 (C), 130.2 (CH), 129.5 (CH), 129.4 (CH), 129.2 (CH), 127.0 (CH), 125.1 (CH), 124.7 (C), 120.9 (CH), 110.5 (CH), 72.7 (d, J_{C-P} = 4.4 Hz, C), 56.3 (d, J_{C-P} = 21.4 Hz, CH), 53.0 (d, J_{C-P} = 5.8 Hz, CH₃), 53.6 (d, J_{C-P} = 5.6 Hz, CH₃). ¹H **NMR** (400 MHz, δ ppm/DMSO- d_6): 10.47 (s, 1H), 9.16 (s, 1H), 7.42 (t, J = 7.2 Hz, 1H), 7.29-7.20 (m, 3H), 7.08 (t, J = 8.0 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.51 (t, J = 7.4 Hz, 1H), 6.00 (d, J = 7.2 Hz, 1H), 4.87 (s, 1H), 3.70 (d, J = 11.2 Hz, 3H), 3.60 (d, J = 11.2 Hz, 3H). ³¹P **NMR** (161.9 MHz, DMSO- d_6): 10.41. **HRMS** for C₁₈H₁₈N₃O₄PCl⁺: calcd. [M+H]⁺: 406.0718, found: 406.0725.

Dimethyl (4'-(3-methoxyphenyl)-2-oxo-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5'yl)phosphonate(3n)

Following the general procedure, treatment of (3methoxybenzylidine)indolin-2-one (50 mg, 0.20 mmol) with BOR (57 mg, 0.30 mmol) in the presence of KOH (22 mg, 0.40 mmol) in MeOH (3 mL) at 25 °C for 1.5 h followed by column chromatography afforded the product **3n** as a white solid (72 mg, 89%, 7:1 dr). **R**_f (Acetone/Dichloromethane : 3/7) = 0.41. **Mp** 176-178 °C. ¹³C **NMR**

(100 MHz, δ ppm/DMSO-*d*₆): 177.9 (C), 158.9 (C), 142.3 (C), 141.3 (d, *J*_{*C-P*} = 227.0 Hz, C), 135.5 (C), 129.2 (C), 129.1 (CH), 125.8 (CH), 125.2 (C), 121.2 (CH), 121.0 (CH), 114.7 (CH), 113.1 (CH), 109.4 (CH), 74.0 (d, *J*_{*C-P*} = 4.7 Hz, C), 60.3 (d, *J*_{*C-P*} = 21.7 Hz, CH), 54.9 (CH₃), 52.9 (d, *J*_{*C-P*} = 5.8 Hz, CH₃), 52.7 (d, *J*_{*C-P*} = 5.5 Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 10.38 (s, 1H), 9.0 (s, 1H), 7.16 (t, *J* = 8.0 Hz, 1H), 7.04 (t, *J* = 7.8 Hz, 1H), 6.78 (d, *J* = 10.0 Hz, 1H), 6.72 (d, *J* = 7.6 Hz, 1H), 6.60-6.54 (m, 3H), 6.31 (d, *J* = 7.6 Hz, 1H), 4.53 (s, 1H), 3.64 (s, 3H), 3.65 (d, *J* = 10.0 Hz, 3H), 3.56 (d, *J* = 11.2 Hz, 3H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 10.76. HRMS for C₁₉H₂₁N₃O₅P⁺: calcd. [M+H]⁺: 402.1213, found: 402.1214.

Dimethyl (4'-(naphthalen-1-yl)-2-oxo-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5'yl)phosphonate (30)

Following the general procedure, treatment of (naphthalen-2ylmethylene)indolin-2-one (50 mg, 0.18 mmol) with BOR (52 mg, 0.27 mmol) in the presence of KOH (20 mg, 0.36 mmol) in MeOH (3 mL) at 25 °C for 1.5 h followed by column chromatography afforded the product **3o** as a white solid (37mg, 48 %, 7:1 dr). **R**_f (Acetone/Dichloromethane : 3/7) = 0.45. **Mp** 188-190 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 178.2 (C), 142.1 (C), 140.5 (d, *J*_{C-P} = 230.3 Hz, C), 139.3(C), 133.2 (C), 131.3 (C), 129.9 (C), 129.0 (C), 128.4 (CH), 128.2 (CH), 126.9 (CH), 126.2 (CH), 125.3 (CH), 125.1 (CH), 124.8 (CH), 122.2 (CH), 120.6 (CH), 109.3 (CH), 73.3 (C), 55.4 (d, *J*_{C-P} = 21.7 Hz, CH), 53.0 (d, *J*_{C-P} = 5.9 Hz, CH₃), 52.7 (d, *J*_{C-P} = 5.5 Hz, CH₃). ¹H **NMR** (400 MHz, δ ppm/DMSO-*d*₆): 10.48 (s, 1H), 9.12 (s, 1H), 7.80 (t, *J* = 7.8 Hz, 2H), 7.57-7.48 (m, 2H), 7.35-7.26 (m, 3H), 6.81 (t, *J* = 7.6 Hz, 1H), 6.58 (d, *J* = 7.6 Hz, 1H), 6.23 (t, *J* = 7.4 Hz, 1H), 5.97 (d, *J* = 7.6 Hz, 1H), 5.31 (s, 1H), 3.70 (d, *J* = 11.2 Hz, 3H), 3.57 (d, *J* = 11.2 Hz, 3H). ³¹P **NMR** (161.9 MHz, DMSO-*d*₆): 10.84. **HRMS** for C₂₂H₂₁N₃O₄P⁺: calcd. [M+H]⁺: 422.1264, found: 422.1268.

Dimethyl (2-oxo-4'-(thiophen-2-yl)-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5'yl)phosphonate (3p)

Following the general procedure, treatment of (thiophene-2-ylmethylene)indolin-2-one (50 mg, 0.22 mmol) with BOR (63 mg, 0.33 mmol) in the presence of KOH (25 mg, 0.44 mmol) in MeOH (3 mL) at 25 °C for 1.5 h followed by column chromatography afforded the product **3p** as a white solid (60 mg, 73%, 8.3:1 dr). **R**_f (Acetone/Dichloromethane : 3/7) = 0.50. **Mp** 180-182 °C. ¹³C **NMR**

(100 MHz, δ ppm/ DMSO-*d*₆): 177.5 (C), 142.2 (C), 142.8 (C), 140.5 (d, *J*_{C-P} = 228.9 Hz, C), 136.2 (C), 129.5 (C), 127.6 (CH), 126.8 (CH), 126.0 (CH), 125.1 (CH), 125.0 (CH), 121.2 (CH), 109.5 (CH) 74.0 (C), 55.2 (d, *J*_{C-P} = 21.8 Hz, CH), 52.9 (d, *J*_{C-P} = 5.9 Hz, CH₃), 52.7 (d, *J*_{C-P} = 5.7 Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 10.42 (s, 1H), 9.06 (s, 1H), 7.37 (d, *J* = 4.8 Hz, 1H), 7.11 (t, *J* = 7.4 Hz, 1H), 6.92 (t, *J* = 4.8 Hz, 1H), 6.79 (d, *J* = 2.8 Hz, 1H), 6.74 (d, *J* = 7.6 Hz, 1H), 6.66 (t, *J* = 7.4Hz, 1H), 6.45 (d, *J* = 7.2Hz, 1H), 4.84 (s, 1H), 3.66 (d, *J* = 11.6 Hz, 3H), 3.59 (d, *J* = 11.2 Hz, 3H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 10.24. HRMS for C₁₆H₁₇N₃O₄PS⁺: calcd. [M+H]⁺: 378.0672, found: 378.0662.

Dimethyl (4'-(furan-2-yl)-2-oxo-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5'-yl)phosphonate (3q)

Following the general procedure, treatment of (furan-2-methylene)indolin-2-one (50 mg, 0.24 mmol) with BOR (68 mg, 0.36 mmol) in the presence of KOH (27 mg, 0.48 mmol) in MeOH (3 mL) at 25 °C for 1.5 h followed by column chromatography afforded the product **3q** as a pale yellow solid (57 mg, 66%, 10:1 dr). **R**_f (Acetone/Dichloromethane : 3/7) = 0.39. **Mp** 176-178 °C. ¹³**C NMR**

(100 MHz, δ ppm/ DMSO-*d*₆): 177.4 (C), 147.8 (C), 142.8 (C), 142.2 (CH), 137.3 (d, *J*_{*C-P*} = 230.3 Hz, C), 129.5 (C), 125.7 (CH), 125.1 (CH), 121.4 (CH), 110.7 (CH), 109.6 (CH), 109.5 (CH), 73.3 (d, *J*_{*C-P*} = 4.5 Hz, C), 54.2 (d, *J*_{*C-P*} = 21.9 Hz, CH), 52.8 (d, *J*_{*C-P*} = 5.9 Hz, CH₃), 52.7 (d, *J*_{*C-P*} = 5.6 Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 10.44 (s, 1H), 9.08 (s, 1H), 7.50 (s, 1H), 7.13 (t, *J* = 7.6 Hz, 1H), 6.76-6.71 (m, 2H), 6.59 (d, *J* = 7.6 Hz, 1H), 6.30 (s, 1H), 6.19 (s, 1H), 4.69 (s, 1H), 3.63 (d, *J* = 11.2 Hz, 3H), 3.59 (d, *J* = 11.2 Hz, 3H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 10.48. HRMS for C₁₆H₁₇N₃O₅P⁺: calcd. [M+H]⁺: 362.0900, found: 362.0909.

