Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

A Lactate-Derived Chiral Aldehyde for Determination of the Enantiopurity of Primary Amines

Rachel M. Lanigan, Samantha M. Gibson, Laure Benhamou, Abil E. Aliev and Tom D. Sheppard*

Department of Chemistry, University College London,

Christopher Ingold Laboratories, 20 Gordon St, London, WC1H 0AJ, UK

tom.sheppard@ucl.ac.uk

Table of Contents

1.	General Experimental Information	2
2.	Experimental procedures	3
3.	¹ H and ¹³ C NMR spectra for aldehydes 4	7
4.	Stability test of aldehyde 4	9
5.	Analysis of aminoamide 7 in various NMR solvents (Table 1)	12
6.	Analysis of commercially available amines 9-20 (Table 2)	17
7.	Analysis of 'unknown' samples (Table 3)	37
8.	¹ H and ¹³ C NMR spectra for reaction of amine 21 with aldehyde 4	55
9.	Analysis of reaction samples from $B(OCH_2CF_3)_3$ amidation reactions	59
10.	References	74

General Experimental Information

All solvents and chemicals were used as supplied unless otherwise indicated All resins were washed with CH₂Cl₂ and dried under vacuum prior to use. Column chromatography was carried out using silica gel and analytical thin layer chromatography was carried out using aluminium-backed silica plates. Components were visualized using combinations of UV (254 nm) and potassium permanganate. $[\alpha]_{p}$ values are given in 10⁻¹ deg cm² g⁻¹, concentration (c) in g per 100 mL. ¹H NMR spectra were recorded at 300, 400, 500 or 600 MHz in the stated solvent using residual protic solvent CDCl₃ (δ = 7.26 ppm, s), DMSO (δ = 2.56 ppm, qn) or MeOD ($\delta = 4.87$, s and 3.31, quintet) as the internal standard. Chemical shifts are quoted in ppm using the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; qn, quintet; m, multiplet; br, broad or a combination of these. The coupling constants (J) are measured in Hertz. ¹³C NMR spectra were recorded at 150 MHz on a Bruker 600 MHz machine with cryoprobe in the stated solvent using the central reference of $CDCl_3$ (δ = 77.0 ppm, t), DMSO (δ = 39.52 ppm, septet) or MeOD (δ = 49.15 ppm, septet) as the internal standard. Chemical shifts are reported to the nearest 0.1 ppm. Mass Spectrometry data were collected on either TOF or magnetic sector analysers. The ionization method is reported in the experimental data.

The enantiopurity of the commercially available lactates was determined prior to use via formation of the corresponding Mosher's esters as follows: MTPA (40 mg, 0.17 mmol), EDCI.HCl (33 mg, 0.17 mmol) and DMAP (23 mg, 0.19 mmol) were added to a solution of lactate (~0.06 mmol) in CH₂Cl₂ (1 mL). The reaction was stirred overnight, and then concentrated *in vacuo*. The crude mixture was dissolved in MeOD and analysed by ¹H NMR. The chemical shifts of the methyl groups at 1.54 and 1.47 ppm were integrated to determine the enantiomeric ratio. Samples of (*R*)-methyl lactate were found to consistently have high enantiopurity (\geq 99:1), whereas the enantipurity of (*S*)-ethyl lactate was more variable. Typically, most commercial sources of (*S*)-ethyl lactate (99%) purchased from Alfa Aesar (catalogue number A10900) which was determined to be >99:1 er. In all cases, the enantiopurity of a batch of aldehyde **4** was found to be identical to the enantiopurity of the lactate ester **6** from which it was prepared.

Samples of the aldehydes **4** were stored in the freezer under argon. Although no drop in enantiopurity was observed over the course of 1 month, small amounts of decomposition were observed. It is recommended that aldehyde that has been stored for longer periods is not used for analysis, without first checking both the quality and enantiopurity of the sample.

