Electronic Supplementary Information (ESI)

IBX-Mediated Oxidation of Unactivated Cyclic Amines: Application in Highly Diastereoselective Oxidative Ugi-type and aza-Friedel-Crafts Reactions

C. de Graaff, L. Bensch, M. J. van Lint, E. Ruijter and R. V. A. Orru*

Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules Medicines and Systems (AIMMS), VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.

E-mail: r.v.a.orru@vu.nl

Table of contents

General information	2
Optimization data	3
Synthetic procedures	5
Substrate synthesis	5
Oxidation of meso-pyrrolidines	9
Oxidative Ugi-type three-component reaction	11
Oxidative aza-Friedel-Crafts reaction	16
Structural analysis of compound 2f	18
Copies of NMRs	21

General information

Starting materials were purchased from Sigma Aldrich, Fisher Scientific and Acros Organics and were used without purification, unless stated otherwise. (3aR,6aS)-Octahydrocyclopenta[*c*]pyrrole hydrochloride was purchased from AK Scientific and dissolved in CH₂Cl₂, washed with sat. aq. Na₂CO₃, extracted with CH₂Cl₂, dried (Na₂SO₄) and concentrated *in vacuo* before use. Unless stated otherwise, the solvents were purchased from VWR Chemicals and were used without further treatment. Cyclohexane (*c*Hex) was purified by distillation before use. Celite[®] 512 medium was purchased from Sigma Aldrich. Column Chromatography was performed on Silica-P Flash Silica Gel (particle size 40-63 µm, pore diameter 60 Å) from Silicycle. Preparative thin layer chromatography was performed on Silica Gel plates F_{254} (20 x 20 cm, 2000 µm, pore diameter 60 Å) from Silicycle. Thin Layer Chromatography (TLC) was performed using TLC plates F_{254} (silica gel 60 on aluminium) from Merck Serono KGaA (Darmstadt) and compounds were visualized by UV detection (254 or 366 nm) and stained with basic aq. KMnO₄ or ninhydrin/ethanol.

¹H, ¹³C, COSY, HSQC, HMBC and NOESY nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 500 (500.23 MHz for ¹H and 125.78 MHz for ¹³C) in CDCl₃ or DMSO-*d*₆ using the residual solvent as internal standard (CDCl₃: δ = 7.26 for ¹H NMR and δ = 77.16 for ¹³C NMR, DMSO-*d*₆: δ = 2.50 for ¹H NMR and δ = 39.52 for ¹³C NMR) or Bruker Avance 400 (400.13 MHz for ¹H and 100.62 MHz for ¹³C) using the residual solvent as internal standard (CDCl₃: δ = 7.26 for ¹H NMR and δ = 77.16 for ¹³C NMR, DMSO-*d*₆: δ = 2.50 for ¹H NMR and δ = 39.52 for ¹³C NMR). Chemical shifts (δ) are given in ppm and coupling constants (*J*) are quoted in hertz (Hz). Resonances are described as s (singlet), d (doublet), t (triplet), q (quartet), bs (broad singlet) and m (multiplet) or combinations thereof. The COSY-, HMBC- and HSQC-NMR spectra were used for the assignment of the relative stereochemistry. The APT-NMR spectra were used for the assignment of the carbons. Names of chemical structures were deduced from generic names and/or important functionalities.

Electrospray Ionization (ESI) high resolution mass spectrometry was carried out using a Bruker micrOTOF-Q instrument in positive ion mode (capillary potential of 4500 V). Infrared (IR) spectra were recorded neat using a FTIR-8400s from Shimadzu. Signal intensities are described as strong (s), medium (m), weak (w) or broad (br). Melting points were determined on a Büchi M-565 and are not corrected.

X-ray single crystal data were collected at 100Kon a Bruker X8 Prospector with Cu microsource and focusing optics, and Apex II detector. Data were integrated and corrected for absorption with SAINT V8.34A and SADABS 2012/1, and the structure was solved and refined with SHELX 2014 and shelXle. Hydrogen atoms were detected in the Fourier difference maps, those on C were refined with constraints on bond lengths and angles, those on N were refined freely.

Optimization data

<u>General procedure for optimization of the reaction conditions for the oxidation of meso-pyrrolidine **1a** with IBX in <u>Supplementary table S1:</u></u>

To a solution of pyrrolidine **1a** (0.25 mmol, 1.0 eq.) in CH_2Cl_2 (0.2 M) was added IBX (70 mg, 0.25 mmol, 1.0 eq.). The reaction mixture was stirred for 0.5 - 1 h at rt or 60 °C (oil bath, closed vessel). The reaction mixture was cooled to rt, quenched with sat. aq. $Na_2S_2O_4$ (1 mL), washed with sat. aq. Na_2CO_3 /brine (3:1, 10 mL), extracted with CH_2Cl_2 (2 x 10 mL), dried (Na_2SO_4) and concentrated *in vacuo*. Subsequently, the yield of **2a** was determined with ¹H-NMR spectroscopy after dissolving the crude product in CDCl₃ and adding 2,5-dimethylfuran (0.125 mmol, 0.5 eq.) as standard for NMR spectroscopy.

Supplementary table S1: Optimization of reaction conditions for IBX-mediated oxidation.

Entry	Oxidant	Solvent	<i>T</i> [°C]	t	Yield
1	NalO ₃	DMSO	rt	30 min	_[a]
2	PhI(OAc) ₂	DMSO	rt	30 min	38%
3	PhI(CO ₂ CF ₃) ₂	DMSO	rt	30 min	33%
4	DMP	DMSO	rt	30 min	55%
5	IBX	DMSO	rt	30 min	90%
6	IBX	DMF	rt	30 min	92%
7	IBX	MeCN	rt	1 h	19%
8	IBX	MeCN	60	1 h	78%
9	IBX	MeOH	60	1 h	81%
10	IBX	CH_2CI_2	60	1 h	95%
11	IBX	THF:DMSO (9:1)	60	1 h	94%
12	IBX	THF	60	1 h	58%
13	IBX	DMC	60	1 h	31%
14	IBX	TFE	60	1 h	47%
15	IBX	EtOAc	60	1 h	19%
16	IBX	toluene	60	1 h	10%

^a used with and without preactivation¹

¹ Nicolaou, K. C.; Montagnon, T.; Baran, P. S. *Angew. Chem. Int. Ed.*, **2002**, *41*, 1386.

General procedure for optimization of the reaction conditions for the oxidative Ugi-type reaction in Table 3 and Supplementary table S2:

To a solution of pyrrolidine **1a** (0.25 mmol, 1.0 eq.) in CH_2Cl_2 (0.5 M) were added IBX (70 mg, 0.25 mmol, 1.0 eq.), benzoic acid (0.375 mmol, 1.5 eq.) and *tert*-butyl isocyanide (0.375 mmol, 1.5 eq.). The reaction mixture was stirred for 24 h at rt or 60 °C (oil bath, closed vessel). The suspension was cooled to rt, quenched with sat. aq. Na₂S₂O₄ (1 mL), washed with sat. aq. Na₂CO₃/brine (3:1, 10 mL), extracted with CH_2Cl_2 (2 x 10 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Subsequently, the yield of **3a** was determined with ¹H-NMR spectroscopy after dissolving the crude product in CDCl₃ and adding 2,5-dimethylfuran (0.125 mmol, 0.5 eq.) as standard for NMR spectroscopy.

Supplementary table S2: Optimization of reaction conditions for oxidative Ugi-type reaction.

Synthetic procedures

o-iodoxybenzoic acid² (IBX, S1): To a solution of Oxone[®] (74.3 g, 242 mmol, 6.0 eq.) in H₂O (0.2 M) was added 2-iodobenzoic acid (10.0 g, 40.3 mmol, 1.0 eq.). The reaction mixture was stirred for 3 h at 70 °C and then cooled to rt. The solid was filtered off, washed with cold H₂O (500 mL) and cold acetone (300 mL) and dried *in vacuo* (60 °C, 18 h). Compound S1 (7.17 g, 25.5 mmol, 63%) was obtained without the need of purification as an off-white solid. ¹H NMR (500 MHz, DMSO*d*₆): δ 8.15 (d, *J* = 8.0 Hz, 1H), 8.06 – 7.97 (m, 2H), 7.84 (t, *J* = 7.3 Hz, 1H) ppm. ¹³C NMR (126 MHz, DMSO-*d*₆): δ 167.6 (C*), 146.6 (C*), 133.5 (CH), 133.1 (CH), 131.5 (C*), 130.1 (CH), 125.1 (CH) ppm. IR (neat): v_{max} (cm⁻¹) = 3097 (w), 1636 (m), 1560 (w), 1331 (m), 1294 (s), 1246 (m), 1138 (m), 831 (m), 773 (m), 748 (s), 692 (s), 673 (s), 648 (m), 592 (s), 577 (s).