Dimethyl(4'-isopropyl-2-oxo-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5'-yl)phosphonate (3r)

Following the general procedure, treatment of (2methylpropylidene)indolin-2-one (50 mg, 0.26 mmol) with BOR (77 mg, 0.40 mmol) in the presence of KOH (29 mg, 0.52 mmol) in MeOH (3 mL) at 25 °C for 2 h followed by column chromatography afforded the product **3r** as a white solid (55 mg, 61%, >20:1 dr). **R**_f (Acetone/Dichloromethane : 3/7) = 0.45. **Mp** 139-141 °C. ¹³**C NMR**

(100 MHz, δ ppm/ DMSO-*d*₆): 178.2 (C), 142.0 (C), 140.4 (d, *J*_{C-P} = 226.7 Hz, C), 129.7 (CH), 126.6 (C), 125.5 (CH), 121.6 (CH), 110.0 (CH), 74.5 (d, *J*_{C-P} = 5.4 Hz, C), 61.6 (d, *J*_{C-P} = 22.7 Hz, CH), 53.2 (d, *J*_{C-P} = 6.3 Hz, CH₃), 52.7 (d, *J*_{C-P} = 5.8 Hz, CH₃), 27.0 (CH), 21.1 (CH₃), 19.6 (CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 10.44 (s, 1H), 8.76 (s, 1H), 7.28-7.22 (m, 2H), 6.98 (t, *J* = 7.2 Hz, 1H), 6.85 (d, *J* = 7.6 Hz, 1H), 3.74 (d, *J* = 11.2 Hz, 3H), 3.70 (d, *J* = 11.2 Hz, 3H), 3.25 (d, *J* = 5.2 Hz, 1H), 1.94-1.86 (m, 1H), 1.00 (d, *J* = 6.8 Hz, 3H), 0.75 (d, *J* = 6.8 Hz, 3H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 12.41. HRMS for C₁₅H₂₁N₃O₄P⁺: calcd. [M+H]⁺: 338.1264, found: 338.1275.

Dimethyl (1-benzoyl-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2-yl)phosphonate (5a)

Following the general procedure, treatment of 3-(2-oxo-2-phenylethylidene)indolin-2-one (50 mg, 0.20 mmol) with BOR (58 mg, 0.30 mmol) in the presence of KOH (23 mg, 0.40 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the

product **5a** as a white solid (63 mg, 80%). **R**_f (Acetone/Dichloromethane: 3/7) = 0.38. **Mp** 226-228 °C. ¹³**C NMR** (100 MHz, δ ppm/DMSO-*d*₆): 191.0 (C), 143.7 (C), 143.5 (d, *J*_{*C*-*P*} = 224.6 Hz, C), 138.7 (d, *J*_{*C*-*P*} = 9.0 Hz, C), 136.9 (C), 135.2 (C), 134.3 (C), 131.1 (CH), 129.6 (CH), 129.6 (CH), 128.9 (CH), 128.9 (CH), 123.5 (CH), 123.3 (CH), 120.0 (d, *J*_{*C*-*P*} = 24.4 Hz, C), 116.3 (CH),

111.2 (CH), 53.2 (d, $J_{C-P} = 5.7$ Hz, CH₃), 53.1 (d, $J_{C-P} = 5.7$ Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO- d_6): 12.31 (s, 1H), 7.90 (d, J = 7.6 Hz, 2H), 7.70 (t, J = 7.2, 1H), 7.53 (d, J = 7.6 Hz, 3H), 7.40 (d, J = 8.4 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 7.10 (t, J = 7.6, 1H), 3.62 (d, J = 11.2 Hz, 6H). ³¹P NMR (161.9 MHz, DMSO- d_6): 8.75. HRMS for C₁₉H₁₇N₃O₅P⁺: calcd. [M+H]⁺: 398.0900, found: 398.0899.

Dimethyl (1-benzoyl-9-methoxy-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5b)

Following the general procedure, treatment of 5-methoxy-3-(2oxo-2-phenylethylidene)indolin-2-one (50 mg, 0.18 mmol) with BOR (58 mg, 0.27 mmol) in the presence of KOH (20 mg, 0.36 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5b** as a white solid (47 mg, 62%). **R**_f (Acetone/Dichloromethane: 3/7) = 0.27. **Mp** 216-

218 °C. ¹³**C** NMR (100 MHz, δ ppm/CF₃COOD): 194.4 (C), 156.8 (C), 146.7 (C), 145.3 (d, $J_{C-P} = 224.6$ Hz, C), 140.7 (d, $J_{C-P} = 9.0$ Hz, C), 136.8 (C), 136.0 (C), 130.7 (CH), 130.7 (CH), 129.6 (CH), 129.6 (CH), 128.0 (CH), 122.0 (CH), 118.8 (d, $J_{C-P} = 24.4$ Hz, C), 118.7 (CH), 112.1 (CH), 107.9 (CH), 55.2 (CH₃), 54.6 (d, $J_{C-P} = 5.7$ Hz, CH₃), 54.5 (d, $J_{C-P} = 5.7$ Hz, CH₃). ¹H NMR (400 MHz, δ ppm/CF₃COOD): 8.20 (d, J = 7.6 Hz, 2H), 7.91 (t, J = 7.6 Hz, 1H), 7.71 (t, J = 7.8 Hz, 1H), 7.58 (d, J = 9.2 Hz, 1H), 7.43 (dd, J = 9.2, 2.8 Hz, 1H), 7.10 (d, J = 2.4 Hz, 1H), 4.06 (d, J = 11.6 Hz, 6H), 3.66 (s, 3H). ³¹P NMR (161.9 MHz, CF₃COOD): 8.08. HRMS for C₂₀H₁₉N₃O₆P⁺: calcd. [M+H]⁺: 428.1006, found: 428.1016.

(1-benzoyl-9-methyl-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2-

Dimethyl yl)phosphonate (5c)

Following the general procedure, treatment of 5-methyl-3-2(oxo-2-phenylethylidene)indolin-2-one (50 mg, 0.19 mmol) with BOR (55 mg, 0.29 mmol) in the presence of KOH (21 mg, 0.38 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5c** as a light yellow solid (59 mg, 75%). **R**_f (Acetone/Dichloromethane : 3/7) = 0.41. **Mp**

210-212 °C. ¹³C NMR (100 MHz, δ ppm/ DMSO-*d*₆): 191.0 (C), 143.7 (C), 143.7 (d, *J*_{*C-P*} = 224.7 Hz, C), 138.7 (d, *J*_{*C-P*} = 9.1 Hz, C), 137.1 (C), 134.2 (CH), 133.1 (C), 132.2 (C), 132.2 (C), 129.5 (CH), 129.5 (CH), 128.9 (CH), 128.9 (CH), 123.4 (CH), 120.0 (d, *J*_{*C-P*} = 24.3 Hz, C), 116.2 (CH), 111.0 (CH), 53.2 (d, *J*_{*C-P*} = 5.7 Hz, CH₃), 53.2 (d, *J*_{*C-P*} = 5.7, CH₃), 20.4 (CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 12.24 (s, 1H), 7.89 (d, *J* = 7.6 Hz, 2H), 7.70 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 2H), 7.35-7.27 (m, 2H), 7.00 (s, 1H), 3.63 (d, *J* = 11.2 Hz, 6H), 2.08 (s, 3H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 8.80. HRMS for C₂₀H₁₉N₃O₅P⁺: calcd. [M+H]⁺: 412.1057, found: 412.1071.

Dimethyl (1-benzoyl-9-bromo-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5d)

Following the general procedure, treatment of 5-bromo-3-2(oxo-2-phenylethylidene)indolin-2-one (50 mg, 0.15 mmol) with BOR (44 mg, 0.22 mmol) in the presence of KOH (17 mg, 0.20 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5d** as a white solid (62 mg, 86%). **R**_f (Acetone/Dichloromethane : 3/7) = 0.40. **Mp** 220-

222 °C. ¹³C NMR (100 MHz, δ ppm/ DMSO-*d*₆): 190.2 (C), 143.9 (d, *J*_{*C-P*} = 224.0 Hz, C), 143.7 (C), 138.9 (d, *J*_{*C-P*} = 9.0 Hz, C), 136.0 (C), 135.2 (C), 132.0 (CH), 132.0 (CH), 131.5 (CH), 131.5 (CH), 129.2 (C), 128.7 (C), 123.5 (CH), 123.4 (CH), 119.5 (d, *J*_{*C-P*} = 24.4 Hz, C), 116.3 (CH), 111.1 (CH), 53.3 (d, *J*_{*C-P*} = 5.9 Hz, CH₃), 53.2 (d, *J*_{*C-P*} = 5.9 Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 12.42 (s, 1H), 7.92-7.89 (m, 2H), 7.73-7.67 (m, 2H), 7.55 (t, *J* = 7.8 Hz, 2H), 7.34-7.31 (m, 2H), 3.62 (d, *J* = 9.6 Hz, 6H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 8.39. HRMS for C₁₉H₁₆N₃O₅PBr⁺: calcd. [M+H]⁺:476.0005, found: 476.0006.