Preparation of Chiral Aldehydes

Ethyl (S)-2-((tert-butyldimethylsilyl)oxy)propanoate (S)-6a

tert-Butylchlorodimethylsilane (16.0 g, 0.11 mol, 1.2 equiv.), was added to a stirring solution of *S*-ethyl lactate (10 mL, 0.09 mol, 1 equiv.) and imidazole (9.0 g, 0.13 mol, 1.4 equiv.) in DMF (88 mL). The solution was stirred for 30 min at rt, water (150 mL) was added and the reaction mixture extracted with Et₂O (2 × 150 mL). The combined organic layers were washed with brine (150 mL), dried over MgSO₄ and concentrated under reduced pressure to give **80** as a colourless oil (20.49 g, 0.088 mol, 98%); $[\alpha]_D^{23}$ –21.9 (*c* = 1.33, CHCl₃) [lit –28.9 (*c* = 1.26, CHCl₃, 23 °C)]¹; δ_H (400 MHz, CDCl₃) 0.07 (s, 3H, SiCH₃), 0.11 (s, 3H, SiCH₃), 0.90 (s, 9H, SiC(CH₃)₃), 1.29 (t, *J* 7.1, CH₂*CH*₃), 1.40 (d, *J* 6.8, 3H, C*H*₃CH), 4.17-4.21 (2H, m, *CH*₂CH₃), 4.31 (q, *J* 6.8, 1H, *CH*CH₃); δ_C (100 MHz, CDCl₃) -5.3, -5.0, 14.2, 18.3, 21.3, 25.7, 60.7, 68.5, 174.1.

(S)-2-((tert-Butyldimethylsilyl)oxy)propanal (S)-4

Diisobutylaluminium hydride (44 mL, 1.1 M in cyclohexane, 48.4 mmol, 1.6 equiv.) was added dropwise (20 mL/h) to a stirring solution of ester **80** (7 g, 30.1 mmol, 1 equiv.) in Et₂O (200 mL) at -100 °C. After completion of addition, the reaction was stirred for 10 min at -78 °C then quenched by dropwise addition of MeOH (2 mL) and H₂O (5 mL). After warming to rt and stirring for 1.5 h Na₂SO₄ and MgSO₄ were added and the suspension stirred for 15 min, then filtered through a short plug of celite and silica eluting with Et₂O. The filtrate was concentrated under reduced pressure and the residue distilled to give aldehyde (*S*)-**81** as a colourless liquid (4.56 g, 24.2 mmol, 80%); bp 79-81 °C (19 Torr) [Lit. 67-68 °C (14 Torr)]²;

 $[\alpha]_D^{23}$ –12.3 (*c* = 1.24, CHCl₃) [Lit –11.1, (*c* = 2.7, CHCl₃, 22 °C)]²; δ_H (600 MHz, CDCl₃) 0.08 (s, 3H, SiCH₃), 0.09 (s, 3H, SiCH₃), 0.91 (s, 9H, SiC(CH₃)₃), 1.27 (d, 3H, *J* 6.9, CHCH₃), 4.08 (qd, 1H, *J* 1.2, 6.9, CHCH₃), 9.60 (d, 1H, *J* 1.2, CHO); δ_C (150 MHz, CDCl₃) – 4.7, -4.6, 18.3, 18.6, 25.8, 73.9, 204.4.