Substrate synthesis

imid S2a: To a solution of maleimide (7.28 g, 75.0 mmol, 1.0 eq.) in diethyl ether (0.68 M) was added cyclopentadiene (7.0 mL, 80.0 mmol, 1.06 eq.) dropwise. The reaction mixture was stirred for 2 h at rt. The product was filtered off and washed with diethyl ether. Compound **S2a** (12.0 g, 73.5 mmol, 98%) was obtained without the need of purification as an off-white solid. $\mathbf{R}_{f} = 0.30$

 $(CH_2CI_2:MeOH 100:1 \text{ v/v})$. **mp**: 184.4 – 188.6 °C. ¹H **NMR** (500 MHz, CDCI₃): δ 8.47 (bs, 1H, N*H*), 6.17 (d, *J* = 2.0 Hz, 2H, C*H*=C*H*), 3.36 (s, 2H, C(O)CHC*H*CH₂), 3.31 – 3.22 (m, 2H, C(O)C*H*), 1.72 (d, *J* = 8.8 Hz, 1H, C*H*₂), 1.51 (d, *J* = 8.8 Hz, 1H, C*H*₂) ppm. ¹³C **NMR** (126 MHz, CDCI₃): δ 178.5 (C*), 134.7 (CH), 52.4 (CH₂), 47.4 (CH), 45.0 (CH) ppm. **IR** (neat): v_{max} (cm⁻¹) = 3159 (m), 2991 (m), 1753.17 (m), 1697 (s), 1352 (m), 1294 (m), 1186 (s), 1120 (s), 991 (m), 839 (s), 829 (s), 729 (s), 660 (s), 604 (s). **HRMS** (ESI): *m*/*z* calulated for C₉H₁₀NO₂ [M+H]⁺:164.0706, found: 164.0711.

imid S2b: To a solution of palladium on carbon 10% (15 mg, 0.04 mol%) in CH_2CI_2 (0.1 mL) and methanol (27 mL) was added imid **S2a** (6.56 g, 4.0 mmol). The reaction mixture was stirred for 63 h at rt under H₂ atmosphere (1 atm.). The reaction mixture was filtered over Celite[®], washed with methanol and concentrated *in vacuo*. Compound **S2b** (5.86 g, 36.3 mmol, 90%) was

obtained without the need of purification as an off-white solid. $\mathbf{R}_{f} = 0.21$ (CH₂Cl₂:MeOH 100:1 v/v). **mp**: 175 – 177 °C. ¹H NMR (500 MHz, CDCl₃): δ 9.01 (bs, 1H, N*H*), 3.10 (s, 2H, C(O)C*H*), 2.72 (s, 2H, C(O)CHC*H*CH₂), 1.76 – 1.48 (m, 4H, C*H*₂CHC*H*₂C*H*₂), 1.46 – 1.25 (m, 2H, C*H*₂C*H*₂) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 179.6 (C*), 50.3 (CH), 42.2 (CH₂), 39.3 (CH), 24.8 (CH₂) ppm. **IR** (neat): v_{max} (cm⁻¹) = 3173 (w), 1695 (s), 1350 (m),

² Adapted procedure from: Frigerio, M.; Santagostino M.; Sputore, S. J. Org. Chem., **1999**, *64*, 4537.

1177 (s), 995 (m), 822 (m), 588 (s), 459 (s). **HRMS** (ESI): m/z calulated for C₉H₁₁NNaO₂ [M+Na]⁺:188.0682, found: 188.0689.

imid S2c: To a solution of maleimide (1.46 g, 15 mmol, 1.0 eq.) in H₂O (1.07 M) was added furan (1.34 mL, 18 mmol, 1.2 eq.) dropwise. The reaction mixture was stirred for 1 h at 90 °C under microwave irradiation and then cooled to rt. The product was filtered off and washed with H₂O (100 mL) and diethyl ether (20 mL). Compound **S2c** (1.38 g, 0.84 mmol, 54%) was obtained

without the need of purification as an off-white solid. $\mathbf{R}_{f} = 0.23$ (CH₂Cl₂:MeOH 100:1 v/v). **mp**: 168.6 - 171.3 °C. ¹**H NMR** (500 MHz, CDCl₃): δ 8.15 (bs, 1H, N*H*), 6.52 (s, 2H, C*H*=C*H*), 5.32 (s, 2H, OC*H*), 2.89 (s, 2H, C(O)C*H*) ppm. ¹³**C NMR** (126 MHz, CDCl₃): δ 176.1 (C*), 136.7 (CH), 81.1 (CH), 48.9 (CH) ppm. **IR** (neat): v_{max} (cm⁻¹) = 3148 (w), 1772 (m), 1701 (s), 1352 (m), 1287 (m), 1204 (m), 1186 (s), 897 (m), 820 (s), 733 (s), 633 (s), 582 (s). **HRMS** (ESI): *m/z* calulated for C₈H₇NNaO₃ [M+Na]⁺: 188.0318, found: 188.0320.

imid S2d: To a solution of palladium on carbon 10% (0.10 g, 0.04 mol%) in CH_2CI_2 (0.1 mL) and methanol (100 mL) was added imid **S2c** (10.19 g, 62.0 mmol). The reaction mixture was stirred for 48 h at rt under H₂ atmosphere (1 atm.). The reaction mixture was filtered over Celite[®], washed with methanol and concentrated *in vacuo*. Compound **S2d** (9.9 g, 59.0 mmol, 96%) was

obtained without the need of purification as an off-white solid. $\mathbf{R}_{f} = 0.21$ (CH₂Cl₂:MeOH 100:1 v/v). **mp**: 184 - 186 °C. ¹H **NMR** (500 MHz, CDCl₃): δ 8.76 (bs, 1H, N*H*), 4.94 – 4.86 (m, 2H, OC*H*), 2.91 (s, 2H, NC(O)C*H*), 1.90 – 1.83 (m, 2H, CH₂CH₂), 1.62 – 1.54 (m, 2H, CH₂CH₂) ppm. ¹³C **NMR** (126 MHz, CDCl₃): δ 177.8 (C*), 79.2 (CH), 51.4 (CH), 28.6 (CH) ppm. **IR** (neat): v_{max} (cm⁻¹) = 3004 (w), 1672 (s), 1306 (m), 1182 (s), 899 (m), 839 (m), 815 (s), 559 (m), 455 (s).

imid S2f:³ To a solution of $Mn(CIO_4)_2 \cdot 6 H_2O$ (15 mg, 0.3 mol%) in acetone (100 mL) was added picolic acid (44 mg, 1.8 mol%) and maleimide (1.94 g, 20.0 mmol, 1.0 eq.). The reaction mixture was cooled to 0 °C and an aq. sodiumacetate solution (1.0 mL, 0.6 M) and hydrogen peroxide (2.58 mL, 30.0 mmol, 1.5 eq.) were added. The solution was stirred for 29 h at rt, after which it was guenched with solid sodium thiosulfate. The suspension was filtered, washed with acetone,

dried (Na₂SO₄) and concentrated *in vacuo*. The resulting oil was diluted in acetone (100 mL) and 2,2dimethoxypropane (9.2 mL, 74.9 mmol, 4.0 eq.) and *p*-toluenesulfonic acid monohydrate (356 mg, 1.9 mmol, 0.1 eq.) were added. The solution was stirred 144 h at rt (until conversion was complete according to TLC). The reaction was quenched with sat. aq. NaHCO₃ (20 mL), extracted with CH₂Cl₂ (3 x 20 mL), dried (Na₂SO₄) and concentrated *in vacuo*. The crude product was purified by flash chromatography (SiO₂) with an eluent gradient (10:1 \rightarrow 1:1 v/v *c*Hex:EtOAc) to obtain compound **S2f** (740 mg, 4.30 mmol, 22%) as a colourless oil. **R**_f = 0.31 (cHex:EtOAc 1:1 v/v). **mp**: 143.4 – 146.4 °C. ¹H **NMR** (500 MHz, CDCl₃): δ 8.13 (bs, 1H, N*H*), 4.88 (s, 2H, C*H*), 1.51 (s, 3H, C*H*₃), 1.44 (s, 3H, C*H*₃) ppm. ¹³C **NMR** (126 MHz, CDCl₃): δ 172.2 (C*), 116.5 (C*), 76.1 (CH), 26.8

³ First part of procedure adapted from P. Saisaha, D. Pijper, R. P. van Summeren, R. Hoen, C. Smit, J. W. de Boer, R. Hage, P. L. Alsters, B. L. Feringa, W. R. Browne, *Org. Biomol. Chem.* **2010**, *8*, 4444.

(CH₃), 25.7 (CH₃) ppm. **IR** (neat): v_{max} (cm⁻¹) = 3205 (m), 3094 (w), 1717 (s), 1375 (m), 1354 (m), 1192 (s), 1153 (m), 1097 (s), 987 (m), 849 (m), 756 (s), 712(m), 633 (w), 575 (s).

pyrrolidine 1a: To a solution of LiAlH₄ (3.5 g, 92.0 mmol, 1.5 eq.) in THF⁴ (500 mL, anh.) was slowly added imid S2a (10.0 g, 61.0 mmol, 1.0 eq.) under N₂ atmosphere at 0 °C. The reaction mixture was stirred for 18 h at 45 °C, after which the reaction was quenched with H₂O (5 mL) to remove the excess of LiAIH₄. The suspension was filtered over Celite[®], washed with THF and concentrated in vacuo to give compound 1a (3.0 g, 22.0 mmol, 36%) as a yellow solid. R_f = 0.09 (CH₂Cl₂:MeOH:NEt₃ 100:1:0.5 v/v). mp: 100.5 – 109.4 °C. ¹H NMR (500 MHz, CDCl₃): δ 6.24 – 6.15 (m, 2H, CH=CH), 2.84 - 2.78 (m, 2H, NHCH₂CHCHCH₂), 2.76 - 2.64 (m, 3H, NHCH₂CH), 2.57 (d, J = 12.2 Hz, 2H, NHCH₂), 1.78 (bs, 1H, NH), 1.47 – 1.36 (m, 2H, CHCH₂CH) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 135.8 (CH), 53.1 (CH_2) , 50.1 (CH_2) , 48.2 (CH), 46.5 (CH) ppm. **IR** (neat): v_{max} $(cm^{-1}) = 3051$ (w), 2957 (m), 2930 (s), 1344 (m), 1250 (m), 1092 (m), 895 (m), 870 (m), 800 (s), 743 (s), 689 (m). HRMS (ESI): *m/z* calculated for C₉H₁₄N [M+H]⁺: 136.1121, found: 136.1126.