(1-benzoyl-9-chloro-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2-

Dimethyl yl)phosphonate (5e)

Following the general procedure, treatment of 5-chloro-3-2(oxo-2-phenylethylidene)indolin-2-one (50 mg, 0.18 mmol) with BOR (51 mg, 0.27 mmol) in the presence of KOH (20 mg, 0.36 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5e** as a white solid (67 mg, 87%). **R**_f (Acetone/Dichloromethane : 3/7) = 0.38. **Mp** 230-

232 °C. ¹³C NMR (100 MHz, δ ppm/DMSO-*d*₆): 191.9 (C), 143.8 (d, *J* = 224.6 Hz, C), 143.5 (C), 137.7 (d, *J*_{C-P} = 9.0 Hz, C), 136.9 (C), 134.5 (C), 134.2 (C), 131.0 (C), 129.5 (CH), 129.5 (CH), 129.0 (CH), 129.0 (CH), 126.8 (CH), 122.6 (CH), 120.5 (d, *J*_{C-P} = 24.4 Hz, C), 118.2 (CH), 112.6 (CH), 53.2 (d, *J*_{C-P} = 5.7 Hz, CH₃), 53.2 (d, *J*_{C-P} = 5.7 Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 12.44 (s, 1H), 7.90 (dd, *J* = 2.4 Hz, 2H), 7.72 (t, *J* = 7.4, 1H), 7.59-7.53 (m, 3H), 7.39 (d, *J* = 7.2 Hz, 1H), 7.19 (d, *J* = 2.4 Hz, 1H), 3.62 (d, *J* = 11.2 Hz, 6H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 8.44. HRMS for C₁₉H₁₆N₃O₅PCl⁺: calcd. [M+H]⁺: 432.0510, found: 432.0511.

Dimethyl yl)phosphonate (5f)

Following the general procedure, treatment of 5-fluoro-3-(2-oxo-2-phenylethylidene)indolin-2-one (50 mg, 0.19 mmol) with BOR (44 mg, 0.28 mmol) in the presence of KOH (38 mg, 0.20 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5f** as a yellow solid (59 mg, 74%). **R**_f (Acetone/Dichloromethane : 3/7) = 0.31. **Mp** 228-230 °C.

(1-benzoyl-9-fluoro-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2-

¹³**C** NMR (100 MHz, δ ppm/ DMSO-*d*₆): 190.8 (C), 157.1 (d, *J*_{*C-F*} = 239.0 Hz, C), 143.7 (d, *J*_{*C-P*} = 224.0 Hz, C), 143.4 (C), 138.0 (d, *J*_{*C-P*} = 9.0 Hz, C), 136.9 (C), 134.5 (C), 132.1 (C), 129.6 (CH), 129.6 (CH), 129.0 (CH), 129.0 (CH), 120.6 (CH), 119.0 (d, *J*_{*C-P*} = 23.8 Hz, C), 118.5 (d, *J*_{*C-F*} = 8.4 Hz, CH), 112.1 (d, *J*_{*C-F*} = 8.4 Hz, CH), 109.0 (d, *J*_{*C-F*} = 25.4 Hz, CH), 53.2 (d, *J*_{*C-P*} = 2.9 Hz, CH₃), 53.2 (d, *J*_{*C-P*} = 2.9 Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 12.42 (s, 1H), 7.90 (d, *J* = 8.4 Hz, 2H), 7.72 (t, *J* = 7.2 Hz, 1H), 7.54 (t, *J* = 7.8 Hz, 2H), 7.41 (d, *J* = 5.6 Hz, 2H), 6.92 (d, *J* = 8.8

Hz, 1H) 3.62 (d, J = 9.6 Hz, 6H). ³¹P NMR (161.9 MHz, DMSO- d_6): 8.51. HRMS for $C_{19}H_{16}N_3O_5PF^+$: calcd. $[M+H]^+$: 416.0806, found: 416.0805.

Dimethyl (1-benzoyl-9-nitro-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2-yl)phosphonate (5g)

Following the general procedure, treatment of 5-nitro-3-2-(oxo-2-phenylethylidene)indolin-2-one (50 mg, 0.17 mmol) with BOR (49 mg, 0.26 mmol) in the presence of KOH (19 mg, 0.34mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5g** as a yellow solid (52 mg, 69%). **R**_f (Acetone/Dichloromethane : 3/7) = 0.29. **Mp** 236-

238 °C. ¹³C NMR (100 MHz, δ ppm/ DMSO-*d*₆): 190.7 (C), 144.2 (d, *J*_{*C-P*} = 224.6 Hz, C), 143.5 (C), 141.9 (C), 140.3 (C), 137.6 (d, *J*_{*C-P*} = 9.0 Hz, C), 136.8 (C), 134.6 (C), 129.5 (CH), 129.5 (CH), 129.0 (CH), 129.0 (CH), 125.9 (CH), 120.9 (d, *J*_{*C-P*} = 24.3 Hz, C), 119.5 (CH), 117.3 (CH), 111.4 (CH), 53.3 (d, *J*_{*C-P*} = 5.7 Hz, CH₃), 53.2 (d, *J*_{*C-P*} = 5.7 Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 12.86 (s, 1H), 8.35 (dd, *J* = 8.0, 4.0 Hz, 1H), 8.14 (d, *J* = 2.4 Hz, 1H), 7.94 (d, *J* = 8 Hz, 2H), 7.72 (d, *J* = 7.6 Hz, 1H), 7.57-7.52 (m, 3H), 3.64 (d, *J* = 11.2 Hz, 6H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 8.23. HRMS for C₁₉H₁₆N₄O₇P⁺: calcd. [M+H]⁺: 443.0751 found: 443.0756.

Dimethyl (1-(4-methoxybenzoyl)-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5h)

Following the general procedure, treatment of 3-(2-(4-methoxyphenyl)-2-oxoethylidene)indolin-2-one (50 mg, 0.18 mmol) with BOR (52 mg, 0.27 mmol) in the presence of KOH (20 mg, 0.36 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product**5h**as a white solid (54 mg, 71%).**R**_f (Acetone/Dichloromethane : 3/7)

= 0.34. **Mp** 210-212 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 189.1 (C), 164.1 (C), 143.9 (d, J_{C-P} = 224.6 Hz, C), 143.8 (C), 138.2 (d, J_{C-P} = 9.0 Hz, C), 135.1 (C), 132.1 (CH), 132.1 (CH), 131.0 (C), 130.0 (C), 123.5 (CH), 123.3 (CH), 120.2 (d, J_{C-P} = 24.4 Hz, C), 116.2 (CH), 114.2 (CH), 114.2 (CH), 114.2 (CH), 111.3 (CH), 55.6 (CH₃), 53.2 (d, J_{C-P} = 5.7 Hz, CH₃), 53.2 (d, J_{C-P} = 5.7 Hz, CH₃). ¹H

NMR (400 MHz, δ ppm/DMSO- d_6): 12.28 (s, 1H), 7.86 (d, J = 7.2 Hz, 2H), 7.53-7.49 (m, 1H), 7.38 (d, J = 8.0 Hz, 1H), 7.26 (d, J = 6.8 Hz, 1H), 7.09 (t, J = 7.2 Hz, 1H), 7.03 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H), 3.63 (d, J = 11.6 Hz, 6H). ³¹**P NMR** (161.9 MHz, DMSO- d_6): 13.65. **HRMS** for $C_{20}H_{19}N_3O_6P^+$: calcd. [M+H]⁺: 428.1006, found: 428.0983.

Dimethyl (1-(4-methylbenzoyl)-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5i)

Following the general procedure, treatment of 3-(2-oxo-2-(p-tolyl)ethylidene)indolin-2-one (50 mg, 0.19 mmol) with BOR (55 mg, 0.29 mmol) in the presence of KOH (21 mg, 0.38 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5i** as a pale yellow solid (63 mg, 81%). **R**_f (Acetone/Dichloromethane : 3/7) = 0.40 **Mp**

216-218 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 190.4 (C), 145.1 (C), 143.8 (C), 143.5 (d, *J*_{*C-P*} = 179.5 Hz, C), 138.5 (d, *J*_{*C-P*} = 7.2 Hz, C), 135.1 (C), 134.5 (C), 131.1 (C), 129.7 (CH), 129.7 (CH), 129.5 (CH), 129.5 (CH), 123.5 (CH), 123.4 (CH), 120.2 (d, *J*_{*C-P*} = 19.6 Hz, C), 116.3 (CH), 111.2 (CH), 53.2 (d, *J*_{*C-P*} = 5.7 Hz, CH₃), 53.2 (d, *J*_{*C-P*} = 5.7 Hz, CH₃), 21.2 (CH₃). ¹**H NMR** (400 MHz, δ ppm/DMSO-*d*₆): 12.29 (s, 1H), 7.79 (d, *J* = 7.6 Hz, 2H), 7.52-7.48 (m, 1H), 7.38 (d, *J* = 7.6 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.24 (d, *J* = 8.0, 1.2 Hz, 1H), 7.09 (dt, *J* = 7.2, 0.8 Hz, 1H), 3.62 (d, *J* = 11.6 Hz, 6H), 2.38 (s, 3H). ³¹**P NMR** (161.9 MHz, DMSO-*d*₆): 8.82. **HRMS** for C₂₀H₁₉N₃O₅P⁺: calcd. [M+H]⁺: 412.1057, found: 412.1050.

