Electronic supplementary information

Synthesis and investigation of singlet oxygen production efficiency of photosensitizers based on meso-phenyl-2,5-thienylene linked porphyrin oligomer and polymers

Rehan Khan, Muazzam Idris, and Dönüs Tuncel*

Department of Chemistry and Institute of Materials Science and Nanotechnology Bilkent University, 06800 Ankara, Turkey

CONTENTS:	Page number
Figure S1: ¹ H-NMR spectrum of DP1.	3
Figure S2: ¹ H-NMR spectrum of DP2	3
Figure S3: ¹³ C-NMR spectrum of DP1	3
Figure S4: ¹³ C-NMR spectrum of DP2.	4
Figure S5: ESI spectrum of DP1	4
Figure S6: ESI-mass spectrum of DP2.	4
Figure S7: ¹ H NMR spectrum of P1.	5
Figure S8: ¹³ C NMR spectrum of P1.	5
Figure S9: ESI-mass spectrum of P1.	5
Figure S10: ¹ H NMR spectrum of P2.	6
Figure S11: ¹³ C NMR spectrum of P2.	6
Figure S12: ESI-mass spectrum of P2.	6
Figure S13: Structure of compound P2 by single crystal XR	D. 7
Figure S14: Structure of compound P5 by single crystal XR	D. 7
Figure S15: ¹ H NMR spectrum of the P4.	8
Figure S16: ¹ H NMR spectrum of the P6.	8
Figure S17: ¹ H NMR spectrum of the P3.	8
Figure S18: ¹ H NMR spectrum of the P1-OH.	9
Figure S19: ¹³ C NMR spectrum of P1-OH.	9
Figure S20: ESI-mass spectrum of P1-OH.	9
Figure S21: ¹ H NMR spectrum of the P2-OH.	10

Figure S22: ¹³ C NMR spectrum of P2-OH.	10
Figure S23: ESI-mass spectrum of P2-OH.	10
Figure S24: ¹ H NMR spectrum of the Porphyrin 1.	11
Figure S25: ¹³ C NMR spectrum of the Porphyrin 1.	11
Figure S26: ESI-mass spectrum of the Porphyrin 1	11
Figure S27: ¹ H NMR spectrum of the Porphyrin 1-Zn.	12
Figure S28: ¹³ C NMR spectrum of the Porphyrin 1-Zn.	12
Figure S29: ESI-mass spectrum of Porphyrin 1-Zn.	12
Figure S30: ¹ H NMR spectrum of the Porphyrin 2-Zn.	13
Figure S31: ¹³ C NMR spectrum of Porphyrin 2-Zn.	13
Figure S32: ESI-mass spectrum of Porphyrin 2-Zn.	13
Figure S33: ¹ H NMR spectrum of the OTT_1P .	14
Figure S34: ¹ H NMR spectrum of the OTT ₁ P (top) overlaid	14
with ¹ H NMR of the corresponding precursor,	
Porphyrin 1-Zn (middle) and thiopheneboronic ester	
(bottom) recorded in CDCl ₃ .	
Figure S35: 13 C NMR spectrum of the OTT ₁ P.	15
Figure S36: ESI-mass spectrum of OTT ₁ P.	15
Figure S37: ¹ H NMR spectrum of OTT ₂ P.	15
Figure S38: 13 C NMR spectrum of the OTT ₂ P.	16
Figure S39: ESI-mass spectrum of OTT ₂ P.	16
Figure S40: ¹ H NMR spectrum of PTTP.	17
Figure S41: ¹³ C NMR spectrum of PTTP.	17
Figure S42: Normalized absorption spectra of the compounds in DMF.	19
Inset of figure shows the zoomed version of the Q-bands.	
Figure S43: Decrease in absorbance intensity of DPBF	19
with time in the presence of photosensitizers based on	
porphyrin monomers, oligomers and polymer.	
Figure S44: Time-dependent decrease of absorbance at 418 nm	20
by oxidation of DPBF (20 μ M) with porphyrin sensitizers	
(0.5 μ M) in DMF against tetraphenylporphyrin (TPP)	

Figure S1: ¹H-NMR (400 MHz, CDCl₃, 25 °C) spectrum of DP1

Figure S2: ¹H-NMR (400 MHz, CDCl₃, 25 °C) spectrum of DP2

Figure S3: ¹³C-NMR (100 MHz, CDCl₃, 25 °C) spectrum of DP1

Figure S4: ¹³C-NMR (100 MHz, CDCl₃, 25 °C) spectrum of DP2.

Figure S5: ESI spectrum of DP1

Figure S6: ESI-mass spectrum of DP2.

Figure S7: ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of P1.

Figure S8: ¹³C NMR spectrum (100 MHz, CDCl₃, 25 °C) of P1.

Figure S9: ESI-mass spectrum of P1.

Figure S12: ESI-mass spectrum of P2.

•

Figure S13: Structure of compound **P2** by single crystal XRD (Determined by Dr. Kitchen, University of Southampton, United Kingdom).

Figure S14: Structure of compound **P5** by single crystal XRD (Determined by Dr. Kitchen, University of Southampton, United Kingdom).

Figure S15: ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of P4.

Figure S16: ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of P6.

Figure S19: ¹³C NMR spectrum (100 MHz, DMSO-d6, 25 °C) of P1-OH.

Figure S20: ESI-mass spectrum of P1-OH.

Figure S21: ¹H NMR spectrum (400 MHz, DMSO-d6, 25 °C) of P2-OH.

Figure S22: ¹³C NMR spectrum (100 MHz, DMSO-d6, 25 °C) of P2-OH.

Figure S24: ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of Porphyrin 1.

Figure S25: ¹³C NMR spectrum (100 MHz, CDCl₃, 25 °C) of Porphyrin 1.

Figure S26: ESI-mass spectrum of Porphyrin 1.

Figure S27: ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of Porphyrin 1-Zn.

Figure S28: ¹³C NMR spectrum (100 MHz, CDCl₃, 25 °C) of Porphyrin 1-Zn.

Figure S29: ESI-mass spectrum of Porphyrin 1-Zn.

Figure S30: ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of Porphyrin 2-Zn.

Figure S31: ¹³C NMR spectrum (100 MHz, CDCl₃, 25 °C) of Porphyrin 2-Zn.

Figure S32: ESI-mass spectrum of Porphyrin 2-Zn.

Figure S33: ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of OTT₁P.

Figure S34: ¹H NMR spectrum of OTT₁P (top) overlaid with ¹H NMR of the corresponding precursor, **Porphyrin 1-Zn** (middle) and thiopheneboronic ester (bottom) recorded in CDCl₃.

Figure S37: ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of OTT₂P.

Figure S39: ESI-mass spectrum of OTT₂P.

Ion name	Ion mass	Charge	Mass	Result
Positive ion mode				
M+2H	M/2 + 1.007276	2+	1.007276	1646.587276
M+ACN+2H	M/2 + 21.520550	2+	21.520550	1667.100550

Figure S40: ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of PTTP.

Figure S42: Normalized absorption spectra of the compounds in DMF. Inset of figure shows the zoomed version of the Q-bands.

Figure S43: Decrease in absorbance intensity of DPBF with time in the presence of photosensitizers based on porphyrin monomers, oligomers and polymer as well as tetraphenylporphyrin (TPP) used as reference photosensitizers.

Figure S44: Time-dependent decrease of absorbance at 418 nm by oxidation of DPBF (20 μ M) with porphyrin sensitizers (0.5 μ M) in DMF against tetraphenylporphyrin (TPP) as the standard irradiated at 420 nm under monochromator integrated Xenon lamp.