Methyl (R)-2-((tert-butyldimethylsilyl)oxy)propanoate (R)-6b

tert-Butylchlorodimethylsilane (18.0 g, 0.12 mol, 1.2 equiv.), was added to a stirring solution of *R*-methyl lactate (10 mL, 0.10 mol, 1 equiv.) and imidazole (10.0 g, 0.15 mol, 1.5 equiv.) in DMF (90 mL). The solution was stirred for 30 min at rt, water (150 mL) was added and the reaction mixture extracted with Et₂O (2 × 150 mL). The combined organic layers were washed with brine (150 mL), dried over MgSO₄ and concentrated under reduced pressure to give the ester as a colourless oil (17.85 g, 81.7 mmol, 82%); $[\alpha]_D^{24}$ +26.5 (*c* = 2.44, CHCl₃) [lit +28.8 (*c* = 2.35, CHCl₃, 24 °C]³; δ_H (600 MHz, CDCl₃) 0.05 (s, 3H, SiCH₃), 0.08 (s, 3H, SiCH₃), 1.38 (d, *J* 6.8, 3H, CH₃CH), 3.70 (s, 3H, CH₃O), 4.31 (q, *J* 6.8, 1H, CHCH₃); δ_C (150 MHz, CDCl₃) -5.2, -4.9, 18.4, 21.5, 25.8, 52.0, 68.5, 174.1.

(R)-2-((tert-Butyldimethylsilyl)oxy)propanal (R)-4

Diisobutylaluminium hydride (47 mL, 1.1 M in cyclohexane, 51.7 mmol, 1.6 equiv.) was added dropwise (20 mL/h) to a stirring solution of methyl (*R*)-2-((*tert*-butyldimethylsilyl)oxy)propanoate (7 g, 32.1 mmol, 1 equiv.) in Et₂O (200 mL) at -100 °C. After completion of addition, the reaction was stirred for 10 min at -78 °C then quenched by dropwise addition of MeOH (2 mL) and H₂O (5 mL). After warming to rt and stirring for 1.5 h Na₂SO₄ and MgSO₄ were added and the suspension stirred for 15 min, then filtered through a short plug of celite and silica eluting with Et₂O. The filtrate was concentrated under reduced pressure and the residue distilled to give aldehyde (*R*)-**81** as a colourless liquid (4.35 g, 23.1 mmol, 72%); bp 83-86 °C (28 Torr); $[\alpha]_D^{24}$ +15.3 (*c* = 1.59, CHCl₃) [Lit. +12.8 (*c* = 1.59, CHCl₃) 24 °C]³; δ_H (600 MHz, CDCl₃) 0.08 (s, 3H, SiCH₃), 0.09 (s, 3H, SiCH₃), 0.91 (s, 9H,

SiC(CH₃)₃), 1.27 (d, 3H, *J* 6.9, CHC*H*₃), 4.08 (qd, 1H, *J* 1.0, 6.8, C*H*CH₃), 9.60 (d, 1H, *J* 1.0, CHO); *δ*_C (150 MHz, CDCl₃) -4.72, -4.66, 18.3, 18.6, 25.8, 73.9, 204.4.

Determination of the Enantiopurity of Aldehyde 4

A solution of phenylalanine methyl ester (54 mg, 0.30 mmol) in C_6D_6 (0.7 mL) was added to the aldehyde (45 mg, 0.24 mmol). The solution was mixed and transferred to an NMR tube and the enantiopurity was determined via ¹³C NMR as below.

A sample of (*R*)-4 was analysed via this method after 0, 14, and 31 days (see pages 9-10 for NMR spectra). No drop in enantiopurity (99:1) was observed over this time period, but some impurities were observed in the ¹H NMR of 4 after storing for 14 and 30 days (see page 11 for NMR spectra).

General Procedure for Analysis of Chiral Primary Amines

A chiral amine of unknown enantiopurity was weighed into two separate vials (~0.2 mmol in each, 1 equiv.). A solution of (*S*)-4 (~0.24 mmol, 1.2 equiv.) in MeOD- d_4 or another appropriate NMR solvent (~0.7 mL) was added to one sample, and a similar solution of (*R*)-4 was added to the other sample. The resulting solutions of imine were then transferred to NMR tubes and analysed via a 256 scan ¹³C NMR (600 MHz NMR with cryoprobe; experiment time ~15 minutes). The enantiopurity was determined by integration of the imine carbon signals (ca 160-170 ppm) in each sample. The average enantiomeric ratio from the two samples was taken as the enantiopurity of the sample.