Dimethyl (1-([1,1'-biphenyl]-4-carbonyl)-5-oxo-5,6dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5j)

Following the general procedure, treatment of 3-(2-oxo-2-phenylethylidene)indolin-2-one (50 mg, 0.15 mmol) with BOR (43 mg, 0.23 mmol) in the presence of KOH (17 mg, 0.30 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5**j as a white solid (34 mg, 49%). **R**_f (Acetone/Dichloromethane: 3/7) = 0.40. **Mp** 220-

222 °C. ¹³C NMR (100 MHz, δ ppm/DMSO- d_6): 190.5 (C), 145.6 (C), 143.8 (C), 143.5 (d, J_{C-P} = 224.4 Hz, C), 138.6 (d, J_{C-P} = 9.0 Hz, C), 135.8 (C), 135.2 (C), 131.1 (C), 130.3 (CH), 130.3 (CH),

129.0 (CH), 129.0 (CH), 129.0 (CH), 128.6 (C), 127.0 (CH), 127.0 (CH), 127.0 (CH), 127.0 (CH), 127.0 (CH), 123.5 (CH), 123.4 (CH), 120.0 (d, $J_{C-P} = 24.7$ Hz, C), 116.3 (CH), 111.2 (CH), 53.3 (d, $J_{C-P} = 5.7$ Hz, CH₃), 53.2 (d, $J_{C-P} = 5.7$ Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO- d_6): 12.32 (s, 1H), 7.98 (d, J = 8.4 Hz, 2H), 7.83 (d, J = 8.4 Hz, 2H), 7.75(d, J = 8.0 Hz, 2H), 7.53-7.47 (m, 3H), 7.44-7.39 (m, 2H), 7.32 (d, J = 8.0 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 3.64 (d, J = 11.2 Hz, 6H). ³¹P NMR (161.9 MHz, DMSO- d_6): 8.75. HRMS for C₂₅H₂₁N₃O₅P⁺: calcd. [M+H]⁺: 474.1212, found: 474.1224.

Dimethyl (1-(4-bromobenzoyl)-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5k)

Following the general procedure, treatment of 3-(2-(4-bromophenyl)-2-oxoethylidene)indolin-2-one (50 mg, 0.15 mmol) with BOR (44 mg, 0.23 mmol) in the presence of KOH (17 mg, 0.13 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product**5k**as a white solid (45 mg, 62%).**R**_f (Acetone/Dichloromethane : 3/7)

= 0.42. **Mp** 210-212 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 190.2 (C), 143.7 (C), 143.4 (d, *J*_{C-P} = 224.1 Hz, C), 138.7 (d, *J*_{C-P} = 9.0 Hz, C), 136.0 (C), 135.2 (CH), 132.0 (C), 131.4 (CH), 131.4 (CH), 131.2 (CH), 131.2 (CH), 128.7 (C), 123.5 (C), 123.4 (CH), 119.5 (d, *J*_{C-P} = 24.5 Hz, C), 116.3 (CH), 111.1 (CH), 53.3 (d, *J*_{C-P} = 5.7 Hz, CH₃), 53.2 (d, *J*_{C-P} = 5.6 Hz, CH₃). ¹**H NMR** (400 MHz, δ ppm/DMSO-*d*₆): 12.33 (s, 1H), 7.83 (d, *J* = 8.2 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.55-7.51 (m, 1H), 7.39 (d, *J* = 8.2 Hz, 1H), 7.28 (t, *J* = 4.0 Hz, 1H), 7.14-7.10 (m, 1H), 3.63 (d, *J* = 10.0 Hz, 6H). ³¹**P NMR** (161.9 MHz, DMSO-*d*₆): 8.62. **HRMS** for C₁₉H₁₆N₃O₅PBr⁺: calcd. [M+H]⁺: 476.0005, found: 476.0004.

Dimethyl (1-(4-fluorobenzoyl)-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5l)

Following the general procedure, treatment of 3-(2-(4-fluorophenyl)-2-oxoethylidene)indolin-2-one (50 mg, 0.19 mmol) with BOR (54 mg, 0.28 mmol) in the presence of KOH (21 mg, 0.38 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column

chromatography afforded the product **5I** as a white solid (58 mg, 74%). **R**_f (Acetone/Dichloromethane : 3/7) = 0.28. **Mp** 208-210 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSOd₆): 189.5 (C), 165.7 (d, J_{C-F} = 252.3 Hz, C), 143.7 (d, J_{C-P} = 224.3 Hz, C), 143.7 (C), 138.7 (d, J_C. P = 8.8 Hz, C), 135.2 (C), 133.8 (d, J_{C-F} = 2.5 Hz, CH), 132.7 (d, J_{C-F} = 9.8 Hz, CH), 132.7 (d, J_{C-F} = 9.8 Hz, CH), 131.2 (C), 123.5 (CH), 123.3 (CH), 119.7 (d, J_{C-P} = 24.3 Hz, C), 116.3 (CH), 116.2 (CH), 115.9 (CH), 111.2 (CH), 53.2 (d, J_{C-P} = 5.8 Hz, CH₃), 53.2 (d, J_{C-P} = 5.8 Hz, CH₃). ¹H **NMR** (400 MHz, δ ppm/DMSO-d₆): 12.32 (s, 1H), 8.01-7.97 (m, 2H), 7.53 (t, J = 7.6 Hz, 1H), 7.41-7.33 (m, 3H), 7.28 (d, J = 8.0 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 3.63 (d, J = 11.2 Hz, 6H). ³¹P **NMR** (161.9 MHz, DMSO-d₆): 8.70. **HRMS** for C₁₉H₁₆N₃O₅PF⁺: calcd. [M+H]⁺: 416.0806, found: 416.0820.

Dimethyl (9-bromo-1-(4-methoxybenzoyl)-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5m)

Following the general procedure, treatment of 5-bromo-3-(2-(4-methoxyphenyl)2-oxo-ethylidene)indolin-2-one (50 mg, 0.14 mmol) with BOR (40 mg, 0.21 mmol) in the presence of KOH (16 mg, 0.28 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5m** as a white solid (54 mg, 76%). **R**_f (Acetone/Dichloromethane :

3/7) = 0.38. **Mp** 210-212 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 189.0 (C), 164.2 (C), 143.6 (d, *J*_{*C-P*} = 224.7 Hz, C), 143.5 (C), 137.2 (d, *J*_{*C-P*} = 9.0 Hz, C), 134.4 (C), 133.6 (C), 132.1 (CH), 132.1 (CH), 129.9 (C), 125.6 (C), 120.8 (d, *J*_{*C-P*} = 24.6 Hz, C), 118.4 (CH), 114.6 (CH), 114.3 (CH), 114.3 (CH), 113.2 (CH), 55.7 (CH₃), 53.3 (d, *J*_{*C-P*} = 5.7 Hz, CH₃), 53.4 (d, *J* = 7.2 Hz, 2H), 7.06 (d, *J* = 8.8 Hz, 2H), 3.86 (s, 3H), 3.64 (d, *J* = 11.2 Hz, 6H). **³¹P** NMR (161.9 MHz, DMSO-*d*₆): 8.61. HRMS for C₂₀H₁₈N₃O₆PBr⁺: calcd. [M+H]⁺: 506.0111, found: 506.0110.

Dimethyl (9-bromo-1-(4-bromobenzoyl)-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5n)

Following the general procedure, treatment of 5-bromo-3-(2-(4-bromophenyl)-2-oxoethylidene)indolin-2-one (50 mg, 0.13 mmol) with BOR (36 mg, 0.20 mmol) in the presence of KOH (15 mg, 0.26 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5n** as a yellow solid (52 mg, 72%). **R**_f (Acetone/Dichloromethane : 3/7) = 0.40.