pyrrolidine 1b: To a solution of LiAlH₄ (2.0 g, 54.0 mmol, 1.5 eq.) in THF⁴ (300 mL, anh.) was slowly added imid S2b (5.8 g, 36.0 mmol, 1.0 eq.) under N₂ atmosphere at 0 °C. The reaction mixture was stirred for 18 h at 70 °C, after which the reaction was guenched with H₂O (4 mL) to remove the excess of LiAIH₄. The suspension was filtered over Celite[®], washed with THF and concentrated in vacuo to give compound **1b** (3.6 g, 26.0 mmol, 72%) as a yellow solid. $\mathbf{R}_{f} = 0.66$ (CH₂Cl₂:MeOH:NEt₃ 100:1:0.5 v/v). mp: 96.8 – 103.3 °C. ¹H NMR (500 MHz, CDCl₃): δ 2.91 (d, J = 12.0 Hz, 2H, NHCH₂), 2.64 - 2.55 (m, 2H, NHCH₂), 2.41 - 2.35 (m, 2H, NHCH₂CH), 2.13 (s, 2H, NHCH₂CHCHCH₂), 1.88 (bs, 1H, NH), 1.54 – 1.26 (m, 6H, CH₂CHCH₂CH₂) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 48.3 (CH₂), 45.8 (CH), 43.0 (CH_2) , 41.1 (CH), 23.3 (CH₂) ppm. **IR** (neat): v_{max} (cm⁻¹) = 2937 (s), 2864 (m), 1290 (m), 1250 (m), 1221 (w), 1184 (w), 1111 (m), 1005 (m), 961 (w), 910 (m), 843 (s), 797 (m), 598 (s). HRMS (ESI): m/z calculated for $C_9H_{16}N$

[M+H]⁺: 138.1277, found: 138.1291.

pyrrolidine 1c: To a solution of LiAlH₄ (1.7 g, 45.0 mmol, 1.5 eq.) in THF⁵ (250 mL, anh.) was slowly added imid S2c (5.0 g, 30.0 mmol, 1.0 eq.) under N2 atmosphere at 0 °C. The reaction mixture was stirred for 18 h at 40 °C, after which the reaction was guenched with H₂O (4 mL) to remove the excess of LiAIH₄. The suspension was filtered over Celite[®], washed with THF and

concentrated in vacuo to give compound 1c (3.1 g, 20.0 mmol, 65%) as a red oil. R_f = 0.07 (CH₂Cl₂:MeOH:NEt₃) 100:1:0.5 v/v). ¹H NMR (500 MHz, CDCl₃): δ 6.36 (s, 2H, CH=CH), 4.70 (s, 2H, OCH), 2.92 – 2.83 (m, 4H, CH₂), 2.45 (bs, 1H, NH), 2.30 – 2.22 (m, 2H, CH₂CH) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 137.1 (CH), 83.9 (CH), 51.6 (CH₂), 46.8 (CH) ppm. **IR** (neat): v_{max} (cm⁻¹) = 3258 (w), 2991 (w), 2926 (w), 1308 (w), 1067 (w), 949 (m), 891 (s),

⁴ Distilled under nitrogen from sodium/benzophenone before use

⁵ Distilled under nitrogen from sodium/benzophenone before use

964 (s), 843 (s), 810 (s), 712 (s), 692 (s), 590 (s). **HRMS** (ESI): *m/z* calculated for C₈H₁₂NO [M+H]⁺: 138.0913, found: 138.0920.

pyrrolidine 1d: To a solution of LiAlH₄ (3.4 g, 86.0 mmol, 1.5 eq.) in THF⁵ (500 mL, anh.) was slowly added imid **S2d** (9.6 g, 58.0 mmol, 1.0 eq.) under N₂ atmosphere at 0 °C. The reaction mixture was stirred for 19 h at 45 °C, after which the reaction was guenched with H₂O (5 mL) to remove the excess of LiAlH₄. The suspension was filtered over Celite[®], washed with THF and concentrated in vacuo to give compound 1d (6.0 g, 43.0 mmol, 75%) as a yellow oil. $R_f = 0.07$ (CH₂Cl₂:MeOH:NEt₃ 100:1:0.5 v/v). ¹H NMR (400 MHz, CDCl₃): δ 4.30 - 4.23 (m, 2H, OCH), 2.92 (dd, J = 11.3 Hz, 6.4 Hz, 2H, NCH₂), 2.69 (dd, J = 11.3, 2.4 Hz, 2H, NCH₂), 2.40 (bs, 1H, NH), 2.24 - 2.20 (m, 2H, NCH₂CH), 1.64 – 1.56 (m, 2H, CH₂CH₂), 1.42 – 1.35 (m, 2H, CH₂CH₂) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 81.3 (CH), 53.3 (CH₂), 49.9 (CH), 28.9 (CH₂) ppm. **IR** (neat): v_{max} (cm⁻¹) = 3173 (m), 2945 (s), 2909 (m), 2853 (s), 1221 (m), 1182 (s), 1082 (s), 1024 (s), 1005 (s), 989 (s), 959 (s), 912 (s), 901 (s), 795 (s), 629 (s), 584 (s). HRMS (ESI): *m*/*z* calculated for C₈H₁₄NO [M+H]⁺:140.1070, found: 140.1069.

pyrrolidine 1f: To a solution of LiAlH₄ (230 mg, 6.1 mmol, 1.5 eq.) in THF⁶ (35 mL, anh.) was slowly added imid S2f (700 mg, 4.1 mmol, 1.0 eq.) under N2 atmosphere at 0 °C. The reaction mixture was stirred for 18 h at 55 °C, after which the reaction was guenched with H₂O (2 mL) to remove the excess of LiAIH₄. The suspension was filtered over Celite[®], washed with THF and concentrated in vacuo to give compound 1f (444 mg, 3.1 mmol, 51%) as a colourless oil. $R_f = 0.16$ (CH₂Cl₂:MeOH:NEt₃) 100:1:0.5 v/v). ¹H NMR (500 MHz, CDCl₃): δ 4.65 (s, 2H, NHCH₂C*H*), 3.11 (d, *J* = 14.0 Hz, 2H NHCH₂), 2.51 (d, J = 13.3 Hz, 2H, NHC H_2), 1.75 (bs, 1H, NH), 1.45 (s, 3H, C H_3), 1.31 (s, 3H, C H_3) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 110.3 (C^{*}), 81.7 (CH), 54.4 (CH₂), 26.1 (CH₃), 23.9 (CH₃) ppm. **IR** (neat): v_{max} (cm⁻¹) = 2980 (m), 2928 (s), 1373 (m), 1207 (s), 1150 (m), 1080 (m), 1034 (s), 897 (m), 851 (s), 822 (m), 625 (m). HRMS (ESI): m/z calculated for C₇H₁₄NO₂ [M+H]⁺: 144.1019, found: 144.1025.

⁶ Distilled under nitrogen from sodium/benzophenone before use

Oxidation of meso-pyrrolidines

General procedure 1:

To a solution of the pyrrolidine (0.5 mmol, 1.0 eq.) in CH_2CI_2 (0.2 M) was added IBX (140 mg, 0.5 mmol, 1.0 eq.). The reaction mixture was stirred for 1 h at 60 °C (oil bath) in a closed vessel. The reaction was cooled to rt, quenched with sat. aq. $Na_2S_2O_4$ (2 mL), washed with sat. aq. Na_2CO_3 /brine (3:1, 20 mL), extracted with CH_2CI_2 (2 x 20 mL), dried (Na_2SO_4) and concentrated *in vacuo*. If necessary, the crude product was purified by flash chromatography.

1-pyrroline 2a: Prepared from pyrrolidine **1a** (69 mg, 0.50 mmol, 1 eq.) according to general procedure **1**. Purification was achieved by flash chromatography (SiO₂) with an eluent gradient (1:1 \rightarrow 1:2 v/v cHex:EtOAc, 100:1 \rightarrow 50:1 v/v CH₂Cl₂:MeOH), to obtain compound **2a** (59 mg,

^N 0.44 mmol, 88%) as a light yellow solid. $\mathbf{R}_{f} = 0.24$ (CH₂Cl₂:MeOH 100:1 v/v). **mp**: 81.0 – 85.0 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.28 (s, 1H, N=C*H*), 6.11 – 5.94 (m, 2H, *H*C=C*H*), 3.72 – 3.62 (m, 1H, NC*H*₂), 3.55 – 3.41 (m, 1H, N=CHC*H*), 3.24 – 3.11 (m, 1H, NC*H*₂), 3.03 (s, 1H, N=CHCHC*H*CH₂), 2.92 (s, 1H, NCH₂CHC*H*CH₂), 2.83 – 2.73 (m, 1H, NCH₂C*H*), 1.52 (d, *J* = 8.1 Hz, 1H, CHC*H*₂CH), 1.36 (d, *J* = 8.2 Hz, 1H, CHC*H*₂CH) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 167.2 (CH), 135.5 (CH), 133.6 (CH), 62.9 (CH₂), 60.3 (CH), 51.1 (CH₂), 45.4 (CH), 44.2 (CH), 41.0 (CH) ppm. IR (neat): v_{max} (cm⁻¹) = 2958 (m), 2918 (m), 2798 (m), 1339 (s), 1207 (m), 1182 (s), 1096 (m), 953 (m), 899 (m), 841 (m), 800 (m), 739 (s), 725 (s). HRMS (ESI): *m/z* calculated for C₉H₁₂N [M+H]⁺: 134.0964, found: 110.0966.

1-pyrroline 2b: Prepared from pyrrolidine **1b** (73 mg, 0.50 mmol, 1 eq.) according to general procedure **1**. Purification was achieved by flash chromatography (SiO₂) with an eluent gradient (1:1 v/v cHex:EtOAc, 100:1 v/v CH₂Cl₂:MeOH), to obtain compound **2b** (65 mg, 0.48 mmol, 97%) as a light yellow solid. **R**_f = 0.24 (CH₂Cl₂:MeOH 100:1 v/v). **mp**: 81.0 – 88.1 °C. ¹H **NMR** (500

MHz, CDCl₃): δ 7.41 (s, 1H, N=C*H*), 3.84 – 3.77 (m, 1H, NC*H*₂), 3.70 – 3.61 (m, 1H, NC*H*₂), 3.23 – 3.13 (m, 1H, N=CHC*H*), 2.64 – 2.53 (m, 1H, NCH₂C*H*), 2.50 (s, 1H, N=CHCHC*H*CH₂), 2.16 (s, 1H, NCH₂CHC*H*CH₂), 1.52 (d, *J* = 9.4 Hz, 1H, CHC*H*₂CH), 1.43 (d, *J* = 9.0 Hz, 1H, CHC*H*₂CH), 1.31 (d, *J* = 6.3 Hz, 2H, C*H*₂C*H*₂), 1.19 (d, *J* = 7.4 Hz, 2H, C*H*₂C*H*₂) ppm. ¹³C-NMR (126 MHz, CDCl₃): δ 169.2 (CH), 60.9 (CH₂), 58.3 (CH), 42.6 (CH), 42.1 (CH₂), 40.0 (CH), 38.5 (CH), 26.0 (CH₂), 22.1 (CH₂) ppm. **IR** (neat): v_{max} (cm⁻¹) = 2945 (s), 2860 (m), 1670 (w), 1381 (w), 1298 (m), 1225 (m), 1177 (m), 1161 (m), 1119 (s), 1092 (s), 1018 (w), 995 (w), 889 (m), 822 (w), 656 (w). **HRMS** (ESI): *m/z* calculated for C₉H₁₄N [M+H]⁺: 136.1121, found: 136.1125.