tert-Butyl (1-oxo-1-(propylamino)propan-2-yl)carbamate (7)

Propylamine (82 µL, 1.0 mmol) and B(OCH₂CF₃)₃ (616 mg, 2.0 mmol) were added to a solution of (±)-Boc-alanine or Boc-L-alanine (188 mg, 1 mmol) in acetonitrile (2 mL). The reaction was stirred at 80 °C overnight. Dichloromethane (3 mL) and H₂O (1 mL) were added to the reaction mixture. Amberlyst A-26(OH), Amberlyst 15 and Amberlite IRA743 were added and the mixture stirred for 30 min. MgSO₄ was added and the mixture was filtered. The solution was concentrated *in vacuo* to give the Boc protected amide as a white solid (228 mg, 0.99 mmol, 99%); ¹H NMR (600 MHz, CDCl₃) δ 6.74 (1H, br s, NH), 5.43 (1H, br d, *J* = 6.9, NH), 4.16 (1H, br s, CHCH₃), 3.14 (2H, q, *J* = 6.9, NHCH₂), 1.46 (2H, sext, *J* =7.4, CH₂CH₃), 1.39 (9H, s, tBu), 1.29 (3H, d, *J* = 6.9, CHCH₃), 0.86 (3H, t, *J* = 7.4, CH₂CH₃); ¹³C

NMR (150 MHz, CDCl₃) δ 173.0, 155.7, 79.9, 50.1, 41.2, 28.4, 22.8, 18.8, 11.4; LRMS (ES+) 231 [M+H]⁺; mp 82-85 °C (CH₂Cl₂).

The Boc protected amide was deprotected as described below, and then the diastereomeric imines were prepared and analysed via the procedure described above in a range of NMR solvents.

Preparation and analysis of unknown samples (Table 3)

Sample preparation

Samples of 'unknown' enantiopurity were prepared by weighing appropriate amounts of the individual enantiomeric amines into an appropriately size volumetric flask, and preparing a solution in MeOH of approximately 0.4 M concentration.

Each researcher prepared three different samples, and each sample was then analysed independently by two other researchers as described below.

Analysis of 'Unknown' Samples

Two separate 0.5 mL portions of the unknown solution were concentrated into pre-weighed vials to leave ~0.2 mmol of amine in each. A solution of (*S*)-4 (1.2 equiv) in MeOD- d_4 (~0.7 mL) was added to one vial and a solution of (*R*)-4 (1.2 equiv) in MeOD- d_4 (~0.7 mL) was added to the other. Both samples were analysed by ¹³C NMR as described above.

Preparation of Amides 25

Boc-protected amides **25a-25c** were prepared as described previously.⁴

General Procedure for Boc Deprotection and Analysis

The Boc-protected amino acid amide (~0.25 mmol) was diluted in a 1:1 solution of TFA and CH_2Cl_2 (5 mL, 0.05 M) and stirred at rt for 1 h. The reaction mixture was concentrated in vacuo to give the TFA salt. The salt was redissolved in CH_2Cl_2 and stirred with Amberlite A26(OH) (~50 mg) at rt for 30 min. The resin was then removed by filtration and rinsed three times with CH_2Cl_2 (3 × 10 mL). The filtrate was concentrated under reduced pressure to give the free amino acid amide and the enantiopurity was determined as described above.

(R)-2-((tert-Butyldimethylsilyl)oxy)propanal (R)-4

(R)-4 and H-Phe-OMe, C₆D₆ 0 days

175,49 171,33 175,25 171,33 175,25 173,25 173,306 173,306 173,306 173,306 173,306 173,306 173,306 173,306 173,306 173,306 173,306 173,306 173,306 128,307 129,394 129,394 129,395 129,395 129,396 128,356 128,356 128,356 128,356 128,356 128,356 128,356 128,356 128,356 128,356 128,356 128,356 128,357 128,334 128,334 128,334 128,334 128,334 128,334 128,334 128,334 128,3