Mp 208-210 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 190.1 (C), 143.8 (d, *J*_{C-P} = 224.0 Hz, C), 143.5 (C), 137.6 (d, *J*_{C-P} = 9.0 Hz, C), 136.1 (C), 134.6 (C), 133.8 (C), 132.1 (CH), 132.1 (CH), 131.4 (CH), 131.4 (CH), 128.9 (C), 125.6 (C), 119.2 (d, *J*_{C-P} = 24.5 Hz, C), 118.5 (CH), 114.6 (CH), 113.0 (CH), 53.3 (d, *J*_{C-P} = 5.8 Hz, CH₃), 53.2 (d, *J*_{C-P} = 5.6 Hz, CH₃). ¹H **NMR** (400 MHz, δ ppm/DMSO-*d*₆): 12.46 (s, 1H), 7.82 (d, *J* = 8.4 Hz, 2H), 7.77 (d, *J* = 8.4 Hz, 2H), 7.71 (d, *J* = 8.8 Hz, 1H), 7.36 (s, 1H), 7.33 (d, *J* = 8.8 Hz, 1H), 3.63 (d, *J* = 10.0 Hz, 6H). ³¹P **NMR** (161.9 MHz, DMSO-*d*₆): 8.33. **HRMS** for C₁₉H₁₅N₃O₅PBr₂⁺: calcd. [M+H]⁺: 553.9111, found: 553.9094

Dimethyl (9-bromo-1-(4-chlorobenzoyl)-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (50)

Following the general procedure, treatment of 5-bromo-3-(2-(4-chlorophenyl)-2-oxoethylidene)indolin-2-one (50 mg, 0.14 mmol) with BOR (40 mg, 0.21 mmol) in the presence of KOH (16 mg, 0.28 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **50** as a pale yellow solid (47 mg, 66%). **R**_f (Acetone/Dichloromethane : 3/7) =

0.28. **Mp** 210-212 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 189.9 (C), 143.8 (d, *J*_{C-P} = 224.5 Hz, C), 143.5 (C), 139.5 (C), 137.9 (C), 135.8 (C), 134.6 (C), 133.8(C), 131.4 (CH), 131.4 (CH), 129.2 (CH), 129.2 (CH), 125.6 (C), 120.5 (d, *J*_{C-P} = 24.1 Hz, C), 118.5 (CH), 114.6 (CH), 113.1 (CH), 53.3 (d, *J*_{C-P} = 5.8 Hz, CH₃), 53.3 (d, *J*_{C-P} = 5.6 Hz, CH₃). ¹H **NMR** (400 MHz, δ ppm/DMSO-*d*₆): 12.46 (s, 1H), 7.91 (d, *J* = 8.8 Hz, 2H), 7.71 (d, *J* = 8.8 Hz, 1H), 7.63 (d, *J* = 8.8 Hz, 2H), 7.36-7.32(m, 2H), 3.63 (d, *J* = 11.6 Hz, 6H). ³¹P **NMR** (161.9 MHz, DMSO-*d*₆): 8.58. **HRMS** for C₁₉H₁₅N₃O₅PBrCl⁺: calcd. [M+H]⁺: 509.9616, found: 509.9614.

Dimethyl (9-chloro-1-(4-methoxybenzoyl)-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5p)

Following the general procedure, treatment of 5-chloro-3-(2-(4-methoxyphenyl)-2-oxoethylidene)indolin-2-one (50 mg, 0.16 mmol) with BOR (46 mg, 0.24 mmol) in the presence of KOH (18 mg, 0.32 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5p** as a white solid (51 mg, 69%). **R**_f (Acetone/Dichloromethane :

3/7) = 0.34. **Mp** 202-204 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 189.0 (C), 164.2 (C), 143.6 (d, *J*_{*C-P*} = 224.7 Hz, C), 143.5 (C), 137.3 (d, *J*_{*C-P*} = 9.0 Hz, C), 134.1 (C), 132.1 (CH), 132.1 (CH), 130.8 (C), 129.9 (C), 126.9 (C), 122.5 (CH), 120.8 (d, *J*_{*C-P*} = 24.4 Hz, C), 118.2 (CH), 114.3 (CH), 114.3 (CH), 112.7 (CH), 55.7 (CH₃), 53.3 (d, *J*_{*C-P*} = 5.7 Hz, CH₃), 53.2 (d, *J*_{*C-P*} = 5.7 Hz, CH₃). ¹**H NMR** (400 MHz, δ ppm/DMSO-*d*₆): 12.41 (s, 1H), 7.87 (d, *J* = 7.6 Hz, 2H), 7.56 (s, 1H), 7.39 (d, *J* = 7.6 Hz, 1H), 7.20 (s, 1H), 7.06 (d, *J* = 8.2 Hz, 2H), 3.86 (s, 3H), 3.63 (d, *J* = 10.0 Hz, 6H). ³¹**P NMR** (161.9 MHz, DMSO-*d*₆): 8.58. **HRMS** for C₂₀H₁₈N₃O₆PCl⁺: calcd. [M+H]⁺: 462.0616, found: 462.0616.

Dimethyl (9-chloro-1-(4-methylbenzoyl)-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5q)

Following the general procedure, treatment of 5-chloro-3-(2oxo-2-(p-tolyl)ethylidene)indolin-2-one (50 mg, 0.17 mmol) with BOR (50 mg, 0.26 mmol) in the presence of KOH (19 mg, 0.34 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5q** as a white solid (59 mg, 78%). **R**_f (Acetone/Dichloromethane : 3/7) = 0.42. **Mp** 220-

222 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 190.3 (C), 145.3 (C), 143.7 (d, *J*_{*C-P*} = 179.4 Hz, C), 143.5 (C), 137.5 (d, *J*_{*C-P*} = 7.2 Hz, C), 134.5 (C), 134.1 (C), 130.9 (C), 129.7 (CH), 129.7 (CH), 129.6 (CH), 129.6 (CH), 126.8 (C), 122.5 (CH), 120.7 (d, *J*_{*C-P*} = 19.6 Hz, C), 118.2 (CH), 112.7 (CH), 53.2 (CH₃), 53.2 (CH₃), 21.2 (CH₃). ¹H **NMR** (400 MHz, δ ppm/DMSO-*d*₆): 12.43 (s, 1H), 7.80 (d, *J* = 8.0 Hz, 2H), 7.57-7.55 (m, 1H), 7.39-7.34 (m, 3H), 7.18 (d, *J* = 2.4 Hz, 1H), 3.63 (d,

J = 11.6 Hz, 6H), 2.39 (s, 3H). ³¹P NMR (161.9 MHz, DMSO- d_6): 8.50. HRMS for $C_{20}H_{18}N_3O_5PCI^+$: calcd. [M+H]⁺: 446.0667, found: 446.0652.

Dimethyl (1-(4-bromobenzoyl)-9-chloro-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5r)

Following the general procedure, treatment of 3-(2-(4-bromophenyl)-2-oxoethylidene)-5-chloroindolin-2-one (50 mg, 0.14 mmol) with BOR (40 mg, 0.21 mmol) in the presence of KOH (16 mg, 0.28 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product**5r**as a white solid (47 mg, 66%).**R**_f (Acetone/Dichloromethane : 3/7)

= 0.40. **Mp** 204-206 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 190.1 (C), 143.7 (d, *J*_{C-P} = 224.0 Hz, C), 143.4 (C), 138.4 (d, *J*_{C-P} = 9.0 Hz, C), 136.1 (C), 134.2 (C), 132.1 (C), 131.4 (CH), 131.4 (CH), 131.1 (CH), 131.1 (CH), 128.9 (C), 126.9 (C), 122.6 (CH), 120.1 (d, *J*_{C-P} = 24.5 Hz, C), 118.3 (CH), 112.6 (CH), 53.3 (d, *J*_{C-P} = 5.8 Hz, CH₃), 53.3 (d, *J*_{C-P} = 5.6 Hz, CH₃). ¹**H NMR** (400 MHz, δ ppm/DMSO-*d*₆): 12.47 (s, 1H), 7.84-7.81 (m, 2H), 7.75 (d, *J* = 8.4 Hz, 2H), 7.59 (dd, *J* = 8.8, 2.0 Hz, 1H), 7.39 (d, *J* = 8.8 Hz, 1H), 7.23 (d, *J* = 2.0 Hz, 1H), 3.63 (d, *J* = 11.6 Hz, 6H). ³¹**P NMR** (161.9 MHz, DMSO-*d*₆): 8.31. **HRMS** for C₁₉H₁₅N₃O₅PClBr⁺: calcd. [M+H]⁺: 509.9616, found: 509.9609.

Dimethyl (9-chloro-1-(4-fluorobenzoyl)-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5s)

Following the general procedure, treatment of 5-chloro-3-(2-(4-fluorophenyl)-2-oxoethylidene)indolin-2-one (50 mg, 0.17 mmol) with BOR (50 mg, 0.26 mmol) in the presence of KOH (19 mg, 0.34 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5s** as a white solid (54 mg, 71%). **R**_f (Acetone/Dichloromethane : 3/7) = 0.34.

Mp 211-213 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 189.9 (C), 166.2 (d, *J*_{*C-F*} = 252.8 Hz, C), 143.7 (d, *J*_{*C-P*} = 224.3 Hz, C), 143.5 (C), 137.6 (d, *J*_{*C-P*} = 8.8 Hz, C), 134.2 (C), 133.8 (C), 132.8 (d, *J*_{*C-F*} = 24.3 Hz, CH), 132.8 (d, *J*_{*C-F*} = 2.5 Hz, CH), 131.0 (C), 126.9 (CH), 122.6 (CH), 120.2 (d, *J*_{*C-F*} = 24.3 Hz, C), 118.3 (C), 116.1 (d, *J*_{*C-F*} = 22.1 Hz, CH), 116.1 (d, *J*_{*C-F*} = 22.1 Hz, CH), 112.6

(CH), 53.3 (d, $J_{C-P} = 5.9$ Hz, CH₃), 53.2 (d, $J_{C-P} = 5.9$ Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSOd₆): 12.46 (s, 1H), 8.01-7.97 (m, 2H), 7.61-7.59 (m, 1H), 7.39 (d, J = 9.0 Hz, 3H), 7.22 (d, J = 2.0 Hz, 1H), 3.63 (d, J = 11.2 Hz, 6H). ³¹P NMR (161.9 MHz, DMSO-d₆): 8.38. HRMS for C₁₉H₁₅N₃O₅PCIF⁺: calcd. [M+H]⁺: 450.0416, found: 450.0415.