1-pyrroline 2c: Prepared from pyrrolidine **1c** (79 mg, 0.50 mmol, 1 eq.) according to general procedure **1**. Purification was achieved by flash chromatography (SiO₂) with an eluent gradient (1:1 v/v cHex:EtOAc, 100:1 \rightarrow 10:1 v/v CH₂Cl₂:MeOH), to obtain compound **2c** (66 mg [3% *c*Hex],

^{IN} 0.47 mmol, 95%) as a reddish brown solid. $\mathbf{R}_{f} = 0.18$ (CH₂Cl₂:MeOH 100:1 v/v). **mp**: 100.0 – 109.2 °C. ¹H **NMR** (500 MHz, CDCl₃): δ 7.49 – 7.36 (m, 1H, N=C*H*), 6.46 – 6.29 (m, 2H, C*H*=C*H*), 4.95 (s, 1H, NCH₂CHC*H*O), 4.75 (s, 1H, N=CHCHC*H*O), 4.04 – 3.86 (m, 1H, NC*H*₂), 3.72 – 3.59 (m, 1H, NC*H*₂), 3.10 (dd, *J* = 7.1 Hz, *J* = 2.9 Hz, 1H, N=CHC*H*), 2.57 – 2.44 (m, 1H, NCH₂C*H*) ppm. ¹³C **NMR** (126 MHz, CDCl₃): δ 164.1 (CH),

137.5 (CH), 136.2 (CH), 84.2 (CH), 79.7 (CH), 63.6 (CH₂), 59.7 (CH), 42.3 (CH) ppm. **IR** (neat): v_{max} (cm⁻¹) = 2978 (m), 1458 (w), 1342 (m), 1229 (m), 1190 (m), 1157 (s), 1032 (s), 997 (m), 949 (s), 897 (s), 866 (m), 810 (s), 723 (s), 692 (s), 681 (s), 625 (s). **HRMS** (ESI): *m/z* calculated for C₈H₁₀NO [M+H]⁺: 136.0757, found: 136.0758.

1-pyrroline 2d: Prepared from pyrrolidine 1d (72 mg, 0.50 mmol, 1 eq.) according to general procedure 1. Purification was achieved by flash chromatography (SiO₂) with an eluent gradient (1:1 cHex:EtOAc, 100:1 \rightarrow 20:1 v/v CH₂Cl₂:MeOH), to obtain compound 2d (60 mg [17% CH₂Cl₂], 0.36 mmol, 71%) as a light vellow solid. **R**_f = 0.18 (CH₂Cl₂:MeOH 100:1 v/v).**mp**: 150.6 – 157.2 °C. ¹**H NMR** (500 MHz, CDCl₃): δ 7.35 (d, J = 3.3 Hz, 1H, N=CH), 4.51 (d, J = 4.7 Hz, 1H, NCH₂CHCHO), 4.34 (d, J = 4.7 Hz, 1H, N=CHCHCHO), 4.10 - 4.00 (m, 1H, NCH₂), 3.74 - 3.65 (m, 1H, NCH₂), 3.03 (dd, J = 7.8 Hz, J = 2.9 Hz, 1H, N=CHCH), 2.42 - 2.34 (m, 1H, NCH2CH), 1.79 - 1.64 (m, 2H, CH2CH2), 1.58 - 1.43 (m, 2H, CH₂CH₂) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 165.1 (CH), 82.6 (CH), 77.4 (CH), 67.9 (CH₂), 61.1 (CH), 44.1 (CH), 29.3 (CH₂), 28.7 (CH₂) ppm. **IR** (neat): v_{max} (cm⁻¹) = 2949 (m), 1655 (w), 1393 (m), 1315 (m), 1225 (s), 1215 (s), 1175 (s), 1047 (m), 972 (s), 924 (s), 805 (s), 623 (s). HRMS (ESI): m/z calculated for C₈H₁₂NO [M+H]⁺: 138.0913, found: 138.0916.

1-pyrroline 2e:⁷ Prepared from pyrrolidine 1e (56 mg, 0.50 mmol, 1 eq.) according to general procedure 1. Compound 2e (38 mg, 0.35 mmol, 70%) was obtained without the need of purification as a light yellow solid. **R**_f = 0.38 (CH₂Cl₂:MeOH 100:1 v/v). **mp**: 99.8 – 111.7 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.32 – 7.28 (m, 1H, NHCH), 4.11 – 3.98 (m, 1H, NHCH₂), 3.57 – 3.46 (m, 1H, NHCH₂), 3.27 (t, J = 8.9 Hz, 1H, NHCHCH), 2.72 – 2.57 (m, 1H, NHCH₂CH), 1.73 – 1.19 (m, 6H, CH₂CH₂CH₂) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 169.6 (CH), 70.3 (CH₂), 55.2 (CH), 38.7 (CH), 34.8 (CH₂), 29.4 (CH₂), 25.0 (CH₂) ppm. **IR** (neat): v_{max} (cm⁻¹) = 2931 (s), 2901 (m), 1466 (m), 1306 (m), 1204 (s), 1182 (s), 1157 (m), 1134 (s), 1070 (m), 932 (s),. HRMS (ESI): m/z calculated for C₇H₁₂N [M+H]⁺: 110.0964, found: 110.0973.

> a-hydroxypyrrolidine 2f⁸: To a solution of pyrrolidine 1f (0.25 mmol, 1.0 eq.) in CH₂Cl₂ (0.2 M) was added IBX (70 mg, 0.25 mmol, 1.0 eq.). The reaction mixture was stirred for 1 h at 60 °C in an oil bath. The reaction was cooled to rt, guenched with sat. ag. Na₂S₂O₄ (1 mL), washed with sat. aq. Na₂CO₃/brine (3:1, 10 mL), extracted with CH₂Cl₂ (2 x 10 mL), dried (Na₂SO₄) and concentrated in vacuo. Compound 2f was obtained in 48% yield, as determined with ¹H-NMR

spectroscopy after dissolving the crude product in CDCl₃ and adding 2,5-dimethylfuran (0.125 mmol, 0.5 eq.) as standard for NMR spectroscopy. ¹H NMR (500 MHz, CDCl₃) δ 4.72 – 4.66 (m, 1H, NHCH₂CH), 4.37 (dd, J = 7.1, 3.9 Hz, 1H, NHCHOCH), 3.33 (dd, J = 9.9, 6.1 Hz, 1H, NHCH₂), 3.26 (d, J = 4.1 Hz, 1H, NHCHO), 2.59 (dd, J = 9.8, 3.5 Hz, 1H, NHCH₂), 1.51 (s, 1H, CH₃), 1.32 (s, 1H, CH₃) ppm.¹³C NMR (126 MHz, CDCl₃) δ 113.6 (C*), 85.4 (CH), 80.8 (CH), 77.4 (CH), 52.5 (CH₂), 27.0 (CH₃), 25.2 (CH₃).

⁷ Signals of the trimerized product are visible in the NMR spectrum.

⁸ Full characterization was not possible due to instability of compound **2f** towards aqueous workup and silica gel chromatography. Proposed structure was determined with 2D-NMR spectroscopy.

Oxidative Ugi-type three-component reaction

General procedure 2:

To a solution of the pyrrolidine (0.5 mmol, 1.0 eq.) in CH_2CI_2 (0.5 M) were added IBX (140 mg, 0.5 mmol, 1.0 eq.), the carboxylic acid (0.75 mmol, 1.5 eq.) and the isocyanide (0.75 mmol, 1.5 eq.). The reaction mixture was stirred for 48 h at 60 °C (oil bath) in a closed vessel. The suspension was cooled to rt, quenched with sat. aq. $Na_2S_2O_4$ (2 mL), washed with sat. aq. Na_2CO_3 /brine (3:1, 20 mL), extracted with CH_2CI_2 (2 x 20 mL), dried (Na_2SO_4) and concentrated *in vacuo*. If necessary, the crude product was purified by flash chromatography or preparative thin layer chromatography. Note: Rotamers were observed in all NMR spectra.⁹

prolyl peptide 3a: Prepared from pyrrolidine **1a** (69 mg, 0.50 mmol, 1.0 eq.), benzoic acid (92 mg, 0.75 mmol, 1.5 eq.) and *t*-butyl isocyanide (87 μ L, 0.75 mmol, 1.5 eq.) according to general procedure **2**. Purification was achieved by flash chromatography (SiO₂) with an eluent gradient (4:1 \rightarrow 2:1 v/v *c*Hex:EtOAc), to obtain compound **3a** (99 mg, 0.29 mmol, 59%) as an off-white solid. **R**_f = 0.48 (*c*Hex:EtOAc 1:1 v/v). **mp**: 191.0 – 193.7 °C (decomposition).¹**H NMR** (500 MHz, CDCl₃): δ 7.45 – 7.32 (m, 5H,

