Supporting information

Importance of topology for glycoclusters binding to *Pseudomonas aeruginosa* and *Burkholderia ambifaria* bacterial lectins

Caroline Ligeour, Lucie Dupin, Anthony Angeli, Gérard Vergoten, Sébastien Vidal, Albert Meyer, Eliane Souteyrand, Jean-Jacques Vasseur, Yann Chevolot and François Morvan

Contents

Table S1. HPLC retention time (Rt) and MALDI-TOF mass spectrometry data for glycoclusters.	2
Table S2: K_d values and coefficient of determination (r ²) of the DNA-glycoclusters towards Lec. LecB or BambL determined by DNA Directed Immobilization glycoarray	A, 3
HPLC profiles of purified oligonucleotide-glycoclusters	4
¹ H NMR of compound 3a	13
¹³ C NMR of compound 3a	14
¹ H NMR of compound 3b	14
¹³ C NMR of compound 3b	15
¹ H NMR of compound 5	16
¹³ C NMR of compound 5	16
¹ H NMR of compound 3c	17
¹³ C NMR of compound 3c	17
¹ H NMR of compound 10	18
¹³ C NMR of compound 10	18
Figure S1. LecA + G2b	19
Figure S2. LecA with galactoses on C2 and C3 of G2b in the CDR left) before and right) after optimization.	19
Figure S3 Final docking of G2b with LecA	19
Figure S4a LecA in complex with G2a	20
Figure S4b LecA in complex with G2c	20
Figure S4c LecA in complex with G2b	21
Figure S5a. LecB in complex with F1a	21
Figure S5b. LecB in complex with F1c	22
Figure S5c. LecB in complex with F1b	22

		Rt	MALDI-TOF MS ^b		
Glycoclusters	Sequence	(min) ^a	m/z calc.	$m/z \exp$.	
G1a	3	13.99	7116.22	7117.87	
G1b	3	15.49	7116.22	7115.60	
G1c	4	14.82	7116.22	7116.09	
G2a	4	13.95	7296.38	7296.91	
G2b	2	15.56	7296.38	7295.40	
G2c	2	14.88	7296.38	7295.70	
G3a	1	13.63	7954.82	7954.15	
G3b	1	13.56	8255.08	8255.32	
G3c	1	13.04	10287.03	10287.83	
F1a	3	14.35	7017.25	7017.66	
F1b	3	16.31	7017.25	7018.39	
F1c	4	15.22	7017.25	7018.91	
F2a	4	14.48	7197.41	7198.35	
F2b	2	15.85	7197.41	7196.50	
F3c	2	15.30	7197.41	7198.14	
F3a	1	15.69	7789.88	7790.87	
F3b	1	15.98	8090.14	8089.61	
F3c	1	16.17	9957.15	9956.71	

Table S1. HPLC retention time (Rt) and MALDI-TOF mass spectrometry data for glycoclusters.

#	Sequence
1	5'-CTG CCT CTG GGC TCA-3'
2	5'-GCT CTC CAC TGC TGG-3'
3	5'-GCT TGG TGC CTC CAC-3'
4	5'-TGC CAC CTC GCT TGG-3'

^aLinear gradient from 0 to 32% of acetonitrile in 50 mM TEAAc buffer, pH 7.0 in 20 min. ^bHPA matrix with 10% ammonium citrate.

Classe alusters		LecA		LecB		BambL	
Giyo	coclusters	K_d (nM)	r^2	K_d (nM)	r^2	K_d (nM)	r^2
G1a	riboPro	66	0.998	/	/	/	/
G2a	riboEG ₂ M	54	0.998	/	/	/	/
G1b	araPro	64	0.998	/	/	/	/
G2b	araEG ₂ M	62	0.995	/	/	/	/
G1c	xyloPro	54	0.995	/	/	/	/
G2c	xyloEG ₂ M	49	0.996	/	/	/	/
G3a	mannipro	66	0.998	/	/	/	/
G3b	manniEG ₂ M	78	0.998	/	/	/	/
G3c	manni2	50	0.999	/	/	/	/
F1a	riboPro	/	/	56	0.987	20.1	0.997
F2a	riboEG ₂ M	/	/	73	0.987	21.2	0.993
F1b	araPro	/	/	81	0.937	25.1	0.996
F2b	araEG ₂ M	/	/	76	0.993	29.6	0.997
F1c	xyloPro	/	/	62	0.988	20.5	0.998
F2c	xyloEG ₂ M	/	/	93	0.967	26.5	0.999
F3a	manniPro	/	/	91	0.986	22.8	0.998
F3b	manniEG ₂ M	/	/	95	0.986	18.2	0.997
F3c	manni2	/	/	84	0.972	13.8	0.997

Table S2: K_d values and coefficient of determination (r²) of the DNA-glycoclusters towards LecA, LecB or BambL determined by DNA Directed Immobilization glycoarray.

HPLC profiles of purified oligonucleotide-glycoclusters

¹³C NMR of compound **3a**

¹H NMR of compound **3b**

S14

¹³C NMR of compound **3b**

¹H NMR of compound **5**

¹³C NMR of compound **5**

¹³C NMR of compound **3**c

1 H NMR of compound 10

Figure S2. LecA with galactoses on C2 and C3 of G2b in the CDR left) before and right) after optimization

Figure S3 Final docking of G2b with LecA

Figure S4a LecA in complex with G2a

Figure S4b LecA in complex with G2c

Figure S4c LecA in complex with G2b

Figure S5a. LecB in complex with F1a

Figure S5b. LecB in complex with F1c

Figure S5c. LecB in complex with F1b