Dimethyl (9-methoxy-1-(4-methoxybenzoyl)-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2-yl)phosphonate (5t)

Following the general procedure, treatment of 5-methoxy-3-(2-(4-methoxyphenyl)-2-oxoethylidene)indolin-2-one (50 mg, 0.16 mmol) with BOR (46 mg, 0.24 mmol) in the presence of KOH (18 mg, 0.32 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5t** as a white solid (40 mg, 55%) \mathbf{R}_{f} (Acetone/Dichloromethane :

3/7) = 0.26. **Mp** 216-218 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 188.9 (C), 164.1 (C), 154.6 (C), 143.5 (C), 143.1 (d, *J*_{*C-P*} = 224.6 Hz, C), 138.1 (d, *J*_{*C-P*} = 9.0 Hz, C), 132.0 (C), 130.0 (CH), 130.0 (CH), 129.1 (C), 120.4 (d, *J*_{*C-P*} =24.4 Hz, C), 118.9 (C), 117.6 (CH), 114.3 (CH), 114.3 (CH), 114.3 (CH), 106.6 (CH), 55.6 (CH₃), 55.0 (CH₃), 53.3 (d, *J*_{*C-P*} = 5.7 Hz, CH₃), 53.3 (d, *J*_{*C-P*} = 5.7 Hz, CH₃), 53.5 (d, *J*_{*C-P*} = 5.7 Hz, CH₃),}}</sub></sub></sub>

Dimethyl (1-(4-bromobenzoyl)-9-methoxy-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5u)

Following the general procedure, treatment of 3-(2-(4-bromophenyl)-2-oxoethylidene)-5-methoxyindolin-2-one (50 mg, 0.14 mmol) with BOR (40 mg, 0.21 mmol) in the presence of KOH (16 mg, 0.28 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product**5t**as a white solid (36 mg, 51%).**R**_f (Acetone/Dichloromethane : 3/7)

= 0.36. **Mp** 235-237 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO- d_6): 189.9 (C), 154.6 (C), 143.7 (d, J_{C-P} = 224.7 Hz, C), 143.5 (C), 138.7 (d, J_{C-P} = 9.0 Hz, C), 136.1 (C), 132.2 (CH), 132.2 (CH),

131.4 (CH), 131.4 (CH), 129.2 (C), 128.7 (C), 119.6 (d, $J_{C-P} = 24.4$ Hz, C), 119.2 (C), 117.7 (CH), 111.5 (CH), 106.6 (CH), 55.1 (CH₃), 53.3 (d, $J_{C-P} = 5.7$ Hz, CH₃), 53.3 (d, $J_{C-P} = 5.7$ Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO- d_6): 12.22 (s, 1H), 7.84 (d, J = 8.4 Hz, 2H), 7.76 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.8 Hz, 1H), 7.18 (d, J = 8.8 Hz, 1H), 6.63 (s, 1H), 3.66 (d, J = 11.2 Hz, 6H), 3.43 (s, 3H). ³¹P NMR (161.9 MHz, DMSO- d_6): 8.67. HRMS for C₂₀H₁₈N₃O₆PBr⁺: calcd. [M+H]⁺: 506.0111, found: 506.0112.

Dimethyl (9-methyl-1-(4-methylbenzoyl)-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5v)

Following the general procedure, treatment of 5-methyl-3-(2oxo-2-(p-tolyl)ethylidene)indolin-2-one (50 mg, 0.18 mmol) with BOR (52 mg, 0.27 mmol) in the presence of KOH (20 mg, 0.36 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5v** as a light yellow solid (40 mg, 53%). **R**_f (Acetone/Dichloromethane : 3/7) = 0.47. **Mp**

214-216°C. ¹³C NMR (100 MHz, δ ppm/ DMSO-*d*₆): 190.5 (C), 144.9 (C) 143.7 (d, *J*_{C-P} = 224.7 Hz, C), 143.7 (C), 138.4 (d, *J*_{C-P} = 9.1 Hz, C), 134.7 (C), 133.0 (C), 132.3 (C), 132.1 (C), 129.6 (CH), 129.6 (CH), 129.5 (CH), 129.5 (CH), 123.3 (CH), 120.1 (d, *J*_{C-P} = 24.3 Hz, C), 116.2 (CH), 111.1 (CH), 53.2 (d, *J*_{C-P} = 5.7 Hz, CH₃), 53.1 (d, *J*_{C-P} = 5.7, CH₃), 21.2 (CH₃), 20.4 (CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 12.22 (s, 1H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 3H), 7.28 (d, *J* = 8.4 Hz, 1H), 7.01 (s, 1H), 3.63 (d, *J* = 11.2 Hz, 6H), 2.38 (s, 3H), 2.08 (s, 3H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 8.85. HRMS for C₂₁H₂₁N₃O₅P⁺: calcd. [M+H]⁺: 426.1213 found: 426.1239

Dimethyl (9-fluoro-1-(4-methylbenzoyl)-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5w)

Following the general procedure, treatment of 5-fluoro-3-2(oxo-2-(p-tolyl)ethylidene)indolin-2-one (50 mg, 0.18 mmol) with BOR (56 mg, 0.27 mmol) in the presence of KOH (19 mg, 0.34 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5w** as a white solid (60

mg, 78%). **R**_f (Acetone/Dichloromethane : 3/7) = 0.40. **Mp** 220-222 °C .¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 190.3 (C), 157.1 (d, *J*_{C-F} = 238.9 Hz, C),145.3 (C), 143.6 (d, *J*_{C-P} = 224.0 Hz, C), 143.5 (C), 137.6 (d, *J*_{C-P} = 9.0 Hz, C), 134.5 (C), 132.0 (C), 129.7 (CH), 129.7 (CH), 129.6 (CH), 129.6 (CH), 120.7 (d, *J*_{C-P} = 23.8 Hz, C), 119.0 (d, *J*_{C-F} = 9.0 Hz, C), 118.5 (d, *J*_{C-F} = 8.3 Hz, CH), 112.1 (d, *J*_{C-F} = 9.0 Hz, CH), 109.0 (d, *J*_{C-F} = 25.6 Hz, CH), 53.3 (d, *J*_{C-P} = 5.7 Hz, CH₃), 53.2 (d, *J*_{C-P} = 5.7, CH₃), 21.2 (CH₃). ¹**H NMR** (400 MHz, δ ppm/DMSO-*d*₆): 12.36 (s, 1H), 7.80 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 5.6 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 7.8 Hz, 1H), 3.62 (d, *J* = 11.2 Hz, 6H), 2.39 (s, 3H). ³¹**P NMR** (161.9 MHz, DMSO-*d*₆): 8.56. **HRMS** for C₂₀H₁₈N₃O₅PF⁺: calcd. [M+H]⁺: 430.0963 found: 430.0961.

Dimethyl (9-methoxy-1-(4-methylbenzoyl)-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5x)

Following the general procedure, treatment of 5-methoxy-3-(2-oxo-2-(p-tolyl)ethylidene)indolin-2-one (50 mg, 0.17 mmol) with BOR (49 mg, 0.26 mmol) in the presence of KOH (19 mg, 0.34 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5x** as a white solid (44 mg, 60%). **R**_f (Acetone/Dichloromethane : 3/7) =

0.23. **Mp** 238-240 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 190.1 (C), 154.6 (C), 145.2 (C), 143.7 (d, *J*_{*C-P*} = 224.2 Hz, C), 143.5 (C), 138.4 (d, *J*_{*C-P*} = 8.8 Hz, C), 134.6 (C), 129.6 (CH), 129.6 (CH), 129.6 (CH), 120.3 (d, *J*_{*C-P*} = 24.4 Hz, C), 119.0 (C), 117.7 (CH), 111.6 (CH), 106.6 (CH), 55.0 (CH₃), 53.3 (d, *J*_{*C-P*} = 5.7 Hz, CH₃), 53.2 (d, *J*_{*C-P*} = 5.7 Hz, CH₃), 21.2 (CH₃). ¹**H NMR** (400 MHz, δ ppm/DMSO-*d*₆): 12.18 (s, 1H), 7.81 (d, *J* = 7.2 Hz, 2H), 7.35-7.30 (m, 3H), 7.14 (d, *J* = 8.8 Hz, 1H), 6.62 (s, 1H), 3.65 (d, *J* =11.2 Hz, 6H), 3.37 (s, 3H), 2.38 (s, 3H). ³¹**P NMR** (161.9 MHz, DMSO-*d*₆): 8.88. **HRMS** for C₂₁H₂₁N₃O₆P⁺: calcd. [M+H]⁺: 442.1162, found: 442.1159.