Ph), 6.64 (s, 1H, N*H*), 6.20 (dd, J = 5.7 Hz, J = 3.0 Hz, 1 H, NCH₂CHCHC*H*=CH), 5.91 (dd, J = 5.7 Hz, J = 3.0 Hz, 1H, C(O)CHCHCHC*H*=CH), 4.43 (s, 1H, C(O)C*H*), 3.55 (dd, J = 11.7 Hz, J = 8.6 Hz, 1H, NC*H*₂), 3.45 – 3.38 (m, 1H, C(O)CHC*H*), 3.08 – 2.98 (m, 2H, NC*H*₂CHCHCH₂C*H*), 2.93 – 2.84 (m, 1H, NCH₂CHC*H*CH₂), 2.82 – 2.74 (m, 1H, NCH₂C*H*), 1.49 – 1.36 (m, 2H, CHC*H*₂CH), 1.32 (s, 9H C(C*H*₃)₃) ppm. ¹³C NMR (126 MHz, CDCI₃): δ 170.3 (C*), 169.7 (C*), 136.7 (C*), 134.9 (CH), 134.4 (CH), 130.1 (CH), 128.5 (CH), 126.6 (CH), 63.0 (CH), 52.1 (CH₂), 51.7 (CH₂), 47.1 (CH), 46.6 (CH), 45.6 (CH), 45.0 (CH), 28.8 (CH₃) ppm. IR (neat): v_{max} (cm⁻¹) = 3300 (w), 2935 (w), 1670 (m), 1599 (s), 1566 (s), 1535 (s), 1410 (s), 1389 (m), 1317 (m), 1223 (m), 1205 (m), 731 (m), 716 (s), 621 (m). HRMS (ESI): *m/z* calculated for C₂₁H₂₇N₂O₂ [M+H]⁺: 339.2067, found: 339.2056.

prolyl peptide 3b: Prepared from pyrrolidine **1a** (69 mg, 0.50 mmol, 1.0 eq.), 4nitrobenzoic acid (125 mg, 0.75 mmol, 1.5 eq.) and *t*-butyl isocyanide (87 µL, 0.75 mmol, 1.5 eq.) according to general procedure **2**. Purification was achieved by flash chromatography (SiO₂) with an eluent gradient (4:1 \rightarrow 2:1 v/v *c*Hex:EtOAc), to obtain compound **3b** (114 mg [12% CH₂Cl₂], 0.26 mmol, 52%) as an off-white solid. **R**_f = 0.40 (*c*Hex:EtOAc 1:1 v/v). **mp**: >150 °C decomposition. ¹H **NMR** (500 MHz, CDCl₃): δ 8.27 (d, J = 8.3 Hz, 2H,

C(NO₂)C*H*), 7.59 – 7.51 (m, 2H, C(NO₂)CHC*H*), 6.40 (s, 1H, N*H*), 6.22 (dd, J = 5.7 Hz, J = 3.0 Hz, 1H, CH=C*H*), 5.93 (dd, J = 5.8 Hz, J = 3.0 Hz, 1H, C*H*=CH), 4.37 (d, J = 2.0 Hz, 1H, NC*H*), 3.60 (dd, J = 11.7 Hz, J = 8.9 Hz, 1H, NC*H*₂), 3.43 –3.31 (m, 1H, NC*H*₂), 3.04 (s, 1H, C*H*), 2.97 – 2.89 (m, 2H, C*H*), 2.81 (s, 1H, C*H*), 1.51 (d, J = 8.6 Hz, 1H, CHC*H*₂CH), 1.42 (d, J = 8.6 Hz, 1H, CHC*H*₂CH), 1.34 (s, 9H, C(C*H*₃)₃) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 169.9 (C*), 167.4 (C*), 148.7 (C*), 142.6 (C*), 135.1 (CH), 134.5 (CH), 127.8 (CH), 124.0 (CH), 63.5 (CH), 52.2 (CH₂), 51.8 (CH₂), 51.4 (C*), 47.0 (CH), 46.7 (CH), 45.7 (CH), 28.9 (CH₃) ppm. IR (neat): v_{max} (cm⁻¹) =

⁹ Two sets of resonances were observed in all ¹H and ¹³C spectra, corresponding to different rotamers. Incomplete coalencence was observed at 100 °C, as depicted on S38.

3308 (m), 2976 (m), 2932 (m), 1599 (m), 1520 (s), 1437 (m), 1340 (s), 1313 (m), 1227 (m), 1209 (m), 1016 (w), 854 (m), 831 (m), 602 (m). **HRMS** (ESI): m/z calculated for C₂₁H₂₆N₃O₄ [M+H]⁺: 384.1918, found: 384.1908.

prolyl peptide 3c: Prepared from pyrrolidine **1a** (69 mg, 0.50 mmol, 1.0 eq.), 2-(4-methoxyphenyl)acetic acid (126 mg, 0.75 mmol, 1.5 eq.) and *t*-butyl isocyanide (87 μ L, 0.75 mmol, 1.5 eq.) according to general procedure **2**. Purification was achieved by flash chromatography (SiO₂) with an eluent gradient (10:1 \rightarrow 1:1 v/v cHex:EtOAc), to obtain compound **3c** (103 mg,

0.28 mmol, 56%) as an off-white solid. $\mathbf{R}_{f} = 0.34$ (*c*Hex:EtOAc 1:1 v/v). **mp**: 133.7 – 140.9 °C (decomposition). ¹**H NMR** (500 MHz, CDCl₃): δ 7.12 (d, J = 9.0 Hz, 2H, C(OMe)CHC*H*), 6.84 (d, J = 8.0 Hz, 2H, C(OMe)C*H*), 6.10 – 6.03 (m, 1H, CH=C*H*), 5.74 – 5.63 (m, 1H, C*H*=CH), 4.14 (s, 1H, NC*H*), 3.78 (s, 3H, *H*₃CO), 3.52 – 3.45 (m, 2H, C*C*H*₂), 3.36 – 3.22 (m, 2H, NC*H*₂, C*H*), 3.24 – 3.15 (m, 1H, NC*H*₂), 2.94 (s, 1H, C*H*), 2.91 – 2.87 (m, 1H, C*H*), 2.83 (s, 1H, C*H*), 1.66 (s, 1H, N*H*), 1.39 – 1.34 (m, 1H, CHC*H*₂CH), 1.31 – 1.25 (m, 10H, C(C*H*₃)₃, CHC*H*₂CH) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 170.5 (C*), 170.0 (C*), 158.7 (C*), 135.2 (CH), 134.5 (CH), 129.9 (CH), 126.3 (C*), 114.2 (CH), 63.2 (CH), 55.4 (CH₃), 51.7 (CH₂), 51.1 (C*), 50.0 (CH₂), 47.1 (CH), 46.6 (CH), 45.8 (CH), 45.2 (CH), 41.8 (CH₂), 28.8 (CH₃) ppm. IR (neat): v_{max} (cm⁻¹) = 3283 (w), 2934 (w), 1647 (s), 1626 (s), 1516 (m), 1389 (w), 1290 (w), 1277 (w), 1250 (s), 1219 (m), 1024 (m), 856 (w), 820 (m), 735 (m). HRMS (ESI): *m/z* calculated for C₂₃H₃₁N₂O₃ [M+H]⁺: 383.2329, found: 383.2331.

prolyl peptide 3d: Prepared from pyrrolidine **1b** (73 mg, 0.50 mmol, 1.0 eq.), benzoic acid (92 mg, 0.75 mmol, 1.5 eq.) and 1,3-dimethylbenzene isocyanide (98 mg, 0.75 mmol, 1.5 eq.) according to general procedure **2**. Purification was achieved by flash chromatography (SiO₂) with an eluent gradient (100:1 \rightarrow 5:1 v/v *c*Hex:EtOAc), to obtain compound **3d** (118 mg, 0.30 mmol, 61%) as an off-white solid. **R**_f = 0.64 (*c*Hex:EtOAc 1:1 v/v). **mp**: 77.7 – 91.8 °C. ¹H **NMR** (500 MHz,

CDCl₃): δ 8.09 (bs, 1H, N*H*), 7.59 – 7.37 (m, 5H, *Ph*), 7.12 – 7.01 (m, 3H, C(CH₃)C*H*C*H*C*H*), 5.22 (s, 1H, NC*H*), 3.62 (dd, *J* = 11.9 Hz, *J* = 8.4 Hz, 1H, NC*H*₂), 3.49 (d, *J* = 12.0 Hz, 1H, NC*H*₂), 3.30 – 3.17 (m, 1H, NCHC*H*), 2.78 – 2.66 (m, 1H, NCH₂C*H*), 2.42 (s, 1H, NCHC*H*CH₂CH), 2.33 – 2.14 (m, 7H, C*H*₃, C*H*₃, NCH₂CHC*H*C*H*₂), 1.72 – 1.19 (m, 6H, C*H*₂CHC*H*₂C*H*₂) ppm. ¹³**C NMR** (126 MHz, CDCl₃): δ 169.57 (C*), 169.58 (C*), 136.1 (C*), 135.2 (C*), 133.9 (C*), 130.5 (CH), 128.6 (CH), 128.3 (CH), 127.3 (CH), 126.8 (CH), 60.6 (CH), 50.3 (CH₂), 44.4 (CH), 44.3 (CH), 42.0 (CH₂), 41.5 (CH), 41.0 (CH), 23.3 (CH₂), 22.9 (CH₂), 18.6 (CH₃) ppm. **IR** (neat): v_{max} (cm⁻¹) = 3263 (br), 2953 (w), 1684 (s), 1609 (s), 1516 (s), 1447 (s), 1420 (s), 1398 (s), 1375 (s), 1296 (w), 1175 (m), 881 (m), 766 (s), 721 (s), 698 (s). **HRMS** (ESI): *m/z* calculated for C₂₅H₂₉N₂O₂ [M+H]⁺: 389.2224, found: 389.2221.