14 days

31 days

Mixture of (*R*)-4 and (*S*)-4 with H-Phe-OMe

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR of (*R*)-4 after 0, 14 and 31 days

tert-butyl (1-oxo-1-(propylamino)propan-2-yl)carbamate (7) (d₄-MeOH)

(±)-7 and (S)-4, *d*₄-MeOH

(±)-7 and (S)-4, C₆D₆

(±)-7 and (S)-4, DMSO-d₆

(±)-1-cyclohexylethylamine-(9) and (S)-4, d_4 -MeOH

(R)-1-cyclohexylethylamine-(9) and (R)-4, d_4 -MeOH

(S)-1-cyclohexylethylamine-(9) and (S)-4, d₄-MeOH

(S)-1-cyclohexylethylamine-(9) and (R)-4, d_4 -MeOH

(±)-tetrahydro-1-naphthylamine-(10) and (S)-4, d₄-MeOH

(R)-tetrahydro-1-naphthylamine-(10) and (R)-4, d₄-MeOH

(S)-tetrahydro-1-naphthylamine-(10) and (S)-4, d₄-MeOH

(S)-tetrahydro-1-naphthylamine-(10) and (R)-4, d_4 -MeOH

(±)- α -methylbenzylamine-(11) and (S)-4, d_4 -MeOH

(R)- α -methylbenzylamine-(11) and (S)-4, d_4 -MeOH

(*R*)- α -methylbenzylamine-(11) and (*R*)-4, *d*₄-MeOH

(S)- α -methylbenzylamine-(11) and (S)-4, d_4 -MeOH

(S)- α -methylbenzylamine-(11) and (R)-4, d_4 -MeOH

(R)-(-)-2-Amino-3-methylbutane-(13) and (R)-4, CDCl₃

(S)-1-Methoxy-2-propylamine-(15) and (R)-4, d₄-MeOH

(S)- 1-Methoxy-2-propylamine-(15) and (R)-4:(S)-4 3:97

(–)-cis-Myrtanylamine (±)-(17) and (R)-4, d_4 -MeOH

(±)-2-(1-Aminoethyl)pyridine-(19) and (R)-4, d_4 -MeOH

^{(±)-2-(1-}Aminoethyl)pyridine-(19) and (S)-4, d₄-MeOH

Sample	Prepared	Actual er	Researcher 1		Researcher 2			
	by	R:S	(S) -4	(R)-4	(S)-4	(<i>R</i>)-4		
1	RML	69:31	LB		LB		SMG	
			69:31	69:31	70:30	68:32		
2	RML	34:66	LB		SMG			
			35:65	35:65	35:65	35:65		
3	RML	77:23	LB		SMG			
			78:22	78:22	77:23	79:21		
4	LB	6:94	RML		SMG			
			9:91	8:92	10:90	8:92		
5	LB	86:14	RML		SMG			
			86:14	87:13	85:15	85:15		
6	LB	24:76	RML		SMG			
			24:76	25:75	25:75	25:75		
7	SMG	<i>MG</i> 89:11	RML		LB			
			88:12	87:13	87:13	88:12		
8	SMG	53:47	RML		LB			
			52:48	53:47	52:48	54:46		
9	SMG	16:84	RML		LB			
			18:82	17:83	17:83	17:83		

Analysis of 'Unknown' Samples (Table 3)
Sample 1 (LB)

90 80 f1 (ppm) Sample 2 (LB)

Sample 3 (LB)

Sample 7 (LB)

Sample 8 (LB)

Sample 9 (LB)

Sample 1 (SMG)

Sample 2 (SMG)

Sample 3 (SMG)

Sample 4 (SMG)

Sample 5 (SMG)

Sample 6 (SMG)

Sample 4 (RML)

Sample 5 (RML)

Sample 6 (RML)

Sample 7 (RML)

Sample 8 (RML)

Sample 9 (RML)

(±)- α -Methyl-DL-phenylalanine methyl ester-(21) and (S)-4, d_3 -MeCN

(±)- α -Methyl-DL-phenylalanine methyl ester-(21) and (S)-4, d_3 -MeCN, 90 min

The diagnostic signals for the enamine 23 were assigned as follows:

The geometry was determined from the nOe's shown. The NOESY spectrum is on the following page.

