Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Irreversible electron attachment - a key to DNA damage by solvated

electrons in aqueous solution

K. Westphal, ^{a, †}, J. Wiczk, ^{a, †}, J. Miloch, ^a G. Kciuk, ^b K. Bobrowski^b and J. Rak *,^a

^aFaculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland

^bCentre of Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195

Warsaw, Poland

+ these authors contributed equally

* e-mail: janusz.rak@ug.edu.pl

Table of contents

Scheme S1	S2
Table S1	S3
Table S2	S4
Table S3	S5
Table S4	S6
Figure S1	S7
Figure S2	S8
Figure S3	

Scheme S1 Digestion of a TXT trimer by Micrococcal (MC) or P1 nuclease (P1).

Table S1 Retention times (for HPLC conditions see the *Chromatography* section) for dimers (pXT/TXp) and monomers (pT/Tp) obtained by enzymatic digestion with Micrococcal Nuclease (A) and P1 nuclease (B)

А

	Retention	time [min.]
Name	_{HO} T _P	ноТХр
TAT	7,3-9,3	10,8-11,4
TCT	-	10,3-10,9
TTT	7,2-7,8	11,7-12,3
TUT	-	11,4-12,1
TGT	-	9,4-10,0

В

Retention time [min.]								
Name	_Р Т _{ОН}	PXTOH						
TAT	5,0-5,8	-						
ТСТ	4,9-5,5	-						
TTT	5,1-5,8	-						
TUT	5,1-5,8	9,8-11,2						
TGT	-	-						

	dT=O	_{но} Т _{он}	_Р Т _{он}	_{HO} T _P	_{HO} TX=O	_{HO} TX _P	_{но} ХТ _{он} / _{но} ТХ _{он}	_Р ХТ _{ОН}	T _{HO} XT	T _{oxo} XT	abasic site	ТХТ	ТҮТ
TBrUT	+	+	+	+	+	+	+	+	+	-	+	+	+
TBrCT	+	+	+	+	+	+	+	+	+	-	+	+	+
TBrAT	-	+	+	+	-	+	+	+	-	-	-	+	+
TBrGT	-	+	+	+	-	+	+	+	-	+	-	+	+

Table S2 Stable fragments obtained after gamma irradiation of modified trimmers in 30 mM

 Tris

ТҮТ	ТХТ	dihydro- TXT	_Р ХТ _{ОН}	_{но} ХТ _{он} / _{но} ТХ _{он}	_Р Т _{он} / _{НО} Тр	_{но} Т _{он}	_{но} тх=о	dT=O	Abasic site	T _{HO} XT	T _{oxo} XT
					TB	rAT					
30200	30800	28400	22800	23400	8700	8700	23400	8700	16800	n/a	26500
					TB	rCT					
19300	23600	21200	15200	16200	8700	8700	16200	8700	16800	19600	n/a
					TB	rUT					
21300	26432	24032	18332	18332	8700	8700	18332	8700	16800	21100	n/a
					TB	rGT					
27300	27500	25100	20000	19000	8700	8700	19000	8700	16800	n/a	21900
					T	ГТ					
n/a	24800	22400	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a

Table S3 Molar absorption coefficients¹

¹absorption coefficient, ε_{TXT} , calculated using the nearest neighbor model (*Biophys. Chem.* **2008**, *133*, 66–70; http://biophysics.idtdna.com/UVSpectrum.html);

Absorption coefficient, ε_Y , taken from http://www.glenresearch.com/Technical/Extinctions.html;

 $\begin{aligned} \varepsilon_{TYT} &= \varepsilon_{TXT} - \varepsilon_X + \varepsilon_{Y}; \\ \varepsilon_{0} &= XT_{OH} = \varepsilon_{TX}; \\ \varepsilon_{0} &= XT_{OH} = \varepsilon_{TX}; \\ \varepsilon_{T} &= \varepsilon_{TX}; \\ \varepsilon_{T} &= \varepsilon_{TX} \\ \varepsilon_{T} &= \varepsilon_{TX} \\ \varepsilon_{T} &= \varepsilon_{TX} - \varepsilon_{X} + \varepsilon_{oxo}X; \\ \varepsilon_{T} &= \varepsilon_{TXT} - \varepsilon_{T} + \varepsilon_{dihydro - TXT} \\ \varepsilon_{T} &= \varepsilon_{TXT} - \varepsilon_{T} + \varepsilon_{dihydro - T} \\ \end{aligned}$

Table S4 Molar contribution (in %) of individual products generated by irradiation of 3×10^{-5} M TBrAT solution containing various amount of Tris with 140 Gy (for individual molar absorption coefficients see Table S3 and for product symbols see Fig. 2).

Product	0 a	60 ^a	200 ^a
_P T _{OH}	1.19	0.27	0.19
_{но} Т _{он} / _{но} Т _р	1.65	0.55	0.52
_{но} ТА _{он} / _{но} АТ _{он}	8.75	2.65	2.52
рАТон	7.67	1.60	1.49
ToxoAT	1.03	-	-
TAT	29.83	11.94	14.2

^a Tris concentration in mM

Fig. S1 MS/MS (in the negative ionization mode) spectra of gamma irradiated aqueous solution of TBrAT (the arrows indicate the mass of pseudomolecular anions; for species symbols see Fig. 2).

Fig. S2 MS/MS (in the negative ionization mode) spectra of gamma irradiated aqueous solution of TBrCT (the arrows indicate the mass of pseudomolecular anions; for species symbols see Fig. 2).

Fig. S3 MS/MS (in the negative ionization mode) analysis of gamma irradiated aqueous solution of TBrGT (the arrows indicate the mass of pseudomolecular anions; for species symbols see Fig. 2).