prolyl peptide 3e: Prepared from pyrrolidine **1b** (73 mg, 0.50 mmol, 1.0 eq.), acetic acid (43 μ L, 0.75 mmol, 1.5 eq.) and 1,3-dimethylbenzene isocyanide (98 mg, 0.75 mmol, 1.5 eq.) according to general procedure **2**. Purification was achieved by preparative thin layer chromatography (SiO₂, *c*Hex:EtOAc 1:1 v/v), to obtain compound **3e** (70 mg, 0.22 mmol, 43%) as an off-white solid. <u>Two-step procedure:</u> To

a solution of pyrrolidine 1b (72 mg, 0.5 mmol, 1.0 eq.) in CH₂Cl₂ (0.2 M) were added IBX (140 mg, 0.5 mmol,

1.0 eq.). The reaction mixture was stirred for 1 h at 60 °C (oil bath) in a closed vessel. The suspension was cooled to rt and acetic acid (43 µL, 0.75 mmol, 1.5 eq.) and 1,3-dimethylbenzene isocyanide (98 mg, 0.75 mmol, 1 eq.) were added, after which stirring was proceeded for 23 h at 60 °C (oil bath) in a closed vessel. The suspension was cooled to rt, quenched with sat. aq. Na₂S₂O₄ (2 mL), washed with sat. aq. Na₂CO₃/brine (3:1, 20 mL), extracted with CH₂Cl₂ (2 x 20 mL), dried (Na₂SO₄) and concentrated in vacuo. Purification was achieved by preparative thin layer chromatography (SiO₂, cHex:EtOAc 1:1 v/v), to obtain compound 3e (88 mg, 0.27 mmol, 54%) as an off-white solid. **R**_f = 0.73 (*c*Hex:EtOAc 1:1 v/v). **mp**: 171.6 – 179.5 °C. ¹H **NMR** (500 MHz, CDCl₃): δ 8.18 (bs, 1H, NH), 7.16 - 7.00 (m, 3H, Ar), 4.89 (s, 1H, NCH), 3.62 (d, J = 11.5 Hz, 1H, NCH₂), 3.47 (dd, J = 11.7 Hz, J = 8.3 Hz, 1H, NCH₂), 3.18 (dd, J = 10.9 Hz, J = 4.9 Hz, 1H, NCHCH), 2.81 – 2.68 (m, 1H, NCH₂CH), 2.44 - 2.34 (m, 1H, NCHCHCH2), 2.34 - 2.30 (m, 1H, NCH2CHCH2), 2.18 (d, J = 5.1 Hz, 6H, CH3), 1.60 -1.58 (m, 1H, CHCH2CH), 1.54 - 1.49 (m, 1H, CHCH2CH), 1.45 - 1.39 (m, 2H, CH2CH2), 1.35 - 1.27 (m, 2H, CH₂CH₂) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 169.8 (C*), 169.6 (C*), 135.2 (C*), 134.0 (C*), 128.2 (CH), 127.1 (CH), 77.4 (CH), 60.2 (CH), 48.4 (CH₂), 44.6 (CH), 43.8 (CH), 42.0 (CH₂), 41.5 (CH), 40.9 (CH), 23.3 (CH₂), 22.9 (CH_2) , 22.6 (CH_3) , 18.5 (CH_3) ppm. **IR** (neat): v_{max} (cm⁻¹) = 3309 (w), 1647 (s), 1506 (m), 1471 (m), 1406 (s), 1375 (m), 1192 (m), 1034 (w), 847 (w), 773 (m), 640 (m). HRMS (ESI): m/z calculated for C₂₀H₂₆N₂NaO₂ [M+Na]⁺: 349.1886, found: 349.1879.

prolyl peptide 3f: Prepared from pyrrolidine **1e** (56 mg, 0.50 mmol, 1.0 eq.), benzoic acid (92 mg, 0.75 mmol, 1.5 eq.) and cyclohexyl isocyanide (95 μ L, 0.75 mmol, 1.5 eq.) according to general procedure **2**. Purification was achieved by flash chromatography (SiO₂) with an eluent gradient (100:1 \rightarrow 8:1 v/v *c*Hex:EtOAc), to obtain compound **3f** (96 mg, 0.27 mmol, 54%) as a yellow oil. **R**_f = 0.45 (*c*Hex:EtOAc 1:1 v/v). ¹**H NMR** (500 MHz, CDCl₃): δ 7.52 – 7.32 (m, 5H, *Ph*), 6.73

(d, J = 8.3 Hz, 1H N*H*), 4.65 – 4.54 (m, 1H, C*H*C(O)), 3.85 – 3.67 (m, 2H, NC*H*₂, NCHC*H*), 3.29 (d, J = 11.3 Hz, 1H, NC*H*₂), 3.24 – 3.13 (m, 1H, NCH₂C*H*), 2.75 – 2.68 (m, 1H, C(O)NHC*H*), 2.02 – 1.51 (m, 10H, C*H*₂)¹⁰, 1.42 – 1.03 (m, 6H, C*H*₂)¹⁰ ppm. ¹³**C NMR** (126 MHz, CDCl₃): δ 170.6 (C*), 170.1 (C*), 136.3 (C*), 130.3 (CH), 128.6 (CH), 127.0 (CH), 66.6 (CH), 56.0 (CH₂), 48.3 (CH), 44.3 (CH), 43.4 (CH), 33.1 (CH₂), 32.8 (CH₂), 26.3 (CH₂), 25.6 (CH₂), 24.7 (CH₂) ppm. **IR** (neat): v_{max} (cm⁻¹) = 3302 (br), 2928 (s), 1616 (s), 1541 (s), 1522 (m), 1418 (s), 1225 (w), 891 (w), 725 (m), 698 (s). **HRMS** (ESI): *m/z* calculated for C₂₁H₂₉N₂O₂ [M+H]⁺: 341.2224, found: 341.2207.

prolyl peptide 3g: Prepared from pyrrolidine **1e** (56 mg, 0.50 mmol, 1.0 eq.), benzoic acid (92 mg, 0.75 mmol, 1.5 eq.) and benzyl isocyanide (86 μ L, 0.75 mmol, 1.5 eq.) according to general procedure **2**. Purification was achieved by flash chromatography (SiO₂) with an eluent gradient (100:1 \rightarrow 2:1 v/v cHex:EtOAc) and by preparative thin layer chromatography (SiO₂, cHex:EtOAc 1:1 v/v), to obtain compound **3g** (72 mg, 0.21 mmol, 41%) as a yellow oil.

¹⁰ Signals are overlapped with the signals of the rotamers.

R_f = 0.35 (*c*Hex:EtOAc 1:1 v/v). ¹**H NMR** (500 MHz, CDCl₃): δ 7.46 – 7.09 (m, 10H, *Ph*)¹¹, 4.63 (s, 1H, C*H*C(O)), 4.47 – 4.31 (m, 2H, NHC*H*₂)¹⁰, 3.67 (dd, *J* = 11.3Hz, *J* = 7.4 Hz, 1H, NC*H*₂), 3.26 (dd, *J* = 11.2 Hz, *J* = 2.8 Hz, 1H, NC*H*₂), 3.22 – 3.12 (m, 1H, NCH*CH*), 2.78 – 2.58 (m, 1H, NCH₂*CH*), 1.97 – 1.16 (m, 6H, C*H*₂C*H*₂C*H*₂)¹⁰ ppm. ¹³**C NMR** (126 MHz, CDCl₃): δ 171.1 (C*), 170.7 (C*), 138.5 (C*), 136.1 (C*), 128.5 (CH), 128.4 (CH), 127.6 (CH), 127.4 (CH), 127.2 (CH), 127.1 (CH), 66.5 (CH), 56.0 (CH₂), 44.6 (CH), 43.6 (CH₂), 43.5 (CH), 33.1 (CH₂), 32.7 (CH₂), 31.1 (CH₂), 26.3 (CH₂), 25.7 (CH₂) ppm. **IR** (neat): v_{max} (cm⁻¹) = 3290 (br), 2945 (w), 1616 (s), 1541 (m), 1497 (m), 1447 (m), 1418 (s), 1361 (w), 1228 (m), 721 (m), 696 (s), 677 (m), 663 (m). **HRMS** (ESI): *m/z* calculated for C₂₂H₂₅N₂O₂ [M+H]⁺: 349.1911, found: 349.1895.

prolyl peptide 3h: Prepared from pyrrolidine **1f** (72 mg, 0.50 mmol, 1.0 eq.), cinnamic acid (109 mg, 0.75 mmol, 1.5 eq.) and 1-(isocyanomethyl)-3,5-dimethoxybenzyl (117 μ L, 0.75 mmol, 1.5 eq.) according to general procedure **2**. Purification was achieved by flash chromatography (SiO₂) with an eluent gradient (20:1 \rightarrow 1:2 v/v *c*Hex:EtOAc) and by preparative thin layer chromatography (SiO₂, *c*Hex:EtOAc 1:1 v/v), to obtain compound **3h** (110 mg [3% CH₂Cl₂],

0.23 mmol, 45%) as a yellow solid. $\mathbf{R}_{f} = 0.34$ (*c*Hex:EtOAc 1:1 v/v). mp: 52.1 – 61.5 °C. ¹H NMR (500 MHz, CDCl₃): δ 7.71 (d, J = 15.4 Hz, 1H, C(O)C*H*=C*H*), 7.53 (dd, J = 6.5 Hz, J = 3.0 Hz, 2H, *Ph*), 7.43 – 7.35 (m, 3H, *Ph*), 7.12 (d, J = 8.0 Hz, 1H, CH₂C*C*H*), 6.72 (d, J = 15.5 Hz, 1H, C(O)C*H*=C*H*), 6.43 – 6.37 (m, 2H, CH₂C*C*H*C(OMe)C*H*), 5.13 (d, J = 5.7 Hz, 1H, NC*H*), 4.95 – 4.89 (m, 2H, CHO), 4.41 – 4.33 (m, 1H, NHC*H*₂), 4.31 – 4.23 (m, 1H, NHC*H*₂), 4.00 (d, J = 11.9 Hz, 1H, NC*H*₂), 3.81 (s, 3H, OC*H*₃), 3.77 (s, 3H, OC*H*₃), 3.72 – 3.66 (m, 1H, NC*H*₂), 1.75 (bs, 1H, N*H*), 1.41 (s, 3H, C*C*H*₃), 1.32 (s, 3H, C*C*H*₃) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 168.7 (C*), 165.8 (C*), 160.6 (C*), 158.6 (C*), 143.7 (CH), 134.9 (C*), 130.2 (CH), 129.0 (CH), 128.1 (CH), 118.6 (C*), 117.2 (CH), 112.0 (C*), 103.9 (CH), 98.6 (CH), 80.6 (CH), 79.8 (CH), 65.7 (CH), 55.5 (CH₃), 53.2 (CH₂), 39.1 (CH₂), 26.9 (CH₃), 24.9 (CH₃) ppm. IR (neat): v_{max} (cm⁻¹) = 3294 (br), 2935 (w), 1647 (s), 1610 (m), 1578 (w), 1508 (s), 1418 (s), 1373 (m), 1261 (m), 1205 (s), 1155 (s), (m), 1034 (m), 974 (m), 764 (m), 702 (m), 565 (w). HRMS (ESI): *m/z* calculated for C₂₆H₃₁N₂O₆ [M+H]⁺: 467.2177, found: 467.2167.