NOESY spectrum of mixture of imines 22 and enamine 23

Amide 26a and (S)-4

Amide 26a and (R)-4

Print	Date: Tue O	st 05 17:13:50	2010		Page 1 of	1			
Title Run Fi Method Sample	: le : c:\s l File : rmls i ID : Man	star\data\rach 920-92-8-0.50- 1al Sample	el tds\u 1.mth	inprotect	ed amino ac	ids\rm	1920-9	2-8-0.50.r	un
Injection Date: 10/4/2010 3:48 AM Calculation Date: 10/5/2010 5:18 PM									
Operator : AC Detector Type: ProStar/Dynamax (2 Volts) Workstation: Bus Address : 24 Instrument : 218 System Sample Rate : 5.00 Hz Channel : 1 = UV Run Time : 21.037 min									
** LC Workstation Version 6.20 ** 02354-6690-ae7-0230 **									
Run Ma Peak M Calcul	de : Measurement: ation Type:	Analysis Peak Area Percent							
			Ret.	Time			Width		
Peak No.	Peak Name	Result ()	Time (min)	Offset (min)	Area (counts)	Sep. Code	1/2 (sec)	Status Codes	
1 2		1.6603 98.3397	12.385	0.000	24171 1431657	BB BB	0.5		
	Totals:	100.0000		0.000	1455828				

Ŕ

Amide 26b and (S)-4

Amide 26b and (*R*)-4

Amide 26b and (S)-4/Amide 26a and (R)-4 overlaid

Ph

Print Date: Tue Oct 05 17:13:07 2010

100.0000

Totals:

Amide 25b Chiral HPLC

Title : Run File : c:\star\data\rachel tds\unprotected amino acids\rm1921-98-2-1.00.run Method File : rm1921-98-2-1.00-1.mth Sample ID : Manual Sample Injection Date: 9/30/2010 7:35 AM Calculation Date: 10/5/2010 5:12 PM Operator : AC Workstation: Instrument : 218 System Channel : 1 = UV Detector Type: ProStar/Dynamax (2 Volts) Bus Address : 24 Sample Rate : 5.00 Hz Run Time : 30.670 min ** LC Workstation Version 6.20 ** 02354-6690-ae7-0230 ** Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: Percent Time Offset Ret. Width Result Peak Peak Time Area Sep. 1/2 Status Code (sec) No. Name 0 (min) (min) (counts) Codes 13.188 13881 0.9707 99.0293 0.000 0.3 1 BB 2 1416128 76.2 BB

0.000

Page 1 of 1

1430009

(±)-25b chiral HPLC

Amide 26c and (S)-4

Amide 26c and (R)-4

0.000

0.000

0.000

18165

1384045

1402210

0.5

44.7

BB

BB

8.902

14.915

1.2955

98.7045

100.0000

1

2

Totals:
(±)-Amide 25c Chiral HPLC

Totals:

100.0000

73

921991

References

1 W. R. Li, W. R. Ewing, B. D. Harris, and M. M. Joullié, J. Am. Chem. Soc., 1990, 112, 7659–7672.

2 D. J. Dixon, R. T. Guy, S. V. Ley, M. A. Palomero, A. Polara, F. Rodriguez, T. D. Sheppard, *Org. Biomol. Chem.*, 2004, **2**, 3618-3627.

3 J. A. Marshall and S. Xie, J. Org. Chem., 1995, 60, 7230–7237.

4 R. M. Lanigan, P. Starkov, T. D. Sheppard, J. Org. Chem. 2013, 78, 4512-4523.