Dimethyl (1-benzoyl-7,9-dimethyl-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2yl)phosphonate (5y)

Following the general procedure, treatment of 5,7-dimethyl-3-(2-oxo-2-phenylethylidene)indolin-2-one (50 mg, 0.18 mmol) with BOR (52 mg, 0.27 mmol) in the presence of KOH (20 mg, 0.36 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column

chromatography afforded the product **5y** as a white solid (44 mg, 58%). **R**_f (Acetone/Dichloromethane : 3/7) = 0.34. **Mp** 226-228 °C. ¹³**C NMR** (100 MHz, δ ppm/ DMSO-*d*₆): 191.0 (C), 144.0 (C), 143.9 (d, *J*_{*C-P*} = 224.7 Hz, C), 138.7 (d, *J*_{*C-P*} = 9.1 Hz, C), 137.1 (C), 134.2 (C), 133.5 (C), 132.0 (C), 131.4 (CH), 129.5 (CH), 129.5 (CH), 128.9 (CH), 128.9 (CH), 121.4 (C), 120.0 (d, *J*_{*C-P*} = 24.3 Hz, C), 111.1

(CH), 53.2 (d, $J_{C-P} = 5.7$ Hz, CH₃), 53.2 (d, $J_{C-P} = 5.7$, CH₃), 20.1 (CH₃), 17.6 (CH₃). ¹H NMR (400 MHz, δ ppm/DMSO- d_6): 11.36 (s, 1H), 7.88 (d, J = 7.6 Hz, 2H), 7.69 (t, J = 7.2 Hz, 1H), 7.52 (t, J = 7.6 Hz, 2H), 7.16 (s, 1H), 6.86 (s, 1H), 3.63 (d, J = 11.2 Hz, 6H), 2.40 (s, 3H), 2.01 (s, 3H). ³¹P NMR (161.9 MHz, DMSO- d_6): 8.78. HRMS for C₂₁H₂₁N₃O₅P⁺: calcd. [M+H]⁺: 426.1213 found: 426.1249.

Dimethyl (7,9-dimethyl-1-(4-methylbenzoyl)-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2-yl)phosphonate (5z)

Following the general procedure, treatment of 5,7-dimethyl-3-(2-oxo-2-(p-tolyl)ethylidene)indolin-2-one (50 mg, 0.17 mmol) with BOR (50 mg, 0.26 mmol) in the presence of KOH (19 mg, 0.34 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5**z as a white solid (49 mg, 66%). **R**_f (Acetone/Dichloromethane : 3/7) = 0.31. **Mp** 240-

242 °C .¹³C NMR (100 MHz, δ ppm/ DMSO-*d*₆): 190.5 (C), 144.9 (C), 144.0 (C), 143.7 (d, *J*_{C-P} = 224.7 Hz, C), 138.6 (d, *J*_{C-P} = 9.1 Hz, C), 134.7 (C), 133.5 (C), 132.0 (C), 131.4 (C), 129.6 (CH), 129.6 (CH), 129.5 (CH), 129.5 (CH), 125.0 (CH), 121.3 (C), 120.0 (d, *J*_{C-P} = 24.3 Hz, C), 111.1 (CH), 53.2 (d, *J*_{C-P} = 5.7 Hz, CH₃), 53.2 (d, *J*_{C-P} = 5.7, CH₃), 21.2 (CH₃), 20.2 (CH₃), 17.6 (CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 11.34 (s, 1H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 7.6 Hz, 2H), 7.18 (d, *J* = 5.2 Hz, 1H), 6.88 (s, 1H), 3.63 (d, *J* = 11.2 Hz, 6H), 2.41 (s, 3H), 2.38 (s, 3H), 2.03 (s, 3H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 8.82. HRMS for C₂₂H₂₃N₃O₅P⁺: calcd. [M+H]⁺: 440.1370 found: 440.1377.

Dimethyl (1-(1-naphthoyl)-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2-yl)phosphonate (5aa)

Following the general procedure, treatment of (2-(naphthalen-1-yl)-2-oxoethylidene)indolin-2-one (50 mg, 0.17 mmol) with BOR (50 mg, 0.26 mmol) in the presence of KOH (19 mg, 0.34 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5aa** as a white solid (42 mg, 56%). **R**_f (Acetone/Dichloromethane : 2/8) = 0.36. **Mp** 200-

202 °C. ¹³C NMR (100 MHz, δ ppm/ DMSO-*d*₆): 191.1 (C), 144.0 (C), 143.8 (d, *J*_{*C-P*} = 224.1 Hz, C), 139.1 (d, *J*_{*C-P*} = 8.9 Hz, C), 135.7 (C), 135.4 (C), 134.7 (C), 133.3 (C), 132.3 (C), 131.3 (CH), 129.9 (CH), 129.5 (CH), 128.9 (CH), 127.9 (CH), 127.3 (CH), 123.9 (CH), 123.8 (CH), 123.6 (CH), 120.4 (d, *J*_{*C-P*} = 24.4 Hz, C), 116.5 (CH), 111.5 (CH), 53.4 (d, *J*_{*C-P*} = 5.7 Hz, CH₃), 53.4 (d, *J*_{*C*-P} = 5.7, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 12.34 (s, 1H), 8.44 (s, 1H), 8.08 (d, *J* = 0.8 Hz, 2H), 8.03-7.97 (m, 2H), 7.68 (dt, *J* = 8.0, 1.2 Hz, 1H), 7.57 (dt, *J* = 8.0, 0.8 Hz, 1H), 7.48 (dt, *J* = 8.4, 1.2 Hz, 1H), 7.39 (d, *J* = 5.2 Hz, 1H), 7.33 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.07 (dt, *J* = 8.0, 1.2 Hz, 1H), 3.59 (d, *J* = 11.2 Hz, 6H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 8.76. HRMS for C₂₃H₁₉N₃O₅P⁺: calcd. [M+H]⁺: 448.1057 found: 448.1066.

Dimethyl (1-acetyl-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2-yl)phosphonate (5ab)

Following the general procedure, treatment of 2oxopropylidene)indolin-2-one (50 mg, 0.27 mmol) with BOR (77 mg, 0.40 mmol) in the presence of KOH (30 mg, 0.54 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5ab** as a yellow solid (40 mg, 44%). **R**_f (Acetone/Dichloromethane : 2/8) = 0.30. **Mp** 186-188 °C. ¹³**C NMR**

(100 MHz, δ ppm/ DMSO-*d*₆): 198.5 (C), 143.9 (C), 143.3 (d, *J*_{*C-P*} = 222.0 Hz, C), 139.0 (d, *J*_{*C-P*} = 9.1 Hz, C), 135.7 (C), 132.1 (C), 124.7 (CH), 123.8 (CH), 123.6 (d, *J*_{*C-P*} = 24.6 Hz, C), 116.7 (CH), 111.8 (CH), 54.2 (d, *J*_{*C-P*} = 6.0 Hz, CH₃), 54.2 (d, *J*_{*C-P*} = 6.0 Hz, CH₃), 33.1 (CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 12.32 (s, 1H), 7.94 (d, *J* = 8 Hz, 1H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.38 (d, *J* = 8.0, 1H), 7.29 (t, *J* = 7.6, 1H), 3.81 (d, *J* = 11.2 Hz, 6H), 2.72 (s, 3H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 9.46. HRMS for C₁₄H₁₅N₃O₅P⁺: calcd. [M+H]⁺: 336.0744 found: 336.0743.

Dimethyl (1-acetyl-9-bromo-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2-yl)phosphonate (5ac)

Following the general procedure, treatment of 5-bromo-3-(2-oxopropylidene)indolin-2-one (50 mg, 0.19 mmol) with BOR (55 mg, 0.28 mmol) in the presence of KOH (21 mg, 0.38 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5ac** as a white solid (35 mg, 45%). **R**_f (Acetone/Dichloromethane : 2/8) = 0.33. **Mp** 174-

176 °C. ¹³C NMR (100 MHz, δ ppm/ DMSO-*d*₆): 198.2 (C), 143.9 (d, *J*_{*C-P*} = 222.0 Hz, C), 143.7 (C), 138.4 (d, *J*_{*C-P*} = 9.1 Hz, C), 135.1 (C), 134.7 (C), 127.0 (C), 123.7 (d, *J*_{*C-P*} = 24.7 Hz, C), 118.7 (CH), 115.2 (CH), 113.7 (CH), 54.3 (d, *J*_{*C-P*} = 6.1 Hz, CH₃), 54.2 (d, *J*_{*C-P*} = 6.1 Hz CH₃), 33.0 (CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 12.45 (s, 1H), 8.23 (s, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.31 (d, *J* = 8.8 Hz, 1H), 3.83 (d, *J* = 11.2 Hz, 6H), 2.76 (s, 3H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 9.34. HRMS for C₁₄H₁₄BrN₃O₅P⁺: calcd. [M+H]⁺: 413.9849 found: 413.9854.