prolyl peptide 3i (major) and prolyl peptide 3i' (minor): Prepared from pyrrolidine 1c (40 mg [87% pure], 0.25 mmol, 1.0 eq.), benzoic acid (46 mg, 0.38 mmol, 1.5 eq.) and *t*-butyl isocyanide (44 μL, 0.38 mmol, 1.5 eq.) according to general procedure 2. Purification was achieved by preparative thin layer chromatography (SiO₂,

*c*Hex:EtOAc 1:3, v/v), to obtain the compound **3i** (32 mg, 0.09 mmol, 38%) as an off-white solid and the diastereoisomer **3i**' (16 mg, 0.05 mmol, 19%) as an off-white solid in a 2:1 diastereoisomeric ratio. **3i**: $\mathbf{R}_{f} = 0.14$ (*c*Hex:EtOAc 1:1 v/v). **mp**: 176.8 – 185.3 °C. ¹**H NMR** (500 MHz, CDCl₃): δ 7.49 – 7.38 (m, 5H, *Ph*), 6.93 (s, 1H, N*H*), 6.42 (dd, J = 6.1 Hz, J = 1.9 Hz, 1H, NCH₂CHCHCH=CH), 6.35 (dd, J = 1.5 Hz, J = 1.5 Hz, 1H,

¹¹ Signals are overlapped with the signals of the rotamers and CHCl₃.

NCH₂CHCHCH=C*H*), 4.95 – 4.84 (m, 2H, NCH₂CHC*H*O, NC*H*), 4.65 (s, 1H, NCHCHC*H*O), 3.73 (dd, *J* = 11.9 Hz, *J* = 8.3 Hz, 1H, NC*H*₂), 3.52 (dd, *J* = 12.0 Hz, *J* = 1.9 Hz, 1H, NC*H*₂), 2.98 (d, *J* = 7.1 Hz, 1H, NCHC*H*), 2.42 (t, *J* = 7.8 Hz, 1H, NCH₂C*H*), 1.35 (s, 9H, C(C*H*₃)₃) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 170.1 (C*), 169.8 (C*), 137.1 (CH), 136.6 (CH), 136.2 (CH), 130.3 (CH), 128.6 (CH), 127.0 (C*), 84.0 (CH), 83.7 (CH), 64.1 (CH), 52.9 (CH₂), 51.4 (C*), 44.7 (CH), 44.3 (CH), 28.8 (CH₃) ppm. **IR** (neat): v_{max} (cm⁻¹) = 3292 (w), 2966 (w), 1676 (s), 1601 (s), 1570 (s), 1541 (s), 1447 (m), 1425 (s), 1356 (m), 1281 (w), 1259 (w), 1223 (m), 1030 (w), 941 (w), 903 (s), 868 (w), 847 (w), 719 (s), 692 (s), 665 (s), 619 (m). **HRMS** (ESI): *m/z* calculated for C₂₀H₂₅N₂O₃ [M+H]⁺: 341.1860, found: 341.1849. **3i**': **R**_f = 0.10 (*c*Hex:EtOAc 1:1 v/v). **mp**: 184.0 – 190.0 °C (decomposition). ¹**H** NMR (500 MHz, DMSO-*d*₆): δ 7.59 – 7.19 (m, 5H, *Ph*), 6.50 – 6.31 (m, 2H, *HC*=*CH*), 4.86 (s, 1H, *CH*O), 4.78 – 4.59 (m, 2H, NC*H*, *CH*O), 3.53 (t, *J* = 9.7 Hz, 1H), 3.40 – 3.30 (m, 1H, NC*H*₂), ¹² 2.68 – 2.56 (m, 1H, NHCH₂C*H*), 2.54 – 2.40 (m, 1H, NCHC*H*), ¹³ 1.30 (s, 9H, C(*CH*₃)₃,) ppm. ¹⁴ 1³**C** NMR (126 MHz, DMSO-*d*₆): δ 168.4 (C*), 168.0 (C*), 137.2 (CH), 137.1 (C*), 136.7 (CH), 130.3 (CH), 128.7 (CH), 127.6 (CH), 79.4 (CH, CH), 60.5 (CH), 53.0 (CH₂), 50.7 (C*), 47.2 (CH), 45.4 (CH), 29.1 (CH₃) ppm. **IR** (neat): v_{max} (cm⁻¹) = 2974 (w), 1670 (s), 1624 (s), 1418 (s), 1313 (w), 1223 (m), 1142 (m), 986 (m), 951 (m), 906 (m), 822 (w), 661 (m). **HRMS** (ESI): *m/z* calculated for C₂₀H₂₅N₂O₃ [M+H]⁺: 341.1860, found: 341.1850.

prolyl peptide 3j: To a solution of 3,3-dimethylindoline (37 mg, 0.25 mmol, 1.0 eq.) in DMSO (0.5 M) were added IBX (70 mg, 0.25 mmol, 1.0 eq.), furoic acid (43 mg, 0.38 mmol, 1.5 eq.) and *i*-propyl isocyanide (35 μ L, 0.38 mmol, 1.5 eq.). The reaction mixture was stirred for 48 h at rt. The suspension was quenched with sat. aq. Na₂S₂O₄ (2 mL), washed with sat. aq. Na₂CO₃/brine (3:1, 20 mL), extracted with CH₂Cl₂ (2 x 20 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Purification was achieved by flash

chromatography (SiO₂) with an eluent gradient (100:1 → 5:1 v/v cHex:EtOAc) and by preparative thin layer chromatography (SiO₂, *c*Hex:EtOAc 1:1, v/v), to obtain compound **3j** (32 mg [13% CH₂Cl₂], 0.09 mmol, 35%) as a yellow solid. **R**_f = 0.32 (*c*Hex:EtOAc 1:1 v/v). **mp:** 63.2 – 73.8 °C. ¹H **NMR** (500 MHz, CDCl₃): δ 8.17 (d, *J* = 8.2 Hz, 1H, NC*C*H*), 7.59 – 7.55 (m, 1H, OC*H*CH*CH*), 7.31 – 7.27 (m, 2H, OC*H*CH*CH*, NC*CH*CH*), 7.20 – 7.13 (m, 2H, NC*C*C*H*C*H*), 6.54 (dd, *J* = 3.5 Hz, *J* = 1.8 Hz, 1H, OCH*CH*), 5.43 – 5.35 (m, 1H, NH) 4.95 (s, 1H, NC*H*), 4.07 – 3.93 (m, 1H, NHC*H*), 1.43 (s, 3H, C*C*H*₃), 1.40 (s, 3H, C*C*H*₃), 0.94 (dd, *J* = 13.5 Hz, *J* = 6.5 Hz, 6H, CH(C*H*₃)₂) ppm. ¹³C **NMR** (126 MHz, CDCl₃): δ 168.6 (C*), 158.1 (C*), 147.5 (C*), 145.3 (CH), 141.1 (C*), 139.9 (C*), 128.3 (CH), 125.5 (CH), 122.5 (CH), 118.4 (CH), 118.0 (CH), 112.2 (CH), 75.0 (CH), 45.0 (C*), 41.4 (CH), 32.7 (CH₃), 29.8 (C*), 22.9 (CH₃), 22.6 (CH₃), 22.4 (CH₃) ppm. **IR** (neat): v_{max} (cm⁻¹) = 3285 (br), 2966 (w), 1653 (s), 1558 (m), 1477 (s), 1456 (s), 1394 (s), 1366 (s), 1283 (m), 1171 (w), 885 (w), 750 (s), 594 (w). **HRMS** (ESI): *m/z* calculated for C₁₉H₂₃N₂O₃ [M+H]⁺: 327.1703, found: 327.1707.

¹² Signal overlaps with H_2O peak. The H_2O was an impurity in the solvent MeOD- d_4 .

¹³ Signal overlaps with residual solvent peak of MeOD-*d*₄.

¹⁴ Signals are overlapped with the signals of the rotamers.

Oxidative aza-Friedel-Crafts reaction

General procedure 3:

To a solution of the pyrrolidine (0.25 mmol, 1.0 eq.) in CH_2CI_2 (0.25 M) were added IBX (70 mg, 0.25 mmol, 1.0 eq.). The reaction mixture was stirred for 1 h at 60 °C (oil bath) in a closed vessel. The suspension was cooled to rt and trifluoroacetic acid (38 µL, 0.5 mmol, 2.0 eq.) and the pyrrole or indole (0.5 mmol, 2.0 eq.) were added. The reaction mixture was stirred for 1 h at 60 °C (oil bath) in a closed vessel. The suspension was cooled to rt, quenched with sat. aq. Na₂S₂O₄ (2 mL), washed with sat. aq. Na₂CO₃/brine (3:1, 20 mL), extracted with CH₂Cl₂ (2 x 20 mL), dried (Na₂SO₄) and concentrated *in vacuo*. If necessary, the crude product was purified by flash chromatography.

pyrrolyl pyrrolidine 4a: Prepared from pyrrolidine **1a** (33 mg, 0.25 mmol, 1.0 eq.) and pyrrole (35 μ L, 0.50 mmol, 2.0 eq.) according to general procedure **3**. Purification was achieved by flash chromatography (SiO₂) with an eluent gradient (100:0 \rightarrow 20:1 v/v CH₂Cl₂:MeOH), to obtain compound **4a** (24 mg, 0.12 mmol, 48%) as a grey solid. **R**_f = 0.32

(CH₂Cl₂:MeOH 20:1 v/v). **mp**: > 86.3 °C decomposition. ¹**H NMR** (500 MHz, CDCl₃): δ 9.04 (bs, 1H, C*N*H*), 6.72 – 6.64 (m, 1H,C*NHC*H*), 6.32 – 6.21 (m, 2H, *H*C=C*H*), 6.20 – 6.14 (m, 1H, C*NHCHC*H*), 6.05 – 5.95 (m, 1H, C*NHCHC*H*), 3.82 (d, *J* = 4.5 Hz, 1H, C*C*H*NH), 3.06 (dt, *J* = 9.0 Hz, *J* = 4.4 Hz, 1H, NHCHC*H*), 3.00 – 2.95 (m, 1H, CHCH₂C*H*), 2.93 – 2.78 (m, 3H, C*H*CH₂CH, NHC*H*₂C*H*), 2.50 (dd, *J* = 11.8 Hz, *J* = 4.6 Hz, 1H, NHC*H*₂), 2.29 – 2.06 (bs, 1H, CH₂N*H*), 1.60 (dt, *J* = 8.2 Hz, *J* = 1.8 Hz, 1H, CHC*H*₂CH), 1.52 (dt, *J* = 8.2 Hz, *J* = 1.5 Hz, 1H, CHC*H*₂CH) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 155.5 (C*), 136.5 (CH), 116.7 (CH), 108.5 (CH), 104.4 (CH), 58.7 (CH), 54.7 (CH), 53.6 (CH₂), 49.0 (CH₂), 48.7 (CH), 46.0 (CH), 45.8 (CH) ppm. IR (neat): v_{max} (cm⁻¹) = 3072 (w), 2934 (m), 2862 (m), 1448 (w), 1414 (w), 1028 (w), 918 (m), 879 (m), 833 (m), 725 (s), 563 (w). HRMS (ESI): *m/z* calculated for C₁₃H₁₇N₂ [M+H]⁺: 201.1386, found: 201.1394.

pyrrolyl pyrrolidine 4b: Prepared from pyrrolidine **1b** (38 mg, 0.26 mmol, 1.0 eq.) and 5-methoxy-1*H*-indole (77 µL, 0.52 mmol, 2.0 eq.) according to general procedure **3**. Purification was achieved by flash chromatography (SiO₂) with an eluent gradient (100:0 \rightarrow 20:1 v/v CH₂Cl₂:MeOH), to obtain compound **4b** (44 mg, 0.16 mmol, 60%) as a dark yellow oil. **R**_f = 0.66 (CH₂Cl₂:MeOH 50:1 v/v). ¹**H NMR** (500 MHz, CDCl₃): δ 7.94

(bs, 1H, C*N*H*), 7.23 (d, J = 8.7 Hz, 1H, NHC*C*H*), 7.09 (s, 1H, C*C*H*C(OMe)), 6.98 (s, 1H, C*NHC*H*C*), 6.85 (d, J = 9.0 Hz, 1H, C(OMe)C*H*), 4.45 (s, 1H, CH₂NHC*H*), 3.86 (s, 3H, OC*H*₃), 3.03 – 2.91 (m, 2H, NHC*H*₂), 2.78 – 2.54 (m, 2H, NHCH₂C*H*, NHCHC*H*), 2.46 – 2.36 (m, 1H, NHCH₂CHCHCH₂C*H*), 2.27 – 2.19 (m, 1H, NHCH₂CHC*H*CH₂), 2.01 (bs, 1H, CH₂N*H*), 1.80 (t, J = 9.4 Hz, 1H, C*H*₂), 1.71 – 1.36 (m, 5H, C*H*₂CHC*H*₂C*H*₂) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 154.0 (C*), 131.9 (C*), 126.8 (C*), 121.4 (CH), 119.9 (C*), ¹⁵ 112.3 (CH), 112.0 (CH), 101.0 (CH), 56.1 (CH), 55.0 (CH₃), 52.0 (CH), 46.4 (CH₂), 45.9 (CH), 43.4 (CH₂), 40.9 (CH), 40.8 (CH), 23.6 (CH₂), 23.1 (CH₂) ppm. **IR** (neat): v_{max} (cm⁻¹) = 2941 (w), 1481 (m), 1437 (m), 1290 (w),

¹⁵ Very weak signal assigned with HMBC.

1209 (s), 1171 (m), 1101 (w), 1051 (w), 1028 (m), 924 (m), 795 (m), 733 (m), 640 (m), 606 (m). HRMS (ESI): m/z calculated for $C_{18}H_{23}N_2O[M+H]^+$: 283.1805, found: 283.1801.

pyrrolyl pyrrolidine 4c: Prepared from pyrrolidine 1f (36 mg, 0.25 mmol, 1.0 eq.) and pyrrole (35 µL, 0.50 mmol, 2.0 eq.) according to general procedure 3. Purification was achieved by flash chromatography (SiO₂) with an eluent gradient (100:0 \rightarrow 20:1 v/v CH₂Cl₂:MeOH), to obtain compound 4c (27 mg, 0.13 mmol, 52%, dr > 13:1) as a brown solid. $R_f = 0.92$ (CH₂Cl₂:MeOH 50:1 v/v). mp: 112.0 – 124.2 °C. ¹H NMR (500 MHz, CDCl₃): δ 8.80 (bs, 1H, NHC*), 6.77 - 6.65 (m, J = 3.1 Hz, J = 1.7 Hz, 1H, C*NHCH), 6.16 (q, J = 2.9 Hz, 1H, C*NHCHCH), 6.05 - 6.00 (m, 1H, C*NHCHCHCH), 4.95 (d, J = 5.4 Hz, 1H, NHCHCH), 4.67 (dd, J = 5.4 Hz, J = 3.7 Hz, 1H, NHCH₂CH), 4.34 (s, 1H, NHCHC*), 3.03 (d, J = 13.6, 1H, NHCH₂), 2.63 (dd, J = 13.6, 3.9 Hz, 1H, NHCH₂), 2.47 (bs, 1H, CH₂N*H*), 1.50 (s, 3H, C*C*H*₃), 1.36 (s, 3H, C*C*H*₃) ppm. ¹³C NMR (126 MHz, CDCl₃): δ 129.3 (C*), 116.7 (CH), 110.6 (C*), 108.8 (CH), 105.1 (CH), 86.0 (CH), 82.3 (CH), 62.5 (CH), 52.6 (CH₂), 26.1 (CH₃), 23.9 (CH₃) ppm. IR (neat): v_{max} (cm⁻¹) = 3265 (w), 1381 (w), 1367 (w), 1204 (m), 1090 (m), 1045 (m), 1030 (s), 947 (w), 891 (m), 881 (m), 866 (m), 851 (m), 710 (s), 604 (s). **HRMS** (ESI): *m/z* calculated for C₁₈H₂₃N₂O [M+H]⁺: 209.1285, found:

209.1279.

pyrrolyl pyrrolidine 4d: Prepared from pyrrolidine 1e (29 mg, 0.25 mmol, 1.0 eq.) and indole (60 mg, 0.50 mmol, 2.0 eq.) according to general procedure 3. Purification was achieved by flash chromatography (SiO2) with an eluent gradient (100:0 - 20:1 v/v CH₂Cl₂:MeOH), to obtain compound 4d (43 mg, 0.19 mmol, 75%) as a brown solid. **R**_f = 0.10 (CH₂Cl₂:MeOH 20:1 v/v). **mp**: > 69.8 °C decomposition.¹**H NMR** (500 MHz, CDCl₃) δ 8.22 (bs, 1H, NHC*), 7.74 (d, J = 7.9 Hz, 1H, NHC*C*CH), 7.35 (d, J = 8.0 Hz, 1H, NHC*CH), 7.23 - 7.06 (m, 3H, CHNHC*CHCHCH), 3.92 (d, J = 7.1 Hz, 1H, NHCHCH), 3.40 (dd, J = 10.7, 8.0 Hz, 1H, NHCH₂), 2.89 - 2.73 (m, 2H, NHCH₂CHCH), 2.55 (dd, J = 10.7, 7.1 Hz, 1H, NHCH₂), 2.40 (bs, 1H, NHCH₂), 1.74 - 1.43 (m, 6H, CH₂CH₂CH₂) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 136.7 (C*), 126.6 (C*), 122.2 (CH), 122.0 (CH), 119.6 (CH), 119.6 (CH), 117.1 (C*), 111.5 (CH), 63.1 (CH), 53.7 (CH₂), 50.8 (CH), 44.3 (CH), 32.1 (CH₂), 31.4 (CH₂), 25.5 (CH_2) ppm. **IR** (neat): v_{max} (cm⁻¹) = 2930 (w), 2860 (w), 1456 (w), 1448 (w), 1339 (w), 735 (s), 608 (m), 426 (m). **HRMS** (ESI): m/z calculated for $C_{15}H_{19}N_2 [M+H]^+$: 227.1543, found: 227.1542.

Structural analysis of compound 2f¹⁶

¹⁶ Relative stereochemistry at the hemiaminal stereocenter undetermined

Copies of NMRs

S21

90

80

70 60

50

40 30 20

120 110 100 f1 (ppm)

140 130

160 150

210 200 190

180 170

--25000

0

10

Figure S1. High temperature NMR spectra of **3b** in DMSO- d_6 showing incomplete coalencence of the rotameric signals.

90 80 70

120 110 100 f1 (ppm)

η

140 130

210 200

190 180 170 160 150

-40000 -30000 -20000 -10000 -0

--10000 --20000 --30000 --40000

T

60 50 40 30 20 10 0