Dimethyl (1-acetyl-9-bromo-5-oxo-5,6-dihydropyrazolo[1,5-c]quinazolin-2-yl)phosphonate (5ad)

Following the general procedure, treatment of 5-methyl-3-(2oxopropylidene)indolin-2-one (50 mg, 0.25 mmol) with BOR (72 mg, 0.37 mmol) in the presence of KOH (28 mg, 0.50 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **5ad** as a light yellow solid (45 mg, 52%). **R**_f (Acetone/Dichloromethane : 2/8) = 0.33. **Mp**

180-182 °C. ¹³C NMR (100 MHz, δ ppm/ DMSO-*d*₆): 198.5 (C), 143.3 (d, *J*_{*C-P*} = 222.0 Hz, C), 143.9 (C), 138.9 (d, *J*_{*C-P*} = 8.8 Hz, C), 133.5 (C), 133.1 (C), 132.9 (C), 124.2 (C), 123.3 (d, *J*_{*C-P*} = 24.7 Hz, C), 116.6 (CH), 111.6 (CH), 54.2 (d, *J*_{*C-P*} = 5.9 Hz, CH₃), 54.2 (d, *J*_{*C-P*} = 5.9 Hz, CH₃), 33.0 (CH₃), 21.1 (CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 12.25 (s, 1H), 7.71 (s, 1H), 7.40 (s, 1H), 7.29 (s, 1H), 3.82 (d, *J* = 11.2 Hz, 6H), 2.73 (s, 3H) , 2.34 (s, 3H). ³¹P NMR (161.9 MHz, DMSO-*d*₆): 9.51. HRMS for C₁₅H₁₇N₃O₅P⁺: calcd. [M+H]⁺: 350.0900 found: 350.0912.

<u>Procedure for the one- pot, cycloaddition-click reaction sequence for the synthesis of</u> <u>compound 7</u>

Dimethyl (1-benzoyl-6-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-5-oxo-5,6dihydropyrazolo[1,5-c]quinazolin-2-yl)phosphonate (7)

To an oven-dried round bottom flask was added N-propargyl-3-phenacylideneoxindole **6** (50 mg, 0.18 mmol) and dissolved in 3 mL of MeOH. Subsequently, a solution of Bestmann-Ohira reagent (52 mg, 0.27 mmol) in 2 mL of MeOH was added to the reaction mixture and kept stirring. After addition of potassium hydroxide (20 mg, 0.36 mmol), the reaction mixture was further stirred at 25 °C for 1.5 h. After the completion of

reaction, as indicated by TLC, the requisite amount of CuSO₄ (6 mg, 0.02 mmol), sodium ascorbate (10 mg, 0.048 mmol) and BnN₃ (18 mg, 0.14 mmol) were added and kept for an additional stirring of 2 h. Subsequently, solvent was evaporated off and crude reaction mixture was extracted using ethyl acetate. The organic layer was dried over anhydrous Na₂SO₄ and solvent was evaporated under reduced pressure. Column chromatographic purification carried out using 100-200 mesh silica gel using dichloromethane-acetone as eluent afforded the product (62 mg) in 71% yield. \mathbf{R}_{f} (Acetone/Dichloromethane: 2/8) = 0.33. **Mp** 160-162 °C. ¹³**C NMR** (100 MHz, δ ppm/CDCl₃): 191.2 (C), 146.2 (d, *J*_{C-P} = 224.6 Hz, C), 145.1 (C), 142.5 (C), 138.2 (d, J_{C-P} = 9.0 Hz, C), 137.3 (C), 135.2 (C), 134.4 (C), 134.1 (C), 131.9 (CH), 129.9 (CH), 129.9 (CH), 129.2 (CH), 129.2 (CH), 129.0 (CH), 128.9 (CH), 128.9 (CH), 128.4 (CH), 128.4 (CH), 125.4 (CH), 124.4 (CH), 123.9 (C), 120.9 (d, J_{C-P} = 24.1 Hz, C), 116.3 (CH), 112.4 (CH), 54.5 (CH₂), 53.6 (d, J_{C-P} = 5.7 Hz, CH₃), 53.6 (d, J_{C-P} = 5.7 Hz, CH₃), 40.2 (CH₂). ¹**H NMR** (400 MHz, δ ppm/ CDCl₃): 8.03 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 7.6 Hz, 2H), 7.72 (s, 1H) 7.60-7.53 (m, 3H), 7.45 (t, J = 7.4 Hz, 2H), 7.34-7.26 (m, 5H), 7.11 (t, J = 7.6 Hz, 1H), 5.60 (s, 2H), 5.46 (s, 2H), 3.72 (d, J = 11.2 Hz, 6H). ³¹P NMR (161.9 MHz, CDCl₃): 8.75. **HRMS** for $C_{29}H_{26}N_6O_5P^+$: calcd. $[M+H]^+$: 569.1697, found: 569.1699.

Dimethyl (4'-(4-fluorobenzoyl)-2-oxo-2',4'-dihydrospiro[indoline-3,3'-pyrazol]-5'yl)phosphonate (8)

Following the general procedure, treatment of (2-(4-fluorophenyl)-2-oxoethylidene)indolin-2-one (50 mg, 0.19 mmol) with BOR (54 mg, 0.28 mmol) in the presence of KOH (21 mg, 0.38 mmol) in MeOH (3 mL) at 25 °C for 1 h followed by column chromatography afforded the product **8** as a pale yellow solid (36 mg, 46%, > 20:1 dr) along with the final product **5**I (21 mg, 26%). **R**_f (Acetone/Dichloromethane : 2/8) = 0.33. **Mp** 108-110 °C. ¹³C **NMR**

(100 MHz, δ ppm/ DMSO-*d*₆): 192.9 (C), 177.4 (C), 165.6 (d, *J*_{C-F} = 251.3 Hz, C), 142.3 (C), 137.6 (C), 134.2 (d, *J*_{C-P} = 223.1 Hz, C), 131.4 (d, *J*_{C-F} = 9.8 Hz, CH), 131.3 (d, *J*_{C-F} = 9.8 Hz, CH), 130.3 (C), 126.3 (CH), 125.5 (CH), 122.2 (CH), 116.3 (d, *J*_{C-F} = 21.3 Hz, CH), 116.0 (d, *J*_{C-F} = 21.3 Hz, CH), 110.2 (CH), 72.2 (d, *J*_{C-P} = 4.0 Hz, C), 62.1 (d, *J*_{C-P} = 21.3 Hz, CH), 53.6 (d, *J*_{C-P} = 5.6 Hz, CH₃), 53.2 (d, *J*_{C-P} = 5.5 Hz, CH₃). ¹H NMR (400 MHz, δ ppm/DMSO-*d*₆): 10.60 (s, 1H), 9.07 (s, 1H), 7.66-7.63 (m, 2H), 7.15 (t, *J* = 8.8 Hz, 2H), 7.02 (t, *J* = 7.4 Hz, 1H), 6.81 (d, *J* = 7.2 Hz, 1H), 6.75 (t, *J* = 7.6 Hz, 1H), 6.63 (d, *J* = 7.6 Hz, 1H), 5.35 (s, 1H), 3.76 (d, *J* = 11.2 Hz, 3H), 3.67 (d, *J* = 11.2 Hz, 3H).

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220

11.0 7.0 10.5 10.0 9.0 6.5 7.5 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 9.5 8.5 8.0 6.0 5.5 5.0

140 120 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220 100

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -130 -160 -190 -220

-220 140 T 20 0 -20 120 100 80 60 40 -40 -60 -80 -100 -130 -160 -190

100

60

40 20

0

-20

140

120

-40

-60

-80

-100

-130

-160

-190

-220

0 T 20 -20 140 120 100 80 60 40 -40 -60 -80 -100 -130 -160 -190 -220

L2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

55.253 54,617 54,558

140 20 120 100 80 60 40 0 -20 -40 -60 -80 -100 -130 -160 -190 -220

L3.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 7.0 6.5

140 20 120 100 80 60 40 0 -20 -40 -60 -80 -100 -130 -160 -190 -220

140 20 120 100 80 60 40 0 -20 -40 -60 -80 -100 -130 -160 -190 -220

13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

20 0 140 Ţ -20 120 100 80 60 40 -40 -60 -80 -100 -130 -160 -190 -220

Ó

0 140 T 20 Т -20 -80 120 100 80 60 40 -40 -60 -100 -130 -160 -190 -220

13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

140 Т 20 -20 120 100 80 60 40 0 -40 -60 -80 -100 -130 -160 -190 -220

----0 140 60 40 20 -40 120 100 80 -20 -60 -80 -100 -130 -160 -190 -220

L3.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.0 5.5 5.0 4.5 4.0 3.5 3.0 6.5 2.5 2.0 1.5 1.0 0.5 0.0

140 20 -20 -40 120 100 80 60 40 0 -60 -80 -100 -130 -160 -190 -220

120

100

80

20

40

60

0

-20

-40

-80

-100

-60

-130

-160

-190

-220

13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

20 -20 0 -80 140 120 100 80 60 40 -40 -60 -100 -130 -160 -190 -220

13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

5u 161.9 MHz/DMSO-d₆

-220 140 0 100 40 20 -20 120 80 60 -40 -80 -100 -190 -60 -130 -160

13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

140 20 120 100 80 60 40 0 -20 -40 -60 -80 -100 -130 -160 -190 -220

Image: Second state sta

140 40 20 0 -20 120 80 -40 -80 -190 100 60 -60 -100 -130 -160 -220

Ó

140 0 -220 T 20 -20 -40 -80 120 100 80 60 40 -60 -100 -130 -160 -190

